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Mode structure of diffusive transport in hydroxypropylcellulose:water
George D. J. Phillies,a) Robert O’Connell, Paul Whitford, and Kiril A. Streletzky
Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

~Received 22 May 2003; accepted 13 August 2003!

A systematic analysis of the mode structure of diffusive relaxations in 1 MDa
hydroxypropylcellulose~HPC!:water is presented. New methods and data include~1! use of integral
spectral moments to characterize nonexponential decays,~2! spectra of small probes in concentrated
HPC solutions,~3! temperature dependence of the mode structure, and~4! comparison of optical
probe spectra and spectra of probe-free polymer solutions. We find that~1! probe and polymer
relaxations are in general not the same;~2! the apparent viscometric crossover nearct'6 g/l is
echoed by probe behavior;~3! our HPC solutions have a characteristic dynamic length, namely the
50 nm length that matches the polymer’s hydrodynamic radius;~4! characterization of spectral
modes with their mean relaxation time affords simplifications relative to other characterizations; and
~5! contrary to some expectations, Stokes–Einsteinian behavior~diffusion rate determined by the
macroscopic viscosity! is not observed, even for large probes in relatively concentrated solutions.
We propose that the viscometric and light scattering effects found in HPC solutions at elevated
concentrations reflect the incipient formation of a generalized Kivelson@S. A. Kivelsonet al., J.
Chem. Phys.101, 2391~1994!# glass. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1615968#

I. INTRODUCTION

Our objective here is to advance understanding of the
nature of polymer dynamics in nondilute solutions. Polymer
motions in solution are potentially modulated by short- and
long-range hydrodynamic interactions between neighboring
chains, by topological~chain noncrossing! constraints, and
by other longer-range interactions such as van der Waals
forces between neighboring chains. Additional issues arise if
the polymers are polyelectrolytes. The focus of this paper is
experimental. We examine the effect of polymer solutions on
the motion of mesoscopic probe particles over a range of
temperatures, distances, and time scales, and compare our
findings with other dynamic information.

Hydroxypropylcellulose~HPC! is a semiflexible, non-
ionic, water soluble polymer whose physical properties have
been studied extensively. Experimental techniques that have
been applied to hydroxypropylcellulose solutions, as de-
scribed below, include static light scattering, viscometry, op-
tical probe diffusion, fluorescence relaxation after pho-
tobleaching ~FRAP!, and quasielastic light scattering
spectroscopy~QELSS!. Hydroxypropylcellulose has a per-
sistence length of ca. 100.1,2 At elevated concentrations it
undergoes a phase transition to a lyotropic phase. For the
nominal 1 MDa HPC sample studied here~same supplier and
lot number!, Mustafaet al. report on the basis of static light
scattering a molecular weight3 of 855 kDa and a radius of
gyration4 of 124634 nm. For an HPC of the same inferred
Mw , Yang and Jamieson5 report a radius of gyration of 95
nm and an average hydrodynamic radius 1/^Rh

21& of 49 nm.
Phillies and Quinlan6 reported detailed measurements of

the low-shear viscosityh of HPCs ~nominal molecular

weights 300, 1000, and 1150 kDa! in aqueous solution at
more than 40 concentrationsc, for h up to 33105 cP.
Phillies and Quinlan identified inh(c) a transition concen-
tration ct . For c,ct , the viscosity has a stretched-
exponential (exp(2acn)) concentration dependence. Forc
.ct , h has a power-law (cx) concentration dependence. Nu-
merical differentiation to determined log(h)/d log(c) finds
that the bilogarithmic derivative increases linearly below the
transition concentration, is nearly constant above the transi-
tion concentration, and is continuous through the transition.
The transition between concentration dependences is thus
sharp~no crossover region! and analytic~first derivative con-
tinuous!.

Optical probe diffusion, invented three decades ago by
Hallett and Gray7 and Turner and Hallett,8 is an extension of
conventional quasi-elastic light scattering spectroscopy. In
this method, mesoscopic, strongly scattering probe particles
are mixed with an equilibrium, weakly scattering solution.
Light scattering spectroscopy or a related technique is used
to measure the diffusive motion of the particles. The solu-
tion’s dynamic properties are inferred from the probe’s dy-
namics. Turner and Hallett viewed their method as a logical
extension of the classical ultracentrifuge studies of Laurent
et al.,9,10 who observed the sedimentation of colloidal par-
ticles through solutions of various polymers.

There are extensive optical probe studies of aqueous hy-
droxypropylcellulose solutions. Brown and Rymden,11 using
light scattering spectroscopy, found that polystyrene latex in
hydroxypropylcellulose:water forms clusters, aggregation
being prevented by the addition of 0.15 wt. % Triton X-100
to the solutions. Russoet al.,12 using 79 and 181 nm latex
probes, and Mustafa and Russo,3 using 91 nm probes, con-
firmed that addition of Triton X-100 suppresses the aggrega-
tion of polystyrene probes that would otherwise be induceda!Electronic mail: phillies@wpi.edu
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by HPC. Russoet al.12 demonstrated that the order of mixing
of probes and Triton X-100 with the polymer solution is not
significant, thereby showing that the process of adsorption to
the probes is reversible. They12 also found that light scatter-
ing spectra of probe:polymer solutions continue to be bimo-
dal after adding Triton X-100. The relaxation rates of the two
modes depend on the scattering vectorq linearly in q2. Yang
and Jamieson5 used light scattering spectroscopy to study
120, 210, and 350 nm probes in aqueous solutions of 110,
450, 620, and 950 kDa HPC, using TX-100 to suppress poly-
mer binding. Yang and Jamieson found that the probe par-
ticles diffused more rapidly than expected fromh, especially
for the two larger polymers and for the smaller probes. Dif-
fusion of polystyrene latex probes through HPC solutions
has since been studied in this laboratory,13–19 as discussed
below.

Mustafaet al.4 used fluorescence recovery after photo-
bleaching~FRAP! to examine the diffusion of fluorescein
dye through 103, 292, and 855 kDa HPC. Mustafaet al.
found thatD falls exponentially in HPC concentration out to
concentrationsc.700 g/l. D of the dye was nearly indepen-
dent of polymer molecular weightM . FRAP infers a single
diffusion coefficient, corresponding to motions over very
long distances. FromD a microscopic viscosityhm can be
inferred from the Stokes–Einstein equation

D5
kBT

6phmr
, ~1!

wherekB is Boltzmann’s constant,T is the absolute tempera-
ture, andr is the probe radius.

Bu and Russo20 used FRAP to measure the diffusion of
dye molecules and dye-labeled dextrans, radii 0.5–55 nm,
through 60 kDa, 300 kDa, and 1 MDa HPC solutions. In-
creasing the HPC molecular weight retards probe motion, the
retardation being more marked for large probes than for
small probes. The solvent viscosity is in general much less
than the macroscopic solution viscosity. With increasing
probe size,hm from FRAP increases from a small multiple of
the solvent viscosity toward the macroscopic solution viscos-
ity h, but hm is always less thanh. For 55 nm dextrans—the
largest probes studied by Bu and Russo—in 300 kDa HPC,
hm is a factor of 2 or more smaller thanh.

Recently, Phillieset al.21 completed a study of light scat-
tering spectra of probe-free aqueous HPC solutions. Phillies
et al. find that light scattering spectra of HPC itself in solu-
tion are complex. Belowct , spectra are bimodal; both modes
relax more rapidly as concentration is increased. Atct ,
QELSS spectra of HPC:water solutions gain a third, ex-
tremely long-lived relaxational mode.

The remainder of this paper presents new results on
probe diffusion in HPC:water. The next section describes an
alternative path to characterizing complex light scattering
spectra, namely evaluation of the time momentsMi of the
spectrum. The zeroth time moment of a spectral mode is
shown to give its mean relaxation time. The third section of
the paper presents new measurements on optical probe dif-
fusion in HPC solutions using small probes, and on the tem-
perature dependence of probe diffusion. The fourth section of
the paper applies the time moment method to reinterpret

prior data of Streletzkyet al.,13–19and unify it with new data
reported here on smaller probes at high concentration and on
other data on these solutions. Finally, we bring together the
various results and consider what the mode structure reveals
of polymer dynamics.

II. METHODS

We studied quasielastic light scattering spectra of meso-
scopic probes in aqueous solutions of nominal 1 MDa hy-
droxypropylcellulose~HPC! ~Scientific Polymer Products!.
Sample cells were transparent plastic or glass fluorimeter
cells, four sides polished, cleaned with dust-free deionized
water and dried with dust-free nitrogen prior to introducing
the samples into the cells. Samples for light scattering spec-
troscopy were made with dust-free deionized water, and in-
troduced into the scattering cells via passage through mi-
croporous filters having pore diameters 0.2–1.2mm. At
elevated concentrations the extremely high solution viscosity
makes it impossible to pass solutions through small-pore fil-
ters. To eliminate possible artifacts arising from changes in
filter pore diameter as the concentration is increased, we used
one filter size for all solutions in an experimental series, even
though the more dilute solutions could have been clarified
with a smaller-pore-size filter. Some solutions had added to
them optical probes, namely carboxylate-modified polysty-
rene probes~Seradyn, Interfacial Dynamics! having nominal
diameters 20, 35, 87, or 189 nm. To prevent the polymer
from binding to the probes, all solutions included 0.2 wt. %
Triton X-100.

For temperature control, sample cells were mounted
in massive copper blocks through which thermostatted
(60.1 C) water was circulated. Light scattering spectra were
obtained using argon-ion lasers operated at 515 nm, gener-
ally at powers of several hundred mW or less. The laser light
was brought to a focus in the scattering volume. Window
flare was eliminated and angular resolution was obtained by
placing a pair of nearly closed irises between the scattering
cell and the photomultiplier tube. Photocount signals were
sent via a preamplifier/discriminator/pulse shaper into an
ALV-5000 or BI-2030AT digital correlator. To avoid artifacts
arising from photomultiplier tube afterpulsing, the first 2mS
of the correlation function was not used in spectral fitting.
The shortest-lived relaxations observed here lasted more than
100 mS, so this exclusion has no significant effect on analy-
sis of the measured spectra.

Spectra were fit to selected forms via nonlinear-least-
squares methods using the simplex algorithm. The forms
specify the field correlation functiong(1)(t), which is related
to the measured spectrumg(2)(t) via

g(2)~ t !5A~g(1)~ t !!21B, ~2!

whereA is the spectral amplitude andB is the baseline to
which the spectrum decays at long times.

We are here concerned with numerical characterization
of relaxational modes whose forms are well-approximated by
stretched exponentials in time. It is not claimed that the
stretched-exponential approximation is unique or perfect. For
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applications here, the only requirement is that the approxi-
mation be accurate numerically to within noise over a full
range of delay times. A single stretched-exponential modei
has as its field correlation function

gi
(1)~q,t !5Ai exp~2u i t

b i ! ~3!

or equivalently

gi
(1)~q,t !5Ai exp~2~ t/t i !

b i !. ~4!

Heregi
(1)(q,t) arises from modei , Ai is a mode amplitude,

andb i , u i , andt i are the mode’s stretching exponent, decay
pseudorate, and decay pseudotime, respectively. Theu i are
pseudorates, not true rates, because their units are 1/(time)b i,
not 1/time. While it has units time,1 t i is a pseudotime be-
cause it functionally entersgi

1(q,t) as the noninteger power
t i

b i whose dimensions are (time)b i.
The relationship between theg(1) and the time-

dependent positionsr i(t) of the N scattering particles con-
strains properties ofu i andt i . For dilute scattering particles
in a ~perhaps complex! nonscattering background fluid,

g(1)~q,t !5AK (
i 51

N

exp~ iq•~r i~ t !2r i~0!!!L . ~5!

Here q, with magnitudeq, is the scattering vector, and the
brackets^¯& denote an ensemble average. For nondilute
scattering particles a similar but more complex form is
found.22 On Taylor expansion inq of the exponential, noting
that terms odd in the displacement vanish by symmetry, re-
placing each probe’s displacement between 0 andt by its
velocity vi(s) as integrated over the time interval, and ex-
tracting constants from the time and ensemble averages, one
has

g(1)~q,t !

512
1

2
q2K E

0

t

ds1E
0

t

ds2~ q̂•vi~s1!!~ q̂•vi~s2!!L
1

1

4!
q4K E

0

t

ds1E
0

t

ds2E
0

t

ds3E
0

t

ds4

3~ q̂•vi~s1!!~ q̂•vi~s2!!~ q̂•vi~s3!!~ q̂•vi~s4!!L 2¯

~6!

with q̂5q/q being the unit vector, and thesi being time
variables. The field correlation functiong(1)(q,t) is thus a
power series inq2, the coefficients ofq2 being terms that
may depend ont but are independent ofq and ~by symme-
try! are independent of the direction ofq̂.

The corresponding expansion of Eq.~3! as a power se-
ries in u does not necessarily correspond term-by-term with
the series inq2, but every term in Eq.~6! beyond the leading
‘‘1’’ is a power of q2, so if the two series are convergent the
lead dependence ofu on q must also be asq2 or a positive
integer power thereof. The lead dependence oft on q fol-
lows from the relationt5u2b, namelyt must be propor-
tional to the nonintegral powerq22/b. The above analysis of
u andt cannot in general be inverted by expanding Eq.~4!

as a power series in t21—which would imply
t;q22—becauseb is not an integer, so Eq.~4! is not ana-
lytic in, and does not have a Taylor expansion in,t.

In our systems, as seen below, the individual spectral
modes are indeed fit accurately by stretched-exponential
forms. However, from the aboveu i andt i have the curious
features that the first has dimensions time raised to a nonin-
teger power that varies from spectrum to spectrum, while the
latter depends on scattering vectorq to a noninteger power
that varies from spectrum to spectrum. These peculiar fea-
tures are unattractive for systematic analyses.

To avoid these features, we here introduce the character-
ization of quasielastic light scattering spectra via spectral
time moments. Spectral time moments are a natural exten-
sion of the exponential moment integral

Mn[E
0

`

dt tn exp~2Gt !5
g~11n!

G11n . ~7!

Here G is a true decay rate of a pure exponential,n is the
order of the momentMn , and g(11n)5n! is the gamma
function, nontraditionally notated to distinguish it from the
spectral decay rateG. For a single-exponential decay one has
G51/M0 andG251/M1 .

An arbitrary monotonically decaying spectrum can be
written as a sum of exponentials,viz.

g(1)~ t !5E
0

`

dG A~G!exp~2Gt !, ~8!

whereA(G) is the fractional decay amplitude for decay rate
G. It is convenient to normalizeA as*0

`A(G)dG51.
From the above, thenth integral time moment ofg(t) is

Mn[E
0

`

dt tng(1)~ t !5E
0

`

dG A~G!
g~11n!

G11n , ~9!

so that Mn /n![^G2n21&. If A(G) is normalized, M0

5^G21& is the mean relaxation time.
Spectral time moments are seen to be analogous to the

spectral central moments ofA, which for n>2 are

Kn5E
0

`

dG A~G!~G2Ḡ !n. ~10!

The first few spectral moments are the first few cumulants of
A, while the time moments are the negative (Gn, n,0) mo-
ments of A. For the negative moments to be convergent,
A(G) must be sufficiently small at smallG. The first cumu-
lant is precisely the initial slope limt→0d log(g(1))(t)/dt) of the
field correlation function, while higher cumulants correspond
to the higher logarithmic derivatives ofg(1)(t) in the limit of
short time. Contrariwise, the moments correspond to integral
averages overg(1)(t). Accurate determination of cumulants
requires adequate measurements ofg(1)(t) at short times;
correspondingly, accurate determination of moments requires
adequate measurements ofg(1)(t) at long times.

To analyze our spectra with time moments, we charac-
terize our spectra as the sum of a small number of spectral
modes, each of which is described accurately by a few-
parameter algebraic form. We fit spectra to these forms via
nonlinear least squares and then integrate the few-parameter
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forms analytically, using the least-squares-fitting parameters
to compute the mean relaxation times. This approach sup-
presses some noise effects in the measuredg(1)(t).

For the spectra considered here, the fits are to sums of
stretched exponentials as seen in Eqs.~3! or ~4!. Analytic
integration of a single stretched-exponential mode shows

M0[E
0

`

dt exp~2utb!5g~111/b!/u1/b ~11!

for the mean relaxation time of a single stretched-
exponential mode. This equation was applied both to new
spectra measured for this paper and older spectra from Refs.
13–19.

III. SMALL PROBES AT ELEVATED CONCENTRATIONS

Spectra were obtained of 35 nm diameter probes diffus-
ing in HPC solutions for concentrationscP(1,15) g/l. Rep-
resentative spectra appear in Fig. 1. Below 6 g/l HPC, spec-
tra are fit well by a field correlation function that is a sum of
two stretched exponentials, namely a ‘‘fast’’ mode and an
‘‘intermediate’’ mode. Above 6 g/l HPC, a third slow
stretched-exponential mode appears in the spectrum. Here
‘‘fast,’’ ‘‘intermediate,’’ and ‘‘slow’’ refer to the mean life-
times determined from the first time moments of the modes,
and not from the initial decay rates of the modes. The initial
rates are determined in part byb for the modes.

Figure 2 shows the concentration dependences of the
first time moment of the modes. At HPC concentrations be-
low 7 g/l, the fast mode~smallerM0) dominates the spec-
trum; it has>80% of the amplitude. At 1 and 3 g/l, the fast
and intermediate modes are nearly pure exponentials (b
>0.86); in 5 g/l HPC, the intermediate mode broadens con-
siderably.

At 7 g/l and larger, the two faster modes coalesce to
approximately the sameM0 , but have very different widths.
One mode hasbP(0.85– 1.0), while the other hasb
P0.5– 0.8. Light scattering does not reveal whether the un-
derlying physical modes have coalesced into a single physi-
cal mode whose relaxation is described well as a sum of two
stretched exponentials, or whether the two stretched expo-
nentials describe two different, but approximately equally
long-lived, relaxation processes. At the same concentrations,
a third, very slow and broad mode appears. The new mode
has anM0 as long as several seconds and an extremely large
width, with b as small as 0.1–0.2.

Over the full observed concentration range,M0 of the
fastest mode increases roughly tenfold; over the same range
M0 of the intermediate mode perhaps increases perhaps two-
fold, though with a dip at intermediate concentrations. De-
terminations ofM0 of the slow mode are inaccurate, because
the relaxation times are approaching instrumental limits, but
at concentrations above the initial onsetM0 of the slow
mode appears to be several seconds.

We have examined the temperature dependence of
g(1)(t) for 35 nm probes in HPC solution over the tempera-
ture range 6 – 40 °C. At lower temperatures, water is a near-
good solvent for HPC; as 40 °C is approached HPC under-
goes a pseudotheta transition. Concentrations examined were
2, 4, 6, 8, 10, 12, and 15 g/l. Based on the above observation
that spectra reveal two dominant relaxation times at each
concentration, these spectra were all fit to sums of two
stretched exponentials.

Figure 3 shows representative data on the temperature
dependence ofM0

21 of the fast and intermediate modes for
probes in dilute, nondilute, and concentrated HPC solutions.
At each concentration,M0

21 is linear in T/h0 , T being the
absolute temperature andh0 being the viscosity of water at
temperatureT. Above 30 °C, in some solutions there were
countervailing changes inu andb as the pseudotheta transi-
tion was approached. A modest nonzero intercept is some-
times observed for limT/h0→0 M0

21, but the sign of the inter-
cept is not always the same, implying that the apparent

FIG. 1. Spectra of 35 nm polystyrene probes in~a! 1, ~b! 15 g/l HPC
solutions, showing the adequacy of a two-stretched-exponential fit to a spec-
trum of a 1 g/l solution, and a successful three-stretched-exponential fit for
probes in a 15 g/l solution. Spectra given vertical shifts for clarity.

FIG. 2. Spectral momentsM 0 for the modes of 35 nm polystyrene probes as
functions of HPC concentration. A two-stretched-exponential fit~open
points! is adequate at lower concentrations (c<6 g/l HPC!, but above 6 g/l
a third, slow mode and a three-stretched-exponential fit~filled points! is
required.
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intercepts are simply a consequence of random noise. Our
measurements show that mode relaxation is controlled by
solvent hydrodynamics, not by some internal nonhydrody-
namic process inhering in the polymer.

We have also obtained spectra of probe-free solutions of
hydroxypropylcellulose in water. As reported separately,21

these solutions give bimodal spectra forc,6 g/l. At concen-
trations above 6 g/l HPC, spectra become trimodal, with an
additional very slow mode (M0 on the order of 1 s! becom-
ing visible.

Figure 4 shows the mean relaxation timesM0 for the
scattering modes of HPC solutions. The mean relaxation
time of the fast mode decreases moderately with increasing
concentration, from;500 ms at low concentration to a pla-
teau near 50ms at concentrations above 6 g/l. The interme-
diate mode rate wanders a bit with changing concentration
but over the full range studied never moves far from 1–3 ms.
Finally, the slow mode appears at concentrations above 6 g/l,

increasing with increasingc through the range 0.3–6 s. The
fast and intermediate relaxation times measured at 6 g/l are
markedly larger than those measured at 5 or 7 g/l. While
attempted fits of 6 g/l solution spectra to a trimodal spectrum
did not resolve a third, slow mode, an incipient slow mode
that was still too weak near 5–6 g/L to be separately resolved
might increase the apparent mean relaxation times of the two
visible modes, as seen in the figure.

We also determine the static light scattering intensityI at
the scattering angle used to generate Fig. 4. The normalized
intensity I /c declines slowly with increasingc. There is no
signature in the scattering intensity that might reflect the ap-
pearance of the slow mode. The slow mode’s appearance
corresponds to a transfer of intensity from the intensities of
the two pre-existing modes, not to the appearance of new
intensity in the scattering signal.

Control experiments in which probe and polymer solu-
tion spectra were measured with identical laser powers, iris
settings, etc., indicate that the polymer spectra are substantial
weaker than the probe spectra at all relaxation times, so co-
incidences between the mean relaxation times of polymer
and probe modes do not appear to be artifacts arising from
polymer scattering contaminating the probe scattering.

IV. SPECTRAL MOMENTS FOR SMALL
AND LARGE OPTICAL PROBES

Streletzky et al.13–18 report light scattering spectra of
polystyrene latex probes, diameters 14–455 nm, diffusing
through 1 MDa HPC. Large (R.50 nm) probes were stud-
ied for c up to 15 g/l; small (R,50 nm) probes were studied
only up toct or so ~7 g/l!. In these references, spectra were
parametrized using Eqs.~2!–~4!; tables of parameters appear
in Ref. 15. We have converted these parameters to the cor-
responding spectral time moments and reanalyzed the behav-
ior of the spectra.

For small probes~diameter less than 50 nm! moment
analysis reveals a short-lived, sharp mode@bP(0.5,1)# with
mean lifetime 100 ms–1 ms, and a broad mode@b
P(0.2,0.6)# with longer lifetime 1–100 ms. The earlier
analysis of Streletzkyet al. named the modes by the rapidi-
ties of their initial decays, a mode with a smallerb being
‘‘faster’’ in this sense. For small probes, the ‘‘fast’’ mode of
Streletzkyet al. is the longer-lived ‘‘broad’’ mode, while the
‘‘slow’’ mode of Streletzkyet al. is the shorter-lived~smaller
M0 even though largerb! ‘‘sharp’’ mode. ~For large probes,
the ‘‘slow’’ mode of Streletzkyet al. is indeed the longer
lived; it is also the sharper mode withb51.) If Streletzky
et al.had named modes based on theirM0 values rather than
their initial decay rates, for small probes the Streletzkyet al.
‘‘fast’’ mode would have been termed the ‘‘slow’’ mode and
vice versa. We therefore discontinue the use of the Streletzky
et al. nomenclature.

For small probes, mode amplitudes depend markedly on
q. At a 90° scattering angle, the sharp mode dominates the
spectrum, the zero-time fractional amplitudeAs of the sharp
mode being 0.9–0.95 at 1 g/l HPC, falling to;0.7 at the
highest HPC concentration~7 g/l! studied by Streletzky
et al., with small probes. However, asq is reduced, the

FIG. 3. Temperature dependence of the inverse time momentḠ[M0
21 for

spectra of 35 nm polystyrene probes, showing~a! 2 g/l HPC, intermediate
mode ~open circles!, ~b! 8 g/l HPC, fast mode~circles!, and 12 g/l HPC,
intermediate mode~diamonds!. Vertical was rescaled for clarity.

FIG. 4. Mean relaxation timesM 0 for the fast ~triangles!, intermediate
~circles!, and slow~squares! optical scattering modes of hydroxypropylcel-
lulose:water, as functions of concentration.
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longer-lived broad mode becomes dominant, so thatAs→0
at low q.

As seen in Fig. 5~a!, for small probesM0 of the longer-
lived broad mode depends on polymer concentration more
strongly than doesM0 of the shorter-lived sharp mode. For
large ~diameter above 60 nm! probes, previous work13–18

identified a sharp (b51) ‘‘slow’’ mode and a broad~b fall-
ing from 1 to 0.6 or so with increasingc) ‘‘fast’’ mode. As
seen in Fig. 5~b!, for large probes in solutions having con-
centrations below 4 g/l the sharp mode has a longer mean
lifetime than the broad mode. As was also the case for the 35
nm spheres, at concentrations above 4 g/l HPC the fractional
amplitudes and lifetimes of the sharp and broad modes be-
come nearly equal. It is not apparent whether the two modes
physically coalesce. Spectra are not fit well by a single
stretched exponential. The mean relaxation times of the two
modes are about the same, but their line shapes~b values!
are very different.

Note that in less concentrated solutions (c,4 g/L) the
relative mean lifetimes of the sharp and broad modes invert
between small and large probes. At lower concentrations: For
small probes, the sharp mode is shorter lived than the broad
mode, while, for large probes, the sharp mode is longer lived
than the broad mode. For all probes, the broad mode depends
more strongly on concentration than the sharp mode does.

The dependence ofM0 on probe diameterR is clarified
by Fig. 6, which showsM0 of the two modes as functions of
R at concentrations 2, 4, and 15 g/l.M0s of the sharp mode
increases with increasing probe diameter. As noted above,

systematic size dependences in 15 g/l solutions were only
obtained for the large probes, for whichM0s'M0b .

At lower concentrations, of which the 2 and 4 g/l solu-
tions described here are examples: With increasing probe di-
ameter,M0b of the broad mode at first decreases until it is
smaller thanM0s ; M0b then increases with increasingR. In
consequence, for each concentration there is a smallest probe
diameterRc at which M0b'M0s . While Rc might in prin-
ciple depend onc, we findRc is consistently 50–60 nm.

For probes smaller thanRc , M0s increases approxi-
mately linearly with increasingR. When R is increased
aboveRc , with increasingR a transition region of rapidly
increasingM0s is seen. For large probes (R.180 nm),M0s

is again approximately linearly proportional toR, but the
proportionality constant is approximately tenfold larger than
it was for small probes.

The mean relaxation times also depend on the experi-
mental scattering vectorq. For quite large~189 nm! probes
observed15 at HPC concentrations 1–3 g/l, the sharp mode
was dominant. The inverse mean lifetimeḠ5M0

21 of the
sharp mode is uniformly linear inq2, with Ḡ→0 asq2→0.
The weaker~short-lived! mode has an inverse mean lifetime
Ḡb that is approximately linear inq2, though with signifi-
cantly more scatter in the data points.

For smaller 87 nm probes observed15 at HPC concentra-

tions of 1, 2, 4, 5, and 12 g/l,Ḡ of the sharp (b51) mode
depends linearly onq2 and goes toward zero at lowq. Ḡb of
the broad (b'1/2) mode was again difficult to determine
with good precision at low (c,3 g/l HPC! concentrations.
At higher concentrations, as seen in Fig. 7~a!, Ḡb increases
linearly in q2.

Streletzky15 also observedq2 dependences of light-
scattering spectra of 20 nm probes in 1–5 g/l HPC; represen-
tative data are in Fig. 7~b!. At large q, the ~shorter-lived!
sharp mode is dominant; asq→0, most intensity switches to
the broad mode. At each concentration studied, theq2 depen-
dence of the amplitude changes slope markedly forq2'2

31010 cm22, corresponding to distancesq21;70 nm. Ḡ of

the sharp mode scales linearly inq2. At lower q, Ḡb of the

FIG. 5. Mean lifetimesM 0 andM 0b for the sharp~s! and broad~d! modes
of ~a! 21 and~b! 189 nm polystyrene probes as functions of polymer con-
centration.

FIG. 6. Mean lifetimesM 0 for the sharp~open points! and broad~filled
points! modes for all probes at concentrations 2~circles!, 4 ~squares!, and
~c! 15 ~triangles! g/l, based on data in Ref. 15. All concentrations were not
studied with all probes.
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broad mode also increases approximately linearly inq2.
Over the rangeq2'4 – 531010 cm22, corresponding to dis-
tancesq21'50 nm, Ḡb suddenly increases rapidly with in-
creasingq2.

Figure 8 shows the correlation between the mean relax-
ation times and the solution viscosity.6 Following the
Stokes–Einsteinian expectationDh;constant for particles
in a simple fluid, we plotḠh against polymer concentration.
For clarity, the figures only showḠh for six probe diameters,
viz., the four diameters~35, 50, 87, and 189 nm! taken to the
highest concentration studied, and the near-extremal 14 and
282 nm diameters. The most concentrated HPC solution, 15
g/l, has a viscosity 7.33103 cP, so solutions with an 8000-
fold variation in viscosity are represented in the figure.

Probe spectra are generally characterized by two modes
and relaxation times. In comparing spectra from probes of
different size, one must choose which modes of one probe
are to be compared with which modes of the other probe. In
our earlier papers, the sharp modes were compared as a
group, and the broad modes were separately compared as a
group. Here we instead compare the shorter-lived modes as a
group, and the longer-lived modes as a second group. The
shorter-lived mode is the sharp mode of the smaller~14, 35
nm! probes and the broad mode of the larger~50–282 nm!

probes; the longer-lived mode is the broad mode of the
smaller probes and the sharp mode of the larger probes. The
35 nm probes at polymer concentrations above 6 g/l have a
third, longest-lived, mode.

Figure 8~a! showsḠh for the shorter-lived mode.Ḡh of
the 14 and 35 nm probes have very nearly the same concen-
tration dependences, the 35 nm probes diffusing modestly
more slowly. Over the full concentration range,Ḡh of the 35
nm probes increases nearly 200-fold. With increasing probe
size, the increase inḠh over the observed concentration
range becomes less, e.g., 100-fold for the 50 nm probes, and
only two-fold for the 189 nm probes, but even for very large
probesḠh is not independent of polymer concentration.

Figure 8~b! showsḠh for the longer-lived modes. For
the 50, 89, 187, and 282 nm probes,Ḡh increases with in-
creasingc, by 25-fold for the 50 nm probes, nearly 20-fold
for the 89 nm probes, by more than fourfold for the 189 nm
probes, and by more than twofold for the 282 nm probes.
Above 6 g/l, the sloped log(Ḡh)/dc appears to decrease. For
the 35 nm probes,Ḡh of the third, very slow mode appears
to be independent~within experimental scatter, which is
large! of polymer concentration.

It might be proposed that Stokes–Einsteinian behavior
(Ḡh independent of polymer concentration! should be found
for sufficiently large probes at a sufficiently large polymer
concentration. We did not find an elevated polymer concen-
tration above whichḠh becomes constant for large probes.
In the most concentrated solution studied, in whichh is more
than 8000 times greater than the solvent viscosity, the 50 and
87 nm probes diffuse more rapidly than expected fromh and
their diameters. Stokes–Einsteinian behavior is more closely
approached when the probe diameter is increased, as previ-
ously reported by Bu and Russo.20 However, up to the largest
probes studied, there is no probe size studied here for which
hm5h for the fast or intermediate mode at large polymer
concentrations.

If one identified the lower-concentration intermediate
mode ~filled squares,c,6 g/l) with the large-concentration
slow mode~open squares,c.6 g/l) rather than with the large
concentration intermediate mode~filled squares,c.6 g/l),
thenḠh of the slowest observed mode of the 35 nm spheres
would be independent of concentration over the full range
studied. However, a Stokes–Einsteinian behavior that ob-
tained for small but not large probes cannot be the large-
probe limiting behavior that is sometimes envisioned.

V. DISCUSSION

Time moments provide a physical parametrization of the
mode structure of light scattering spectra. The time moment
description differs from the~u,t,b! description of Streletzky
et al.13–18 in that time moments depend simply onq2 and
have the simple dimensions~time!.1 The above data and re-
analysis speak to several physical questions, and suggest a
partial model for the observed phenomenology.

First, probe and polymer modes are not the same. Over
limited concentration ranges particular polymer and probe
modes may have the same relaxation time. However~Fig. 4!,

FIG. 7. Angular dependence of the inverse mean relaxation timesḠ of the
sharp~s! and broad~d! modes of~a! 87 nm probes in 5 g/l HPC, and~b!
20 nm probes in 4 g/l HPC.~Vertical scales shifted for readability.!

FIG. 8. Ḡh for the ~a! short-lived and~b! long-lived modes of light scatter-
ing spectra of polystyrene probes, diameters 14~circles!, 35 ~squares!, 50
~triangles!, 67 ~filled triangles!, 87 ~open diamonds!, 189 ~filled diamonds!,
and 282~pluses! nm, in HPC:water, as functions of HPC concentration.
Open squares are the very slow mode of the 35 nm probes, whose lifetime is
pushing the experimental limits of the apparatus.

9909J. Chem. Phys., Vol. 119, No. 18, 8 November 2003 Diffusive transport in hydroxypropylcellulose:water



M0 for probes generally increases with increasing polymer
c, while M0 of the two shorter-lived polymer modes falls or
remains constant ifc is increased. The concentration depen-
dences of the probe and polymer modes thus are not the
same. The fast and intermediate probe modes therefore do
not reflect probes moving in unison with polymer matrix,
even though the time scales of the modes may roughly coin-
cide.

This result is demonstrated by Fig. 9, which showsM0

of the probes and the polymer matrix. Figure 9~a! shows the
shorter-lived probe modes, while Fig. 9~b! shows the longer-
lived probe modes. Above ca. 4 g/l HPC,M0 for the fast and
intermediate modes are very nearly equal, so the right-hand
sides of the two figures are similar.

In Fig. 9~a!, lines to guide the eye mark polynomial fits
to M0 of the three polymer modes, and a simple exponential
fit to M0 of the 50 nm probes’ shorter-lived mode. For small
(R<50 nm) probes,M0 increases modestly with increasing
c; d log(M0)/dc is approximately 0.13 l/g. For larger probes,
M0 has three distinct regimes, namely a dilute regime in
which M0 increases slowly with increasingc, a nondilute
regime in whichM0 increases more rapidly with increasing
c, and a concentrated regime in which the increase inM0 is
again slow. The transition from the dilute to the nondilute
regime is found when the probeM0 becomes significantly
larger thanM0 of the polymer intermediate mode. The tran-
sition from the nondilute to the concentrated regime is found
at 6–7 g/l HPC, which is the concentration range in which
the polymer slow mode becomes apparent. Only the 87 and
189 nm probes were taken to concentrations large enough to
be in the concentrated regime. For the 455 and 282 nm
probes, the dilute regime includes at most a few lowest-
concentration points.

Figure 9~b! showsM0 of the probe intermediate relax-
ation. For small (R,50 nm) probes,M0 is somewhat scat-
tered. For large probes,M0 increases with increasingc. The
intermediate and slow modes of the 35 nm probes haveM0

close, respectively, toM0 of the intermediate and slow
modes of the HPC itself.

Second, the apparent transition6 in the concentration de-
pendence ofh of HPC:water solutions is echoed by transi-
tions in probe behavior. The original question was whether
the rheological transition atct is real or a numerical fitting
artifact. We find changes nearct in the behavior ofM0 . The
appearance of a transition nearct in independent physical

properties supports the interpretation that the rheological
transition is real.

Streletzky and Phillies16,18,19 have previously reported
probe diffusion data showing transitions nearct . They
worked with large~50, 87, and 189 nm! probes, and charac-
terized their spectra using Eq.~3! and parametersu and b.
For the broad mode,ub is independent ofc for c,ct , but
falls markedly with increasingc for c.ct . For the same
mode, bb falls with increasingc for c,ct , but is nearly
constant or increases slowly with increasingc for c.ct . The
sloped(ubh)/dc also declines markedly nearct . For c,ct

the broad mode amplitude increases markedly with increas-
ing c, while abovect this amplitude is nearly constant. These
changes in concentration dependence all happen very nearly
at ct . Streletzky and Phillies16,18,19 therefore proposed that
their probe diffusion results give independent experimental
evidence that there is a rheological transition atct .

We extended earlier work by measuringM0 for small 35
nm probes and by computingM0 for other probes from pre-
viously determinedu,b parameters. With the 87 and 189 nm
probes, there is~Fig. 9! nearct a diminution in the slope of
log(M0) againstc. Ḡh for the large-probe intermediate mode
~Fig. 8! increases with increasingc, but more rapidly forc
,ct than for c.ct . The 35 nm probes gain a new, very
slow, relaxational mode at concentrations above a narrow
concentration range nearct . Ḡh of the 35 nm probe inter-
mediate mode increases drastically over a narrow range of
concentrations nearct , but increases much more gradually at
all other concentrations. For all probe sizes, between 4 g/l
and ct the M0 of the sharp and broad modes become ap-
proximately equal. Below 4 g/l HPC, theM0 of the two
modes differ from each other.

The above all mark qualitative changes in probe dynam-
ics occurring atc'ct . We find here the new result that the
rheological transition atct appears in spectra of small as well
as large probes. Furthermore, the apparent transition survives
reparameterization of the spectral lineshape from~u,b! to a
more simply dimensionedM0 . We conclude that the viscos-
ity transition atct is a real physical phenomenon, in agree-
ment with Streletzkyet al.13–19 and offer new experimental
data and a novel method for characterizing spectra in support
of our conclusion.

Third, our results identify a single important distance
scale in HPC:water solutions, namely a concentration-
independent length in the range 50–70 nm. The distance
scale manifests itself in a series of disparate observations.
We find no indication that the distance scale depends sub-
stantially on polymer concentration, though a weak concen-
tration dependence cannot be ruled out.

In particular, for small probes belowct the broad mode
is longer lived~larger M0) than the sharp mode, while for
large probes the broad mode is shorter lived than the sharp
mode. The diameter separating small from large probes is
about 50 nm. For small probes the relative amplitudes of the
sharp and broad modes depend strongly on the scattering
vector. At lowq, the broad mode dominates. At largerq the
sharp mode dominates. The crossover is found at a wave
vectorqc corresponding to distancesqc

21'70 nm. The mean
relaxation rate of the small-probe broad mode suddenly in-

FIG. 9. M 0 for the ~a! short-lived and~b! intermediate modes of light
scattering spectra of polystyrene probes in HPC:water, and the three modes
found in spectra of HPC:water, as functions of polymer concentration.
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creases markedly at a wave vector corresponding to distances
q21'50 nm.

Finally, the probe intermediate mode becomes much
more strongly concentration dependent when it becomes
longer lived than the polymer intermediate mode. This cir-
cumstance arises at different concentrations, depending on
the probe size. For a probe of the correctly selected size, the
probe and polymer intermediate modes are equally long
lived at the rheologically interesting concentration 6 g/l
'ct . The size of a correctly selected probe is approximately
50 nm.

Thus, the sharp and broad mode relaxation time cross-
over, theq dependence of the sharp and broad mode ampli-
tudes and of the small-probe broad-mode relaxation rate, and
the crossover of the probe and polymer intermediate modes
all reference a concentration-independent length scale near
50 nm. As a characteristic length, 50 nm has a physical sig-
nificance: It is very nearly equal to the 49 nm mean hydro-
dynamic radius found by Yang and Jamieson5 for a hydrox-
ypropylcellulose of this molecular weight.

Our conclusions are consistent with the conclusions of
Streletzkyet al.13–18 These workers found distinctive small-
probe and large-probe behaviors in the parametersu, b, t,
the crossover between small and large again being found for
probes near 50 nm in size. Over a 15-fold change in polymer
concentration, they found no change in the apparent length
scale.

Fourth, characterization of complex modes with their
mean relaxation time M0 rather than withu andb eliminates
prior complexities. Ngai and Phillies23 and Streletzky and
Phillies17 comparedu and b from the concentration depen-
dences of probe diffusion and the viscosity with predictions
of the Ngai24 coupling-scaling model. This model had previ-
ously been applied to a variety of other complex systems.24,25

The Ngai24 model provides a general description for relax-
ations of anharmonically coupled dynamic units. At very
short times, the units are proposed to relax independently,
leading to pure-exponential relaxations. At longer times, cou-
plings between the units have had time to become effective,
and the model proposes that relaxations become stretched
exponentials in time. The Ngai model predicts a relationship
between the crossover time separating short- and long-time
behavior, the characteristic times of the exponential and
stretched-exponential relaxations, and the coupling strength
as revealed by the shape parameterb.

Earlier papers17,23 found that the coupling model ap-
proximately describes the concentration dependences of the
broad mode of large probes and the sharp mode of small
probes, but not the sharp mode of large probes or the broad
mode of small probes. A prediction that works for one mode
of some probes and the other mode of other probes seems
complex and unconvincing. However, if the probe spectral
modes are identified by their mean relaxation times rather
than their initial relaxation rates, as we did here, a much
simpler description arises. For all probes, the Ngai coupling-
scaling model describes parameters for the probe fast mode,
but not for the probe intermediate mode. The mean relax-
ation time gives a simpler description than does the initial
decay rate.

Finally, our results suggest a plausible model for the
observed dynamics. For c,ct , we propose that polymer dy-
namics are dominated by hydrodynamic interactions between
the chains. Atct , we propose that our solutions have a dy-
namic transition. Specifically, we propose that our data are
consistent with the appearance of a generalized Kivelson
glass~Ref. 28! in our HPC solutions at concentrationsc.ct .
The generalized glass differs from the glass envisioned by
Kivelsonet al., in that~i! our system is a solution, not a neat
liquid, so concentration is a controlling variable, and~ii ! our
glass-forming molecules are random-coil polymers, not
spheroids, so the factors inhibiting unlimited cluster growth
are not the icosahedral packing constraints discussed by
Kivelson et al.

For lower concentrations the hydrodynamic model of
nodilute polymer solutions has been analyzed previously.26,27

It predicts a stretched-exponential concentration dependence
for h. This concentration dependence is indeed observed6 for
h for c,ct . The model has a characteristic length scale,
given by a hydrodynamic size of a polymer coil. For HPC of
approximately our molecular weight, Yang and Jamieson5

report 1/̂Rh
21&'49 nm, which is the 50 nm characteristic

length found above in this system.
The original Kivelson28 glass model treated a one-

component fluid. In the Kivelson model, in addition to crys-
talline solid and liquid phases, the molecules of a Kivelson
glass form equilibrium clusters that are not crystallites of the
solid phase. Instead, the equilibrium clusters have the signal
feature that their structure isnot space filling. Clusters are
energetically constrained from growing beyond a character-
istic size, so they cannot grow into a crystalline phase. If the
liquid is supercooled, more clusters form, leading at low
temperature to a glass: a highly viscous packing of perhaps
jammed clusters, perhaps with more fluid molecules filling
interstices between clusters. The clusters cannot grow to fill
space, so at high temperatures they can be more stable than
the liquid without creating a thermodynamic paradox. Clus-
ters thus can exist, not only in the supercooled liquid, but
also in the normal liquid above the melting point. The model
thereby explains high-temperature features of glass-forming
liquids.

We generalize the Kivelson model to solutions, envision-
ing glass formation via growth-constrained clusters of poly-
mer molecules. In a solution, cluster formation is driven by
concentration rather than temperature. Just as one-
component clusters can be stable at temperatures above the
melting point of the crystal, so solution clusters can be stable
at solute concentrations below the solubility limit of the solid
but above some limiting concentrationcc for cluster forma-
tion. cc is directly analogous to the ‘‘critical micellar concen-
tration’’ for micelle formation. Abovecc , the presence of
clusters affects the solution dynamics.

The critical concentration for cluster formation is here
identified with the transition concentrationct . Our data are
consistent with cluster formation. Namely,~i! above ct ,
probe-free HPC solutions gain a third, slowly relaxing mode
corresponding to the diffusion of clusters. The appearance of
the slow polymer mode is discontinuous.~ii ! Probes that are
smaller than clusters could be entrained within a cluster. En-
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trained probes would diffuse at the same rate as the clusters
carrying them. Atct , the 35 nm spheres—the only small
probes studied atc.ct—gain a slow mode in their light
scattering spectra. The relaxation times of the polymer and
small-probe slow modes are the same, as expected for probes
entrained in clusters; see Figs. 2 and 9.~iii ! By analogy with
micelle formation, the concentration of clusters would grow
smoothly from zero asc increases abovecc , causing trans-
port coefficients to deviate continuously with increasing
c.ct from the behavior expected in the absence of cluster
formation. In contrast, at a phase transition, dynamic proper-
ties show discontinuous changes. We find thath and M0

show the changes expected for cluster formation atct ; above
ct their concentration dependences show changes in slope
but not discontinuous changes in value.

The measured temperature dependences of the fast and
intermediate probe modes provide substantial additional sup-
port for the model proposed here. At all polymer concentra-
tions, the mean relaxation ratesM0

21 depend on temperature
via T/h0 , h0 being the viscosity of the solvent.h0 is the
transport parameter reflecting solvent motion. Forc,ct , its
presence in the temperature dependence is explicitly pre-
dicted by the hydrodynamic26,27 model. Forc.ct , an ex-
tended hydrodynamic model that included hydrodynamic in-
teractions with diffusing clusters would continue to share the
temperature dependence ofh0 . On the other hand, if the
cluster lifetime contributed to the relaxation rates, for ex-
ample because probes were able to advance when clusters
fell apart and left solution-filled void spaces, the temperature
dependence for probe motion would be determined in part by
the activation energy for cluster formation and decomposi-
tion, which except by coincidence would differ from the ac-
tivation energy for the solvent viscosity. The absence of a
temperature dependence other than that of the solvent viscos-
ity indicates that the processes controlling probe motion are
all dominated by the solvent viscosity, i.e., they are all pro-
cesses dominated by solvent-mediated hydrodynamic inter-
actions.

Are experimental data quantitatively consistent with
cluster formation? Do probes diffuse at the rates expected for
a cluster-forming polymer solution? To answer this question
we would need a quantitative model for diffusion and mo-
mentum transport in a mixture of overlapping polymer coils
and long-lived chain clusters. Such a model does not appear
to be available.

Our measurements give only limited physical informa-
tion on the physical nature of the clusters. The data here do
not prove that clusters are equilibrium objects localized in
position space. The spectral features being interpreted here
as clusters could alternatively arise from persistent dynamic
structures, having a characteristic length scale ca. 50 nm,
whose transient permanence arises from the solution dynam-
ics rather than from thermodynamic variables. Indeed, the
lack of a significant increase in the normalized static light
scattering intensityI /c, as the transition concentration is
crossed, strongly indicates that the slow mode does not come
from localized regions of very high concentration. HPC does
have a liquid–liquid crystal phase transition in a very differ-
ent part of its phase diagram, suggesting that its chain seg-

ments are predisposed to align, but we have no information
on chain alignments here.

As an alternative to finding the mean lifetime of the
relaxation modes, one could envision an analysis that ex-
tracted a terminal diffusion coefficientDt from the terminal
behavior ofg(1)(t). Such an analysis, which is equivalent to
measuring the mean-square distance^x2& traveled by diffus-
ing particles over a long timet and taking

Dt5
^x2&

t
, ~12!

implicitly presumes that the spectra have a terminal pure-
exponential mode. This presumption is not consistent with
our experimental data on small probes at low concentrations
and on all probes at elevated concentrations. We find that no
mode is longer lived than a mode that decays as a stretched
exponential in time.

A standard argument indicates that if there is a well-
defined longest length scalej in a system, then diffusion
over distances much longer thanj will be a random walk,
whose diffusive motions satisfy Eq.~12! and whoseg(1)(t)
is a simple exponential. Conversely, because the terminal
relaxational mode that we observe experimentally does not
decay as a pure exponential, we conclude that the systems
we study do not have a single longest length scalej. We do
observe a characteristic length'50 nm, which is the size of
a polymer coil. Because hydrodynamic interactions are long
range~the Oseen tensor is anr 21 interaction!, the observed
characteristic length does not necessarily supply the longest
length scale. Instead, our results suggest that in these systems
there are interesting dynamic behaviors on all length scales,
which—once one has reached scales much longer than the
characteristic length—would appear obliged to extend to
larger distance scales in a self-similar manner.

It is legitimate to inquire if the transition seen here is an
‘‘entanglement’’ transition in the sense of, e.g., Graessley.29

We actually do not measure individual chain motions directly
and hence cannot say whether, e.g., the slow mode corre-
sponds to topological restrictions on chain motion. However,
the entanglement transition as envisioned in Ref. 29 is
viewed to be a phenomenon arising from universal features
of polymer chains. In contrast, the viscometric transition6

that originally drew our attention to this system is non-
universal, being found various systems at very different val-
ues ofc@h# and being absent in other concentrated polymer
systems.30 The viscometric transition discussed here thus
does not appear to have the properties expected of an en-
tanglement transition.
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