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Relaxational Mode Structure for Optical Probe Diffusion
in High Molecular Weight Hydroxypropylcellulose

KIRIL A. STRELETZKY, GEORGE D. J. PHILLIES

INTRODUCTION

The mechanism of polymer dynamics in solutions
is a major unanswered question that has been
studied intensively for many years. There are
many different experimental approaches to the
problem.’ One of the widely used techniques is
the optical probe diffusion experiment. In this
kind of experiment one observes the motion of
dilute monodisperse probe particles through the
polymer solution of interest. If probes scatter con-
siderably (~ 99%) more light than the polymer
does, then one can obtain crucial information

about the polymer dynamics by monitoring the
diffusion of probe particles. Optical probe diffu-
sion can be observed by a number of experimental
techniques. Our laboratory studies probe diffu-
sion using quasi-elastic light-scattering spectros-
copy (QELSS), which infers the dynamic struc-
ture factor S(q, t) of the scattered light.

The use of the optical probe technique was
pioneered by Turner and Hallett? more than 20
years ago. Since then numerous experimental
studies in different polymer solutions®'’ have
revealed a wide variety of probe diffusion phe-
nomenologies.

It was demonstrated'®!® that in systems in
which the functional form of S(q, ¢) is close to a
simple exponential one can obtain the probe’s
self-diffusion coefficient D, from S(q, ¢). One can



then compare D,, with the macroscopic zero-shear
viscosity m of the solution by using the Stokes—
Einstein equation

kT
- 6mR,

(1)

Here k5 is Boltzmann’s constant, T is the ab-
solute temperature, and R, is the hydrodynamic
radius of the diffusing probe. Equation (1) is
known to work for mesoscopic probe diffusion in
low-viscosity small-molecule solvents. Equation
(1) does not always work in high-viscosity large-
molecule solvents.> ® However, in some systems
S(q, t) is highly bimodal, posing the question of
how a single diffusion coefficient D, can represent
two decay modes in S(q, ¢). An alternative de-
tailed lineshape analysis of S(g, #) is needed in
this case.

This article addresses the results of a study?®
of probe diffusion in aqueous solutions of hy-
droxypropylcellulose. The scattering from probes
diffusing in this polymer solution reveals a bi-
modal S(q, t). Lineshape analysis of S(q, t) was
employed?® for this system, finding two distinct
modes of the relaxation. An apparent influence of
the probe size on the relaxational mode structure
was discovered.?’ The detailed lineshape analysis
can be found in ref. 20. Here we discuss properties
of the spectral parameters that reveal the physi-
cal nature of the relaxational mode structure. In
our analysis of the physical nature of modes, we
also attempted to apply the coupling/scaling mod-
el?! analysis to our system.??

The following sections introduce experimental
methods, give the important results of ref. 20,
present a coupling/scaling model analysis of our
data, and discuss the modes’ physical interpreta-
tions.

EXPERIMENTAL

Quasi-elastic light-scattering spectroscopy stud-
ies the temporal evolution of concentration fluc-
tuations in a sample by monitoring the light-scat-
tering intensity I(q, t) (where ¢ is the scattering
vector) and calculating the intensity—intensity
correlation function:

T
S(q, 7) =f dtl(q, t)I(q, t + 7). (2)
0

Here, 7is a shift in time, and 7' is the duration
of the experiment. Our light-scattering spectrom-
eter used a 1.5 W Ar" (Spectra-Physics 2020-03)
CW laser coupled to a photometergoniometer
(Brookhaven Instruments BI-200SM). Sample
cells, placed into a decalin-filled index-matching
vat, were maintained at 25 *+ 0.1°C. Spectra were
analyzed with a 270-channel digital multitau cor-
relator (Brookhaven Instruments BI2030AT).

The subject of this study was hydroxypropyl-
cellulose (HPC), nominal molecular weight 1 MDa
(Scientific Polymer Products), in aqueous solu-
tion. Stock solutions of polymer concentration 7
g/l were prepared in purified water (Millipore
Milli-RO, Milli-Q water systems) and diluted to
cover polymer concentrations of 0—7 g/L. generally
at 1 g/L intervals. HPC absorption by probes was
prevented by adding a trace amount (based on
Phillies et al.?®) of surfactant [0.2 wt % TX-100
(Aldrich)]. Carboxylate-modified polystyrene la-
tex spheres (PSL) with nominal diameters of 14,
21, 38, 67, 87, 189, 282, and 455 nm (Interfacial
Dynamics, Seradyn, Dow Chemicals) were used
in the probe diffusion experiments. Because latex
spheres are very good scatterers, even trace
amounts of PSL (5-10 pL per mL of polymer
solution) were enough for probes to dominate the
scattering intensity. Probe multiple scattering
was avoided by using small probe volume frac-
tions (under 0.001).

The observed spectra in our experiments cor-
respond to probe motion through the practically
unseen polymer matrix. There is no sizable con-
tribution from concentration fluctuations of poly-
mer or surfactant. To test this point we directly
compared spectra of probe-containing and probe-
free polymer solutions under identical operating
conditions. Typically S(g, 0) of a probe-free poly-
mer solution is about 1% of S(g, 0) of a probe-
containing polymer solution: the probe contribu-
tion to the total scattering is far greater than any
other contribution. We also subtracted (at the
field-correlation function level) spectra of probe-
free polymer solutions from spectra of probe-con-
taining polymer solutions to find the contribution
of the polymer scattering. The difference spectra
then were subjected to our spectral fitting rou-
tine, yielding the same fitting parameters (within
experimental error) as did unsubtracted probe-
containing spectra.

Analyzing our spectra, we found that they were
highly bimodal. A calculation of the probe diffu-
sion coefficient D, from the initial logarithmic
slope of S(q, t) therefore does not describe the



long-time part of the spectrum. A systematic
analysis of the spectral lineshape is required.

We analyzed the spectral lineshape on the level
of field correlation function g'*(g, ¢). The inten-
sity—intensity correlation function g'®(q, ¢) is re-
lated to g'P(q, ¢) via

g%4q,t)=8(q,t) —B=A(g"q, t)? (3)

where A is the scattering amplitude and B is the
baseline, the time-independent part of the spec-
trum. We tried different forms of g'V(q, ¢) to see
which one best described g'®(q, ). We minimized
[g®(q, t) — S(q, )1%/[S(q, t)]1?, applying non-
linear least squares and the simplex algorithm.?*

RESULTS

This section presents a generalized analysis of
our light-scattering spectra and physical proper-
ties of the modes that were found to compose our
spectra. A more detailed description of our find-
ings is found in ref. 20.

Analyzing highly nonexponential S(q, ¢) of
probes of different diameter d we found®® that
probes with d < 67 nm clearly have bimodal
spectra. Even though spectra of probes with d
= 67 nm do not demonstrate an obvious bimodal
lineshape to the eye, they are also found by nu-
merical analysis to be bimodal. The bimodal
gP(t) that describes our spectra has the form

g(t) = (1 — Apexp( — 0tF) + Apexp( — 04%). (4)

Here, 6, B are the relaxation pseudorate and
stretching exponent of the slow mode, 6, B, are
the relaxation pseudorate and stretching expo-
nent of the fast mode, and A, is the amplitude
fraction of the fast mode. The visible difference in
the lineshape of S(q, t) between small (d < 67
nm) and large (d = 67 nm) probes is reflected in
different values of the slow stretching exponent S.
For large probes, forcing B = 1 produced?® much
more stable and reproducible fits then did allow-
ing B to be a free parameter. For small probes, fits
with B =~ 0.7-0.95 gave excellent results.

Our analysis decomposes spectra of polysty-
rene sphere probes into two modes, a fast
stretched-exponential mode and a slower expo-
nential or stretched-exponential mode. It should
be emphasized that our interpretation of the
modes as stretched exponentials is phenomeno-

logical. A group of exponential modes whose sum
approximates a stretched exponential decay can-
not, within the limits of our experimental method,
be distinguished from a single stretched-exponen-
tial mode. Our remarks on the properties of single
modes may, therefore, actually be statements
about the aggregate behavior of a group of modes.
However, sums of two pure exponentials do not fit
our spectra. A single stretched-exponential mode
may be a stretched exponential or an aggregate of
pure exponentials, but is observably not a single
pure exponential.

Summarizing, in our lineshape analysis we
found?® slightly different but bimodal (fast and
slow modes) spectral lineshapes for small and for
large probes. Probes withd < 67 nm have g'¥ in
the form of two stretched exponentials, while
probes with d = 67 nm have g'¥ in the form of
a fast stretched and a slow pure exponential. The
difference?® in the functional description of g'¥(¢)
between large and small probes remained the
same at all polymer concentrations studied. The
crossover probe radius separating small and large
probe behavior?® is comparable with the chain
dimensions. In particular, small probes are
smaller than the hydrodynamic radius of the
polymer, while large probes are comparable or
larger than the radius of gyration of the polymer.
Our spectra thus may be divided naturally by a
time scale and probe size into four regimes,
namely two modes (fast and slow) for small
(d < R,;) probes, and two modes for large (d
= R,) probes.

The difference between large and small probes
is made very prominent if one considers the di-
ameter dependence of the pseudorates 6 and 0.
Figure 1(a) gives the probe diameter dependence
of 6 for each polymer concentration studied. There
are two regimes: (1) small probes with no concen-
tration dependence of 6, and (2) large probes with
0 strongly depending on c. The transition from
small- to large-probe behavior begins as d ap-
proaches the hydrodynamic radius R, of the
chain, and is complete for d larger than the radius
of gyration R, of the chain. This length scale
remains the same for polymer concentrations up
toc = 7 g/L, which corresponds toc[n] = 5. The
concentration independence of the transition
length scale is inconsistent with some transient
gel models. The typical transient gel models?52%
consider the distance between the chain entangle-
ments ¢ as the length scale that influences the
probe motion through the polymer. The polymer
solution, according to these models, would act like
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Figure 1. Probe diameter dependences of the relaxation pseudorates 6 and 6, [eq. (4)]
at various indicated concentrations ¢ for different modes of small and large probes in
solutions of 1 MDa HPC: (a) 6 for the slow mode; and (b) 6, for the fast mode. Vertical
dashed lines indicate the hydrodynamic radius R, and the radius of gyration R, of the

—3/4
polymer. Arrows indicate the mesh size ¢ calculated as Rg(cf*> , where c¢* is an

overlap concentration.

a net with a mesh size ¢, allowing small probes
with radius R < ¢ to diffuse through the polymer
net following the solvent flow, and effectively
trapping large probes with R > £, forcing them
to move with the macroscopic viscosity of the so-
lution. However, these models define®® ¢ as R, at
the overlap concentration ¢* and predict a strong

concentration dependence of ¢ in the form ¢ = R,

- 3/4
(c*) . Therefore, according to the transient gel

models, the separation length scale between
small- and large-probe regimes should be a c-
dependent mesh size & which directly contradicts
our finding that the transition length scale is
independent of ¢. On the other hand, the transi-
tion region location at (R,, R,) and its indepen-
dence from the polymer concentration is consis-
tent with the fundamental importance of hydro-
dynamic interactions in probe diffusion.

A similar transition in probe behavior can be
seen in Figure 1(b), which plots 6, vs. d. Again,
there are two probe regimes: (1) small (d < R))
probes with a 0, that is independent of d, and (2)
large (d > R,) probes with a 0, that weakly
decreases (within a factor of 2) with increasing d.

In the transition regime R, < d < R,, asd is

increased from 40 to 180 nm, 6, falls by a factor of
10. However, in both the large- and the small-
probe regimes, 6, is largely ¢ independent.

Figure 2 gives the concentration dependence of
6 and 6, for probes of all sizes. As seen in Figure
2(a), for small probes, 0 is largely concentration
independent, while for large probes 6 decreases
with increasing c, closely following

6 =0, exp( — ac?). (5)

Here, « is a scaling prefactor, v is a scaling expo-
nent, and 6, is the intercept. Figure 2(b) shows
the concentration dependence of 6. 6, of both
small and large probes is largely ¢ independent
(within factor of 2), just as 6 of the small-probe
slow mode was independent of c.

From the ¢ dependence of 6, one can separate
the slow modes of large and small probes from
each other. For the fast mode, the ¢ dependences
of 6, of small and large probes are very similar.
However, the d dependence of 0, [Fig. 1(b)] allows
one to separate the small- and large-probe fast
modes. The similarities in the concentration de-
pendences of three out of four modes raises the
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Figure 2. Concentration dependences of the relaxation pseudorates 6, and 6, [eq. (4)]
for small (d = 67 nm) and large (d = 67 nm) probes in solutions of 1 MDa HPC: (a)
6 of the slow mode; and (b) 6, of the fast mode. Solid lines on Figure 2(a) are stretched

exponentials in c. Units of 0 are (uS) ~ ~.

question of the relation of the modes to each
other. If one compares the absolute values of 6
and 6 for all three modes, one finds that the four
modes have only three time scales, namely: (1)
the large-probe slow mode with 6 ~ 10 °-5
X 107¢, (2) the large-probe fast mode and the
small-probe slow mode with 6,or 6 ~ 1 X 1072-3
%X 1073, and (3) the small-probe fast mode with 0
~ 5 X 102,

Mode time scales may also be characterized by
relaxation times 7= 6" "#and 7, = 6, V#. rand
7, have dimensions of (time),” so they are in-
equivalent to 6 and 6, which have dimensions
(time) #. For four mode/probe-size combinations,
7 and 7, are: (a) T ~ 1073-3 x 107! s for the
large-probe slow mode, (b) 7, ~ 6 X 10~ *-
10 ' s for the large-probe fast mode, (c) T
~ 10 *-8 X 10~ *s for the small-probe slow mode,
and (d) 7, ~ 3 X 10 *-5 X 10 2% s for the
small-probe fast mode.

The longest time scale involves the large-probe
slow mode, which has the largest 7. We can ratio-
nally incorporate the large-probe fast mode
(fr}arge) and the small-probe slow mode (™) into
a single intermediate time scale. The small-probe
fast mode, while strongly scattered, usually sat-
isfies T}Carge = pemall > gsmall, 51 small probes T
> 7 even though 6, > 6. This difference between

7 and 6 arises because for small probes B ~ 0.5—
0.9 but B, = 0.2-0.5. It is legitimate to inquire
whether we should interchange 6 and 6, for the
small spheres; indeed, on a plot of g(q, ¢) the
visible decay of exp( — 6¢F) occurs before the vis-
ible decay of exp( — Ofth), because the relative
values of B and S cause the slowest of the fast-
mode components to decay at later times than the
slowest slow mode component decay. However, as
seen in Figures 1 and 2, 6 and 6, have smooth
dependences on d and c. If one were to inter-
change 6 and 6, of the small spheres, Figures 1
and 2 would show that 6 and 6, each had non-
monotonic dependences on d and c. It is, there-
fore, rational to label the small-probe (6, B/-
mode as the “fast” process, even though ’T?mau
> Tsmall.

We now consider the physical properties of the
modes, in terms of a three time scale description
of the system:

Mode Concentration Dependences

First, we compare the concentration dependences
of 6 and 0, with the concentration dependence of
the zero-shear viscosity 7. Figure 3 shows the ¢
dependences of 67 [Fig. 3(a)] and 6/ [Fig. 3(b)l. n
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Figure 3. Concentration dependences of the product of the relaxation pseudorate and
solution viscosity for small (d = 67 nm), and large (d = 67 nm) probes in solutions
of 1 MDa HPC: (a) 67 of the slow mode; (b) 6,1 of the fast mode. 6 and 6, are from eq.

(4). m is from ref. 27.

is from the viscosity measurements of Quinlan
and Phillies.?” Consider the slow mode [Fig. 3(a):
(1) for small probes (d = 67 nm): 6 does not track
n~ ! at all; n increases 20—400-fold as ¢ increases
from 0 to 7 g/L; (2) for the largest probes (d
= 189, 282, 455 nm), 07 is a constant to within
a factor of 2 of its average value. On the other
hand, consider the fast mode [Fig. 3(b)]: for
spheres of all sizes 0,m increases 100- to 400-fold
as c¢ is increased from 0 to 7 g/L. Therefore, of the
four mode/probe-size combinations only the slow
mode of the large probes shows close compliance
with Stokes—Einsteinian behavior (67 ~ const). In
other words, at long times the relaxation of probes
that are larger than the chain dimensions follows
the macroscopic viscosity n of the polymer solu-
tion. For the fast mode of large probes, and the
slow and the fast modes of small spheres, probe
motions at elevated polymer concentrations are
much faster than motions that one would expect
on the basis of the macroscopic solution viscosity.

Mode-Scattering Vector Dependences

Second, we consider the dependences of the fitting
parameters on the scattering vector. Figure 4(a)
shows the ¢ dependence of 6 for the slow mode of
large probes. The relaxation rate 6 clearly shows

diffusive behavior, i.e., 8 ~ ag?; there is no
intercept at ¢ = 0. This diffusive behavior con-
firms our above suggestion on the origin of the
large-probe slow mode, namely that the large-
probe slow mode describes a time scale so long
that polymer : solvent internal modes have com-
pletely relaxed. To the probes, on this time scale
the medium is a simple viscous fluid. Therefore,
from the central limit theorem one can predict
that probes perform simple Brownian motion, im-
plying B, = 1 and 6 ~ ¢2, as found experimen-
tally.

Figure 4(b) shows the ¢ dependence of the in-
termediate time scale mode, which incorporates
the large-probe fast mode and the small-probe
slow mode. The slow mode of small probes
shows?? a clear diffusive behavior with 6 ~ ag?
and zero intercept as ¢ — 0. However, the fast
mode of large probes has a very complicated ¢
behavior. As seen in Figure 4(b), 0, of large probes
is largely independent of ¢ at small angles (q
< 250 wm™?), but has a linear dependence 0
~ aq? + b with nonzero intercept b at large
angles (g > 250 um 2?).

Finally, the ¢ dependence of the short time
scale mode (the fast mode of small probes) is
complex,?® having two linear regimes, namely 0
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~ aq? at large ¢ and 0, =~ a,q® + b with b
# 0 at small q.

The fraction of the fast mode A, depends dif-
ferently on g for small and large probes. Figure 5
shows g dependences of A, for large and small
probes. For large probes, A, at small g increases
weakly with rising ¢, but is independent of ¢ at
large q. The crossover in A{q) between small-
and large-g behavior happens at the same ¢ as
the crossover in 6(q) for large probes. The cross-
over is at ¢ =~ 250 um ™2, equivalent to a cross-
over distance ¢ ~! = 63 nm, 63 nm also being
the distance scale on which small- and large-
probe behaviors cross over. On the other hand, for
small probes, A, decreases quasi-exponentially
with increasing q; if one identifies the large-probe
fast mode with the small-probe slow mode, the
amplitude of this mode has similar ¢ dependence
for large and small probes.

Mode-Stretching Exponents

Third, we consider the stretching exponents of
three time scale regimes. The long time scale
regime (large-probe slow mode) has?® g = 1. The
intermediate time scale regime (large-probe fast
and small-probe slow) have® g and Brin the same

range (0.6, 0.95). § of small probes and B, of large
probes both monotonically decrease®® with in-
creasing ¢ from 0.95 near ¢ = 0 to 0.6 at 7 g/L
HPC. Also, B of small probes and S, of large
probes are both ¢ independent,?® even though
A{dq) and 04q) are very different for the small-
probe slow and large-probe fast modes. The short
time scale regime (the small-probe fast mode)
has®® the smallest stretching exponent; Br € (0.2,
0.6). B/ of small probes also decreases?® with in-
creasing ¢, but has a nontrivial ¢ dependence (at low
q, By decreases with increasing g, at high q, B is q
independent).

The aforementioned properties demonstrate
that modes on the three time scales in general
differ from each other. Physical interpretations
for the intermediate and short time scale regimes
will be advanced in the following sections. Here
we will distinguish the properties of these two
time scale modes and identify justifications, in
addition to the similar time scale, for combining
the large-probe fast mode and the small-probe
slow mode into a single intermediate time scale
regime.

First, consider the intermediate time scale re-
gime. Two modes (the large-probe fast- and small-
probe slow-modes) compose the intermediate time
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scale. The large-probe fast and the small-probe
slow modes differ significantly only in their q
dependences. This difference in ¢ dependence can
be rationalized as the effect of probe size on the
coupling of probe motions to the chain relax-
ations. In all other physical properties revealed
by our previous study?® these two modes are sim-
ilar. Particular similarities between the large-
probe fast mode and the small-probe slow mode
include: (1) stretched-exponential (not simple-ex-
ponential) observed spectral lineshapes; (2) ¢ in-
dependences of § for small probes and 6 for large
probes (within a factor of 2); (3) noncompliance of
mode pseudorates with a Stokes—Einstein equa-
tion (large probes: 6m # const; small probes: 6n
# const); (4) very weak (large probes) or no (small
probes) d dependence of 6, or 6, respectively, and
(5) By (large probes) and g (small probes) both fall
with increasing ¢ from 0.95 in pure solvent to 0.6
at 7 g/L of polymer.

Figure 6 compares 7 of small probes and 7 of
large probes. Solid lines are drawn through the
data on small probes (1) to guide the eye and to
help distinguish 7 of small probes from 7, of large
probes. If the ¢ dependences of 6 (and B) and 6,
(and B) are the same for these two modes, then
the ¢ dependences of the true relaxation rates T
and 7, should be the same. 7 and 7, indeed both

increase with rising c¢. The decay pseudorates 6
and 6, are concentration independent; 7 and 7,
inherit their dependences on ¢ exclusively from 8
and By

Second, consider the short time scale regime,
i.e., the small-probe fast mode. Several properties
of this mode distinguish it from others. In addi-
tion to having the largest relaxation pseudorate
0, this mode has the smallest stretching expo-
nent 8. This combination of large 6, and small 3,
makes this mode very broad, so that 7, > 7 with
a very sharp initial decay. Other properties of this
mode appear to be similar to properties of the
intermediate time scale mode. In particular, the
short time scale mode shows non-Stokes—Ein-
steinian behavior; to first approximation, 6, is c
independent. The stretching exponent S, of the
short time scale regime decreases with increasing
¢, just as the stretching exponents of the interme-
diate time scale mode do. However, the relaxation
time 7, of the short time scale regime appears to
be ¢ independent, in contrast to the ¢ dependence
of 7 and 7, of the intermediate time scale mode.

Summarizing, we have analyzed the properties
of the four mode/probe-size combinations and
have identified three physical time scales of probe
motion. The large-probe slow mode corresponds to
the longest time scale. The properties of this mode
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Figure 6. Concentration dependences of relaxation
times: 7 = 6~ for the slow mode of small probes with
diameter 87 (<), 189 (+), 282 (V), and 455 (V) nm.
Units of 7 and 7, are (wS). Solid lines are drawn to
guide the eye through the data on small probes (7).



indicate that on this time scale the polymer solu-
tion behaves as a simple viscous fluid, and
spheres sample the macroscopic viscosity of the
solution. The intermediate time scale incorpo-
rates the small-probe slow mode and large-probe
fast mode. These two modes have similar physical
properties, except for their ¢ dependences, differ-
ences which can be attributed to a probe-size ef-
fect. The small-probe fast mode corresponds to
the shortest time scale. Most properties of this
mode are very different from other modes, except
for a few properties that are similar to the inter-
mediate time scale regime, notably the non-
Stokes—Einsteinian behavior and, to first approx-
imation, some but not all ¢ dependences.

COUPLING/SCALING ANALYSIS

The coupling model of Ngai®®*32 is a general

model for “the dynamics of constrained, interact-
ing systems.” 2! The coupling model has been suc-
cessfully applied to a variety of complex physical
systems.?? Even though the coupling model for
real complex systems has no theoretical deriva-
tion from the first principles yet, from simulating
simple systems with idealized Hamiltonians
there are several encouraging theoretical re-
sults®3~35 that directly support basic elements of
the coupling model. The most recent examples of
such theoretical modeling via computer dynamics
simulations are (1) the relaxation of interacting
arrays of coupled nonlinear oscillators,>* and (2)
the Fermi acceleration problem with added non-
linearity.?® In both theoretical examples, the ba-
sic principles of classical mechanics were used to
estimate the effects of nonlinearity on the relax-
ational processes. Both simulations yielded the
coupling model predictions for nonlinearly cou-
pled many-body systems.

The coupling model looks at a system as a
combination of “basic units” interacting nonlin-
early with each other. The simple coupling model
considers two time scales, separated by a cross-
over time ¢,. At¢ < ¢, “basic units” are assumed
to relax independently from each other; their re-
laxation can be described by a correlation func-
tion

d(t) = exp( — t/7), t <t.. (6)
7, is the characteristic time for unconstrained
relaxation. At ¢ > t_, cooperative constrains be-

tween “basic units” become important, and the
degreen (0 = n < 1) of coupling between basic
units should be accounted for in ¢(¢), so that

o(t) =exp(— (/1" "), t>t,. )
Here, 7 is the characteristic time for relaxations
under constrains. There is also a continuity con-
dition on ¢(¢) at¢ = ¢, which yields the require-
ment 7 = [t "7,]Y? " ". The coupling model is
not specific on which interactions (e.g., hydrody-
namic, topological) create the cooperative con-
straints.

The coupling model successfully predicts some
experimental results on probe diffusion in poly-
mer solutions'*'*!” and on polymer self-diffu-
sion.?6—38 First, stretched-exponential functions
of ¢(t) describe well g¥’(¢) of many polymer sys-
tems.'1:15:17:39-41 Ty terms of our notation, g = 1
— n. Second, it was shown by Ngai and Phillies®!
that the phenomenological concentration depen-
dence of p11:15:1740:42 5 often consistent with cou-
pling model predictions for 1 — n. Third, the
coupling model predicts®! that the relaxation time
rdependsongast = 9 VP ~ g~ 21" Thig
g dependence was seen experimentally'® in our
laboratory.

Recently, Ngai and Phillies®! advanced cou-
pling/scaling arguments providing one with an
additional two ways to extract the degree of cou-
pling n from the phenomenology. The first way is
the use of the concentration dependence of the
probe diffusion coefficient D,, where coupling/
scaling gives the degree of coupling n, namely

BcEl_nD

_ 3v

Here, c* is a nominal overlap concentration, and
virom R, ~ M" relates the radius of gyration R,
of a polymer to its molecular weight M. Equation
(8) is most plausible for nondilute solutions, i.e.,
forc = 2c*.

The second way is the use of the concentration
dependence of n, where coupling/scaling gives the
degree of coupling n,,, namely

(8v — 1)(In(Dy(c*)) — In(Dy(c)))] ~* )
2 In(c/c*) ’

anl_nn

3v  (3v— 1)(In(n(c)) — In(n(c*))] "
- [2 * 2 In(clc™) -



Equations (8) and (9) provide two paths for
obtaining the degree of couplingn = 1 — B.
Two additional independent ways for obtaining
the degree of coupling are: (1) B, from the ¢ de-
pendence of gV(¢), and (2) B, from the g depen-
dence of g'¥(¢). An obvious way to test the cou-
pling/scaling model is to compare B,, B,, 8., and
B,, for experimental data on one system. If all four
B agree with each other, then the model is self-
consistent. Phillies and Ngai?! were able to dem-
onstrate the success of the model for probe diffu-
sion'” in 300 kDa HPC solutions. They demon-
strated that 8., B,, and B, from gV(t), and B,
from m(c) agree with each other.

Recently, we®? applied the coupling/scaling
model to the data of ref. 200on M = 1 X 10°Da
HPC. A simple repeat of the coupling/scaling
analysis was impossible, because the spectra of
ref. 20 have two relaxational modes, not one. Ref.
20’s spectra do not imply a single diffusion coef-
ficient D,, that could be substituted in eq. (8). The
two modes appear to be very different in their
physical nature. In particular, large probe diffu-
sion requires whole-chain center-of-mass mo-
tions, but small probe diffusion can be accommo-
dated by local chain motions. As shown in the
previous section, the slow mode of large probes
reflects a simple Brownian motion of the probes in
the polymer matrix; regarding other modes, ref.
22 proposed that the intermediate time scale
mode involves probe motions coupled to chain
local motions.

Because the spectral lineshape is bimodal, we
cannot apply the simple coupling/scaling model*!
to the whole relaxation. However, very recently
Ngai and Rendell*® have shown an approach to
applying the coupling model to a much more com-
plicated relaxation, namely diffusion in a concen-
trated solution of hard colloidal spheres as stud-
ied by Segre and Pusey.** In these systems, the
light-scattering spectrum is composed of a short-
time pure exponential regime, an intermediate-
time stretched exponential-in-time regime, and a
long-time pure exponential regime. Ngai and
Rendell*® concluded that the coupling model pro-
cedures are applicable to this systems, in that
“there is good agreement between [the model] and
experiment.”

In contrast to the system described by Ngai
and Rendell,*? in which the functional form of the
relaxation depends on time, so that three time
regimes exist, here we have bimodal spectra that
are represented as a sum of two independent
modes. The coupling ansatz naturally leads to

such spectra if the system contains several groups
of fundamental units that are strongly coupled
within each group, but that are very weakly cou-
pled between groups. We,?? therefore, analyzed
each mode separately using coupling/scaling, so
as to determine which modes are described by the
coupling model.

Two sets of coupling coefficients, namely 8, and
B. for the slow mode, and By, and B, for the fast
mode, were obtained?? from the measured g'¥(¢)
and eq. (8). B,,, is calculated using eq. (9) from
n(c), so B, is the same for all modes. Dealing
separately with each mode, we can compare S,
B> Br:» and By to B, to infer the coupling behavior
of each mode. B, is very important in these com-
parisons because it reflects the motion of complete
chains (a matrix property unrelated to probe ra-
dius), and because it is calculated directly from
coupling/scaling analysis?! without auxiliary as-
sumptions.

We found?? that some modes follow the cou-
pling/scaling model, while others do not. The slow
mode of large probes and the fast mode of small
probes do not follow coupling/scaling predictions,
so these modes are not considered further here.
The intermediate time scale regime (small-probe
slow mode and large-probe fast mode) obeys the
coupling/scaling model. We consider here this
time scale mode in detail.

Figures 7(a) (small-probe slow mode) and 7(b)
(large-probe fast mode) show exemplary results of
the coupling/scaling analysis for the small-probe
slow mode and the large-probe fast mode, respec-
tively, comparing B, and . (or Bg) with 8, from
the solution viscosity. To apply eqs. (8)—(9), one
needs a nominal overlap concentration c¢* and
scaling exponent v. From ref. 27, for 1 MDa HPC
c* = 1/[n] is 1.4 g/L.. We tried three plausible
values for v, namely 0.5, 0.55, and 0.6. The 8, and
B. calculated with a specific v are denoted g, , and
B.,., respectively. Near c*, B, , is scattered be-
cause of a numerical artifact; at c¢*, eq. (9) ap-
proaches In(1)/In(1). For ¢ > c*, B, , decreases
smoothly with increasing c.

From Figure 7(a), the small-probe slow mode
has B, = B.o55 at ¢ > 3—4 g/L, which is in
agreement with the coupling/scaling model. Fur-
thermore, at ¢ > 3-4 g/L, B, = B, 05 The
concentration threshold of 3—4 g/L, above which
the model applies, is more than twice ¢*. The fact
that B, = PB.o55 is true only at ¢ > 2c*, is
consistent with expectations of ref. 21 that cou-
pling/scaling is more likely to be valid in a nondi-
lute solution. The finding B, = B, 955 = B,.0.55
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Figure 7. Concentration dependences of the stretching exponents for the intermedi-
ate time scale regime: (a) the small-probe (14 nm) slow-mode exponents 3, from g‘*(¢)
via eq. (4), and B, from 6 via eq. (8) (for three values of v); and (b) the large-probe (455
nm) fast-mode exponents B, from gP(), and By from 6, (for three values of v). Parts
(a) and (b) also show g, from 7°7 via eq. (9) (solid lines corresponding, top to bottom, to
0.5, 0.55, and 0.6. Dashed lines, drawn to guide the eye, correspond to B.(c) and B,.(c).

is not exactly the result one would expect from a
self-consistent model.?! However, the inequality
between 5, and B, at ¢ > 2c* for small probes is
consistent with coupling/scaling predictions. S,
describes relaxations of whole chains; 8, and B,
describe probe motions. Under the coupling mod-
el,?! the strength of dynamic constraints is re-
flected in the degree of coupling n. Because vis-
cous flow moves whole chains, while small probes
with d = R, can diffuse while displacing only
part of the neighboring chain, polymer chain mo-
tions encounter larger dynamic constraints than
probe motions, implying 8, ~ B. > B,, as found
experimentally. Therefore, Figure 7(a) largely
supports the coupling/scaling model predictions.
Figure 7(b) shows that for the large-probe fast
mode B, =~ B.os =~ PBnoe in the excellent
agreement with the coupling/scaling model.

DISCUSSION

Ref. 20 found four relaxation modes in optical
probe diffusion spectra. We have argued here that
these four modes can be rationally divided into
three physical regimes: (1) a long time scale re-

gime; (2) an intermediate time scale regime; and
(3) a short time scale regime. The rationale for
dividing these modes into three regimes is based
on their physical properties, notably the time
scale of the mode relaxation (the four modes de-
cay on only three different time scales), and the
value of the stretching parameters g and B, [only
three regimes: B = 1, B8, B, € (0.6, 1), and 8, B
€ (0.2, 0.6)]. Table I summarizes these differ-
ences.

What is the physics underlying the time scale
regimes? We know the physical nature of the
longest time scale regime. As noted above, the
large-probe slow mode describes the motion of
probes on time scale so long that the solution acts
as a sample viscous liquid. Correspondingly, large
probes perform Brownian motion with 6 ~ ¢2, B
= 1 and follow the Stokes—Einstein equation (67
~ const).

Now we consider the properties of other two
regimes. We start with the two modes of the in-
termediate time scale regime. As mentioned in
previous sections, the small-probe slow mode and
the large-probe fast mode have common proper-
ties, except for their g dependences. This differ-
ence in ¢ dependences can be rationalized as the



Table I. Properties of the Four Relaxational Modes for Large and Small Probe
Diffusion in 1 MDa HPC

Probe Size Slow Fast
~10"%—-5x10"° r~1072—-3x 1073
Large B=1 Br € (0.6, 0.95)
0 ~ exp( — ac”) 0, ~ c© (within 2)
probes 0 ~ aq? 0.q*)—complicated
0| withd 1,a ~ d 0, ~ d° (within 2)
0 0
(d > R,) LS const (within 2) A # const
6omo 6r0mo
B | withe 1
Bf ~ qo
A, largely independent of ¢ A, largely independent of ¢
d'T O de 0
de” de
Coupling/scaling 1=8,>B..,= B,. B = Brew = Bo.w

(c/s) analysis

c¢/s fails

0~102-3x10 3

Small B € (0.6, 0.95)
0 ~ co
probes 0, ~ q°
0, ~ d° (within 2)
(d < Ry ﬂ # const
6omo
B | withe 1
B~ q°
AAq)—very strong
dr
de >0
Coupling/scaling B: = Beoss = Baoss

(c/s) analysis

¢/s largely successful

¢/s successful

6 ~ 5 X 10 2
Bs € (0.2, 0.6)
0, ~ c© (within 2)

04 q)—complicated
d (0]

0, ~
6m
Brmo
B | withe 1
B~ q°
A{q)—very strong

# const

T ~ ¢°

Bft = Bn,v = ch,v
c/s fails

All notation defined in text.

effect of probe size on the coupling of probe mo-
tions to polymer relaxations. On this time scale,
large probes are fully coupled to polymer solution
motions at all but very long distances (low q),
because at long distances probes have a chance to
decouple from chain internal motions and experi-
ence the long wavelength shear viscosity. Corre-
spondingly, A/ is independent of g at all but very
low ¢q. However, the ¢ dependence is very mar-
ginal: A, is independent of ¢ over 85-90% of the
studied g scale. Small probes are small enough (d
< 2R,) to be sensitive to the solution structure,
in addition to sensing the shear viscosity of the
medium. As a result, the spatial dimensions of the
chain become important to the probe and A, (as
well as 6;) show a strong dependence on q.

The above-mentioned g dependence differences
between the two modes of the intermediate time
scale regime can, therefore, be rationalized in
terms of the probe coupling to the polymer. The
two modes of the intermediate time scale regime
also have the common properties, mentioned in
the Results section. Can these properties also be
rationalized in terms of the probe motions coupled
to polymer relaxations?

Experimental phenomenology supportive of an
interpretation of intermediate mode properties as
arising from motions of probes coupled to polymer
motions includes: (a) the observed lineshape is a
stretched exponential, not a simple exponential in
t; (b) B (small spheres) and B, (large spheres) fall
with increasing c, consistent with the coupling



model expectation that the coupling coefficient n

= 1 — pB increases with increasing c, because
the coupling of probes to polymers is stronger at
higher polymer concentrations; and (¢) both
modes of the intermediate time scale largely
comply with the coupling/scaling prediction B,
= B. = B,, namely for large spheres B, ~ By,
~ B, while for small spheres B, =~ B.,,
(though B,, ., = B, ). The above three prop-
erties were directly predicted by the coupling/
scaling model.?! Other phenomenological findings
that are consistent with the idea that the inter-
mediate time scale mode reflects the motion of
probes, coupled to polymer relaxations, include:
(1) 6 (small spheres) and 0, (large spheres) are
practically independent of d (within a factor of 2).
A mode whose dynamics is largely determined by
chain motion, in which probes are passive wit-
nesses to the chain—chain relaxations, could have
a relaxation rate independent of d; (2) the ¢ de-
pendence depends on the probe size, as explained
above; (3) neither 6 nor 6, tracks 1~ 1. The relax-
ation pseudorates of the two modes do not simply
reflect the macroscopic viscosity of the solution,
because probes, in addition of being sensitive to
long wavelength shear viscosity, also are coupled
to polymer relaxations; (4) 7 (small probes) and 7,
(large probes) depend on ¢. A mode with a strong
coupling to polymer relaxations should have a
concentration-dependent relaxation rate, because
at higher ¢ dynamic constraints are stronger, so
the relaxations are slower; and (5) the concentra-
tion dependence of the large-probe 7, is stronger
than the concentration dependence of the small-
probe 7, consistent with the expectation that
larger probes couple more strongly to polymer
motions than do smaller probes.

We finish our mode analysis by considering the
small-probe fast mode. We propose that at very
short times probes sample local chain relaxations.
The short time scale is sampled by the fast mode
of small probes. These probes are much smaller
than chains, so at our concentration a single
small probe is unlikely to be in contact with more
than one or two chains at a time. At short dis-
tances and times, chain interactions have not yet
fully established themselves, so 6, should be rel-
atively independent of ¢, as observed experimen-
tally. If probe motions are dominated by the mo-
tions of one neighboring chain, 6, will be deter-
mined by internal chain dynamics of a single
chain, and will be relatively independent of d,
also as observed experimentally.

In summary, the four observed relaxation
modes in optical probe diffusion spectra were
shown to comprise three physical time scale re-
gimes: (1) a long time scale regime, consisting of
the large-probe slow mode; (2) an intermediate
time scale regime incorporating the small-probe
slow mode and the large-probe fast mode; and (3)
a short time scale regime represented by the
small-probe fast mode.

The proposed physical picture underlying
these time scale regimes is based on the assump-
tion that probe relaxations reflect motions of poly-
mer chains that occur on the three physical time
scales. On the longest time scale, all polymer
modes have decayed and the solution behaves like
a viscous fluid. In this time scale, probes sample
the viscous fluid. The coupling/scaling model does
not work for this regime. On the intermediate
time scale, we propose that probe motions are
coupled to polymer relaxations. The coupling/scal-
ing model largely succeeds in describing this re-
gime. The shortest time scale is not described by
the coupling/scaling model. We propose that on
this time and distance scale local motions of sin-
gle chains are significant, and that probes sample
local chain relaxations of individual chains.

Partial support of this work by the National Science
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