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Synthesizing Optimal Fixed-Point Arithmetic for
Embedded Signal Processing

K. Joseph Hass
Electrical Engineering
Bucknell University

Lewisburg, PA 17837
Email: k.j.hass@bucknell.edu

Abstract— Using fixed-point arithmetic rather than floating-
point for data processing can significantly reduce the cost and
power consumption of embedded systems. Unfortunately, this also
shifts the burden of managing the data representation from run
time to compile time, and in many cases the task of compile-time
optimization must be done manually. A number of attempts have
been made to formalize this process, and fixed-point methods
have even been codified into an industry standard for a popular
hardware-definition language, VHDL, in recent years. While the
standard fixed-point libraries are certainly correct in the strict
sense, they overlook an important practical consideration and
may often produce results that are far from optimal. This paper
discusses methods for maximizing the efficiency of fixed-point
operations by careful use of the standard libraries.

I. INTRODUCTION

Embedded digital signal processing applications, where
there is a strong incentive to reduce the cost and power
consumption of the computing resources, often use fixed-
point arithmetic rather than floating-point. For a given target
system the use of fixed-point arithmetic can increase the data
processing rate by two orders of magnitude or more [1]. When
used in programmable hardware, such as FPGAs, fixed-point
arithmetic also allows the bit width of each variable to be
optimized for the dynamic range and accuracy requirements
of the algorithm, which in turn means that the utilization of
hardware resources can also be optimized. Unfortunately, the
use of fixed-point arithmetic still depends on a variety of ad
hoc methods and tools along with considerable manual inter-
vention. Recent attempts to standardize and formalize fixed-
point arithmetic include standard libraries for VHDL, a design
language codified as IEEE standard 1076 [2]. This paper
discusses how these libraries can be used most effectively,
and how a simple restriction on the input data values is a key
factor in this strategy.

II. FIXED-POINT NUMBERS

Any nomenclature for describing fixed-point binary num-
bers must, at a minimum, specify the location of the binary
point. As with decimal numbers, bits to the right of the decimal
point represent the fractional part of a value while bits to the
left represent the integer part. Several systems of notation have
been used in practice, and the simplest of these is commonly
called the Q notation [3]. The format of each quantity is
designated as Qf, where f is simply the number of bits to the

right of the binary point. If we assume that there is also an
implied sign bit then the total number of bits in the data word
is just f+1, and the range of real values that can be represented
is approximately −1 < x < 1. A common example is the Q15
format used with 16-bit processors. This approach has been
used successfully since the early years of digital computing
[4].

An enhanced version of the Q format allows for values
greater than 1 by specifying some number, i, of integer bits
with a Qi.f notation [5]. Note that the Q format assumes that
each value has exactly one non-redundant sign bit, which can
be an undesirable simplification for processors that use a fixed
word length. In this case a third field is often added to the
format notation to indicate the number of redundant sign bits,
resulting in descriptors such as the (S/I/F) notation system [6],
[7]. This is the notation that will be used for this paper, and
we will say that a signed, fixed-point value A has SA sign
bits, IA bits representing the integer portion of the value, and
FA bits representing the fractional portion. The word length
for A is then simply SA + IA +FA. Note that if SA > 1 then
the additional sign bits are redundant and must have the same
value.

The latest revision of the VHDL standard has formalized
the definition of fixed-point values and provides overlaid
arithmetic operators [2]. Fixed-point data types in VHDL make
clever use of the range specifier for bit vectors to embed
information about the data format. For example, an 8-bit two’s-
complement fixed-point number with 1 sign bit, 3 integer bits,
and 4 fraction bits would be declared as:
signal MySignal: sfixed (3 downto -4);

so that −8.0 ≤ MySignal ≤ 7.9375 with a resolution of
0.0625. Using the (S/I/F) notation we say that this variable has
a (1/3/4) format. The VHDL standard also defines arithmetic
operators for the sfixed datatype. Of particular interest here
is how these standard operators determine the required number
of integer bits in the result, and how this decision can have a
detrimental effect on the synthesized hardware.

III. THE MOST-NEGATIVE NUMBER

When performing binary arithmetic there may be a strong
temptation to assume that the normal rules of integer arith-
metic will always apply, and to act accordingly. One of these
fundamental rules states that for every number a in the set of
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integers Z there must be a solution to the equation a+ x = 0
such that x ∈ Z [8]. In simple terms, for every positive value
in the set there must be a corresponding negative value.

When we chose to represent integers in two’s-complement
binary form using a finite number of bits than this rule no
longer applies. Unlike a sign-magnitude representation which
may have both a positive zero and a negative zero, any set of
two’s-complement values will have just one representation for
the integer zero, which consists of all of the bits being zero.
Since the sign bit of integer zero is zero this value consumes
one of the possible representations for positive values, so there
must always be one negative value that has no corresponding
positive value. This value is the most-negative number (MNN).

For example, a 4-bit two’s-complement integer can have
seven positive values (00012 through 01112) and one represen-
tation for zero (00002). There are eight negative values, 11112
through 10002, that represent the decimal integers −1 through
−8 respectively. Performing unary negation on the most-
negative number cannot possibly return a valid 4-bit two’s-
complement value for +8 since there is no such representation.
Unfortunately, negating the MNN returns the same value, the
MNN itself.

The standard fixed-point arithmetic packages defined in
the VHDL-2008 standard allow for the possibility that the
operands for any calculation may include the MNN. As we
will see, this can lead to a significant loss in precision (if
the word length is fixed) or an undesirable addition of logic
resources and power in order to maintain a desired level of
precision.

IV. FIXED-POINT ADDITION AND SUBTRACTION

In general, binary addition and subtraction must allow for
the possibility of an overflow or underflow from the most
significant bit. The number of integer bits in the sum or
difference must therefore be greater by one than the largest
number of integer bits in either operand:

IA+B = max(IA, IB) + 1

IA−B = max(IA, IB) + 1

This well-known result can lead to unexpected behavior when
we include the most-negative number in the allowed set of
operands. For example, unary negation is commonly per-
formed by taking the one’s-complement (i.e. inverting) the
operand and adding a 1 to the least significant bit. In most
cases the number of integer bits in the negated value will be the
same as in the original operand, but if the operand is the MNN
then we must increase the word length to accommodate the
result. If we are using 4-bit signed integers and wish to negate
10002 (−8) the result cannot be correctly represented with four
bits, and we must prepend one bit to obtain 010002 (+8).
This situation also arises when finding the absolute value of
the MNN. Consequently, the VHDL-2008 operators for unary
negation and absolute value have the following rules:

I−A = IA + 1

I|A| = IA + 1

If we consider the case where IB ≥ IA we find that the
number of integer bits required to represent A+ (−B) is one
greater than the number of integer bits required to represent
A − B. Likewise, the representation for −(−B) must have
two more integer bits than B itself (see [2], p. 524). In most
cases the added integer bits carry no useful information and
are in fact redundant sign bits, and it is only when B is the
MNN that they may be needed. Unfortunately, these added
bits require very real hardware resources for their storage and
computation.

A further consideration for addition arises when calculating
the sum of N values. The final sum will require no more
than log2 N additional integer bits to ensure that the result
is properly represented. However, the result produced by a
synthesizer depends largely on how the summation is coded,
and as many as N−1 integer bits may be added if the N
values are summed into a simple accumulator. Recognizing
this situation can be difficult for any optimization tool, so
the responsibility for writing HDL that will infer the desired
operators falls on the designer, as we will see in the example
below.

V. FIXED-POINT MULTIPLICATION

A generally accepted rule for binary multiplication is that
the number of bits in the product is equal to the sum of
the number of bits in the two operands. This maxim may be
a vestige of our early experience programming conventional
processors with a fixed word length, where the product of
two “single precision” integers is expected to be a “double
precision” result, and it certainly holds true for unsigned
operands. If we consider two unsigned four-bit integers their
maximum decimal value is 15 and their product is 225 which
does indeed require 8 bits to represent (1110 00012). This rule
will also apply to the integer portion of fixed-point numbers:

IA×B = IA + IB

For an N -bit unsigned binary integer, the most positive
value is 2N − 1. Taking the product of two such values we
find that

A×B = (2N − 1)(2N − 1) = 22N − 2N+1 + 1

< (22N − 1) for N ≥ 1

We observe that the magnitude of the product is strictly less
than (22N −1) for all interesting values of N so, as expected,
the product is properly represented in a 2N -bit unsigned
representation.

On the other hand, an N -bit two’s-complement representa-
tion reserves at least one bit to indicate the sign of the number.
As a result the most positive value is 2N−1 − 1 for signed
numbers. Taking the product of two such values we find that

A×B = (2N−1 − 1)(2N−1 − 1) = 22N−2 − 2N + 1

< (22N−2 − 1) for N ≥ 1

This leads to the surprising conclusion that the result of this
two’s-complement multiplication can be correctly represented
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in a (2N−1)-bit word (2N−2 bits for the magnitude of the
product plus a sign bit). As a general rule, the product of an
N -bit two’s-complement value multiplied by an M -bit two’s-
complement value will require M+N−1 bits, one fewer than
the product of two unsigned numbers of the same size. We
can easily rationalize this rule by observing that each of the
operands contributes a sign bit while only one sign bit is
needed in the product.

For example, suppose we multiply 01112 (+7), which is
the most-positive integer we can represent in a 4-bit signed
word, by itself. The result will be 01100012 (+49) and can
be correctly represented using 6 bits for the integer itself and
one additional bit for the sign.

Unfortunately, there is an exception to the signed multipli-
cation rule developed above. For an N -bit two’s-complement
representation, the most negative value is −2N−1. Taking the
product of two such values we find that

A×B = (−2N−1)(−2N−1) = 22N−2

6< (22N−2 − 1) for any N ≥ 1

Now the result is not strictly less than 22N−2 and cannot be
accommodated in a word length of 2N−1 bits. Therefore, if
we allow the possibility that both operands to a multiplication
can be the MNN then the computation of the product must
provide one more bit in the result than would be necessary if
this special case could be avoided.

VI. DIGITAL FILTER EXAMPLE

As an example of optimizing fixed-point arithmetic, con-
sider a simple finite-impulse response (FIR) filter with 8 taps.
The output of the filter at for any given sampling time can be
described by the equation

Y =
K∑
i=0

AiXi

where K is the number of taps in the filter, Y is the filter
output, X is the set of K input samples, and A is a set of
filter coefficients. The straightforward implementation of the
filter in VHDL is based on a single line of code that captures
the filter equation:

Y <= A0*X0+A1*X1+...+A6*X6+A7*X7;

Suppose that the coefficients and input samples are repre-
sented as 12-bit signed values, with one bit reserved for the
sign and 11 bits of fraction information. Using the SIF notation
this is a (1/0/11) format, while in VHDL it would be declared
as type sfixed (0 downto -11). Note that the range of
decimal values that can be represented is

−1 ≤ X ≤ 1− 2−11

The product of an input sample and a coefficient, both
using this format, must be strictly less than 1 unless both
the coefficient and the input sample are exactly equal to
−1. Allowing for this highly unlikely case requires that we
provide for an integer bit in the product to express the proper

TABLE I
SYNTHESIS RESULTS FOR 8-TAP FILTER

Implementation LUTs Critical Path
Default VHDL 196 20.05 ns
Discard Y MSBs 181 19.65 ns
. . . and group adders 178 11.46 ns
Discard product MSB, group adders 172 11.51 ns

two’s-complement representation of +1. This is exactly the
assumption that is made by the VHDL fixed-point package,
which requires that the format of the product be (1/1/22).

After all of the products are computed they are summed,
and the typical approach used by logic synthesizers is to add
any two of the products and form a partial sum. The remaining
product terms are then added, one at a time, to the partial sum
until K−1 additions have been performed. Using the VHDL
sfixed datatype requires that each of these additions also
increments the number of integer bits in the data format, so the
required format for Y becomes sfixed(8 downto -22)
or (1/8/22) and consumes a total of 31 bits. However, it is easy
to see that the sum of eight values, each strictly less than 1,
must have a value less than 8 and can be correctly represented
with just 3 integer bits. In other words, the casual use of the
sfixed operators results in the inclusion of 5 redundant sign
bits that will carry no useful information.

A. Synthesis Results

This straightforward implementation of the filter was syn-
thesized to the target architecture of a commercial FPGA
using the FPGA vendor’s tools, with results shown in the
first entry in Table I. The chosen FPGA provides very fast
multiplier macrocells, and 8 of these were used in the filter
while the adders were constructed from look-up table (LUT)
logic blocks. The critical path delay from the filter inputs to
the output is shown in the final column, where the filter has
been placed between register banks so delays associated with
chip input/output pads is not a factor.

Since we know that the result contains redundant sign bits,
an easy optimization step is to simply discard the 5 most-
significant bits (MSBs) of the filter output. The synthesis tool
should then recognize that all of the logic elements used to
calculate the discarded bits can also be pruned away, resulting
in an overall simplification of the circuit. The synthesis results
for this change are shown in the second entry of Table I, where
we see that the number of LUTs is reduced by 7.7% and the
critical path delay is shortened by 2%.

A more significant improvement can be obtained by also
forcing the synthesizer to sum the products using an adder
tree, where the 8 products are first grouped into four pairs of
products and each pair is added. The format of each of these
partial sums is (1/2/22). The partial sums are then grouped
into two pairs and the pairs are again added, with a resulting
format of (1/3/22). The final pair of partial sums is now added
and the format of the final sum is (1/4/22). The VHDL code
can be easily modified to enforce this sequence of operations
by grouping the operands with parentheses:
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Y <= ((A0*X0+A1*X1)+(A2*X2+A3*X3))
+((A4*X4+A5*X5)+(A6*X6+A7*X7));

In this case there is just 1 redundant sign bit, the one con-
tributed by the multiplication operator, which can be discarded.
This implementation was synthesized to give the results in the
third row of the table. We have reduced the number of LUTs
by 9.2% and trimmed the critical path delay by nearly 43%.

As a final experiment, the MSB of each product term was
discarded before the partial sums were computed. An adder
tree was again used to accumulate all of the products. Since
both the multiplications and the additions were optimized to
discard redundant sign bits there was no need to discard any
sign bits from the final output value, and this is the limit
of optimizations that can be made without knowledge of the
coefficient values or input data statistics. As we can see from
the last entry in Table I the critical path delay did not change
significantly, which is to be expected because discarding a
redundant bit in the products has no real affect on the path
delay for the actual information bits. However, there was a
small decrease in the required logic resources because the
width of each adder could be reduced by one bit.

B. Other DSP Structures

The FIR filter example presented above emphasizes op-
timizations related to the summation, but other algorithms
will be more strongly affected by the addition of redundant
bits during multiplication. The Fast-Fourier Transform (FFT),
for example, requires repeated multiplications by complex
coefficients to obtain a result. Calculating an N -point FFT
requires the use of log2 N butterfly stages, and all but the first
of these includes a multiplication by a non-trivial complex
coefficient [9]. Thus, using the standard sfixed operators
to calculate a 1024-point FFT would accumulate at least 9
redundant sign bits in the result. The multipliers and adders
in the later butterfly stages would see progressively wider
operands, requiring additional logic resources. If the FFT is
pipelined then the pipeline registers will also be unnecessarily
wider, consuming further resources with no return in useful
information.

Another common element in digital signal processing, the
infinite impulse response (IIR) filter, is also quite sensitive
to numerical problems. As the name implies, the response
of an IIR filter to an impulse input decays over time but,
at least theoretically, will last indefinitely. This behavior is
due to the presence of a feedback path from the filter output
back to its input. Therefore, if the filter adds unnecessary bits
to the output word then the redundant bits will accumulate
recursively and render the filter unusable.

VII. PREVENTING THE MOST-NEGATIVE NUMBER

A relevant question at this point is whether it is reasonable
and practical to assume that the MNN can never appear as an
operand in our calculations. Suppose first that we can exclude
the MNN from the set of primary inputs to our processing
block. This is easily accomplished for streaming data inputs by
comparing the incoming values to the MNN and incrementing

them if that value appears. In a well-designed signal processing
application the input data values rarely approach the most
positive or most negative limits so this restriction is typically
of little consequence.

Now, if the MNN is excluded then the unary negation and
absolute value operators will never return the MNN and will
not require an additional integer bit. Similarly, if we account
for the normal possibility of overflow from an addition or
underflow from a subtraction then these operators can not
return the MNN. A few trial calculations will also show that a
signed multiplication cannot result in the MNN, even if one of
the operands is a MNN. Furthermore, if neither the multiplier
nor the multiplicand are the MNN then the product can be
properly represented using one fewer bit than the sum of the
bits in the operands.

Consequently, if the MNN is removed from the set of
possible input values then we can be confident that it will
never be produced as an intermediate result and our processing
algorithms can be optimized accordingly.

VIII. CONCLUSION

Evolving standards for fixed-point computation in hardware
description languages are replacing the variety of ad hoc
methods that were developed over the past few decades.
These standards will allow digital designers to employ fixed-
point techniques efficiently, but optimizing the area, power
consumption, and computational throughput of fixed-point
arithmetic still requires attention to detail. Proper ordering
of additions and subtractions can significantly improve the
design with no loss of precision or dynamic range, and in
most cases the redundant sign bit produced by the standard
multiplication function can be discarded. Removing the most-
negative number from the set of possible operands is a key
step in achieving these improvements.
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