
Cleveland State University
EngagedScholarship@CSU

Physics Faculty Publications Physics Department

1-1-2015

Fluctuations in A Quasi-Stationary Shallow
Cumulus Cloud Ensemble
M. Sakradzija
Max Planck Institute for Meteorology

Axel Seifert
University of Cologne

Thijs Heus
Cleveland State University, t.heus@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/sciphysics_facpub

Part of the Physics Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
Open Access

This Article is brought to you for free and open access by the Physics Department at EngagedScholarship@CSU. It has been accepted for inclusion in
Physics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact
library.es@csuohio.edu.

Repository Citation
Sakradzija, M.; Seifert, Axel; and Heus, Thijs, "Fluctuations in A Quasi-Stationary Shallow Cumulus Cloud Ensemble" (2015). Physics
Faculty Publications. 216.
https://engagedscholarship.csuohio.edu/sciphysics_facpub/216

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216947825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics_facpub?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics_facpub?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/sciphysics_facpub/216?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Nonlin. Processes Geophys., 22, 65–85, 2015

www.nonlin-processes-geophys.net/22/65/2015/

doi:10.5194/npg-22-65-2015

© Author(s) 2015. CC Attribution 3.0 License.

Fluctuations in a quasi-stationary shallow cumulus cloud ensemble

M. Sakradzija1,2, A. Seifert3, and T. Heus1,4

1Max Planck Institute for Meteorology, Hamburg, Germany
2International Max Planck Research School on Earth System Modelling (IMPRS-ESM), Hamburg, Germany
3Hans-Ertel Centre for Weather Research, Deutscher Wetterdienst, Hamburg, Germany
4Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Correspondence to: M. Sakradzija (mirjana.sakradzija@mpimet.mpg.de)

Received: 21 May 2014 – Published in Nonlin. Processes Geophys. Discuss.: 4 August 2014

Revised: 9 December 2014 – Accepted: 19 December 2014 – Published: 28 January 2015

Abstract. We propose an approach to stochastic parameteri-

sation of shallow cumulus clouds to represent the convective

variability and its dependence on the model resolution. To

collect information about the individual cloud lifecycles and

the cloud ensemble as a whole, we employ a large eddy simu-

lation (LES) model and a cloud tracking algorithm, followed

by conditional sampling of clouds at the cloud-base level.

In the case of a shallow cumulus ensemble, the cloud-base

mass flux distribution is bimodal, due to the different shal-

low cloud subtypes, active and passive clouds. Each distribu-

tion mode can be approximated using a Weibull distribution,

which is a generalisation of exponential distribution by ac-

counting for the change in distribution shape due to the diver-

sity of cloud lifecycles. The exponential distribution of cloud

mass flux previously suggested for deep convection parame-

terisation is a special case of the Weibull distribution, which

opens a way towards unification of the statistical convective

ensemble formalism of shallow and deep cumulus clouds.

Based on the empirical and theoretical findings, a stochas-

tic model has been developed to simulate a shallow convec-

tive cloud ensemble. It is formulated as a compound ran-

dom process, with the number of convective elements drawn

from a Poisson distribution, and the cloud mass flux sam-

pled from a mixed Weibull distribution. Convective memory

is accounted for through the explicit cloud lifecycles, mak-

ing the model formulation consistent with the choice of the

Weibull cloud mass flux distribution function. The memory

of individual shallow clouds is required to capture the cor-

rect convective variability. The resulting distribution of the

subgrid convective states in the considered shallow cumulus

case is scale-adaptive – the smaller the grid size, the broader

the distribution.

1 Introduction

To set a path towards the development of a stochastic

shallow-cloud parameterisation for numerical atmospheric

models, we study how the unresolved convective processes

relate to the resolved grid-scale variables in an ensemble of

shallow cumulus clouds. According to a conventional deter-

ministic approach to cloud parameterisation, the outcome of

shallow cumulus processes within a grid box of a numerical

model is represented as an average over the cloud ensemble

or as a bulk effect. However, different microscopic configu-

rations of a convective cloud ensemble can lead to the same

average outcome on the macroscopic grid scale (Plant and

Craig, 2008). If a one-to-one relation between the subgrid

and grid scales is assumed, the spatial and temporal variabil-

ity of convection that is observed in nature and in the cloud-

resolving simulations will not be represented in atmospheric

models. At the same time, the improvement in parameterisa-

tion should address the dependence of the subgrid- to grid-

scale relation on the model resolution and physics time step

(e.g. Jung and Arakawa, 2004). This is especially important

on the meso-γ atmospheric scales, since moist convection

and rain formation are recognised as the most uncertain pro-

cesses acting on these scales and the core reason for the short

mesoscale predictability limit (e.g. Tan et al., 2004; Zhang

et al., 2003, 2006; Hohenegger et al., 2006).

Commonly used tools to study convective cloud processes

at a high temporal and spatial resolution in order to develop

parameterisations are the cloud resolving models (CRMs).

To represent deep convective clouds explicitly, CRMs are

used at the grid scale of 1 km order of magnitude, while shal-

low convective clouds become explicitly resolved at a grid

scale of O (10–100 m), which is the size of the largest

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



66 M. Sakradzija et al.: Fluctuations in shallow cumuli

energy-producing eddies in the turbulent boundary layer,

hence the name large eddy simulation (LES). To formulate

the effects of clouds on their environment across the differ-

ent scales of atmospheric flow, a technique of coarse graining

can be applied to the CRM and LES fields (see, for example,

Shutts and Palmer, 2007, Sect. 3). In this way, a relation be-

tween the subgrid convection and the resolved flow can be

emulated to reveal the properties and components of the pa-

rameterisation and to reflect its dependence on the model grid

resolution.

From the previous studies of deep convective cloud fields

using CRMs and the coarse-graining methods, it is known

that the subgrid- to grid-scale relation is neither fully deter-

ministic nor diagnostic, which suggests that stochastic and

memory components should be included in a parameterisa-

tion. These components are sensitive to the spatial and tem-

poral scales of a numerical model. As the horizontal reso-

lution of a model gets higher, the stochastic component of

the subgrid- to grid-scale relation becomes more pronounced

(Xu et al., 1992; Shutts and Palmer, 2007; Jones and Randall,

2011). At the same time, an increase in horizontal resolu-

tion implies a shorter model time step and, as a consequence,

a larger impact of the memory component on parameterisa-

tion. In this case, changes in the resolved flow take place

on a timescale close to or less than the convective response

timescale, and the convective cloud system exhibits a non-

diagnostic behaviour (e.g. Pan and Randall, 1998; Jones and

Randall, 2011). Along with the effects of time lag in the

convective response, memory of convection also comprises

a feedback process by which the past interactions between

convective elements and thermodynamics fields on the near-

cloud scale modify convection at the current time (Davies

et al., 2013). Furthermore, a delay in the convective response

becomes longer with the emergence of mesoscale cloud or-

ganisation (Xu et al., 1992), and can be interpreted as an ad-

ditional convective memory effect (Bengtsson et al., 2013).

A behaviour of the subgrid- to grid-scale relation similar to

the behaviour of deep convection, but on the smaller spatial

scales, can be confirmed in LES studies of shallow convec-

tion. The stochastic effects in a coarse-grained shallow con-

vective cloud ensemble become dominant on the scales close

to 10 km and less (see Fig. 2 in Dorrestijn et al., 2013). We

will refer to these spatial scales as the “stochastic” scales for

the shallow convective ensemble.

Parameterisation schemes developed specifically for shal-

low convection are in most cases based on the mass flux

concept (Bechtold et al., 2001; von Salzen and McFarlane,

2002; Deng et al., 2003; Bretherton et al., 2004; Neggers,

2009). In a mass flux scheme, clouds within a model grid

box are parameterised as a single bulk updraft or as a spec-

trum of cloud updrafts via a simple entraining–detraining

plume model, and the vertical transport is determined by

the upward mass flux through the cloud base. Estimation

of the bulk or ensemble average cloud-base mass flux is

a part of the model closure and is based on some form of

the quasi-equilibrium assumption (Arakawa and Schubert,

1974). According to the quasi-equilibrium assumption, in

a slowly varying large-scale environment, the subgrid con-

vective ensemble is under control of the large-scale forcing

with a statistical balance fulfilled between the unresolved

and resolved processes. However, at the stochastic scales, the

quasi-equilibrium assumption is no longer valid. The model

grid box is not large enough to contain a robust statistical

sample of shallow clouds and the timescale of parameterised

processes can not be separated from the timescale of the re-

solved processes. This suggests that a stochastic and non-

diagnostic approach to parameterisation is necessary not only

for representing the small-scale variability of convection, but

also for representing the cloud field adequately by provid-

ing a way to make the parameterisation scale-adaptive, and

to avoid the scale-separation problem.

Increasing horizontal resolution of atmospheric models is

also strongly connected to the mesoscale predictability limit,

which is reached faster on the smaller scales of the resolved

motion (Lorenz, 1969). The reason for a shorter predictabil-

ity time on the smaller spatial scales comes from the faster

error growth on these scales due to moist convection (Zhang

et al., 2003, 2006). In the simulations with the grid resolution

of the order of 1 km, the small-scale initial errors spread fast

throughout the domain and exponentially amplify over the

regions with the convective instability (Hohenegger et al.,

2006). Due to non-linear interactions, initial uncertainties

propagate upscale in a process known as the “inverse er-

ror cascade” and degrade the forecast quality on the larger

scales (Lorenz, 1969; Leith, 1971). Here the stochastic term

of a parameterisation plays a role in representing the subgrid

fluctuations that, due to the non-linearity of the process, lead

to the error growth and upscale error propagation. Thus, the

stochastic term provides a way to quantify the uncertainties

coming from the formulation of the subgrid cloud processes

and is necessary to improve the ensemble spread in the en-

semble prediction systems – EPS (see the review of Palmer

et al., 2005).

Recently, EPS have been developed for the limited area

models at the convection-permitting grid resolution to ad-

dress the sensitive dependence on initial conditions (e.g.

Kong et al., 2007; Gebhardt et al., 2008; Clark et al., 2009;

Migliorini et al., 2011). The main goal of this new field of

research is the improvement of the quantitative precipitation

forecasts and the forecasts of convective and storm events.

In the convection-permitting models, deep convective clouds

are explicitly represented on the grid scale, while the plan-

etary boundary layer (PBL) convection and shallow clouds

are still subgrid processes and have to be parameterised.

Nevertheless, the introduction of the stochastic physics into

the convection-permitting EPS has been limited so far. The

stochastically perturbed parameterisation tendencies (SPPT)

scheme of Buizza et al. (1999) is adapted and applied in

a short-range convection-permitting EPS by Bouttier et al.

(2012) to improve the ensemble reliability and the ensemble

Nonlin. Processes Geophys., 22, 65–85, 2015 www.nonlin-processes-geophys.net/22/65/2015/
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spread–error relationship. Another example is the recent

work of Baker et al. (2014), where another similar method

of parameter perturbation of the model physics tendencies

called the random parameters (RP) scheme (Bowler et al.,

2008) is modified and applied to a convection-permitting

EPS. Both of these approaches are rather pragmatic and gen-

eral in perturbing the physical tendencies in a model. The ef-

fect of stochastic schemes specifically developed for the shal-

low clouds and based on the underlying physical processes

has not been investigated so far, mainly because stochastic

schemes for shallow clouds have not been formulated until

recently. One example is the scheme developed for stochastic

parameterisation of convective transport by shallow cumulus

convection (Dorrestijn et al., 2013), based on LES studies

of non-precipitating shallow convection over the ocean. In

this scheme, the pairs of turbulent heat and moisture fluxes

are randomly selected as corresponding to different states of

a data-inferred conditional Markov chain (CMC). In another

approach, two stochastic processes are implemented in the

eddy-diffusivity mass-flux (EDMF) scheme (Siebesma et al.,

2007; Neggers, 2009), the Monte Carlo sampling of the con-

vective plumes and the stochastic lateral entrainment (Sušelj

et al., 2013).

The goal of our study is to formulate a shallow convective

parameterisation that encompasses the stochastic and mem-

ory effects of convection, using the theoretical and empiri-

cal findings about the cloud ensemble. We study a shallow

convective-cloud case (Rain in Cumulus over the Ocean –

RICO) using large eddy simulation (LES). RICO is a pre-

cipitating quasi-stationary shallow convective case that also

shows some mesoscale organisation. We coarse grain the

cloud ensemble to study the subgrid- to grid-scale relation

and its dependence on the horizontal resolution. The vari-

ability of shallow convection and its scaling with the hori-

zontal resolution is then quantified. Individual cloud lifecy-

cles and the role of the diversity of cloud lifetimes are ex-

amined employing the cloud tracking routine of Heus and

Seifert (2013). This numerical study gives a path to apply the

theory of fluctuations in an equilibrium convective ensemble

of Craig and Cohen (2006b) to a shallow convective case.

In the following, we propose a generalisation of the the-

ory of fluctuations in a convective ensemble by including the

system memory and by considering the impact of the diver-

sity in cloud lifecycles on the cloud-base mass flux distribu-

tion shape. This provides a stochastic and memory term in

the subgrid- to grid-scale relation, and a deterministic com-

ponent is also retained in adequate proportion, depending on

the grid scale. This combined empirical–theoretical concept

is then structured in a stochastic stand-alone model of a shal-

low cumulus ensemble, similar to the approach of Plant and

Craig (2008) for deep convection, referred to as PC-2008

in the following text. A spectral representation of the cloud

field with the cloud lifecycles modelled explicitly introduces

the memory of individual clouds and opens the way to esti-

mating the impact of this memory on the variability of con-

vection. Sensitivity tests of the gradual generalisation of the

convective-fluctuation theory provide a definition of a con-

sistent and least complex model formulation.

Large eddy simulation and the cloud tracking algorithm

necessary for the analysis are described in Sect. 2. Physical

and statistical properties of a cloud ensemble are described

here and the cloud mass flux distribution is analysed.

A stand-alone stochastic model is constructed based on em-

pirical and theoretical findings and the model formulation

is derived for the different levels of system generalisation

(Sect. 3). Different formulations of the stochastic model are

discussed, and tested against LES results, to decide on min-

imal and consistent representation of all relevant features of

subgrid convection and its variability (Sect. 4).

2 Shallow cumulus ensemble statistics

To develop a stochastic parameterisation for shallow cu-

muli that includes convective memory in its formulation,

a detailed description of the cloud ensemble and the pro-

cesses acting on the scale of an individual cloud is necessary.

A large eddy simulation as a cloud-resolving model suffices

for the detailed description of the shallow cumuli field in

a large horizontal area, while the cloud tracking as a post-

processing routine collects the information about every sim-

ulated cloud during its lifetime.

2.1 Large eddy simulations and cloud tracking

We use the UCLA-LES (University of California, Los Ange-

les – Large Eddy Simulation) model, a version from Stevens

(2010), to simulate shallow convection. The dynamical core

of the LES model is based on the Ogura–Phillips anelas-

tic equations, discretised over the doubly periodic uniform

Arakawa C-grid (Stevens et al., 1999, 2005). The set of

anelastic equations is solved for the prognostic variables: ve-

locity components (u,v,w), total water mixing ratio rt, liq-

uid water potential temperature θl, number ratio of rainwa-

ter Nr and mass mixing ratio of rainwater rr. The time in-

tegration is solved using a third-order Runge–Kutta numer-

ical method. A directionally split monotone upwind scheme

is used for the advection of scalars, and directionally split

fourth-order centered differences are used for the momen-

tum advection. The subgrid fluxes are modelled by the

Smagorinsky–Lilly scheme, and the warm-rain scheme of

Seifert and Beheng (2001) is used for the cloud microphysics

as described in Stevens and Seifert (2008).

In this study, the LES model is set up to simulate the

GCSS (GEWEX Cloud Systems Studies) RICO shallow cu-

mulus case, as in van Zanten et al. (2011). The RICO case is

based on the Rain In Cumulus over the Ocean field study

(Rauber et al., 2007). It represents the average conditions

during an undisturbed period from 16 December 2004 to

8 January 2005 in the trade-wind region over the western

www.nonlin-processes-geophys.net/22/65/2015/ Nonlin. Processes Geophys., 22, 65–85, 2015



68 M. Sakradzija et al.: Fluctuations in shallow cumuli

Atlantic. The focus of this field study was on the processes

related to the rain formation in shallow cumuli and on how

the rain modifies the individual cloud and the cloud ensemble

statistics.

The standard RICO-GCSS case was simulated over a large

domain of around 50km× 50 km, with the horizontal grid

spacing of 25 m and vertical resolution of 25 m up to 4 km in

height. In such a large domain and on a high-resolution grid,

a cloud field can evolve into an organised mesoscale convec-

tive system, forming clusters and line-like structures (Seifert

and Heus, 2013). This transition to an organised cloud field

depends mostly on precipitation rate and, for the RICO-

GCSS simulation, the first organised cloud clusters develop

around the twelfth hour of the simulation (Fig. 1d). In the

RICO-140 case, which has a doubled cloud droplet number

density, Nc = 140 cm−3, and is virtually non-precipitating,

the cloud field remains quasi-random, but the individual

clouds grow in size throughout the simulation time (Fig. 1a,

c, e and g). The convective variability in an organised case

is, of course, very different from the variability of a quasi-

random cloud field. This is discussed in more detail later in

Sect. 4.2, where we discuss RICO-GCSS and RICO-140 to

quantify the effects of organisation, but for most of the anal-

ysis we focus on the simple case of the RICO-140 with a

quasi-random cloud field.

The cloud tracking algorithm developed by Heus and

Seifert (2013) is used as a post-processing tool for the

LES simulation results. The tracking is based on the verti-

cally integrated liquid water content, namely the liquid water

path. The clouds are projected onto a two-dimensional plane

and are identified as consisting of the adjacent points with

the liquid water path exceeding a chosen threshold value.

Cloud merging and splitting is done in two directions: for-

ward and backward in time. Along with the projected cloud

area, cloud buoyant cores, sub-cloud thermals and rain are

tracked during the simulation, with the links among them re-

tained. The choice of the two-dimensional tracking of the

projected clouds came from the limitations imposed by the

computational expenses and the large memory resources that

are required. For more details and validation of the tracking

method, see Heus and Seifert (2013).

To develop a cloud parameterisation based on the mass

flux concept, the cloud mass flux has to be estimated at the

cloud-base level. For the RICO case, we choose the level at

700 m, which is the first or second height level above the

cloud base during most of the simulation time. Thus, it is

necessary to identify the area that every cloud occupies at

the 700 m level. Because the liquid water path threshold of

5 gm−2 is taken as a definition of a cloudy column in the

cloud tracking algorithm and the clouds are projected onto

a two-dimensional surface, we check what the error is intro-

duced by the tracking regarding the domain average cloud

variables at the 700 m height. We define the cloudy air at the

700 m height level as points holding the liquid water content

ql larger than 0.01 g kg−1, which is the same definition as in

the LES model analysis. In this way, we are able to test the

tracking and the cloud conditional sampling routine, com-

paring the outcome statistics with the original LES statistics.

The relative difference in cloud fraction before and after the

tracking is 1.93 %, which is a negligible difference in abso-

lute value, and can be neglected.

2.2 Cloud definition and the distribution of cloud-base

mass flux

Starting from the sixth hour of RICO simulation to avoid

the model spin-up period, we choose several sequential time

frames of 6 h duration and apply the tracking method to the

cloud field. Each individual cloud in the simulated cloud field

is tracked in space and time during its life and cloud proper-

ties are recorded each minute of the simulation. Clouds are

taken into account only if their existence started during the

selected time frame, but if their duration spanned beyond the

time frame, they are tracked further on to complete their life-

cycles. We study the lifetime average cloud properties, con-

trary to the instantaneous properties of the cloud field at a sin-

gle model time step.

How should clouds be defined in a parameterisation?

A definition of the cloud entity is chosen depending on the

processes that will be introduced in a parameterisation. We

aim for a unified scheme, which will be used to reproduce the

cloud fraction, cloud vertical transport of mass and scalars,

and possibly also rain formation. Therefore, we test how the

distribution of cloud mass flux depends on the choice of the

cloud entity as a cloud condensate, cloud buoyant core or

a cloud updraft. To identify the points that form the cloud

entity on a certain height level, a conditional sampling is per-

formed with the three different criteria (as in Siebesma and

Cuijpers, 1995; de Roode et al., 2012):

1. cloud sampling over the points with liquid water con-

tent: ql > 0 gkg−1;

2. buoyant core sampling, by comparing the virtual poten-

tial temperature of each cloudy point with the slab aver-

age: θv > θv and ql > 0 gkg−1;

3. and cloud updraft sampling over the cloudy points

with positive vertical velocity: w > 0 ms−1 and ql >

0 gkg−1.

Following the work of Cohen and Craig (2006a), the mass

flux of an individual cloud at a certain height level is defined

as

mi = ρaiwi, i = 1,2, . . .,n, (1)

where ρ is the domain average density, ai is the cloud

area, wi is the vertical velocity averaged over the cloudy

points, and n is the number of clouds (Arakawa and Schu-

bert, 1974).

The cloud-base mass flux of each individual cloud that ap-

peared during the time frame of 6 h (from the sixth to the

Nonlin. Processes Geophys., 22, 65–85, 2015 www.nonlin-processes-geophys.net/22/65/2015/
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Figure 1. Snapshots taken every 6 h during the simulation showing the cloud albedo: the higher cloud droplet number density RICO case

(RICO-140) vs. the standard RICO case (RICO-GCSS).

twelfth hour) is averaged over the cloud lifetime and the

distribution of lifetime-averaged mass flux is calculated for

all three cloud entity definitions (Fig. 2). This distribution

is defined as the cloud rate distribution of cloud-base mass

flux g(m,t)dmdt , which gives the number of clouds with the

lifetime-average mass flux in the range [m,m+ dm] gener-

ated during the time interval [t, t + dt]. The integration of

g(m,t) with respect tom results in the cloud generation rate,

G(t), which is the number density of clouds generated per

unit time:

G(t)=

∞∫
0

g(m,t)dm. (2)

The total number of clouds in a domain, N(t), can be es-

timated by integrating the instantaneous distribution n(m′, t)

with respect to m′:

N(t)=

∞∫
0

n(m′, t)dm′, (3)

where m′ is the instantaneous cloud mass flux. By defini-

tion, n(m′, t)dm′ gives the number of clouds that exist at the

time t with the instantaneous cloud mass flux in the range

[m′,m′+ dm′]. The instantaneous distribution describes the

cloud field as it exists at a certain moment in time, while

 

cloud mass flux (kg/s) 

de
ns

ity

       RICO_140 (06−12h)

ql > 0 g/kg 

θv
cld > θv

env & ql > 0 g/kg

w > 0 m/s & ql > 0 g/kg

2 × 105 4 × 105 6 × 105 8 × 105

10−10

10−8

10−6

10−4

Figure 2. Semi-logarithmic plot of the cloud rate probability den-

sity function of cloud-base mass flux for the different cloudy point

definitions (1–3). This plot corresponds to the RICO-140 simulation

time frame of 6–12 h.

the cloud rate distribution carries the information about in-

dividual cloud lifecycles. A similar concept is introduced in

astrophysics (e.g. Chabrier, 2003), where the time-dependent

distribution function called the galactic stellar creation func-

tion, corresponding to our g(m,t), is introduced to relate the

present-day stellar mass function to the initial stellar mass

function. In this paper, we are limiting our case to 6 h time

frames to stay within a stationary regime. Therefore, the

www.nonlin-processes-geophys.net/22/65/2015/ Nonlin. Processes Geophys., 22, 65–85, 2015
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dependence on time in g(m,t) can be left out for notational

simplicity, and in the further text we will write g(m). When

we are referring to the probability density function, g(m)

normalised by G, the notation p(m) will be used.

The shape of p(m) does not depend strongly on the choice

of the cloud entity definition (Fig. 2). The main factor in-

fluencing the shape of p(m) is the liquid water content crite-

rion, which is the reason for the similar look of the three lines

in Fig. 2. Including buoyancy shifts the distribution slightly

towards higher density values. The reason is that only the

clouds that are positively buoyant at the 700 m level are taken

into account, so the total number of clouds is reduced and

some of the smallest clouds are left out. For further analysis

we choose to sample the cloud mass flux from a distribu-

tion of the cloud ensemble whose elements are defined using

the most general cloud definition: connected points holding

a cloud condensate, ql > 0 gkg−1.

2.3 Shallow cloud subtypes

The shallow cumulus cloud ensemble is composed of differ-

ent cloud subtypes (Stull, 1985). Shallow clouds that origi-

nate from the convective updrafts overshoot into the inver-

sion layer at the top of the mixed layer. If a cloud has enough

inertia to overcome the convective inhibition and reaches the

level of free convection (LFC), its growth is fuelled fur-

ther up. Those are the active buoyant clouds. Clouds that

never reach the LFC and remain negatively buoyant above

the mixed layer are the forced clouds. Another cloud group

is made of passive clouds, which are remnants of the old de-

caying clouds or are formed due to gravity waves.

Following the definition of an active cloud in the tracking

routine as a cloud holding a buoyant core with the maximum

in-cloud excess of θv exceeding the threshold of 0.5 K (Heus

and Seifert, 2013), we divide the cloud ensemble from the

RICO-140 simulation (6–12 h time period) into two separate

groups: the active-cloud group comprising the clouds with

single or multiple buoyant cores, and all the other clouds in

the passive-cloud group.

The two different groups of shallow cumuli form the two

modes of the cloud rate distribution and the joint distribution

of cloud mass flux and other cloud properties (Fig. 3). In the

RICO cloud ensemble, passive clouds are large in number

and can develop a smaller area at the cloud base and trans-

port less mass compared to the active clouds. This can be

identified at the cloud rate distribution of cloud-base mass

flux, as the passive cloud group takes the lower range of the

mass flux and higher probabilities in the distribution, and the

active cloud group takes a higher mass flux range and the

distribution tail (Fig. 3a). In a random shallow cumulus field,

small-scale turbulent motion controls the in-cloud processes

and the interaction of clouds with their environment. As a re-

sult of the quasi-random processes, the cloud fields are highly

variable and the cloud properties are vastly diverse. It is ob-

vious that clouds of equal area at the cloud base do not have

(a) cloud rate distribution
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Figure 3. (a) Cloud rate density distribution of cloud-base mass flux

with the split into active and passive distribution modes. (b) Scatter

plot of the cloud lifetime and average cloud mass flux and (c) cloud

lifetime and average in-cloud vertical velocity. Active clouds are

shown as red points, while the passive clouds are in blue. The non-

linear least square fit of the relation τi = αim
βi , i = 1,2 is plotted

for both cloud groups, with parameters αi and βi corresponding to

the passive (1) and active (2) cloud groups. Vertical velocity wi ,

i = 1,2 is averaged over all clouds in each group and plotted as

a horizontal line.
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Table 1. Contribution of the different cloud subtypes r〈N〉, r〈C〉 and

r〈M〉 to the total cloud number 〈N〉, cloud fraction 〈C〉 and vertical

mass flux 〈M〉, respectively. Given results are the time averages for

the time frame 6–12 h of the LES RICO-140 simulation.

700 m level Passive (1) Active (2) Total

Domain size (km2) - - 51.22

〈N〉 (no.) 1258.3 476.16 1734.45

〈C〉 (–) 0.0206 0.0246 0.0452

〈M〉 (kgs−1) 30.11× 106 51.82× 106 81.94× 106

r〈N〉 (%) 72.55 27.45 100

r〈C〉 (%) 45.64 54.36 100

r〈M〉 (%) 36.75 63.25 100

a unique magnitude of the other cloud properties; they are in

fact highly dispersed. However, the joint distribution of cloud

mass flux and cloud lifetime shows some correlation, with

a Spearman rank correlation coefficient of rρ = 0.79. This

joint distribution can be well approximated with two power-

law relations τi = αim
β
i with i = 1,2 describing a power-law

increase in cloud lifetime with the cloud mass flux for each

cloud group separately (Fig. 3b). Similarly, the two differ-

ent cloud groups form the two modes of the joint distribution

of cloud mass flux and cloud vertical velocity (Fig. 3c). In

this case the correlation coefficient is rρ = 0.48 and it is ev-

ident that the cloud-base mass flux does not scale with the

vertical velocity. Therefore, the lifetime averaged cloud-base

mass flux of an individual cloud is mainly controlled by the

horizontal area that it occupies at the cloud base.

During the selected 6 h time frame (6–12 h) of the RICO-

140 simulation, passive clouds form around 72 % of the total

cloud number in the ensemble. Even though a single passive

cloud on average contributes less to the upward transport and

cloud fractional cover than an active cloud, their collective

contribution can not be neglected, because they are large in

number and can also live long (see Fig. 3b). The contribution

of active clouds to the vertical transport of mass and scalars

is around 63 %, even though they form only 27 % of the total

cloud number in the ensemble, while the contribution of ac-

tive clouds to the cloud fraction is only slightly higher than

the contribution of the passive cloud group, around 54 % (Ta-

ble 1).

2.4 Canonical cloud ensemble distribution

According to the theory of fluctuations in an ensemble of

weakly interacting deep convective clouds that is in statisti-

cal equilibrium with the large-scale environment (Craig and

Cohen, 2006b), the cloud mass flux distribution follows an

exponential law

p(m)=
1

〈m〉
e−m/〈m〉, (4)

(a) mixed Weibull distribution fit
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Figure 4. Semi-logarithmic plots of the cloud rate density distri-

bution of cloud-base mass flux and the cloud failure rate function.

These plots correspond to the RICO-140 simulation time frame of

6–12 h. The cloud rate density distribution is fitted using the mixdist

R package (R Core Team, 2013), and the distribution shape param-

eter is set as equal for both distribution modes: k1 = k2 = k.

where m> 0 is the average mass flux of an individual cloud,

and 〈m〉 is the cloud ensemble average mass flux per cloud.

This distribution was derived in analogy to the Gibbs canon-

ical distribution of microstates of a physical system.

In the case of shallow convection, the cloud rate distribu-

tion of mass flux at the 700 m height level is more compli-

cated than a simple exponential function. This distribution

is a superposition of two modes (Fig. 4a), due to the exis-

tence of different cloud subtypes forming the shallow cu-

mulus ensemble (Stull, 1985): passive clouds in one mode

and active buoyant clouds in the second mode (see Sect. 2.3).

Forced clouds are not defined separately in the cloud tracking

routine, but based on the buoyancy criterion, we can assign

them to the passive cloud distribution mode. Furthermore,

the cloud rate distribution deviates from the exponential dis-

tribution. This is observed from the semi-logarithmic plot in

Fig. 4a, where the density distribution function does not form

a straight line for either of the modes, and the best fit suggests

a more general distribution function.

The cloud rate distribution of mass flux is a highly

right-skewed distribution with a heavy tail and can be well

www.nonlin-processes-geophys.net/22/65/2015/ Nonlin. Processes Geophys., 22, 65–85, 2015



72 M. Sakradzija et al.: Fluctuations in shallow cumuli

modelled as a two-component mixture of the generalised

exponential distribution (i.e. mixed Weibull distribution,

Fig. 4a):

p(m)= f
k

θ1

(
m

θ1

)k−1

e−(m/θ1)
k

+ (1− f )
k

θ2

(
m

θ2

)k−1

e−(m/θ2)
k

, (5)

where f is a fraction of the cloud ensemble belonging to the

first passive mode and 1− f is a fraction of the cloud en-

semble belonging to the second active mode. The Weibull

distribution is a special case of the generalised gamma distri-

bution family and is frequently used in the survival analysis

field of statistics to model the physical systems with com-

ponents that age during the time towards their failure. The

parameters θ1 > 0 and θ2 > 0 refer to the scale of the two

distribution modes, and parameter k > 0 is the distribution

shape.

Here we are making a parallel between the cloud mass flux

distribution and a lifetime distribution to explain the devia-

tion of the cloud rate distribution of mass flux from the expo-

nential shape through the parameter k. The parameter k intro-

duces the effect of system memory in the cloud rate distribu-

tion of mass flux. The two main types of convective memory

effects recognised in the CRM studies (Davies et al., 2013)

are a memory effect due to the time evolution of a cloud field

in a changing environment, and a memory effect due to the

finite individual cloud lifetimes. In our case, because of the

stationarity assumption, we only include the latter effect, and

the distribution shape k is smaller than 1 due to the different

and finite lifetimes of individual clouds. This local memory

effect is accounted for through the correlation of cloud-base

mass flux of individual clouds with their lifetime.

If the shape parameter lies in the interval 0< k < 1, the

Weibull distribution describes a cloud population with the

failure rate decreasing with the cloud mass flux by follow-

ing the failure rate function

hi(m)=
k

θi

(
m

θi

)k−1

, i = 1,2, (6)

where h(m) is the failure rate defined as the frequency of

failures per unit mass flux, conditioned on the average mass

flux of a cloud. If a cloud has already developed higher mass

flux, it is more likely that it will be able to transport an addi-

tional portion of the mass through its cloud base compared to

a cloud that has developed lower mass flux. The results from

LES support the theoretical failure rate function of cloud

population, showing a decrease in the failure rate with the

cloud-base mass flux (see Fig. 4b). In the case of a shallow

cumulus population, the Weibull distribution with 0< k < 1

provides a good fit to the empirical data, since the cloud en-

semble consists of a large number of short-lived clouds in

the lower range of the cloud-base mass flux, and with fewer

long-lived clouds in the high mass flux range (see Fig. 3b).

A special case of the Weibull distribution, when k = 1 and

the failure rates are constant, i.e. h(m)= 1/〈m〉, is the expo-

nential distribution. A population would have an exponential

distribution if the system was memoryless and if the system

constituents had equal lifetimes. When describing a realistic

cloud ensemble, this distribution is likely to be bimodal, with

each mode being right skewed and heavy tailed (0< k < 1).

This comes from a reasoning that in any cloud ensemble, it

is more likely that large clouds will live longer and develop

higher mass flux compared to the smaller clouds. In the cloud

ensemble of the RICO case, the best fit suggests the shape pa-

rameter k = 0.7 (Fig. 4a). However, the value of parameter k

might change with the changes in the large-scale environ-

ment and with the emergence of the cloud field organisation,

since both of these features carry a component of convec-

tive memory. We will discuss the sensitivity of the ensemble

statistics to this parameter further in Sect. 4.

An important aspect of applying the Weibull distribution

to the parameterisation of clouds is its potential universal-

ity as a cloud mass flux distribution. During the transition

of a cloud field from shallow to deep convection, the shape

parameter might change from approximately k = 0.5 in the

case of a shallow cloud field to close to k = 1, correspond-

ing to the exponential distribution function which has been

suggested for deep convective clouds. With this in mind, it

might be possible to unify the parameterisation of fluctua-

tions in shallow and deep convective cloud systems within

the same scheme. Furthermore, this approach can be consid-

ered to be an empirical generalisation of the Gibbs formalism

to convective cloud systems with memory.

2.5 Variability of the small-scale convective states

The domain of the LES RICO-140 simulation is successively

divided into areas of different sizes, to mimic the different

grid sizes of the stochastic model, and cloud properties are

averaged or summed over these areas. In this way, we ob-

tain the distribution of compound subgrid convective states

depending on the horizontal resolution of the model.

Figure 5 shows the subgrid cloud fraction histograms for

the different coarse-graining resolutions: 1.6, 3.2, 6.4, 12.8,

and 25.6 km. Small-scale states in each spatial bin vary from

the realisations in the surrounding bins, even though the

given forcing is spatially uniform and constant in time. The

smaller the averaging area, the more possible states exist

and histograms become significantly broader, since the aver-

aged values of cloud properties can take wider ranges. The

variability arises from a different number of clouds in ar-

eas of the same size and from the fact that individual clouds

can be stronger or weaker (Plant and Craig, 2008). The dis-

tribution of compound cloud properties changes its shape

from exponential-like in the case of high-resolution grids to

Gaussian-like for the coarse grids. A grid box in a model

with the coarser horizontal resolution will contain a larger

number of clouds and the outcomes of the sub-sampling ap-

proach the expected value of distribution (the distribution be-

comes narrower), which is in agreement with the law of large

numbers. This kind of variability results from the small-scale
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Figure 5. Histograms of the fractional cloud cover at the 700 m

height level for the different horizontal resolutions of the LES

coarse graining.

convective processes themselves and does not originate from

the changes in large-scale dynamic forcing, though it can be

influenced by these changes.

3 Empirical–theoretical model formulation

According to the parameterisation framework of Plant and

Craig (2008), a model grid box contains a subset of a cloud

ensemble, and represents one possible outcome of the re-

sponse to the large-scale forcing. Therefore, around each

model grid box, we choose a large area A containing the

“full” cloud ensemble (Fig. 6), assuming that the total mass

flux in a cloud ensemble is determined by the large-scale en-

vironment. By doing so, we assume that quasi-equilibrium is

valid on a large scale. For this assumption to hold, the num-

ber of clouds in an ensemble has to be very large so that area

A contains the full spectrum of the cloud sizes. For the pur-

pose of this study, we set the large-scale areaA to the domain

size of the LES RICO simulation.

The initialisation of n clouds in the area A is modelled

as a random Poisson process and the cloud mass flux m is

drawn randomly for each individual cloud from the gener-

alised ensemble distribution (Eq. 5) defined for the selected

area A around the grid box (see Fig. 6). After initialisation,

the clouds are distributed uniformly over the areaA so that in

every grid box the distribution of the initialised cloud num-

ber also follows the Poisson distribution. A cloud lifetime is

assigned to each initialised cloud as a function of the cloud

mass flux, according to the fit obtained from Fig. 3b. During

the model run, clouds are treated as individual objects with

their own memory and duration. A lifecycle is assigned to

each cloud, with the cloud properties changing accordingly,

and after the lifetime expires the cloud is removed from the

t’, q’

t, q
PDF of cloud mass fluxes

A

Figure 6. Schematic representation of the stochastic PC-2008 ap-

proach.

simulation. So, at each model time step, which is set to 1 min,

the subgrid convective processes are represented by the ef-

fects of all clouds that exist in a grid box, at the different

stages of their lifecycles.

The large-scale properties driving the model are the en-

semble mean properties: total cloud number 〈N〉 and total

cloud-base mass flux 〈M〉. In addition, cloud fraction 〈C〉 is

also taken as a third quantity, because we aim for a scheme

that unifies the representation of the cloud vertical transport

and cloud cover. Thus, as a result of the stochastic modelling,

we get the fractional cloud cover C and the total mass fluxM

in each model grid box, and the correct variability, depend-

ing on the choice of the model horizontal resolution (see also

Keane and Plant, 2012). With the cloud ensemble statistics

formulated in this way, the variability of small-scale states is

represented in a physically based manner, resulting from the

random and limited sampling (Plant and Craig, 2008).

3.1 Counting the clouds

Initialisation of new clouds within a model time step is done

through a Poisson counting process, after which the clouds

are uniformly and randomly distributed over space. In this

section we test whether the temporal Poisson distribution

holds for the RICO case.

For a process to be described as a random Poisson pro-

cess, events should be independent of each other and the

distribution of events should follow the Poisson distribution.

The Poisson distribution is often found in nature, since it re-

sults from a process subject to the law of rare events (Pinsky

and Karlin, 2011). This law can be interpreted as a very low

probability of occurrence of two exactly identical clouds in

a given area, even though this area can contain a large number

of clouds. Therefore, according to the law of rare events, the

number of generated clouds in the area should approximately
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(a) total cloud number time series (6-12 h)
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Figure 7. The total cloud number time series, and a corresponding

histogram plot with a fit to the Poisson model, and a Q–Q plot as

a goodness of fit test. The distribution is fitted using the method of

moments, while the histograms and Q–Q plots are made using R

libraries (R Core Team, 2013). The time interval between the snap-

shots is 10 min.

follow the Poisson distribution. If we assume that the shallow

cumuli are point-like events with a low probability of occur-

rence and that the events occur randomly but with a constant

cloud production rate G, as in Craig and Cohen (2006b), the

probability that n clouds will be generated in a domain during

the time interval (t, t +1t] is given by the Poisson distribu-

tion

p(n)=
(G1t)ne−G1t

n!
, n= 0,1,2, . . . (7)

Consequently, we assume that the distribution of the total

number of clouds in a domain also approximately follows the

Poisson distribution. This approximation is necessary for the

estimation of variance of the compound cloud mass flux dis-

tribution in Sect. 3.3. To test the validity of an assumption for

the Poisson distribution, we show the empirical histogram of

the total number of clouds in the LES RICO case domain,

and a fit to the theoretical Poisson model for the 6 h period of

simulation (Fig. 7b). The rate parameter for the distribution

fit is estimated from empirical LES-RICO results using the

method of moments. Even though the RICO case is not ide-

ally stationary (the number of clouds has a decreasing trend,

see Fig. 7a), for a limited time period of 6 h, these two dis-

tributions are similar. Figure 7c shows the quantile–quantile

plot (Q–Q plot as defined in Wilks, 2006) with the points rep-

resenting the pairs of quantiles of the theoretical vs. empir-

ical distributions. The two distributions match closely, with

the points lying approximately on the straight x = y line.

3.2 Closure for the distribution parameters

The cloud rate distribution of cloud mass flux g(m) relates to

the instantaneous distribution n(m′) through the information

about the cloud lifetime τ(m). So, in the ensemble average

limit, we can assume that

〈g(m)〉 =
〈n(m)〉

〈τ(m)〉
. (8)

Because of the stationarity, the ensemble average equals the

time average in our case and will be denoted with 〈.〉. Note

that a similar relation is also used for the galactic stellar cre-

ation function as a product of the distribution of stars (mass

function) and their formation rate (function of time) (e.g.

Chabrier, 2003, Eq. 6). This relation is also implicitly used

in the scheme of Plant and Craig (2008).

We approach the formulation of closure by approximating

the cloud rate distribution of mass flux with a two-component

mixed Weibull function

g(m)=

2∑
i=1

Gi
k

λki

mk−1e−(m/λi )
k

, (9)

with scale parameters λi and shape parameter k related to

the average mass flux per cloud as 〈m〉i = λi0(1+
1
k
). The

cloud generating rate G, as the number of generated clouds

per second in a given area, is the intensity parameter of the

Poisson distribution, and the index i refers to the two cloud

subtypes (see Sect. 2.3).

The ensemble average number of clouds in a domain can

be derived by integrating the instantaneous distribution of

cloud mass flux:

〈N〉 =

∞∫
0

〈n(m′)〉dm′ =

∞∫
0

〈τ(m)〉〈g(m)〉dm. (10)
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We use a power-law relation for the cloud lifetime depen-

dence on the cloud mass flux:

τi = αim
βi , i = 1,2. (11)

The parameters αi and βi for the two cloud subtypes are ob-

tained from the non-linear least square fitting of the joint dis-

tribution of cloud mass flux and cloud lifetime (Fig. 3b).

After substitution of Eqs. (9) and (11) into Eq. (10) and in-

tegration, we get an expression for the ensemble mean num-

ber of clouds:

〈N〉 =

2∑
i=1

〈Ni〉 =

2∑
i=1

Giαiλ
βi
i 0

(
1+

βi

k

)
. (12)

An expression for the ensemble mean cloud fraction 〈C〉 can

be derived using the Riemann–Stieltjes integration of the in-

stantaneous distribution function

〈C〉 =

∞∫
0

〈a(m′)〉 〈n(m′)〉dm′, (13)

where a(m′) is the instantaneous cloud area just above the

cloud base (700 m level). From the definition of the cloud

mass flux it follows that the lifetime-averaged cloud area

is a(m)=m/(ρw), and we assume that the density equals

ρ = 1 kgm−3 for notational simplicity. The average vertical

velocity is also a closure parameter, and here we simplify it

by using an average over all clouds, w = 〈M〉/(〈C〉A). By

applying the relation between the instantaneous and cloud

rate mass flux distribution Eq. (8), we get

〈C〉 =

∞∫
0

〈a(m)〉〈τ(m)〉〈g(m)〉dm. (14)

After substitution and integration, and assuming that w is

constant among individual clouds, we find

〈C〉 =

2∑
i=1

〈Ci〉 =

2∑
i=1

Giαi

wρ
λ

1+βi
i 0

(
1+

1

k
+
βi

k

)
, (15)

and, similarly, for the total cloud mass flux,

〈M〉 =

2∑
i=1

〈Mi〉 =

2∑
i=1

Giαi λ
1+βi
i 0

(
1+

1

k
+
βi

k

)
. (16)

When k = 1, Eqs. (12)–(16) describe a system with exponen-

tially distributed cloud-base mass flux.

In the case of a constant cloud lifetime among all clouds

in the ensemble, Eqs. (12)–(16) reduce to

〈N〉 =

2∑
i=1

Giτi, (17)

〈C〉 =

2∑
i=1

Gi

wρ
τi
λi

k
0

(
1

k

)
, (18)

〈M〉 =

2∑
i=1

Giτi
λi

k
0

(
1

k

)
. (19)

This formulation results in a system of two equations,

Eqs. (12) and (15) or Eq. (16), with three unknowns, G,

〈m〉 = λ0(1+ 1
k
) and k, for each cloud subtype. For the pur-

pose of this study, we set the parameter k to 0.7 for both cloud

groups, as estimated from the empirical RICO case distribu-

tion (Fig. 4a). The parameters of the power-law relation for

the cloud lifetime Eq. (11), αi and βi , i = 1,2, are estimated

from the empirical results from LES and are of secondary

importance for the variability in our model (see Sect. 4.2).

This leaves us with a closed system, if the ensemble average

number of clouds 〈Ni〉 and cloud fraction 〈Ci〉 or cloud-base

mass flux 〈Mi〉 are known, and the stochastic model can be

constrained to reproduce the correct ensemble average statis-

tics and the small-scale variability. In this study we focus on

the variability of convection when the forcing is constant and

the ensemble average properties are taken as known quanti-

ties from the results of the cloud tracking.

However, in a large-scale numerical model, it is not likely

that the information about the total cloud number in a do-

main will be available. It would also be useful if the distribu-

tion parameters were constrained by the closure formulation

as dependent on the large-scale model quantities, so that the

distribution shape could change with the cloud field evolu-

tion. To avoid counting the clouds and fitting the cloud num-

ber and cloud mass flux distribution empirically, a more ro-

bust quantity could be used – the average lifetime per cloud,

〈τ 〉 = 〈N〉/G. In a large-scale model, the constraint on 〈M〉

or 〈C〉 is given from the resolved scales in an existing mass-

flux parameterisation, and the information necessary to di-

vide the cloud ensemble into passive and active cloud groups

is available from the separate treatment of the active and pas-

sive cloudiness (for example, see Neggers, 2009). Therefore,

the closure of 〈m〉 and 〈τ 〉 has to be developed from empirical

studies or from theory, so that we are left with the two equa-

tions and two unknowns: G and k. In the PC-2008 scheme,

as a first approximation, the parameters 〈m〉 and 〈τ 〉 are set

to a constant value, though they might depend on the changes

in the large-scale environment. We assume that this approx-

imation holds for the RICO simulation, since the cloud evo-

lution is quasi-stationary and the forcing is constant. Results

from the cloud tracking of RICO clouds support this approx-

imation (Table 2). For the three successive time frames from

6 to 24 h of simulation, the average mass flux per cloud is
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Table 2. Model closure parameters estimated from the cloud track-

ing results.

Parameter Unit 6–12 h 12–18 h 18–24 h

〈m〉 kgs−1 1.91× 104 1.82× 104 1.67× 104

〈m1〉 kgs−1 1.05× 104 1.04× 104 1.12× 104

〈m2〉 kgs−1 8.87× 104 8.97× 104 10.16× 104

〈τ 〉 min 7 5 3

〈τ1〉 min 5 4 3

〈τ2〉 min 20 18 18

around 1× 105 kgs−1 for the active cloud group and around

1× 104 kgs−1 for the passive cloud group, and the average

lifetime is roughly 20 min for active clouds and 5 min for pas-

sive clouds.

3.3 The variance of compound distribution

The total mass fluxM in a model grid box can be interpreted

as a random sum of the individual cloud mass fluxes of a

random number of clouds n (as in Craig and Cohen, 2006b):

M =

n∑
i=1

mi, (20)

where the cloud mass flux is constant during the cloud life-

time, so that m′ =m. We assume that the total number of

clouds in some region (or a model grid box) follows the Pois-

son distribution

p(n)=
N̂ne−N̂

n!
, n= 0,1,2, . . . (21)

which can be justified with the good fit to the empirical re-

sults (Fig. 7). Here N̂ is the average number of clouds within

a model grid box. In the case of the Weibull-distributed

lifetime-average cloud mass flux, the distribution at a certain

instant in time is given by

p(m′)=
τ(m)

〈τ 〉

k

λk
mk−1e−(m/λ)

k

, (22)

where 〈τ 〉 is the average lifetime per cloud.

The probability distribution of the sum of n independent

identically distributed random variables m, conditioned on

the number n, is the compound distribution or the distribution

of the random sum

p(M)=

∞∑
n=1

p(n)f n(M), (23)

where f n(M) is the n-fold convolution of p(m′). Properties

of this distribution depend on the random number of clouds n

and are analysed empirically for the RICO case in Sect. 2.5.

In the case of exponentially distributed individual cloud mass

fluxes, this distribution is defined as the compound Poisson

distribution of cloud population, and can be analytically ex-

pressed (Eq. 14 in Craig and Cohen, 2006b).

By definition, the expected value of a compound distribu-

tion can be expressed as

E[M] = E[n]E[m] (24)

and the variance as

Var[M] = E[n]Var[m] + (E[m])2Var[n] (25)

(Pinsky and Karlin, 2011).

In a cloud field with variable cloud lifetime and Weibull

distributed cloud mass flux, the expected value of the com-

pound distribution is

E[M] = N̂
α

〈τ 〉
λβ+10

(
β + k+ 1

k

)
, (26)

and the variance is

Var[M] = N̂
α

〈τ 〉
λβ+20

(
β + k+ 2

k

)
. (27)

The variance of the compound distribution that encompasses

the diversity of cloud lifetimes depends on the average num-

ber of clouds in a region N̂ , average cloud mass flux 〈m〉

functioning through λ and k, the β exponent from the lifetime

relation, and the average lifetime per cloud 〈τ 〉. The average

cloud lifetime is defined as

〈τ 〉 = 〈N〉/G= αλβ0

(
β + k

k

)
. (28)

Please note that in Eq. (28) 〈N〉 corresponds to the full con-

vective ensemble in a large equilibrium area, while N̂ intro-

duced in this section corresponds to the model grid box of an

arbitrary size.

To test the scale adaptivity of the compound distribution

variance, we derive the relation to describe how the nor-

malised variance of total mass flux changes with the average

number of clouds:

Var[M]

(E[M])2
=

0
(
β+k
k

)
0
(
β+k+2
k

)
02
(
β+k+1
k

) 1

N̂
. (29)

When k = 1, this reduces to the expression valid for the

exponential function case with the cloud lifetimes defined as

Eq. (11) for a single exponential mode:

Var[M]

(E[M])2
=
(β + 2)

(β + 1)

1

N̂
, (30)

and furthermore, if it is assumed that the lifetimes of all

clouds are equal, this reduces to

Var[M]

(E[M])2
=

2

N̂
, (31)

as in Craig and Cohen (2006b) (their Eq. 18).
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3.4 Cloud lifecycle

In the case of shallow convection, large variability in the

cloud size and cloud lifetime can be found. Individual shal-

low clouds can have a lifetime ranging from a couple of min-

utes to several hours. Therefore, in contrast to the PC-2008

where the cloud lifetime is constant among different clouds,

we introduce the varying cloud lifetime depending on the

cloud mass flux and we model the cloud lifecycles explicitly.

On the convection-permitting scales of resolved motion,

the subgrid shallow convection is in a non-equilibrium

regime; i.e. there is no timescale separation between the sub-

grid and resolved processes. To adjust to the changes in forc-

ing, convection requires a finite time that can span longer

than the model time step. This timescale is referred to as the

convective adjustment or the closure timescale in the litera-

ture. Using cloud-resolving simulations of deep convection,

Davies et al. (2013) identified another memory timescale that

is not carried by the large-scale mean thermodynamic fields,

but by the structures on the near-cloud scale. These struc-

tures are the result of individual clouds modifying their envi-

ronment throughout their lifecycles. This type of convective

memory expresses itself through the effects of past convec-

tion modifying the convection at the present time. A first step

to introducing the aspects of these two timescales of con-

vective memory into the parameterisation is to represent the

cloud lifecycles explicitly.

The cloud lifetime of individual clouds τ(m) can be eval-

uated empirically from LES (Fig. 3b) by approximating the

joint distribution of cloud mass flux and cloud lifetime with

a simple power-law relation Eq. (11). This distribution is

highly dispersed and the power-law fit is biased by the small-

est clouds that are large in number. The implications of this

crude simplification of a highly dispersed joint distribution

are not significant, and will be explained further in Sect. 4.

Having the average mass flux of each cloud in a model

grid box, an idealised cloud lifecycle can be assigned to each

cloud following a simple lifecycle function

m′

m
=

3

2

∣∣∣∣4 · tτ
(
t

τ
− 1

)∣∣∣∣ (32)

(similar to Herbort and Etling, 2011, where a sine function

was used for the temporal development of deep convective

shower cells). The cloud mass flux of each cloud at each time

stepm′ is normalised by the lifetime average cloud mass flux

m and changes according to Eq. (32) as a function of the

normalised cloud time t/τ . The empirical cloud lifecycles

from LES and cloud tracking results are more complicated

than the idealised cloud lifecycle function (Fig. 8). Smaller,

short-lived clouds follow the idealised cloud lifecycle func-

tion more closely (Fig. 8a), compared to the longer-lived

clouds (Fig. 8b). The discrepancy from Eq. (32) is especially

pronounced if the cloud is a long-lived multi-pulse entity

(Fig. 8c). Please note that in the previous section, derivation

of the total mass flux variance (Eq. 29) did not incorporate

(a) short lifetime, τ < 30 min
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(b) medium lifetime, 30< τ < 60 min
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(c) long lifetime, τ > 60 min
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Figure 8. Idealised function for the cloud lifecycle (red) and the

examples of individual cloud lifecycles (gray dots) from the LES

RICO-140 case, after the cloud tracking.

the cloud lifecycle function (Eq. 32), and only the variabil-

ity in the cloud lifetimes in a convective ensemble was taken

into account.

4 Tests with different levels of model complexity

The goal of every parameterisation is to represent the sub-

grid processes using a simple concept and as few parame-

ters as possible, but on the other hand not to degrade the

quality and level of produced information. The consistency

of the parameterisation assumptions can provide a valuable

guidance to choose a certain set of assumptions over another.

In the following, we compare different formulations of the

stochastic model, to test what the level of complexity nec-

essary to model the shallow convective cloud ensemble is,

and discuss possible inconsistencies, especially in simplified

models. The stochastic model should reproduce the ensemble
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Table 3. Parameters for the model formulation with the two-

component mixed Weibull distribution.

Parameter Value Unit

Domain size 51.22 km2

k 0.7 –

λ1 7269.08 kgs−1

λ2 29 868.46 kgs−1

f1 0.81 –

f2 0.19 –

G 4.55 #s−1

G1 3.69 #s−1

G2 0.86 #s−1

α1 0.02 kg−1

β1 1.04 –

α2 0.33 kg−1

β2 0.72 –

w 0.69 ms−1

average quantities and the variability of subgrid convective

states.

The stochastic model is run as an ensemble with 50 mem-

bers on the horizontal domain of 51.2km×51.2 km. The en-

semble model runs are performed multiple times with the dif-

ferent model formulation and each of these runs is repeated

five times using the different horizontal grid resolutions of

the stochastic model: 1.6, 3.2, 6.4, 12.8, and 25.6 km. The

empirical coarse-grained LES quantities (Sect. 2.5) are used

for the validation of results from the stochastic model en-

semble runs. To stay within the quasi-stationary regime of

the RICO case, we limit the time frame to 6 h, focusing on

the time period from the sixth to the twelfth hour of the sim-

ulation.

Distribution parameters are estimated as a function of the

large-scale quantities: ensemble average cloud cover 〈Ci〉,

total mass flux 〈Mi〉 and total number of clouds in a domain

〈Ni〉, which are taken from the LES tracking results (Ta-

ble 1). The distribution parameters, λi , i = 1,2 for the cloud

rate mass flux distribution and Gi , i = 1,2 for the Poisson

cloud number distribution, are calculated using Eqs. (12)–

(16), and their values are given in Table 3. Estimation of the

parameters in this way ensures that the model reproduces the

correct ensemble average quantities.

The fraction of the active cloud mode is calculated as

f2 =G2/(G1+G2) and the fraction of the passive cloud

mode as f1 = 1− f2 (Table 3). The cloud-base mass flux is

sampled for each cloud individually, depending on the group

it belongs to, following the procedure for generating the ran-

dom variates from the mixed exponential function described

in Wilks (2006, p. 127). The choice for the splitting into two

groups is given by generating a random number f = [0,1].

The initialised cloud becomes active if the fraction f is less

than f2; otherwise, it is assigned to the passive cloud group.

4.1 Generalisation of the exponential distribution

In this section, we compare the performance of the stochastic

model depending on the choice for the cloud rate distribu-

tion, starting from a single-parameter single-mode exponen-

tial function and then gradually increasing the distribution

complexity by adding a second mode and one more parame-

ter – the distribution shape.

Compared to the LES domain average statistics, the cloud

ensemble average properties are reproduced well using the

different formulations of the stochastic model, with the rel-

ative error below 0.6 % (Table 4 showing the mixed Weibull

case). Low errors in the ensemble average quantities prove

that the model equations and the numerical methods are con-

sistent with the theoretical model formulation.

From the snapshots taken over six hours of simulation

(6–12 h), the frequency distributions of the compound cloud

mass flux at the 700 m height level are constructed for the

different horizontal resolutions of the stochastic model and

compared with the coarse-grained LES results (Fig. 9). It can

be concluded, already by visual inspection, that the LES and

the stochastic model frequency distributions are highly simi-

lar. Limited sampling of the cloud ensemble produces a cor-

rect frequency distribution of the subgrid convective states

for the different choices of the model grid size. This signi-

fies that the stochastic model is scale-adaptive and that the

variability of small-scale convective states depends on the

model grid resolution. There is a lack of variability when

the cloud mass flux is sampled from an exponential func-

tion with constant cloud lifetime (exp. τ = 20 min, Fig. 9).

This model set-up would correspond to the prescribed ex-

ponential function for deep convection in PC-2008, with the

constant cloud lifetime τ = 45 min. Thus, in a shallow con-

vective case, a more complicated distribution function that

encompasses the effect of cloud lifecycles should be used.

This statement is supported by the improvement in perfor-

mance of the stochastic model in the case of a mixed Weibull

distribution including the explicit cloud lifecycles (mix wei.

τ = αmβ , Fig. 9). The reason for this improvement could be

the generalisation of the cloud rate distribution, the introduc-

tion of the second distribution mode, the introduction of the

cloud lifecycles, or a combination of all three. We examine

all three reasons in the rest of the paper.

As a tool for quantitative comparison between the fre-

quency distribution resulting from different runs of the

stochastic model and the reference distribution obtained from

the LES coarse graining, we use the Hellinger distance as

a measure of distribution similarity. The Hellinger distance

H between the two discrete probability distributions P and

Q is defined as

H(P,Q)=
1
√

2

√√√√ k∑
i=1

(
√
pi −
√
qi)2, (33)
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Table 4. Ensemble average cloud properties resulting from the stochastic model ensemble runs with the different horizontal resolutions.

Mixed Weibull distribution function with the explicit cloud lifecycles

Resolution (km) 〈N〉 (no.) Error (%) 〈C〉 (–) Error (%) 〈M〉 (kgs−1) Error (%)

1.6 1724.95 0.55 0.04515 0.15 81 810 364 0.15

3.2 1725.10 0.54 0.04517 0.11 81 847 963 0.11

6.4 1725.81 0.50 0.04511 0.25 81 730 366 0.25

12.8 1726.21 0.47 0.04510 0.27 81 716 417 0.27

25.6 1724.41 0.58 0.04511 0.25 81 730 047 0.25
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Figure 9. Histograms of the compound cloud mass flux at the 700 m height level normalised by the grid box area of the different horizontal

resolution: coarse-grained LES tracking results vs. stochastic model results. Plots show the two stochastic model cases: a two-component

mixed Weibull case with explicit cloud lifecycles (k = 0.7; coloured lines) and a single-mode exponential case without cloud lifecycles

(k = 1; coloured dots). Colours also correspond to Fig. 5. Hellinger distance H stands for the mixed Weibull case.

where pi and qi are the corresponding probability measures.

A useful property of the Hellinger distance is its skew inde-

pendence, which enables us to compare the scores between

the distribution pairs of different skewness resulting from the

different choice of horizontal grid resolution (Fig. 9).

The Hellinger distance H confirms a high level of simi-

larity between the distributions of different resolution pairs,

with the H values in a very low range, from 0.018 to 0.12

(Fig. 9a–e). Comparison of the results from the stochastic

model set-up using a single exponential function vs. a mixed

exponential or a mixed Weibull function via Hellinger dis-

tance shows the importance of modelling the two distribu-

tion modes for each cloud group separately (Fig. 10). For the

distribution similarity, the introduction of the second mode

in the cloud rate distribution (mix exp. vs. exp., Fig. 10)

has a larger impact than the explicit modelling of the cloud

lifecycles (exp. τ = αmβ vs. exp. τ = 20 min, Fig. 10). The

difference in performance of a mixed exponential case vs.

a mixed Weibull case (i.e. k = 1 vs. k = 0.7) is not so evident

from the point of view of frequency distribution match, but

it becomes distinct for evaluation of the variability measure

(see Sect. 4.2).
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Figure 10. Comparison of the Hellinger distance between the distri-

bution pairs from simulations using different model configurations:

a single exponential (exp.) configuration with and without cloud

lifecycles, and a mixed exponential (mix exp.) and mixed Weibull

(mix wei.) configuration with explicit cloud lifecycles.

4.2 Quantifying the variability

According to the theory of fluctuations in a convective en-

semble (Sect. 3.3), the normalised variance of the compound

distribution scales inversely with the cloud number following

Eqs. (29)–(31). With the increasing complexity of the cloud

rate distribution, from a single mode exponential to a mixed

Weibull distribution, the variance of subgrid convective states

becomes more accurately represented (Fig. 11a), taking the

LES coarse-grained variance scaling (RICO_140 6–12 h) as

a reference case.

The magnitude of normalised variance is controlled by the

number of clouds in the subgrid regions. The smaller the grid

box, the smaller the number of clouds it can contain, and the

variance gets higher. Here, the cloud lifecycles play a role

as well, since the cloud number will be influenced by the

individual cloud lifetimes (see Sect. 4.3). The effect of intro-

ducing a second distribution mode (exp. to mix exp.) on the

variance scaling is approximately equal to the effect of a gen-

eralisation of the cloud rate distribution from exponential to

Weibull (mix exp. to mix wei., Fig. 11a). The latter points to

the fact that the shape parameter k has a significant impact

on the variance (Fig. 11b and Eq. 29), since the change from

a mixed exponential to a mixed Weibull distribution happens

through the change in k from 1 to 0.7. The effect of excluding

the explicit cloud lifecycles from the model formulation us-

ing a single exponential distribution mode (exp. τ = 20 min,

Fig. 11a) is a minor and negligible improvement, but it still

reveals a more correct formulation of the model.

The parameter k controls the range of the cloud mass flux

that can be sampled from the probability density function

in the model. Setting the value of the shape parameter to

0.6≤ k ≤ 0.7, the stochastic model generates a cloud ensem-

ble with a large number of short-lived small clouds and fewer

large clouds, which fits the cloud ensemble of the RICO case

(Fig. 11b). When increased to k = 1 (mix exp. Fig. 11b), this

parameter describes a cloud ensemble of equal lifetimes not

depending on the cloud size. Constrained by the model for-

mulation, the exponential probability distribution function,

from which the cloud mass fluxes are sampled, does not span

across a large enough range of the cloud mass flux values

to match the results from the LES. With the decrease in k,

the sensitivity of the variance scaling becomes higher, which

means that in a cloud ensemble with more diversity in the

cloud lifecycles, the shape of the distribution changes faster

with the further increase in diversity.

The sensitivity of the stochastic model is also tested with

regard to the exponent of the cloud lifetime relation, β. A rel-

atively large range for βi , i = 1,2 is explored (Fig. 11c), and

Eq. (29) is used as a theoretical model for this test. The vari-

ability of convection does not depend highly on the exponent

β of the cloud lifetime relation Eq. (11), as long as the life-

time increases with the cloud mass flux following a power

law within the dispersion range of Fig. 3b.

The stochastic model was constructed using the assump-

tion of a random cloud field with non-interacting cloud el-

ements (clouds could interact only through the large-scale

flow). From the results presented in Figs. 9 and 11, we con-

clude that this assumption is valid for a quasi-random cloud

field (Fig. 1a–c, e, and g) before the emergence of cloud clus-

ters or arcs. With the ageing of the cloud field, the variability

does not change unless the cloud field starts to show a pro-

nounced spatial organisation. Therefore, we test the effects

of organisation on the variability of small-scale convective

states (Fig. 11d). The variance produced by clustering of the

clouds in the time frame from 12 to 18 h (Fig. 1d, f) and

organisation into the mesoscale structures during the time

frame from 18 to 24 h (Fig. 1f, h) have approximately the

same magnitudes as the effects of the convective intensity in

the domain in terms of the range of cloud mass flux of in-

dividual clouds in a domain. The emerging organisation of

clouds will cause a decrease in the shape parameter of the

mass flux distribution, though this decrease will be small and

visible as a change in a distribution tail (not shown here).

This indicates that the effects of organisation are important

for the convective variability, but they are clearly not intro-

duced solely through the mass flux distribution and the in-

dividual cloud lifecycles. We speculate here that the addi-

tional source of memory and spatial correlations related to

the mesoscale organisation are a mechanism responsible for

the increase in variance. Convective organisation and the cor-

rect convective variability are not represented in commonly

used deterministic convective parameterisations in numeri-

cal weather and climate models. Stochastic approaches are a

promising tool for addressing this problem; a good example

of a mechanism for parameterisation of convective organi-

sation is the cellular automaton (e.g. Palmer, 2001; Bengts-

son et al., 2013). How a stochastic model, assuming a lo-

cally random cloud field, will be able to model convective or-
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Figure 11. The variance of compound mass flux as a function of the inverse cloud number. Cloud lifecycles are explicit in all simulations

and the time frame is 6–12 h if not stated otherwise. The grid size is decreasing from the left (50 km) to the right (1 km) side of the graph.

ganisation when coupled to a three-dimensional atmospheric

model, poses an interesting question for future studies.

4.3 Different choices for the cloud lifecycles

In this section, we test how the explicit representation of the

cloud lifecycle influences the resulting frequency distribution

and scale adaptivity of the stochastic model. The focus is on

the definition of cloud lifetime in the stochastic model, which

can be set to a constant value as in the scheme of Plant and

Craig (2008) or can be set as a variable, depending on the

cloud-base mass flux. Even though the lifetime of a cloud is

not a deterministic function of the cloud-base mass flux, it

can be approximated with a power-law function relating it to

the cloud mass flux (Fig. 3b). In the case of a constant cloud

lifetime, the cloud lifecycles are not modelled explicitly, and

the lifetime average cloud-base mass flux is used instead of

the simplified lifecycle function (Eq. 32).

The stochastic model is run using the different model con-

figurations:

1. mixed Weibull, τ = 10 min, no lifecycles;

2. mixed Weibull, τ = 20 min, no lifecycles;

3. mixed Weibull, τ = 30 min, no lifecycles;

4. mixed exponential, τ = 20 min, no lifecycles;

5. and mixed Weibull, τi = αim
βi , i = 1,2, with lifecy-

cles.

The best match of the frequency distribution across the

high-resolution scale of the model is achieved in case (5),

where the cloud lifetime depends on the magnitude of the

cloud-base mass flux, with the two cloud groups treated sepa-

rately, and with an explicit lifecycle (Fig. 12a). The Hellinger

distance degrades for the coarser grid resolution, where the

mixed exponential case with a constant cloud lifetime (4)

performs better. Cases (1)–(3) evidently all perform worse

than (4)–(5), with the further degradation of the scale adap-

tivity.

The reason for the degradation of the distance measure

in case (5) comes from the larger error in the ensemble av-

erage (Table 4) for the coarser model grid resolution com-

pared to the fine resolution. However, this error is less than

0.3 %, which is negligible, and therefore the increase in the

Hellinger distance is not significant. In case (4) there is no

such degradation with coarsening of the resolution, except
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for the scales larger than 20 km. In case (4) the error in the

ensemble mean is between 0.42 and 0.74 %, which is larger

than the error in case (5), but is not increasing with the coars-

ening of the resolution. However, due to the compensation

of the error in the ensemble mean with the error of under-

sampling of the mass flux distribution function and the error

introduced by excluding the cloud lifecycles, the Hellinger

distance in case (4) is lower than in case (5) for the coarse

grid resolutions.

As a result of equal lifetimes in a cloud population (cases

1–3), convective compound variance is overestimated by the

same amount for the different choices of the cloud lifetime

(Fig. 12b). This independence from the specific value of the

constant lifetime (from 10 to 30 min) means that, on the grid-

scale level, the system has no memory and the effects of the

individual clouds average out. The same would apply for

case (4) if we test for a different constant τ , with the dif-

ference that the underestimation of the variance in this case

comes from the distribution shape choice (k = 1 vs. k = 0.7).

In case (5), the effects of convective memory will be carried

on by the clouds that are small in number but that live longer.

On the other hand, a large number of small short-lived clouds

will have less effect on the future state of convection, which

depicts a more realistic situation.

The question of consistency in the model formulation en-

ters here. The error compensation in case (4) can be justified

by the consistency in combining the different effects in the

model formulation, which is more important than the accu-

racy and complexity in the representation of the separate pro-

cesses. There are two options for the model formulation, con-

sistent with our understanding of the cloud ensemble statis-

tics:

1. a memoryless system, bearing in mind the stationarity

of our case, which should be described using a mixed

exponential distribution and a constant lifetime among

clouds (similar to PC-2008), and

2. a system with memory, with diverse cloud lifecycles

modelled explicitly and with the corresponding Weibull

distribution for the cloud-base mass flux.

This raises the question of the importance of the system

memory, introduced by the diversity of cloud lifecycles, for

the parameterisation of convection. From the results shown

in Fig. 12b we conclude that the convective memory, and

hence the model set-up (2), is necessary to reproduce the con-

vective variability accurately, with a higher importance of the

system memory for the more diverse cloud field (smaller k)

and for the higher model resolution.

In the reference case of the stochastic model test runs,

which corresponds to model set-up (2), the cloud vertical

velocity is set to a constant value applied to all clouds,

and the cloud lifetime is sampled from a deterministic

power-law relation to the cloud-base mass flux. This is in

disagreement with the empirical results from LES, which
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Figure 12. Comparison of the distribution pairs from the simula-

tions using a constant and the mass-flux-dependent cloud lifetime.

show a highly scattered joint distribution for both quanti-

ties (Fig. 3). Is a deterministic relation between the mass flux

and other cloud properties a valid approximation? The vari-

ance of compound Poisson distribution depends on the num-

ber of convective elements in a model grid box, and scales

as Var[M]/(E[M])2 = 2/〈N〉 (Craig and Cohen, 2006b).

With the introduction of the cloud-base mass-flux-dependent

cloud lifetime Eq. (30), this relation incorporates a weak de-

pendence of variance on the cloud lifetime relation through

the exponent β, while in the case of the more general Weibull

distribution Eq. (29), also on parameter k. Having in mind

such weak dependence of variance on the cloud lifetime re-

lation (Fig. 11c), it is not likely that the variability could be

enhanced by the conditional random sampling of the joint

probability distribution of the cloud-base mass flux and cloud

lifetime. Therefore, there is no need for the further sophisti-

cation of the stochastic model; i.e. a deterministic relation

between the cloud mass flux and other cloud properties is

sufficient.
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5 Summary and conclusions

Subgrid-scale convective processes can be related to the

mean large-scale field through a parameterisation that com-

prises a deterministic component, a stochastic component

and the convective memory carried by the finite lifecycles of

clouds. These three components change in their contribution

to the overall subgrid effects, depending on the resolution of

the model. Thus, a cloud parameterisation should be devel-

oped in such a way as to adapt to the different resolutions of

model grid and model time step.

We have studied the fluctuations in a shallow convective

ensemble of the Rain in Cumulus over the Ocean (RICO)

case, which is a precipitating shallow convective case in the

trade-wind region. Shallow cumulus ensemble statistics are

analysed using LES, and cloud tracking is applied to study

the cloud lifecycles. The theory of fluctuations in an equi-

librium convective ensemble of Craig and Cohen (2006b)

is extended and applied to shallow convection, combining it

with the empirical findings. As a first step towards a stochas-

tic shallow convective parameterisation, the stochastic stand-

alone model has been developed. The model is based on an

approach similar to the PC-2008 stochastic scheme, in which

the subgrid convective state is represented as a sub-sample of

the full convective ensemble.

The diversity of shallow cloud lifecycles causes the devi-

ation of the cloud-base mass flux distribution from the ex-

ponential memoryless distribution. Therefore, we introduce

the dependence of the cloud mass flux on the cloud lifetime

by generalising the cloud mass flux distribution to a Weibull

probability density function. In this way, the variability of

cloud lifecycles is introduced in the stochastic representation

of shallow convection. We also account for the different shal-

low cloud subtypes by defining two modes of the cloud-base

mass flux distribution.

The convective ensemble average statistics and convective

variability are constrained by the model closure by setting

implicitly the value of two parameters, the average mass flux

per cloud 〈m〉 and the average ensemble cloud lifetime 〈τ 〉.

The model formulation is such that, depending on how these

two parameters might change due to the forcing, the underly-

ing distribution and its relation to the cloud lifecycles would

dynamically adapt to these changes.

Clouds are initiated in a model grid box assuming that their

number follows the Poisson distribution and the cloud-base

mass flux is drawn randomly for each cloud from the mixed

Weibull probability density function. The model is forced

with the domain ensemble average cloud properties from

LES and the probability density function parameters are fit-

ted theoretically using a formulation for the system closure.

Limited sampling of clouds in a model grid box results in

the compound Poisson distribution of small-scale convective

states, which possesses an inherent property of scale adaptiv-

ity. In this way the model is constrained to give the correct

ensemble average values, and the variability of subgrid con-

vective states is reproduced in a physically based manner.

As a measure of convective variability, the variance of the

subgrid compound distribution is dependent on the number

of clouds in a grid box and the range of their cloud-base prop-

erties. We show that the correct variability can be reproduced

by the model by accounting for the system memory through

the cloud-base mass flux distribution and by modelling the

cloud lifecycles explicitly. The resulting histograms of sub-

grid convective states are simulated with a high level of

agreement with LES across the different scales. Even though

the individual cloud properties are highly dispersed, the com-

pound distribution of subgrid convective states is robust and

insensitive to the randomness of local cloud properties. This

implies that the simplicity of the stochastic model can be re-

tained and that the assumption about deterministic relations

between the cloud mass flux and other cloud properties is

valid.

This study provides a generalisation of the convective en-

semble theory of Craig and Cohen (2006b), using a formu-

lation that attempts to unify the stochastic parameterisation

of shallow and deep convective clouds depending on two

parameters: 〈τ 〉 and 〈m〉. These parameters are related to

the large-scale information that is controlled by the convec-

tive regime, and are possibly also dependent on the changes

in the large-scale forcing. Therefore, it is necessary to de-

velop a closure for these two parameters, based on the large-

scale processes controlling the atmospheric boundary layer

and transition to deep convection. In this paper, we establish

the applicability of the convective fluctuation theory to shal-

low convection, generalising it by the introduction of system

memory.

In future work, the stochastic model will be developed fur-

ther by coupling it to an existing mass flux-based shallow

convective parameterisation in a numerical model.
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