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THERMAL FLUCTUATIONS IN SYSTEMS
WITH CONTINUOUS SYMMETRY:
BROWNIAN MOTION AND
LEVY-FLIGHT DESCRIPTION

U. ZURCHER

Abstract

We investigate relaxation and thermal fluctuations in systems with continuous symmetry in
arbitrary spatial dimensions. For the scalar order parameter ((r, t) with r € R?, the deter-
ministic relaxation is caused by hydrodynamic modes nd((r, t)/0t = KV?((r, t). For a finite
volume V', we expand the scalar field in a discrete Fourier series and then we study the behavior
in the limit V — oo. We find that the second moment is well defined for dimensions d > 3,
while it diverges for d = 1, 2. Furthermore, we show that for d < 4, the decay of the scalar
field does not define an “effective” relaxation time. For dimensions d < 4, these two properties
suggest scale-invariant properties of the scalar field in the limit V — co. We show that thermal
fluctuations are described by fractional Brownian motion for d < 3 and by ordinary Brownian
motion for d > 4. The spectral density of the stochastic force follows 1/f ford =1 and d = 2,
1//7 for d = 3, and “white noise,” f° for d > 4. We find explicit representation of the equi-
librium distribution of the conserved scalar field. For d > 4 it is a Gaussian distribution, while
for d =1 and d = 2, it is the Cauchy distribution.



INTRODUCTION

In this paper, we re-examine the relaxation of a
scalar field ((r, t) in d-dimensional space r € RY,
whose total “charge” is conserved,

/ ((r, t)dr = const. (1.1)
'Rd

The relaxation of the conserved scalar field is given
by a continuity equation nd¢(r, t)/3t + V -j = 0,
where the flux j = j[((r, t)] has no sources or sinks.
In many cases, a gradient flux is realized, i.e.,
j = —KV{(r, t), and we arrive at the relaxation
equation,

a((r, t)
L

where V? is the d-dimensional Laplacian and where
n and K have units of time and the square of a
length, respectively, ] = s and [K] = m?.
Equation (1.2) is encountered in dynamic theo-
ries of phase transitions'; studies of “self-organized
criticality”??; relaxation of the height of granular
aggregates®; relaxation processes in soft condensed
matter systems®’; and others. We refer to the
above cited references for a careful discussion of how
Eq. (1.2) arises in the respective physical situations.
Because Eq. (1.2) is linear, it is readily solved
using Fourier transform. We define the scalar field
on a d-dimensional lattice so that the kth compo-
nent of the coordinate vector is given by [r]; = nia
with 0 < ny < L/a and a being the lattice spac-
ing. The volume follows as V = L. The short- and
long-wavelength cutoff a and L introduce the up-
per and lower cutoff for wavevectors, respectively,

2n/L < |q| £ 27/a. We thus have:

(e, ) =V-1 Y ((q, t)e'ar.
Q

= KV¥(r, t), (1.2)

(1.3)

We find the relaxation equation for the Fourier com-
ponents, d((q, t)/dt = —75'((q, t), where the re-
laxation times are given by 7q = /K¢?. That is,
long wavelength modes decay arbitrarily slowly, i.e.,
Tq — oo for |[q| — 0.

The deterministic relaxation, [cf. Eq. (1.2)], can
be written in Ginzburg-Landau form,?

L) _ _8F(C(r)
ot 5C(r, t)

where 6/6((r, t) is the functional derivative and its
free energy is given by F = & [ dr(V((r))?. In

(1.4)

Fourier representation, we have:

Fl@l =5 T k@ ag
q

To define thermal equilibrium properties, we as.
sume that the system is in contact with a thermal
reservoir at temperature 7. After a long time, the
system approaches a stationary state in which the
scalar field is characterized by the canonical distri-
bution, peg[¢(r)] = Z! exp(—F[((r)]/T). Here, we
use units such that kg = 1, and the normalizatiog
constant is the partition function Z. From Eq. (1.3)
we have,

. B
eql(@)] = Z7' [] exp | — = ¢*1S(@)1* ) , (16)
PeqlS 9 l;l ( 2T )

so that for each Fourier mode, the distribution is a
Gaussian and equilibrium properties are determined
by their first and second moments,

€(q)) =0, (1.7)

- T

z gy %
(I<(a)l%) K (18)
We observe that long-wavelength modes have large
variances.

Because we consider the linear relaxation of
the conserved scalar field, its properties are deter-
mined by the equilibrium correlation function,
Ceq(r, t) = (C(r + ro, t + to)((ro, t0))eq- In Fourier
representation, we have Co(r,t) = V! >4
(1€(q)|?)eqe’¥ e, or, for r = 0,

g T Kq*
Ce(t)=V 1 Z o R (——t) . (19
a Ka 7

where we have inserted Eq. (1.8). We note that the
lattice version of the equilibrium correlation func:
tion is monotonously decreasing with time.

We transform the sum into an integral (using
dq = O4¢""'dg) and find in the limit 27/a — o0,

2
dqqd—.'! exp (__!(qi ) .

(1.10)

OuT

K -[.).I/L

We first consider the second moment of the scalar
field by setting ¢t = 0. We find:

Ceq(t) =

(C(r)) ~ L2~4, (1.11)

2l



and the limit L — oo exists only for dimensions
d > 3. We conclude that the second moment is
finite for d > 3,

(C}(r))eg <00, d23, L—oo, (1.12)
while it diverges for d = 1, 2,
(€%(r))eq =00, d=1,2, L—oo. (1.13)

In the limit L — oo, the correlation function de-
cays algebraically in time,

1

Ceq(t)"“_'_ t =0,

S d>3.

(1.14)
In particular, we have Ceq ~ 1/V/f for d = 3 and
Ceq ~ 1/t for d = 4. We note that the integral
[o° Ceq(t)dt is finite for d > 4, while it diverges for
d = 3. Thus d = 4 is the critical dimension for the
decay of equilibrium correlation functions. Taube-
rian theorems then show that the Laplace trans-
form of the correlation function, Ceq(u) = [5 -
¢ "' Ceq(t)dt, can be expanded in a Taylor series
around u = 0 for d > 4,

(:',q(u)=1'_l+n+0(u2). d> 4. (1.15)

Here, 7 denotes an effective relaxation time for the
decay of correlation functions in dimensions d > 4.

The first and second moments (and moments of
arbitrary order as well) of a Gaussian distribution
are finite, and we conclude from Eq. (1.11) that
the scalar field does not obey Gaussian statistics
in dimensions d = 1, 2. For probability distribu-
tions other than the Gaussian, moments of the ran-
dom variable do not exist to arbitrary order. For
the Cauchy distribution, for example, only the first
moment exists, while the second moment already
diverges. Indeed, the Gaussian and Cauchy distri-
butions are two representatives of a class of sta-
ble probability distributions.®!! For the random
variable r, these Lévy distributions are given by
71 [5° exp(—u®?) cos(ur)du with 0 < D < 2. We
recover the Gaussian distribution for D = 2 and
the Cauchy distribution for D = 1. In his original
derivation, P. Lévy was motivated by the problem
of when a random walk distribution is independent
of the number of steps taken. Nowadays, such ran-
dom walk processes are referred to as “Lévy-flights”
and “Lévy-walks".!? Lévy-flights have been intro-
duced in statistical description of anomalous diffu-
sion in Hamiltonian and dissipative dynamical sys-
tems. Enhanced diffusion has also been predicted
in diffusion at solid-liquid interfaces.'?

In this paper, we describe the stochastic pro-
cesses of thermal fluctuations of the scalar field
¢(r, t) in arbitrary spatial dimensions and investi-
gate, in particular, the limit L — oo. It is only
for dimensions d > 4 that both the second mo-
ment exists and the decay of equilibrium correla-
tion functions defines an effective relaxation time
[ef. Egs. (1.11) and (1.14)]. We conclude that for
d > 4, equilibrium fluctuations of the scalar field
can be described by ordinary Brownian motion.'*
For dimensions d < 4, the long-time tailed decay of
equilibrium correlation functions does not define an
effective relaxation time. We expect scale-invariant
properties of thermal fluctuations so that a descrip-
tion with ordinary Brownian motion is not possi-
ble. We show instead that a description with Lévy-
flights follows from principles of equilibrium statis-
tical mechanics.

The outline of the remainder of this paper is as
follows. In Sec. 2, we derive the decay of equilib-
rium correlation functions in one and two dimen-
sions. Thermal fluctuations are then introduced in
Sec. 3. We summarize and discuss our results in
Sec. 4.

DECAY OF CORRELATIONS IN
ONE AND TWO DIMENSIONS

The deterministic relaxation of the conserved scalar
field, [cf. Eq. (1.2)], is the diffusion equation for
the probability density of a d-dimensional (sym-
metric) random walker with K7n~' being its diffu-
sion constant.! In particular, the probability density
that a random walker starting off at the position r’
at time t' is at the position r at a later time t > ', is
equal to the Green's function of the diffusion equa-
tion, p(r, t; r’, t') = G(r, t; ', t'). For times t < t',
the probability density vanishes. From the respec-
tive properties of the Green's function, it follows
that the probability depends on the differences r—r’
and t—¢ only, p(r, t; ¥/, ') = p(r—r', t-1'). Fora
random walker on a d-dimensional lattice, we may
define the conditional probability p(r,, t; r,, t') as
an average over its realizations. For the realiza-
tion labeled a, let [J,(ri, t; r;, t') = 1 if the ran-
dom walker is at the lattice point r; at time ¢ and
[la(rs, t; r;, t') = 0 otherwise. We have:

(2.1)

p(ritin )= <H(r,. ity t’)>

o



For equal times, the condition:

1 (ri ti vj5 ') = b1y,

o

(2.2)

holds. Below, we use the notation [[,(ri, t; rj, t') =
L ri=wt=1).

We make use of a property of random walk pro-
cesses first derived by Polya.'® It states that a sym-
metric random walker in one and two dimensions
retirns to its starting point with probability one. In
three dimensions, the probability of return is 0.35,
and in still higher dimensions, this probability is
vanishingly small. The starting point is not dis-
tinguished, and the random walker passes each lat-
tice point with certainty in one and two dimensions.
As a corollary, in one and two dimensions, each re-
alization of the random walk returns to its origin
(and passes each lattice point) an infinite number
of times.

We readily find the time average of the probabil-
ity density,

—— = r=1 n qr,
plri) /D plr;, t)dt =V Eq _I\'qz e .
(2.3)

Upon comparison with Eq. (1.9), we conclude that

the time-averaged probability density is propor-

tional to the equilibrium correlation function,
‘4

Ceq(r|. = 0) = ]—;'p{l",] . (2.4)

We insert Eq. (2.1) into Eq. (2.3) and interchange

taking the average over realizations and the inte-
gration over time,

p(r,) = <_/:; I v t)dt> :

The time integral over [], (r;, t) is equal to the num-
ber of times the random walker is at the lattice point
ri for that realization,

(2.5)

Na(r) = /ﬂfﬁ H(r,-. t)dt, 7o —o00. (2.6)

From Egs. (2.4)-(2.6), we find that the second mo-
ment of the scalar field follows from properties of
symmetric random walks for long times,

(€*(ri)) ~ (Na(ri))a -

In dimensions d > 3, for each realization a, the
random walker does not pass the lattice point r;

(2.7)

after a certain time 75, i.e., []o(r,, t) =0fort > 1,
We may choose 7o > 7o and find that Ng(r;) doe
not depend on the cut-off time 7 for d > 3. Inone
and two dimensions, the random walker passes the
lattice point r, infinitely often, and Na(r;) — ooas
Too — 00. Using Eq. (2.7), we recover the properties
of the second moment of the scalar field that have
been derived in the Introduction.

We proceed in an analogous way to derive the
long-time behavior of the correlation function. Sinee
p(ri, t) = V-! B exp(—1/7q +1q-r,), we find by
integration,

Ceq(ri t) = 3—; /000 p(r,, t + s)ds, (238)

and find,

. N
Coulris 1) = - </D 1;[(.-.. t+s)ds>a. (29)

Using the definition of [],(r,. t), we observe that
the time integral on the RHS is equal to the number
of times the random walker passes the lattice point
after the arbitrary time ¢,

Na(r,, t)=/u H(r,.t+s)da. Too — 00.
o (]

(2.10)
We have:
T
Ceg(riy t) = E NG (X e, (2.11)
so that the equilibrium correlation function
Ceq(ri, t) is determined by the average number of
times the symmetric random walker returns to its
starting point after the time ¢.
In dimensions d > 3, the random walker eventu-
ally goes off to infinity after a certain time r,, and
we have:

Na(ri=0,t)=0, for t>71,, d>3

'(2.12)

For a fixed time ¢, we determine the number of real
izations with a nonvanishing value of N, (0, t). This
number decreases as time increases, and we con-
clude that (N,(0, t))s — 0 for t — oo. We recover
the decay of equilibrium correlation functions for
long times,

Ceq(t) =0, for t—o00, d>3. (213

In one and two dimensions, the random walker
does not go off to infinity, but rather returns to its



starting point with probability one after the arbi-
trary time t. Moreover, the random walker returns
infinitely often after the arbitrary time t. We con-
clude that the number of returns is independent of
the time ¢,

Na(ri, t) = Na(r;), d=1,2. (2.14)

For L — o0, the equilibrium correlation function
does not decay in one and two dimensions,

Ceq(t) = Ceq(t = 0) = const.

This behavior for d = 1, 2 complements the
algebraically decaying behavior of the correlation
functions for d > 3 derived in the Introduction

[cf. Eq. (1.14)].

d=1,2. (2.15)

EQUILIBRIUM FLUCTUATIONS

We have assumed that the system described by the
conserved scalar field {(r, t) is in contact with a
thermal reservoir at temperature T [cf. Eq. (1.6))].
The combined effect of both fluctuations and dissi-
pation drive the system towards a unique station-
ary state, irrespective of the state of the system at
an arbitrary initial time. In this stationary state,
the scalar field follows the canonical distribution
pegl¢(r)] = Z~" exp(~FI((r))/T), where F((r)]
is the free energy. Due to thermal fluctuations,
the time evolution of the scalar field is no longer
described by its deterministic relaxation equation.
Rather, Eq. (1.2) must be altered to include a term
describing thermal fluctuations. Both thermal fluc-
tuations and dissipation originate from the inter-
action of the system with a much larger thermal
reservoir. This common origin is the physical basis
of the fluctuation-dissipation theorem that was first
formulated by Callen and Welton.'®

We briefly discuss the connection between ther-
mal fluctuations and dissipation in systems without
a conservation law.!” The deterministic relaxation
equation nd((t)/dt = —((t) is characterized by the
dissipation rate n~'. The stochastic time evolution
follows the Langevin equation nd((t)/dt = —((t) +
£(t), where the “fluctuating force” has a vanishing
mean, (£(t)) = 0. In many cases, the stochastic
process has the Gauss-Markov property and corre-
lations between fluctuating forces at different times
can be neglected, i.e., (£(t)é(s)) = Dé(t — s). Here,
D is the diffusion constant which is a measure of
the strength of the fluctuations. The mean square
displacement of the stochastic process is then given

by ([¢(t) — ((0)]>) = 2Dt for t » 5. The diffu-
sion constant is related to the dissipation rate and
temperature via the Einstein relation D = T'/y.

From nd((t)/dt = -((t), we find exponential
decay ((t) = ((0) exp(—t/n). The correlation
function decays exponentially in time as well,
(C(t)¢(0)) = exp(—t/n)(¢?(0)). We conclude that
correlations are negligibly small on time-scales that
are longer than the relaxation time 7. This property
suggests the use of Gaussian “white noise” for de-
scribing thermal fluctuations. Indeed, Doob's the-
orem states that a Gaussian process is Markovian
only when correlation functions decay exponentially
in time.'

In systems with continuous symmetry, the hydro-
dynamic relaxation of the scalar field, »d((r, t) =
KV?%((r, t), gives an algebraic decay of its equilib-
rium correlation function. We find ({(r, t)((r, 0)) ~
t~—(4-2)/2 for d > 3 and (((r, t)¢(r, 0)) ~ t° = const.
ford =1 and d = 2, [cf. Eq. (1.14) and (2.15)]. We
now have the Langevin equation:

nZ0 0 kv 0 4ery, @)
where the fluctuating force has a vanishing mean
(é(r, t))eq = 0. For d < 3, the decay of the cor-
relation function does not define a finite effective
relaxation time, and correlations of the fluctuating
force at different times can no longer be neglected.
That is, a Gauss-Markov description of the fluctuat-
ing force is no longer possible for d < 3. In Ref. 7,
Onsager’s regression hypothesis has been used to
find correlations of the fluctuating force. It states
that correlations of fluctuating variables at times ¢
and 0 in equilibrium systems are the same as av-
erages of fluctuating variables at time ¢, given that
certain fluctuations have occurred at time 0.'* We
have:

(E(r, t)E(T, 0))eq ~ ™22, d>3, (3.2)

and
(E(r, t)E(r, 0))eq ~ t® = const., d=1,2. (3.3)

We emphasize that Eqs. (3.2) and (3.3) are valid
only in the scaling regime, (47)’K " 'na? € t <«
(472K~ 'gL2.

In thermal equilibrium, the time evolution of the
scalar field is given by, [cf. Eq. (3.1)]:

t
((r ) =" /D (r, )ds. (3.4)



The mean square displacement follows as:

a(t) = ([C(r, 8) = C(r, 0)]*)eq (3.5)

=g /; s fo ds' ((r, $)E(r, 8))eq- (3.6)

It is convenient to distinguish four different cases.
First, for d > 4, the equilibrium correlation func-
tion decays faster than the inverse of time, and
its Laplace transform can be expanded in a Tay-
lor series around the origin [cf. Eq. (1.15)]. Using
theorems for Laplace transforms, we find diffusive

behavior: .

a(t)~;. d>4, (3.7)
where 7 is the effective relaxation time. We
conclude that for d > 4, the fluctuating forces
are described by Gaussian white noise, i.e.,
(E(r, t)E(r, 8))eq ~ 6(t —s). For d = 4, we have
(E(r, 8)E(r, 8'))eq ~ (s — s')"!. The mean square
displacement then follows as o(t) ~ t In(t). Be-
cause t~“ Int — 0 as t — oo for € > 0, equilibrium
fluctuations in dimensions d > 4 and d = 4 belong
to the same universality class:

o(t)~t, d=4. (3.8)
For dimensions d = 3, correlations decay more
slowly, (£(r, 8)E(r, §'))eq ~ (s —3')71/2, and we find

super-diffusive behavior:

a(t) ~t*2, d=3. (3.9)

Finally, for dimensions d = 1 and d = 2, correla-
tions of the fluctuating forces do not decay, and we
again find super-diffusive behavior:

o(t)~t?, d=1,2. (3.10)

It is standard to summarize these findings as
o(t) ~ t*H where H is the Hurst exponent, 0 <
H < 1. Ordinary Brownian motion is characterized
by H=j. For H # 3, Mandelbrot coined the term
fractional Brownian motion.® For d > 4, we have
diffusive behavior with H = §, while for d < 3 we
have superdiffusive behavior. In particular, we have
H=3ford=3and H=1ford=1,2.

Mandelbrot noted that fractional Brownian mo-
tion is a stationary stochastic process with Gaussian
increments. Furthermore, these processes are con-
tinuous but non-differentiable. The corresponding
spectral densities of the fluctuating forces are pro-
portional to f~(2#-1)_ We have the spectral den-
sities 1/f ford = 1 and d = 2, 1/\/f for d = 3,

and white noise, f°. for d > 4. Clearly, this be
havior of the spectral densities already follows frog
Egs. (3.2) and (3.3).

Fractional Brownian processes yield stable dis
tributions that depend on a continuous paramete
0 < D < 2. For the random variable r, thes
so-called Lévy-distributions are given by pp(z) =
i o exp(—-—u”) cos(ur)du. The Gaussian and
Lorentzian distributions follow for D = 2 au
D = 1. respectively. The Hurst exponent H and
the dimensionality D are related to each other by
D = 1/H. We have D=2ford >4 D=1}l
d=3 and D =1 ford=1and d = 2. This arg
ment gives an explicit representation of the canoni
cal distribution of the scalar field peg[((r)| =
Z-" exp(=F[¢(r)]/T). [cf. Eq. (1.6)]. We have the
Gaussian distribution:

A iy
peqlC(r)] = J; exp (—(' ir)) , d>4, (31)

where A = (C*(r))eq x T and the Cauchy
distribution:
% 1 I
Peq[L(r}] =i m = =1y 2 (3.12)

where y o« T. For d = 3, the closed expression of
the stationary distribution of the scalar field is not
known.

For d > 4, the characteristic length-scale is given
by the second moment. ((*(r))eq. Higher moments
follow from the Gaussian property, e.g., (((r))eg =
3((2(r))34 = 32, Ford = 1 and d = 2, the second
moment diverges (C?(r))eq — 00, and the Cauchy
distribution does not define a characteristic length-
scale. For d = 3, the stationary distribution extrap-
olates between the Gaussian and Cauchy distribw-
tion, and moments of the scalar field do not exist
to arbitrary high order.

SUMMARY AND DISCUSSION

We studied relaxation and thermal fluctuations of
a conserved scalar field in arbitrary spatial dimes-
sions. We first considered a lattice version which
introduces an upper and lower frequency cut-off.
27 /a and 27 /L, respectively. The limit @ — 0
trivial, whereas taking the limit L — oo depends
on the number of spatial dimensions. We found
that the second moment of the scalar field is fi-
nite only for dimensions d > 3, while the



moment diverges for d = 1 and d = 2. Similarly,
it is only for dimensions d > 4 that the decay of
equilibrium correlation functions define an effective
relaxation time. These properties show that in the
limit L — oo, thermal fluctuations of the scalar field
lack proper length and time scales for dimensions
d<4.

For dimensions d > 4, proper length and time
scales exist, and thus thermal fluctuations of the
scalar field are described by ordinary Brownian mo-
tion. It follows, in particular, that the fluctuating
force is described by Gaussian white noise. For di-
mensions d < 4, thermal fluctuations of the scalar
field are described by fractional Brownian motion.
For the spectral densities of the fluctuating forces,
we have found 1/f ford =1 and d = 2 and 1/\/f
for d = 3. Correspondingly, the stationary distri-
bution of the scalar field is the Gaussian for d > 4,
while the Cauchy distribution follows for d = 1, 2.

Super-diffusive behavior has been derived from
long-time tailed decay of equilibrium correlation
functions and is a consequence of non-Markovian
properties of the fluctuating forces. On the other
hand, it is shown in Ref. 19 that Lévy-flights are
exact solutions of the Bachelier-Smoluchowsky-
Chapman-Kolmogorov equation and are essentially
Markov processes. To resolve this seemingly contra-
dictory statement, the authors of Ref. 19 show that
the non-Markovian properties of Gaussian fluctuat-
ing forces become properties of transition probabil-
ities with an inverse power-law dependence on the
length of the jump in space.

In Ref. 20, an elaborate time-series analysis is
used to investigate temporal fluctuations of Gold-
stone modes. The authors find the value H = 1
for dimensions d = 3, which is at variance with
the result reported here. The authors fail to rec-
ognize the non-Markovian (or non-Gaussian) char-
acter of the fluctuating force that is implicit in a
value of the Hurst exponent different from %, and
instead assume the Markovian limit for the fluctuat-
ing forces. Therefore, in Ref. 20, non-local aspects
of the fluctuating scalar field are not treated in a
proper manner.'?

In recent years, Lévy-processes have been
reported in a wide variety of physical situations.
This has led to the speculation that such a gen-
eralization of Brownian motion may become as
ubiquitous as its predecessor.!? We have added

yet another example to this ever increasing list.
For a conserved scalar field, we have shown that
equilibrium fluctuations are described by ordinary
Brownian motion only for dimensions d > 4, while
scale-invariant properties warrant a Lévy-flight
description for dimensions d < 4.
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