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Bifurcatio n of the equilibriu m state s of a weightles s liqui d bridge a)

Lev A. Slobozhanin,b) J. Iwan D. Alexander, and Andrew H. Resnick
Center for Microgravity and Materials Research, M-65 Research Institute Building,
University of Alabama in Huntsville, Huntsville, Alabama 35899

~Received 29 May 1996; accepted 28 March 1997!

The bifurcation of the solutions of the nonlinear equilibrium problem of a weightless liquid bridge
with a free surface pinned to the edges of two coaxial equidimensional circular disks is examined.
The bifurcation is studied in the neighborhood of the stability boundary for axisymmetric
equilibrium states with emphasis on the boundary segment corresponding to nonaxisymmetric
critical perturbations. The first approximations for the shapes of the bifurcated equilibrium surfaces
are obtained. The stability of the bifurcated states is then determined from the bifurcation structure.
Along themaximum volume stability limit , depending on values of the system parameters, loss of
stability with respect to nonaxisymmetric perturbations results in either a jump or a continuous
transition to stable nonaxisymmetric shapes. The value of the slenderness at which achange in the
type of transition occurs is found to beLs50.4946. Experimental investigation based on a neutral
buoyancy techniqueagreeswith thisprediction. It shows that, for L,Ls , the jump isfiniteand that
a critical bridge undergoes a finite deformation to a stable nonaxisymmetric state.¬ © 1997
American Institute of Physics. @S1070-6631~97!02507-5#

I. INTRODUCTION

Liquid bridge statics problems have been studied since
the early work of Plateau1 and are still of interest.2,3 Liquid
bridges are important factors when considering liquid man-
agement under low-gravity conditions. Perhaps the most
studied configurations involve bridges held between disks or
rods. These are used to analyze problems associated with
zone melting under zero-gravity ~see, for example, Refs. 2
and 4!.

This paper concerns the bifurcation of equilibrium
shapes of a weightless liquid bridge with its free surface
pinned to the edges of coaxial equidimensional circular sup-
ports ~radiusa! separated by adistance2h. Thesupports can
be considered as solid disks without loss of generality ~see
Fig. 1!. In this case, the equilibrium state of the liquid is
determined by two parameters: the slenderness L and the
relative volume V:

L5h/a,¬ V5v/~2pa2h!,¬ ~1!

where v is the actual liquid volume supported between the
disks.

The shape and stability of axisymmetric liquid bridge
configurations has been studied extensively. For zero-gravity
conditions, the equilibrium surface is a surface of constant
mean curvature and, for the axisymmetric case, the bridge
can have a cylindrical, spherical, catenoidal, unduloidal, or
nodoidal shapes. Typically, previous investigations of
weightless bridge stability have assumed that the perturba-
tions satisfy the constraints of constant liquid volume and
fixed contact lines. We summarize such work below.

It has been established theoretically1 and experi-
mentally1,5 that a cylindrical bridge is stable if L,p and

unstable if L.p. Here the critical perturbation is
axisymmetric.1,6 It was suggested by Gillette and Dyson7

that, when V51, there are no stable noncylindrical axisym-
metric surfaces. Rivas and Meseguer8 determined the linear
dependence of L on V for critical unduloids that are close to
a cylinder.

Constant volume spherical bridges are always stable.
This follows from Plateau’s experimental results and is eas-
ily proved theoretically ~see, for example, Refs. 9 and 10!.

Plateau determined the region of existence for catenoidal
bridges experimentally. A theoretical and experimental
analysis of the stability of catenoidal bridges with respect to
axisymmetric perturbations was later carried out by Erle
et al.11

Besides cylinders, spheres, and catenoids, Plateau1 also
undertook experimental investigations of the stability of un-
duloidal and nodoidal bridge surfaces and qualitatively de-
scribed the results. For axisymmetric perturbations and arbi-
trary values of L and V, the stability limits were first
constructed by Gillette and Dyson7 on the basis of Howe’s
theory12 ~outlined in Refs. 3, 7, and 11!. They also proved
that an axisymmetric bridge with no equatorial symmetry
plane is always unstable. Furthermore, they later proved13

that axisymmetric perturbations are the most dangerous for
weightlessbridges that areaxisymmetric about thez axisand
have surfaces represented by single-valued functions r
5 r (z). Slobozhanin9 analyzed thestability of an axisymmet-
ric bridgewith respect to arbitrary ~i.e., both nonaxisymmet-
ric and axisymmetric! perturbations and constructed the gen-
eral stability boundary in the (L,V)-plane. ~These results are
presented in English in Ref. 10, and the stability boundary is
reproduced in Refs. 3 and 14.! Quantitative experimental
data on theboundary of the stability region were obtained by
Elagin et al.15 ~‘‘microzone’’ method!, and by Sanz and
Martı́nez16 and Russo and Steen17 ~neutral buoyancy tech-
nique!.

The conditions for which capillary surfaces with contact

a!Dedicated to the memory of Dr. A. D. Tyuptsov.
b!On leave from the B. Verkin Institute for Low Temperature Physics and
Engineering, National Academy of Sciences of Ukraine. Electronic ad-
dress: lion@cmmr.uah.edu
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lines pinned to solid edgesaremost unstable to perturbations
of the liquid surface, rather than to perturbations of the con-
tact line, were obtained in a more general analysis by
Slobozhanin and Tyuptsov18 ~see also Ref. 10!. This was
also examined for the particular cases of liquid bridges held
between disks and rods by Slobozhanin.9,19

If an axisymmetric equilibrium state is stable, then, for a
small variation of the parameters L and V, it has aunique
continuous extension and the stability of the state is pre-
served. However, if the equilibrium state lies on the stability
boundary, the uniqueness of the continuous extension is vio-
lated and the equilibrium state bifurcates. Methods for ana-
lyzing bifurcations of the equilibrium states of a capillary
liquid mass and the possible bifurcation structures have been
described in earlier work ~see, for example, Refs. 3, 10, and
20–23!.

To account for Plateau’s experimental results, Michael24

proposed possible bifurcation patterns that are plausible
when the different axisymmetric equilibrium shapes of a
bridge lose their stability. He further emphasized the need to
study the corresponding bifurcation problem in detail. This
problem has been solved for a critical cylinder. The solution
is a particular case of results obtained by Brown and
Scriven20 and by Vega and Perales.25 The dynamical behav-
ior of an axisymmetric liquid bridge as it loses stability on
the boundary segment along which axisymmetric perturba-
tions are critical was studied in Refs. 26 and 27. Finally, a
sophisticated analysis of the nature of the axisymmetric bi-
furcations along this boundary segment wasmade in arecent
paper by Lowry and Steen.3

In this paper we focus attention on bifurcations along a
stability boundary segment where nonaxisymmetric pertur-
bations are critical. In Sec. II we outline previous stability
results for initially axisymmetric bridges. Then we consider

small perturbations of equilibrium surfaces ~Sec. III ! and de-
scribe a procedure to obtain a first approximation to the
shapes of the bifurcated surfaces ~Sec. IV !. The bifurcation
equation is given in Sec. V. In Sec. VI the results of numeri-
cal and analytical analyses are presented. Experimental re-
sults for aparticular caseanalyzed in Sec. VI A arepresented
in Sec. VII.

II. CRITICAL AXISYMMETRIC STATES

In this section we present a summary of results previ-
ously obtained in Refs. 9 and 10. These results are needed to
clearly define thestability region under consideration and are
used as astarting point for the bifurcation analysis described
in the subsequent sections.

A. Axisymmetri c shapes

The equilibrium surface of an axisymmetric liquid
bridge has aparametric representation r (s), z(s), where r ,
w, and z are the cylindrical coordinates and s is the arc
length of any axial sectionw 5 const. The dependent vari-
ables r and z are then given by the solutionsof the following
ordinary differential equations:

r 952z8~q02z8/r !,¬ z95r 8~q02z8/r ! S 85
d

dsD .
~2!

Hereq0 is twice themean curvatureof thesurface. Thus,
q0 2 z8/r 5 b8, whereb 5 b(s) is the angle between the
positive r -axis direction and the tangent to the axial profile
directed in the sense of increasing s. The system ~2! is in-
variant under the transformation q0→ 2 q0 , s→ 2 s. For
definiteness, it is assumed hereafter that q0 > 0. If q0 Þ 0,
then the relations

r5q0r , z5q0z, t5q0s¬ ~3!

are used to transform the system ~2! to the following form:

r952z8~12z8/r!, z95r8~12z8/r! S 85
d

dt D .
~4!

Critical, as well as stable, axisymmetric surfaces always
have an equatorial symmetry plane, z 5 0. Al l possible axi-
symmetric shapes ~except catenoids! with an equatorial sym-
metry plane are described by solutions of ~4! with

r~0!5r0 , r8~0!50, z~0!50, z8~0!51, ~5!

or

r~0!5r0 , r8~0!50, z~0!50, z8~0!521 ~6!

as initial conditionsat theequatorial pointt 5 0. Solutions of
~4! corresponding to boundary conditions ~5! or ~6! have,
respectively, the forms

r5~11m1
212m1 cost!1/2,

z5E
0

t 1

r~j!
~11m1 cosj!dj, ~7!

and

FIG. 1. Geometry of the equilibrium system.
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r5~11m2
222m2 cost!1/2,

z5E
0

t 1

r~j!
~12m2 cosj!dj, ~8!

wherem15 r02 1andm25 r01 1.

B. Stabilit y for fixe d contac t lines

We consider critical axisymmetric shapes for volume-
preserving perturbations that leave the contact lines pinned
to the disk edges. The corresponding boundary of the stabil-
ity region is reproduced in Fig. 2. There are several special
points on the stability boundary. Characteristics of liquid
bridges corresponding to these points are listed in Table I.
Except for L and V, this table containsdata for related initial
conditions, the ratio r0 /r(t1) between equatorial and disk
radii, and the angle of inclinationb1 at the lower disk ~Fig.
1!. Table II summarizes qualitative properties of the critical
surfaces and the associated critical perturbations. Both tables
generalize related results presented in Ref. 7. In addition,
typical shapes of critical bridge profiles are shown in Fig. 3.

Profiles of critical bridges from the stability boundary
segmentsmABC and EFn have, respectively, horizontal and
vertical tangents at their endpoints. The component of dan-

gerous perturbations normal to axisymmetric equilibrium
surfaces is proportional to z8(t)sinw ~on mABC!, to r8(t)
~on EFn! and to sin t ~at the pointF!. Along the segment
CDE, the dangerous perturbations are axisymmetric ones
with an equatorial symmetry plane. With theexception of the
point D, the terminal point t1 of a critical profile on CDE is
defined as that value of t for which the function

f̄~t!5ū0~t!E
0

t

rū1~t! dt2ū1~t!E
0

t

rū0~t! dt ~9!

first changes its sign. Here ū0(t) and ū1(t) satisfy

L̄0ū050,¬ ū0~0!51,¬ ū08~0!50,¬ ~10!

L̄0ū151,¬ ū1~0!51,¬ ū18~0!50,¬ ~11!

with

L̄0ū[ū91
r8

r
ū81Fz82

r2
1S 12

z8

r D 2G ū.
There are several useful approximate expressions for the

relative volume V(L) of the critical states. For small L, we
consider ~7! and ~8!, use series expansions in powers of the
small parametern5r0

21, and then eliminaten to obtain

V511L
p

2
1L2S 832

1

4
p2D1o~L2!,¬ ~12!

V512L
p

2
1L2S 832

1

4
p2D1o~L2! ~13!

at the points on Am and AB, respectively. For critical states
close to the critical cylindrical one, we expand ~7! in powers
ofm1 5 r0 2 1. Thisyieldstheapproximation

V5112S L

p
21D1

5

2 S L

p
21D 21oS ULp 21U2D ,¬ ~14!

which is more precise than the linear expression obtained
earlier by Rivas and Meseguer.8 A comparison with numeri-
cal results showed that the relative error of our approxima-
tions is less than 1%, provided that L satisfiesL < 0.44, L
< 0.23, and 2.5< L < 4 inEqs. ~12!, ~13!, and ~14!, respec-
tively. Finally, in the limi t L→`, the asymptotic represen-
tation V ; (2/3)L2 is valid along the nonintersecting curves
Am and Fn.

FIG. 2. Boundary of the stability region of an axisymmetric bridge under
spatial perturbations for which the contact lines remain on the edges of the
solids: ~a! the general diagram and ~b! the segment ABCD of the stability
boundary.

TABLE I. Parameters of critical bridges at distinctive points of the stability boundary.

Point¬ ICa r0 r0 /r(t1) b1 (deg)¬ L V

T1 ~5! 3.787¬ 1.456¬ 0¬ 0.495¬ 1.851
A¬ ••• ` 1¬ ••• 0 1
T2 ~6! 2.659¬ 0.755¬ 180¬ 0.223¬ 0.655
B¬ ~6! 0.305¬ 0.364¬ 180¬ 0.405¬ 0.263
T3 ~6! 0.139¬ 0.255¬ 180¬ 0.383¬ 0.189
C¬ ~6! 0.095¬ 0.213¬ 180¬ 0.361¬ 0.164
D¬ ••• 0¬ 0.2107¬ 167.84¬ 0.4718¬ 0.2405
E¬ ~5! 0.589¬ 0.417¬ 90¬ 2.128¬ 0.591
F¬ ~5! 1 1 ¬ 90 p 1

aInitial conditions.
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III. SMALL PERTURBATIONS

In the general case, an equilibrium free surface under
weightlessness is a surface of constant mean curvature H,
i.e.,

2H5q.¬ ~15!

Consider an axisymmetric equilibrium surface G that en-
closes the domain V occupied by the liquid and aperturbed
equilibrium surface close to G. Points R(s,w) on the unper-
turbed surface are related to pointsR1(s,w) on the perturbed
surface through adisplacement, N, along the normal n to G,
that is,

R1~s,w!5R~s,w!1n~s,w!N~s,w!,

R~s,w!5 ir ~s!cosw1 j r ~s!sin w1kz~s!, ~16!

n~s,w!52 iz8~s!cosw2 jz8~s!sin w1kr 8~s!.

According to ~16!, for a point on the perturbed surface lying
outside V, N wil l be positive ~negative! if the unperturbed
liquid domainV is to the right ~left! ass increases. Themean
curvature of the perturbed surface can be calculated from the
first and second fundamental forms of the surface28 using
~16!. It is a rather complicated expression and is presented,
up to terms of third order in N, in Appendix A.

For a fixed slenderness, L, we let a perturbation of the
equilibrium surface be induced by a small variation of the
relative volumeDV 5 V 2 V0 . HereV0 corresponds to the
unperturbed volume. Then we require that N(s,w) should
satisfy ~15!, the fixed contact line conditions

N~2s1 ,w!5N~s1 ,w!50, ~17!

TABLE II . Characteristics of boundary segments.

Open
segment

Critical
surface¬ IC r0 b1 (deg)¬ CPa

Type of
bifurcations

mT1 Bulged¬ ~5! ~2, 3.787! 0¬ non-ax.b Supercritical
nodoid¬ pitchfork

T1A¬ Bulged¬ ~5! ~3.787, `! 0¬ nox-ax.b Subcritical
nodoid¬ pitchfork

AT2 Constricted¬ ~6! ~2.659, `! 180¬ non-ax.b Subcritical
nodoid¬ pitchfork

T2BT3 Constricted¬ ~6! ~0.139, 2.659! 180¬ non-ax.b Supercritical
nodoid¬ pitchfork

T3C¬ Constricted¬ ~6! ~0.095, 0.139! 180¬ non-ax.b Subcritical
nodoid¬ pitchfork

CD¬ Constricted¬ ~6! ~0, 0.095! ~167.8, 180! ax.-r.s.c Subcritical
nodoid¬ turning point

Point D¬ Catenoid¬ ••• 0¬ 167.8¬ ax.-r.s.c Subcritical
turning point

DE¬ Constricted¬ ~5! ~0, 0.589! ~90, 167.8! ax.-r.s.c Subcritical
unduloid¬ turning point

EF¬ Constricted¬ ~5! ~0.589, 1! 90¬ ax.-r.a.d Subcritical
unduloid¬ pitchfork

Point F¬ Cylinder¬ ~5! 1¬ 90¬ ax.-r.a.d Subcritical
pitchfork

Fn¬ Bulged¬ ~5! ~1, 2! 90¬ ax.-r.a.d Subcritical
unduloid¬ pitchfork

aCritical perturbations.
bNonaxisymmetric.
cAxisymmetric, reflectively symmetric about the equatorial plane.
dAxisymmetric, reflectively antisymmetric about the equatorial plane.

FIG. 3. Schematic sketch of the profiles of the critical axisymmetric equi-
librium surfacesbelonging to segments ~a! Am, ~b! ABC, ~c! CD, ~d! DE, ~e!
EF, and ~f! Fn of the boundary of the stability region.
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and

DV56
1

2pa2h E
G
FN2

1

2 S b81
z8

r DN2

1
1

3
b8

z8

r
N3GdG.¬ ~18!

Heres 5 s1 and s 5 2s1 are thevaluesof s at theendpoints
of the profile of G. In ~18!, one should use the upper ~lower!
sign if V is to the right ~left! as the arclength s increases.

The solutions of the equilibrium problem bifurcate for
critical values of the parameters. Therefore, in what follows
thecritical axisymmetric surface ~withV0 5 V* ! wil l becho-
sen as the surface G. To simplify the calculations, we shall
assumea priori that the rough caseof bifurcation, i.e., where
the bifurcated solutions are expanded in half-integral powers
of a small increment of V, is themost typical for the critical
states.10 Thevalidity of thisassumption wil l beestablished in
Sec. VI C. Thus, we take

V5V*6«2,¬ «.0

N5«N1~s,w!1«2N2~s,w!1••• , ~19!

q5q01«q11«2q21••• .

Here the choice of the upper or lower sign corresponds to an
increase or decrease of the relative volume from its critical
value.

Substituting ~19! into ~15!, ~17!, and ~18!, and equating
coefficientsof likepowersof «, wefind the following zeroth-
order relation for the critical axisymmetric surface G,

b81z8/r5q0 ,¬ ~20!

together with a sequence of boundary-value problems from
whichNi(s,w) andqi ( i > 1) can bedetermined. Using ~20!
and expression ~A1! for 2H ~Appendix A!, we can write the
problemsfor i 5 1,2 and thedifferential equation for i 5 3 in
the form

LN12q150,¬ N1~2s1 ,w!5N1~s1 ,w!50,

E
G
N1 dG50,¬ ~21!

LN22q25 f 2~r ,z,N1!,¬ ~22!

N2~2s1 ,w!5N2~s1 ,w!50, ~23!

E
G
N2 dG5

1

2
q0E

G
N1
2 dG62pr 2~s1!uz~s1!u,¬ ~24!

LN32q35 f 3~r ,z,N1 ,N2!,¬ ~25!

where

LN[Nss9 1
r 8

r
Ns81

1

r 2
Nww9 1S b821

z82

r 2 DN
and the expressions for f 2 and f 3 are presented in Appendix
A. We note that a prime superscript on the function N de-
notes apartial derivative with respect to the argument indi-
cated in the subscript.

It should be noted that, when the second term on the
right-hand side of ~24! is preceded by the upper sign, it rep-
resents an increase ~decrease! of the relative volume, if with
increasing s, the domain V is on the right ~left!. Alterna-
tively, the lower sign represents a volume decrease ~in-
crease!. One can see from Fig. 3 that the domain V is on the
right when thecritical surfacesbelong to theABCD segment,
and is on the left when critical surfacesbelong to theAmand
DEFn segments of the boundary.

IV. A FIRST APPROXIMATION

For critical equilibrium states, the problem ~21! has a
nontrivial solution. The solution N1(s,w) represents the
shapeof theperturbation that results in neutral stability. Tak-
ing into account the results that werepresented earlier in Sec.
II , we have

N15Q1z8~s!sin w, q150 on mABC;¬ ~26!

N15Q1u~s!,¬ q15Q1 on¬ CDE;¬ ~27!

N15Q1r 8~s!,

q150 on EFn except at the point F;¬ ~28!

N15Q1 sin
pz

h
,¬ q150 at F. ¬ ~29!

Here we see that N1 has nonaxisymmetric shapes along
mABC, while for the remaining portions of the stability
boundary it is axisymmetric. The function u(s) is even and,
in the interval 0 < s< s1 , is thesolution of theproblem

L0u51¬ ~0<s<s1!,¬ u~s1!50,¬ E
0

s1
r u ds50,

~30!

and can be represented as

u~s!5u1~s!1a1u0~s!.¬ ~31!

Herea1 5 2u1(s1)/u0(s1), and u0(s) and u1(s) are theso-
lutions of

L0u050¬ ~0<s<s1!,¬ u0~0!51,¬ u08~0!50,¬ ~32!

L0u151¬ ~0<s<s1!,¬ u1~0!51,¬ u18~0!50.¬ ~33!

The operator Ln is given by

Ln[
d2

ds2
1
r 8

r

d

ds
1S b821

z82

r 2
2
n2

r 2 D ,¬ n>0.

For solutions of the form ~31!, the first of the conditions ~30!
is satisfied automatically, while the second is satisfied by the
location of the endpoint s1 . Equations ~9!–~11! determine
this location in dimensionless variables.

The amplitude Q1 is a constant for every critical state.
Ultimately, we have to calculate Q1 , because, according to
~26!–~29!, this provides afirst approximation of the shapes
of thebifurcated equilibrium surfaces. In theprocessof solv-
ing for Q1 , the region of existence and the stability of the
bifurcated states are both determined.
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To obtain Q1 , the solvability conditions for the
boundary-value problems for higher-order approximations
are used. Each of the resulting Fredholm-type problems is
self-conjugate and has the form

LNi2qi5 f i ,¬ Ni~6s1 ,w!50,
~34!

E
G
Ni dG5Ji ~ i>2!,

where f i and Ji depend on the shape of G and on the preced-
ing solutions $Nk ,qk% (k , i ). Since thehomogeneousprob-
lem ~21! has the nontrivial solutions $N1 ,q1%, ~34! has solu-
tions if and only if the orthogonality conditions

E
G
N1f i dG2q1Ji50,¬ i>2,¬ ~35!

are satisfied for each $N1 ,q1%.
Thecases for which ~21! hasauniquenontrivial solution

wil l be analyzed later. The points C and E of the stability
boundary, where two linearly independent nontrivial solu-
tions exist @solutions ~26!, ~27! and ~27!, ~28!, respectively!,
wil l not be considered.

If a change in system parameters results in a transforma-
tion from one critical equilibrium state to another, then there
is no bifurcation. Therefore, for fixed L, if only the volume
is varied, N1 5 0 at thepoint where the tangent to the stabil-
ity region boundary is vertical ~i.e., at the point B of Fig. 2!.
For other points on the stability boundary, the approximate
solution found by allowing only variations in V enables us to
find the approximate solution for arbitrary variations of the
system parameters ~in particular, when V is fixed and L
changes!.

V. THE BIFURCATION EQUATIONS

In this section wederive thebifurcation equations. These
equations determine the values of Q1 for the different seg-
ments of the stability boundary and are distinguished by the
nature of the critical perturbations that lead to neutral stabil-
ity. In particular, we emphasize the new results obtained for
the stability boundary segment mABC corresponding to criti-
cal nonaxisymmetric perturbations.

A. Segment mABC

From ~A2! ~in Appendix A! and ~26!, we obtain

f 25Q1
2F0~s!1Q1

2F2~s!cos2w,

F0~s!5
1

4

z82

r 2 S b813
z8

r D2F~s!,

F2~s!5
1

4

z82

r 2 S b825
z8

r D1F~s!,

F~s!5
1

2 Fb83S 12 r 822z82D1b8
r 82z8

r S 4 z8r 2
5

2
b8D

1
z85

r 3 G ,
and see that ~35! is satisfied for i 5 2.

To obtain the bifurcation equation, we must first find
N2 and q2 . The solution, N2 , of Eq. ~22! has the form

N25Q1
2g0~s!1q2g1~s!1Q1

2g2~s!cos2w

1Q2z8~s!sin w, ~36!

whereQ2 is constant and gj (s) ( j 5 0,1,2) are the solutions
to the equations

L0g05F0~s!,¬ L0g151,¬ L2g25F2~s!.

Since F0(s) and F2(s) are even functions, it then follows
both from the symmetry of G with respect to the equatorial
plane and the form of L0 and L2 that the solution N2(s,w)
wil l satisfy ~23! provided that the functions gj (s) ( j
5 0,1,2) aregiven by

g05b0~s!1a0u0~s!,¬ g15u~s!5u1~s!1a1u0~s!,
~37!

g25b2~s!1a2u2~s!.

Here u0(s) and u1(s) are the solutions of ~32! and ~33!, and
b0(s), b2(s) and u2(s) are the solutions to

L0b05F0~s! ~0<s<s1!,¬ b0~0!51,¬ b08~0!50,

L2b25F2~s! ~0<s<s1!,¬ b2~0!51,¬ b28~0!50,

L2u250¬ ~0<s<s1!,¬ u2~0!51,¬ u28~0!50.

The coefficientsa0 anda2 are given by

a052b0~s1!/u0~s1!, a252b2~s1!/u2~s1!.

Substitution of ~26! and ~36! into ~24!, and using the fact that
gj (s) ( j 5 0,1,2) are even functions, leads to theequality

q25Q1
2D16D2 ,¬ ~38!

where D1 and D2 are given by

D15
1

4G1
q0E

0

s1
rz82 ds2

G0

G1
,

D25
1

2G1
r 2~s1!uz~s1!u,¬ Gk5E

0

s1
gkr ds ~k50,1!.

Finally, from the solvability condition

E
G
N1f 3 dG50

for the third approximation problem, together with the ex-
pression for f 3 @see ~A3! in Appendix A# and ~26!, and ~36!–
~38!, we obtain the bifurcation equation

Q1
2B16A150.¬ ~39!

The values of A1 and B1 depend on the shape of the profile
of the critical equilibrium surface that can be determined
according to themethod described in Sec. II . Expressions for
A1 and B1 are rather cumbersome, and are given in Appen-
dix B.

B. Segment CDE

On the segment mABC the orthogonality condition ~35!
is identically satisfied for i 5 2, while the bifurcation equa-
tion is deduced from the condition ~35! for i 5 3. A similar
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situation arises in the analysis of bifurcation along EFn. This
is due to thenatureof theproblem where the critical axisym-
metric surface ~with an equatorial symmetry plane! is neu-
trally stable either to nonaxisymmetric perturbations ~seg-
ment mABC! or to an axisymmetric perturbation that is
antisymmetric with respect to the equatorial plane ~segment
EFn!. Along CDE, the critical perturbation is axisymmetric
and equatorially symmetric. Here the bifurcation equation is
deduced from the solvability condition ~35! for the second
approximation problem ( i 5 2). It has the form

Q1
2B2521.¬ ~40!

The expression for the coefficient B2 is presented in Appen-
dix B.

C. Segment EFn

For all points of this segment, except the point F, the
equalities ~28! hold. Using the first of them, we obtain f 2
5 Q1

2F3(s) and

F35r 82S b82
z8

r D 32 1

2
z82b82S b82

z8

r D1q0b8
z8

r
r 82.

It can be readily verified that ~35! is satisfied for i 5 2. Upon
determination of N2 and q2 , the condition ~35! for i 5 3
reduces to the following bifurcation equation:

Q1
2B36A350.¬ ~41!

The coefficients A3 and B3 are presented in Appendix B.

VI. NUMERICAL AND ANALYTICA L RESULTS

In this section we present the results of numerical and
analytical analyses of the bifurcation equations obtained in
Sec. V. In particular, Secs. VI A and B deal with bifurcations
to nonaxisymmetric shapes and Table II summarizes the
types of bifurcation along each boundary segment. Except
for the case of catenoid, we use dimensionless quantities
with q0

21 as the characteristic length. For cross reference
with dimensional equations, we note that all dimensional
quantities except q0 are replaced in each equation by their
dimensionless analogs, while q0 is set equal to unity. All
dimensionless quantities, exceptr, z, and t @see ~3!#, are
distinguished from their dimensional counterparts by a bar
overscript.

A. Segment Am

Numerical results for theAT1 segment @L,0.4946, Fig.
2~a!# show that Ā1.0 and B̄1,0. In contrast, within the
T1m branch (L.0.4946) both Ā1 and B̄1 are positive. The
dependence of Ā1 /B̄1 on L is shown in Fig. 4.

Taking ~7! into account, expansions in powers of the
small parametern5r0

21 can be used to obtain asymptotic
expressions for r~t!, z8~t!, t1 , ū0(t), ū1(t), ū2(t), b̄0(t),
b̄2(t), L, Ā1 , and B̄1 at large values of r0 . Restricting
ourselves to the determination of the two principal terms
which define the behavior of Ā1 and B̄1 , we arrive at the
equalities

L5n1n2~11p/4!1o~n2!,

Ā15
1

2n2 F12nS 21
p

4 D G1o~n21!,¬ ~42!

B̄152
1

6pn3
~123n!1o~n22!,

from which we can see that

~Q̄1!152~Q̄1!2

5uĀ1 /B̄1u1/25A3pLS 12
p

4
L D1o~L3/2!.¬ ~43!

Equations ~42! and ~43! are in full agreement with numerical
results for small L ~or larger0!.

The coefficient B̄1 vanishes at the point T1 ~seeTable I!.
It should also be noted that the radius of convergence of the
expansions ~19! tends to zero as the point T1 is approached.
Thismeans that in a small neighborhood of thepoint T1 , the
shapes of bifurcated surfaces cannot be expressed as a series
in half-integral powers of uV2V* u. In this case, it should be
expected that expansions in powers uV2V* u1/3 are valid.10

Inspection of the signs of Ā1 and B̄1 and of the direction
of motion along critical surface profiles ~seeSec. III ! reveals
that real solutions of the dimensionless form of ~39! exist in
a neighborhood (uV2V* u!1) either along AT1 for
V,V* , or along T1m for V.V* . To a first approximation,
these solutions determine ~to within an arbitrary rotation
about the z axis! the shape perturbation of surfaces that bi-
furcate in the indicated ~V,V* or V.V* ! directions:
N̄5«AuĀ1 /B̄1uz8(t)sinw.

On the boundary Am, the axisymmetric equilibrium state
is critical with respect to nonaxisymmetric perturbations and
is stable with respect to axisymmetric ones. The problem
~21! has a nonaxisymmetric solution and has no nontrivial

FIG. 4. The ratio of the bifurcation equation coefficients, Ā1 /B̄1 , as a
function of slenderness, L, within the segment Amof the stability boundary.

1899Phys. Fluids, Vol. 9, No. 7, July 1997¬ Slobozhanin, Alexander, and Resnick

Copyright ©2001. All Rights Reserved.



axisymmetric solutions. Thus, axisymmetric solutions of the
equilibrium problem have auniquecontinuousextension into
the supercritical region and can be expressed as a series in
integral powers of (V 2 V* ) provided that this quantity is
small. Sketches of the bifurcations at points within the seg-
ments T1m and AT1 are shown in Figs. 5~a! and 5~b!, re-
spectively.

For L . 0.4946, a bridge wil l adopt stable nonaxisym-
metric shapes whenever stability is lost on the upper bound-
ary. Plateau1 observed such continuous shape transitions in
experimentsmore than acentury ago. For L , 0.4946, how-
ever, an identical evolution leads to adiscontinuity. Accord-
ing to our experimental results ~see Sec. VII !, the system
undergoes a finite jump from acritical state to a stable non-
axisymmetric one.

Fowleet al.29 ~experimentally! and Brown and Scriven20

~theoretically! reached the same qualitative conclusion for
rotating weightless bridges. They found that for critical
‘‘thick’ ’ (V @ 1) bridges, asupercritical bifurcation to stable
families of nonaxisymmetric shapes was possible. Alterna-
tively, for slightly bulged bridges ~i.e., bridges with V
slightly more than 1!, loss of stability to nonaxisymmetric
perturbations leads to subcritical bifurcation.20

B. Segment ABC

According to our numerical results, Ā1 is positive along
AB, changes its sign at thepoint B, and isnegativealongBC.
The sign change at point B has been explained at the end of
Sec. IV. The coefficient B̄1 has negative values within the
segments AT2 and T3C and is positive within the segment
T2BT3 @Fig. 2~b!#. The points T2 and T3 ~see Table I!, like
the point T1 , are singular. The numerical values of Ā1 /B̄1

along the segment ABC are represented in Fig. 6.
From ~8!, we can deduce expansions similar to those

described in Sec. VI A. We then obtain the principal terms
that define the behavior of L, Ā1 , and B̄1 for large values of
r0 ~i.e., near the point A!. Finally, in place of ~42! and ~43!
we have

L5n2n2~11p/4!1o~n2!,

Ā15
1

2n2 F11nS 21
p

4 D G1o~n21!,

B̄152
1

6pn3
~123n!1o~n22!,

and

~Q̄1!152~Q̄1!25A3pLS 11
p

4
L D1o~L3/2!.

From the signs of the coefficients Ā1 and B̄1 , and from
the direction of motion along the critical profiles, it can be
concluded that the bifurcation takes place into the region V
. V* within the segmentsAT2 and BT3 and into the region
V , V* within the segments T2B and T3C. Consequently,
the bifurcation is supercritical within T2BT3 , and is subcriti-
cal within AT2 and T3C @Figs. 5~a!–5~d!#.

C. Segments CDE and EFn and special cases

A detailed analysis of the bifurcation among axisymmet-
ric bridge shapes has been performed by Lowry and Steen.3

In particular, for fixed values of L, they constructed families
of possible axisymmetric equilibrium states and presented
them in the (p,V)-plane ~p 5 aq is the dimensionless pres-
sure jump at a freesurface!. The (p,V)-diagramsso obtained
represent the bifurcation structure. From these diagrams, the
stability or instability to axisymmetric perturbations can also
be determined for different equilibrium branches ~or parts of
them! using the location of the turning points in volume and
the branch points.

It has also been shown3 that interior points of the bound-
ary segment CDE are the turning points in volume for axi-
symmetric equatorially symmetric states. Thus, two branches
of axisymmetric equatorially symmetric states that are lo-
cated in the subcritical region V . V* bifurcate from acriti-
cal state corresponding to a point within CDE. One of the
branches consists of stable states, and the other of unstable
ones @Fig. 5~e!#. The unstable axisymmetric ~but equatorially

FIG. 5. Bifurcation diagrams in the plane of the dimensionless variables
Q̄1e and V for the critical axisymmetric states belonging to segments ~a!
T1m and BT3 , ~b! AT1 and T3C, ~c! AT2 and EFn, ~d! T2B, and ~e! CDE
of the stability boundary. The stable states are denoted by solid curves ~—!

and unstable ones by dashed curves ~---!. The thick vertical solid line Q̄1«
5 0 corresponds to axisymmetric shapes that have an equatorial symmetry
plane ~for emphasis, this line is separated from the V axis!.

FIG. 6. Dependence of coefficients ratio Ā1 /B̄1 on L within the segments
AT2B ~a! and CT3B ~b! of the stability boundary.
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antisymmetric! states bifurcate from every interior point of
EFn into thesubcritical region V . V* @Fig 5~c!#.

Results of our calculations of the coefficients B2 , A3 ,
and B3 of the bifurcation equations ~40! and ~41! along
CDE and EFn are in complete agreement with the above
conclusions. Thus, we present results only for special cases.

Critical catenoid. Theparameters of the critical catenoid
~the point D! are given in Table I. In addition, we have s1
5 2r 0 /tanb1 5 4.6396r 0 , where r 0 is theequatorial radius
of thecritical catenoid (r 0 5 a sinb1 5 0.2107a). Wefound
that B2 5 23.5347r 0

2 for the case when the domain V is to
the left with increasing s. Thus, for V . V* 5 0.2405, there
are two branches of equilibrium surfaces that bifurcate from
the critical catenoid. They are characterized by N1

5 6 0.5319ur0
21. The dimensionless function u(s)r 0

22 for
the critical catenoid was calculated using ~31!–~33!.

Almost cylindrical critical surfaces. The solution of the
bifurcation problem for the critical surfaces close to that of a
cylinder is found using ~7! and expansions for r~t!, z8~t!, L,
ū0(t), ū1(t), and b̄3(t) ~see Appendix B! in terms of the
small parameterm1 5 r0 2 1. Thisyieldsthefollowing result

Q̄156A2

3

~2p2L!

up2Lu
1o~1!.¬ ~44!

The discrepancy between the values obtained from ~44! and
thenumerical results iswithin 1% for up 2 Lu < 0.35. Fur-
thermore, since N̄1 5 Q̄1r8(t), we find that

N̄156A2

3 F11S 12
L

p D S 741cost D G
3sin t 1oS U12

L

pU D .¬ ~45!

The result for a critical cylinder (L 5 p) is a special case of
~45!.

From the general theory of bifurcation of solutions of
nonlinear equations ~see, for example, Ref. 30!, it can be
proved that if the coefficients Āi and B̄i of the bifurcation
equation are nonzero, then there are only two branches of
bifurcated equilibrium shapes. Furthermore, these shapes can
be represented as aseries in half-integral powers of the de-
viation of the equilibrium parameters from their critical val-
ues. This justifies our earlier assumption that the rough type
of bifurcation can beused at all points of the stability bound-
ary except at the singular points T1 , T2 , and T3 ~and the
points C and E which were not examined here!.

VII. EXPERIMENTS

In Sec. VI A we described the nature of the stability
boundary segment Am. Here the axisymmetric equilibrium
state is critical with respect to nonaxisymmetric perturba-
tions and is stable to axisymmetric ones. We noted that on
this segment with L . Ls 5 0.4946, a bridge wil l continu-
ously adopt stable nonaxisymmetric shapes upon loss of sta-
bility of axisymmetric shapes. However, forL , Ls , wepre-
dicted that lossof stability leads to adiscontinuouschangeof
a critical shape.

To investigate this we performed experiments in a 3.8
3 104 cm3 Plateau tank under almost neutrally buoyant con-
ditions. A silicone oil ~5 cs. polydimethylsiloxane Dow
Corning 200 series! was used as abridge liquid, and amix-
ture of water and methanol as asurrounding liquid bath. The
mixture composition was adjusted to achieve a density dif-
ference, Dr, between mixture and oil as small as possible.
Densitiesweremeasured accurately to 2.5 3 1024 g/cm3 us-
ing a calibrated hydrometer. The estimated maximum value
of Dr was 53 1024 g/cm3. The interfacial tension,s, was
14.56 0.5 dyne/cm. Thedisk radiusa was0.56 0.002 cm.
Experiments were conducted in a temperature-controlled
room which, together with the large thermal mass of the
bath, led to small temperature variations in the tank. Re-
corded temperature variations did not exceed 0.01 K over 30
min, so s andDr were almost constant for the duration of
each experiment. Thus, the magnitude of the Bond number,
B 5 Drga2/s ~hereg 5 980 cm/s2!, wasat most 1022.

A liquid bridge of a set slendernesswas formed between
coaxial disks. High precision stepping motors were used to
control the disk separation while simultaneously injecting
silicone oil. Oil was injected until the bridge was near the
upper stability limi t for the slenderness under consideration.
Precisely controlled amounts of oil were then added incre-
mentally using a calibrated microsyringe. The relative vol-
ume increment was about 1 part in 200. After each addition
of oil, the bridge was allowed to deform and come to rest.
The bridge was imaged using a coherent high-magnification
Fourier optical arrangement together with ahigh-passoptical
filter. This permits visualization of edges of projections of
the liquid bridge surface at approximately 1003 magnifica-
tion. From this image, theminimum distance l ~shown sche-
matically on the larger scale photographs in Fig. 7! from the
bridge surface to a stationary reticule was measured on a
computer screen. Typically, the distance decreases slightly
with each addition of oil until the stability limi t is exceeded.

FIG. 7. BridgeimagesforL 5 0.225 @~a!–~c!# andL 5 1.02 @~d!–~f!#. States
~a! and ~d! are stable axisymmetric ones with volumes V1 5 1.31 and V2

5 2.82 that are, respectively, slightly less theassociated ~experimental! criti-
cal volumes of 1.33 and 2.83 for the given L. The nonaxisymmetric bridges
~b! and ~c! havevolumesof V1 1 0.025andV1 1 0.05, while~e! and ~f! have
volumesof V2 1 0.095andV2 1 0.19.
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When this occurs, the bridge forms abulge. The correspond-
ing deformation of the bridge is characterized as follows.
First the projection of the edge of the surface 180° from the
maximum bulge is located. Thedistancebetween theedgeof
the projected image of the bridge surface opposite the bulge
and the stationary reticule is then recorded. Further incre-
mental additions of oil lead to an increase in the distance
between theedgeof the imageand the reticule. This distance
is recorded for each increment. Because the resulting incre-
mental deformations of the bridge are on the order of several
microns, care was taken to ensure the bridge was properly
isolated from vibration. It was also necessary to ensure that
there was no backlash in the injection system.

A similar experimental techniquewasused by Russo and
Steen17 except that they fixed the actual bridge volume, v,
and decreased the disk separation to find themaximum rela-
tive volume stability limit . As regards this limi t for axisym-
metric states, our experiments ~like the experiments17 per-
formed for L<1! agreed with the theoretical prediction
~segment Am! for relatively small values of L. However, at
large L, tangents at the endpoints of critical surface profiles
showed adiscernible deviation from thehorizontal. Here, the
critical axisymmetric states were found to occur below the
theoretical limit . With larger values of L ~and volumes!, an
axisymmetric bridge ismoresensitive to real finiteamplitude
disturbances and to nonzero Bond numbers.

After loss of stability, the critical axisymmetric shape
changes to a stable nonaxisymmetric shape. However, the
nature of this transition was found to be quite different for
L<0.4 andL>0.6. Figure7 showsasequenceof imagesof
aL50.225 bridgenear thecritical V value. The theoretically
predicted critical volume is 1.36, the critical volume ob-
tained experimentally was1.33. For L 5 0.225, a largeshape
deformation occurs after the addition of only a small volume
increment @compare Figs. 7~a! and 7~b!#. Further volume in-
creases lead to continuous incremental shape changes @Figs.
7~b! and 7~c!#. In contrast, for L51.02 @Figs. 7~d!–7~f!#, we
observed a continuous transition from critical axisymmetric
shape to a sequence of the stable nonaxisymmetric shapes as
the volume was increased. Here the theoretical critical vol-
ume is 2.96 and our experimental critical volume was be-
tween 2.83 and 2.85. In both cases, our experimental critical
volumes were within 5% of the theoretical values and the
nonaxisymmetric bridges were stable at volumes far beyond
the maximum volume stability limi t for axisymmetric
bridges.

The graphs in Fig. 8 show the rate of change of dimen-
sionless deformationj5 l/a with the relative volume in the
vicinity of the axisymmetric to nonaxisymmetric transition.
For L<0.4, the curve peaks sharply in the immediate vicin-
ity of the critical volume. With smaller L, the maximum
value of dj/dV becomes larger. In contrast, forL>0.6, the
curve is rounded, and deformation occurs continuously over
a much larger range of volume. Note that even for
L50.40, the maximum value of dj/dV is much larger than
for L50.60.

Although hysteresis was expected for L,Ls , no hys-
teresis was observed either in our experiments or in those of
Russo and Steen.17 It is possible that the unstable bifurcating

nonaxisymmetric states exist only in a small subcritical vi-
cinity of the segment AT1 .

VIII. CONCLUSIONS

To a first approximation, the bifurcation problem has
been solved for all axisymmetric critical states of a liquid
bridge except those corresponding to the points T1 , T2 ,
T3 , C, and E on the boundary of the stability region shown
in Fig. 2. Motivated by the lack of a comprehensive system-
atic study of states that are critical to nonaxisymmetric per-
turbations, particular emphasis has been placed on the ex-
amination of this aspect of the bifurcation problem. States
that are critical to nonaxisymmetric perturbations lie on the
segment mABC of the stability boundary for axisymmetric
bridges. This segment contains the singular points T1 , T2 ,
and T3 . We found that if the path of the stability region
crosses the T1m or the T2BT3 segments, stable nonaxisym-
metric liquid bridges appear. In this case, the stable axisym-
metric states are replaced continuously by the stable nonaxi-
symmetric ones. Expressions for these nonaxisymmetric
shapes near the stability boundary were obtained. When sta-
bility is lost at the boundary segment T1A T2 or T3C, the
bridge shape changes discontinuously. In particular, loss of
stability along T1A was seen to occur through a large defor-
mation from the critical axisymmetric state to a stable non-
axisymmetric state.
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APPENDIX A: THE MEAN CURVATURE H OF A PERTURBED SURFACE AND THE FUNCTIONS f 2 AND f 3
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Here, the primes denote partial derivatives of the functions N, N1 , and N2 with respect to the arguments indicated in the
subscripts.

APPENDIX B: COEFFICIENTS A1 , B1 , B 2 , A 3 , AND B3 OF THE BIFURCATION EQUATIONS

The coefficients A1 and B1 of the equation ~39! are
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with

M115r 82z8S b82
z8

r D 2,¬ M1252
r 8z8

r Fz821 1

2
r 2b8S b82

z8

r D G ,¬ M1352rz82b8,

M1452rr 8z8F S b82
z8

r D 21q0
z8

r G ,¬ M1552
z82

r S b813
z8

r D ,
M1652r 82z8S b82

z8

r D F98 b82~r 8224z82!1
z82

8r 2G1z84F32 rb842
3

8r 3
~112z84!1

z8

8r 2 S 2b8115
z8

r D G
2
3

4
r 82z82b8F3rb831

z82

r S 12 b81
z8

r D2
1

6r S b82
z8

r D G1
3

8
r 84z8b83.

The coefficient B2 of the equation ~40! is

B25
2

r 2~s1!uz~s1!u H a1
3E

0

s1
~M21u0

31M22u0
2u081M23u0u80

21M24u0
2u90!ds1a1

2E
0

s1
@3M21u0

2u1

1M22~u0
2u1812u0u08u1!1M23~u08

2u112u0u08u18!1M24~u0
2u1912u0u09u1!1M25u0

2#ds

1a1E
0

s1
@3M21u0u1

21M22~u08u1
212u0u1u18!1M23~u0u18

212u08u1u18!1M24~u09u1
212u0u1u19!

12M25u0u1#ds1E
0

s1
~M21u1

31M22u1
2u181M23u1u18

21M24u1
2u191M25u1

2!dsJ ,
where

M2152r S b831
z83

r 3 D ,¬ M22522
r 8z8

r
,¬ M2352

1

2
r S b82

z8

r D ,¬ M24522rb8, M2552
1

2
q0r .

The coefficients A3 and B3 of the equation ~41! are

A35
1

G1
r 2~s1!uz~s1!uE3 ,

B35E
0

s1
~2M31b312M32b3812M33b391M34!ds12a3E

0

s1
~M31u01M32u081M33u09!ds

2
2E3

G1
F E

0

s1
b3r ds1a3E

0

s1
u0r ds2

1

2
q0E

0

s1
rr 82 dsG ,

where

E35E
0

s1
~M31u11M32u181M33u19!ds1a1E

0

s1
~M31u01M32u081M33u09!ds,

M3152r 82z8S b82
z8

r D 2,¬ M3252
r 8z8

r F r 822 1

2
r 2b8S b82

z8

r D G ,¬ M3352rr 82b8,

M3452rr 84S z84r 4 22b84D1r 84z8b8S z82r 2 17
z8

r
b825b82D1rr 82z82b82S 2

z82

r 2
12

z8

r
b823b82D ,

the function b3(s) is the solution of the problem

L0b35F3~s! ~0<s<s1!,¬ b3~0!51,¬ b38~0!50,

anda35 2b3(s1)/u0(s1).
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