View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Cleveland-Marshall College of Law

0@

@ MSL
Cleveland State University 1568
EngagedScholarship@CSU

Physics Faculty Publications Physics Department

3-1-1997

Bifurcation of The Equilibrium States of A
Weightless Liquid Bridge

Lev A. Slobozhanin

J.Iwan D. Alexander
University of Alabama

Andrew Resnick

Cleveland State University, a.resnick@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/sciphysics facpub

& Dart of the Physics Commons

How does access to this work benefit you? Let us know!
Publisher's Statement

© 1997 American Institute of Physics.

Repository Citation
Slobozhanin, Lev A.; Alexander, J. Iwan D.; and Resnick, Andrew, "Bifurcation of The Equilibrium States of A Weightless Liquid

Bridge" (1997). Physics Faculty Publications. 241.
https://engagedscholarship.csuohio.edu/sciphysics_facpub/241

This Article is brought to you for free and open access by the Physics Department at EngagedScholarship@CSU. It has been accepted for inclusion in
Physics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact

library.es@csuohio.edu.


https://core.ac.uk/display/216947789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics_facpub?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/sciphysics_facpub?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/sciphysics_facpub/241?utm_source=engagedscholarship.csuohio.edu%2Fsciphysics_facpub%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Bifurcatio n of the equilibriu m states of a weightles s liqui d bridge

Lev A. Slobozhanin,” J. lwan D. Alexander, and Andrew H. Resnick
Cente for Microgravity and Materials ResearchM-65 Researh Institute Building,
University of Alabana in Huntsville Huntsville Alabana 35899

(Receiva 29 May 1996 acceptd 28 March 1997

The bifurcation of the solutiors of the nonlinea equilibrium problen of a weightles liquid bridge
with a free surfa@ pinned to the edges of two coaxid equidimensionlacircular disks is examined.
The bifurcation is studied in the neighborhod of the stability bounday for axisymmetric
equilibrium states with emphass on the bounday segmen correspondig to nonaxisymmetric
critical perturbationsThe first approximatios for the shaps of the bifurcated equilibrium surfaces
are obtained The stability of the bifurcated states is then determine from the bifurcation structure.
Along the maximum volume stability limit, dependig on values of the systen parametersloss of
stability with respet to nonaxisymmetd perturbatios resuls in eitha a jump or a continuous
transitian to stabk nonaxisymmetd shapesThe value of the slendernesat which achange in the
type of transition occussis found to be A =0.4946 Experimenthinvestigation basel on a neutral
buoyang technigwe agres with this prediction It shows that for A <A, the jump isfinite ard that
a critical bridge undergos a finite deformation to a stabk nonaxisymmetd staten © 1997

American Institute of Physics [S1070-663(97)02507-5

I. INTRODUCTION

Liquid bridge statics problens hawe bee studial since
the early work of Plateat ard are still of interest? Liquid
bridges are importart factors when considerig liquid man-
agemeh unde low-gravity conditions Perhag the most
studied configuratios involve bridges held betwee disks or
rods Thes are usal to analyz problens associaté with
zore melting unde zero-graviy (see for example Refs 2
ard 4).

This pape conceris the bifurcation of equilibrium
shaps of a weightles liquid bridge with its free surface
pinned to the edges of coaxid equidimensioniacircular sup-
ports (radius a) separate by a distan@ 2h. The suppors can
be considerd as solid disks without loss of generaliy (see
Fig. 1). In this case the equilibrium stak of the liquid is
determiné by two parametersthe slendernes A ard the
relative volume V:

A=hla,~ V=v/(27a’h),- )

where v is the actua liquid volume supporte betwee the
disks.

The sha ard stability of axisymmetre liquid bridge
configuratiors has been studial extensively For zero-gravity
conditions the equilibrium surfa@ is a surfa@ of constant
mean curvatue and for the axisymmetrc case the bridge
can hawe acylindrical, spherical catenoidal unduloida) or
nodoida shapes Typically, previows investigatiors of
weightles bridge stability hawe assumd tha the perturba-
tions satis the constraing of constam liquid volume and
fixed conta¢ lines. We summariz sud work below.

It has been establishd theoreticall} and experi-
mentally-® tha a cylindricad bridge is stabk if A<# and

dDedicate to the memoy of Dr. A. D. Tyuptsov.

®0n leave from the B. Verkin Institute for Low Temperatue Physis and
Engineering Nationd Acadeny of Sciencs of Ukraine Electront ad-
dress lion@cmmr.uah.edu
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unstabé if A>w. Here the critical perturbation is
axisymmetrict® It was suggesté by Gillette ard Dysorf
that when V=1, there are no stabk noncylindricd axisym-
metric surfacesRivas and Meseguet determing the linear
dependeneof A onV for critical unduloids tha are close to
acylinder.

Constan volume spherica bridges are always stable.
This follows from Plateaus experimenthresuls ard is eas-
ily proved theoreticaly (see for example Refs 9 ard 10).

Platea determind the region of existene for catenoidal
bridges experimentally A theoretich and experimental
analyss of the stability of catenoidabridges with respetto
axisymmetre perturbatios was later carried out by Erle
et al!

Besides cylinders spheresand catenoids Plateati also
undertod experimenthinvestigatiors of the stability of un-
duloidd and nodoida bridge surface and qualitatively de-
scribed the results For axisymmetre perturbatios and arbi-
trary values of A ard V, the stability limits were first
constructd by Gillette and Dysorf on the bask of Howe's
theory*? (outlined in Refs 3, 7, ard 11). They also proved
that an axisymmetrc bridge with no equatorid symmetry
plare is always unstable Furthermore they later proved?®
tha axisymmetre perturbatios are the mog dangeros for
weightles bridges tha are axisymmetr¢ abou the z axis and
hawe surface representd by single-value functiors r
= r(2). Slobozhanifianalyzel the stability of an axisymmet-
ric bridge with respetto arbitray (i.e., both nonaxisymmet-
ric and axisymmetri¢ perturbatios and constructd the gen-
erd stability bounday in the (A,V)-plane (Thes resuls are
presentd in English in Ref. 10, ard the stability bounday is
reproducd in Refs 3 and 14) Quantitatie experimental
data on the bounday of the stability region were obtainel by
Elagin et al.’® (“microzone” method, ard by Sarz and
MartineZ® ard Rus® ard Steert’ (neutrd buoyangy tech-
nique.

The conditiors for which capillaly surface with contact

© 1997 American Institute of Physics 1893
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FIG. 1. Geomety of the equilibrium system.

lines pinned to solid edges are mog unstabé to perturbations
of the liquid surface rathe than to perturbatios of the con-

tad line, were obtaina in a more generd analyss by

Slobozhani ard Tyuptsov® (see alo Ref 10). This was

also examinel for the particula case of liquid bridges held

betwea disks ard rods by Slobozhanir?:1°

If an axisymmetrc equilibrium stak is stable then for a
smal variation of the parametes A ard V, it has aunique
continuos extensim and the stability of the stake is pre-
served However if the equilibrium stae lies on the stability
boundary the uniquenes of the continuos extensim is vio-
lated and the equilibrium stae bifurcates Methods for ana-
lyzing bifurcatiors of the equilibrium states of a capillary
liquid mas and the possibé bifurcation structure hawe been
describé in earlie work (see for example Refs 3, 10, and
20-23).

To accoun for Plateaus experimenthresults Michaef*
proposé possibé bifurcation patterrs tha are plausible
when the different axisymmetre equilibrium shaps of a
bridge lose their stability. He further emphasizé the nedal to
study the correspondig bifurcation problen in detail This
problem has bea solved for a critical cylinder. The solution
is a particula cae of resuls obtainel by Brown and
Scriverf® ard by Vega ard Perales® The dynamicé behav-
ior of an axisymmetre liquid bridge as it loses stability on
the bounday segmenh along which axisymmetre perturba-
tions are critical was studial in Refs 26 ard 27. Finally, a
sophisticatd analyss of the natue of the axisymmetr¢ bi-
furcatiors along this bounday segmehwas mace in arecent
pape by Lowry and Steer?

In this pape we focus attention on bifurcatiors alorng a
stability bounday segmeh wher nonaxisymmetd pertur-
batiors are critical. In Sec Il we outline previows stability
resuls for initially axisymmetr¢ bridges Then we consider

1894~  Phys. Fluids, Vol. 9, No. 7, July 1997~

smal perturbatios of equilibrium surface (Sec Ill) and de-

scribe a procedue to obtan a first approximatiam to the

shaps of the bifurcatel surfacs (Sec 1V). The bifurcation

equatia is given in Sec V. In Sec VI the resuls of numeri-

cd ard analytica analyse are presentedExperimenté re-

sults for aparticula cas analyzel in Sec VI A are presented
in Sec VII.

Il. CRITICAL AXISYMMETRIC STATES

In this sectimm we prese a summay of resuls previ-
ously obtainel in Refs 9 ard 10. The® resuls are needd to
clearly defire the stability region unde consideratio ard are
usal as astartirg point for the bifurcation analyss described
in the subsequensections.

A. Axisymmetri ¢ shapes

The equilibrium surfae of an axisymmetre liquid
bridge has aparametic representatio r(s), z(s), wherer,
¢, ard z are the cylindricd coordinats ard s is the arc
lengh of any axid sectiong = const. The dependent vari-
ablesr and z are then given by the solutiors of the following
ordinary differentid equations:

d
r"=-—2'(qp—2'/r),~ 2'=r'(qo—2'Ir) (’zd—s).
2

Here q, is twice the mean curvatue of the surface Thus,
0o — Z'/r = B', whereB = B(s) is the angle between the
positive r-axis direction and the tangen to the axid profile
directal in the seng of increasimg s. The systen (2) is in-
variart unde the transformatio go— — qq, S— — S. For
definitenessit is assumd hereafte that qo = 0. If gy # O,
then the relations

pP= qOr ’ g: QOZa
are usel to transfom the systen (2) to the following form:

T=(pS 3

d
p'==0'(1={'lp), {"=p'(1={'Ip) ( '= d7>-
4
Critical, as well as stable axisymmetr¢ surface always
hawe an equatorih symmety plang z = 0. All possibé axi-

symmetrc shaps (except catenoidg with an equatoria sym-
metty plare are describé by solutiors of (4) with

p(0)=po, p’'(0)=0, {(0)=0, '(0)=1, ®

or

p(0)=po, p’'(0)=0, {(0)=0, '(0)=-1 (6

asinitial conditiors at the equatoriapoint 7 = 0. Solutions of
(4) correspondig to bounday conditiors (5) or (6) have,
respectively the forms

p=(1+,u€+2,u1 cos7)*?,
1
{= fo @(Hm cos¢)dé, (7)
d

an
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FIG. 2. Bounday of the stability region of an axisymmetr¢ bridge under
spatid perturbatios for which the contad¢ lines reman on the edges of the
solids (a) the genera diagran and (b) the segmet ABCD of the stability
boundary.

)1/2

p=(1+,u2 2, COST

T

1
{= (&) (1—pu, cosé)dé, (8)

o p(€

whereu, = po— landu, = pg+ 1.

B. Stabilit y for fixed contac t lines

We conside critical axisymmetre shaps for volume-
preservirg perturbatios tha leave the contad lines pinned
to the disk edges The correspondig bounday of the stabil-
ity region is reproducd in Fig. 2. There are severa special
points on the stability boundary Characteristis of liquid
bridges correspondig to thes points are listed in Table I.
Excep for A and V, thistable contairs dat for relatel initial
conditions the ratio py/p(7;) betwea equatoria ard disk
radii, and the angk of inclination 8, at the lower disk (Fig.
1). Table Il summarize qualitative properties of the critical
surface ard the associatd critical perturbationsBoth tables
generalie relatal resuls presentd in Ref 7. In addition,
typicd shaps of critical bridge profiles are shown in Fig. 3.

Profiles of critical bridges from the stability boundary
segmerg mABC ard EFn have respectively horizontd and
verticd tangens at therr endpoints The componeh of dan-

gerows perturbatios normd to axisymmetrc equilibrium
surface is proportiond to ¢’ (7)sin¢ (on mABQ, to p'(7)
(on EFn) ad to sin 7 (at the pointF). Along the segment
CDE, the dangeros perturbatios are axisymmetrt ones
with an equatoriasymmety plane With the exceptia of the
point D, the termind point ; of a critical profile on CDE is
definal as that value of 7 for which the function

E&kﬂaﬂﬂﬁmﬂdrﬂiﬂﬂﬁmﬂdr )

first changs its sign Here ug(7) andu,(7) satisfy

Lolp=0, Ug(0)=1,~ U3(0)=0, (10)
LoUp=1, U3(0)=1,7 U(0)=0, (12)
with
o ' 12 1\ 2
:J'&W+%+@—%}E
P P P

Thete are severausefu approximag expressioa for the
relative volume V(A) of the critical statesFor smal A, we
conside (7) and (8), use series expansios in powes of the
smal parametenzngl, ard then eliminate » to obtain

8 1

V=1+A = +A2§—Zw)+o(A2),ﬂ (12)
8

V=1-A = +A2§—Zﬂ- +0(A?) (13

at the points on Am ard AB, respectively For critical states
close to the critical cylindricd one we expard (7) in powers
of w1 = pg — 1. Thisyieldstheapproximation

A ) S(A
——1|+=|—-1
T 2\

2
+0

2

V=1+2 -~ (14

—-1
ar

which is more precie then the linea expressia obtained
earlig by Rivas and Meseguef. A comparisa with numeri-
cd resuls showael that the relative erra of our approxima-
tionsis less than 1%, provided that A satisfis A < 0.44 A
< 0.23 ard25=< A < 4inEgs (12), (13, ard (14), respec-
tively. Finally, in the limit A—<, the asymptott represen-
tation V ~ (2/3)A? is valid along the nonintersectig curves
Am and Fn.

TABLE |. Parametey of critica bridges at distinctive points of the stability boundary.

Point- Ic? Po po/p(71) B1 (deg) A \4

T, (5) 3.78F 1.456- 0= 0.495~ 1.851
A_| e o0 l_| e 0 1

T, (6) 2.65% 0.755~ 180~ 0.223- 0.655
B- (6) 0.305~ 0.364 180~ 0.405~ 0.263
T, (6) 0.13% 0.255+ 180~ 0.383- 0.189
C- (6) 0.095- 0.213~ 180~ 0.361 0.164
D= 0- 0.210% 167.84 0.4718& 0.2405
E- (5) 0.58%9- 0.41% 90~ 2.128 0.591
[ (5) 1 1 - 9 - 1

3 nitial conditions.

Phys. Fluids, Vol. 9, No. 7, July 1997~
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TABLE II. Characteristis of bounday segments.

Open Critical Type of
segment surfacer IC Po B1 (deg)r cP bifurcations
mT,; Bulged- (5) (2,3.789) 0~ non-ax® Superecritical
nodoid- pitchfork
T,A- Bulgedh (5) (3.787 ) 0~ nox-ax® Subcritical
nodoic- pitchfork
AT, Constricteeh (6) (2.659 =) 180~ non-ax? Subcritical
nodoid- pitchfork
T,BT; Constricteeh (6) (0.139 2.659 180~ non-ax? Supercritical
nodoid- pitchfork
T5C= Constricteeh (6) (0.095 0.139 180~ non-ax? Subcritical
nodoid- pitchfork
CD~ Constricteeh (6) (0, 0.095 (167.8 180 ax.-r.s¢ Subcritical
nodoid- turning point
Poirt D= Catenoich 0~ 167.8- ax.-r.s¢ Subcritical
turning point
DE- Constricteeh (5) (0, 0.589 (90, 167.8 ax.-r.s® Subcritical
unduloid- turning point
EF- Constricteeh (5) (0.589 1) 90~ ax.-r.a’ Subcritical
unduloid- pitchfork
Poirt F= Cylinder- (5) 1- 90~ ax.-r.a¢ Subcritical
pitchfork
Fn- Bulged- (5) 1,2 90~ ax.-r.a¢ Subcritical
unduloid- pitchfork
&Critical perturbations.
PNonaxisymmetric.
CAxisymmetrig reflectively symmetrc abou the equatori& plane.
dAxisymmetrig reflectively antisymmetri abou the equatori plane.
Il. SMALL PERTURBATIONS C*
| T =T p
In the genera case an equilibrium free surfae under i |
weightlessnesis a surfae of constamh mean curvatue H, | T i |
ie., i——po =0 | f | .
2H=q.~ (15) j | :
Conside an axisymmetre equilibrium surfae T" that en- : | €
closes the domah Q occupiel by the liquid and a perturbed ! ¢ (c)
equilibrium surfa@ close to I'. Poins R(s,¢) on the unper- ‘|E (b)
turbad surfa@ are related to points R4(s, ¢) on the perturbed (@)
surfae through adisplacementN, along thenormd nto I, |
that is, | :
Ri(5,¢)=R(5,¢) +n(S,0)N(s,¢), | : |
R(s,@)=ir(s)cosp-+jr(s)sin p+kz(s), (16 i | T : T
n(s,p)=—iz'(s)cosep—jz’'(s)sin ¢+kr’(s). l T : |
. _ _ |
Accordirg to (16), for a point on the perturbel surfae lying i | |
outsice Q, N will be positive (negative if the unperturbed | l |
liquid doman Q isto theright (left) as s increasesThe mean | | |
curvatue of the perturbe surfa@ can be calculate from the | | |
first and secom fundamenth forms of the surfacé® using ¢ | l
(16). It is arathe complicatel expressia and is presented, | |
up to terns of third orde in N, in Appendk A. (d) i Ji
For a fixed slendernessA, we let a perturbatian of the ¢ f
equilibrium surfa@ be induced by a smal variation of the (e) M

relative volume AV = V — V. Here V, correspondto the
unperturbd volume Then we require that N(s,¢) should
satisfy (15), the fixed contac line conditions

N(_Sl,(P)zN(Sl,(P)ZO, (17)

1896~  Phys. Fluids, Vol. 9, No. 7, July 1997~

FIG. 3. Schemat sketd of the profiles of the critical axisymmetrt equi-
librium surface belongirg to segmerg (a) Am, (b) ABC, (c) CD, (d) DE, (e)
EF, ard (f) Fn of the bounday of the stability region.
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and

AV=s JN o PR
~F2matn N2 AT
+ Ly Z N3|dT 18
38 . (18)
Heres = s; ands = —s; arethevalues of s a the endpoints

of the profile of I'. In (18), one shout use the uppe (lower)
sign if Q isto the right (left) as the arclengh s increases.

The solutiors of the equilibrium problen bifurcae for
critical values of the parametersTherefore in wha follows
the critical axisymmetre surfae (withV, = V,.) will be cho-
sen as the surfa@ I'. To simplify the calculations we shall
assune a priori tha the rough ca% of bifurcation i.e., where
the bifurcatel solutiors are expandd in half-integrd powers
of asmal incremen of V, is the mod typicd for the critical
statest® The validity of this assumptia wil| be establishd in
Sec VI C. Thus we take

V=V, +e24 >0

N=geN;(s, @)+ &°Ny(s,@)+-+ , (19

q=0o+edi e’y -+ .

Here the choice of the uppe or lower sign correspondto an
increag or decreas of the relative volume from its critical
value.

Substituting (19) into (15), (17), and (18), and equating
coefficiens of like powess of ¢, we find the following zeroth-
orde relation for the critical axisymmetrt surfae T',

B'+Z'Ir=qp,~ (20

togethe with a sequene of boundary-vale problens from
which N;(s,¢) andq; (i = 1) can be determinedUsing (20)
ard expressia (Al) for 2H (Appendk A), we can write the
problensfori = 1,2 ard thedifferentid equatimfori = 3in
the form

LN;—d;=0,7 Ny(—S1,¢)=N;(S1,¢)=0,

erl dr=0- 1)
LNy —0g,=f5(r,z,Ny),= (22
N2(—S1,¢)=Na(s1,¢)=0, (23
[ Noar=5 a0 | N2 drs2msylasyl~ (29
LN3—qz=f3(r,z,N1,N3),~ (25

where

12

r’ 1 '
B +r—z

LNENgs+TN;+r—2N;¢+ N

and the expressioafor f, and f5 are presentd in Appendix
A. We note tha a prime superscrip on the function N de-
notes apartid derivative with respet to the argumen indi-
catal in the subscript.

Phys. Fluids, Vol. 9, No. 7, July 1997~

It shoul be noted that when the secom term on the
right-hard side of (24) is precedd by the uppe sign it rep-
resens an increa® (decreasgof the relative volume if with
increasily s, the doman () is on the right (left). Alterna-
tively, the lower sign represerg a volume decreas (in-
creasg One can see from Fig. 3 that the doman () is on the
right when the critical surface belorg to the ABCD segment,
ard is on the left when critical surfaca belorg to the Am and
DEFn segmert of the boundary.

IV. A FIRST APPROXIMATION

For critical equilibrium states the problen (21) hes a
nontrivid solution The solution N;(s,¢) represents the
shaye of the perturbatim that resuls in neutrd stability. Tak-
ing into accou the resuls that were presentd earlig in Sec.
Il, we have

N;=Q;Z'(s)sing, ;=0 on mMABGC- (26)
N;=Qqu(s),m ;=Q; om CDE- (27)
N;=Q1r'(s),

g;=0 on EFn excep a the point F;- (28
N.=Q; sin%z,ﬂ ;=0 aF. = (29

Here we see tha N; has nonaxisymmetd shape along
mABGC while for the remainirg portiors of the stability
bounday it is axisymmetric The function u(s) is even and,
intheintervd 0 < s < s,, isthe solution of the problem

S
Lou=1- (0<s<s;),~ U(S7)=0~ flru ds=0,
0

(30)

ard can be representé as
u(s)=uy(s)+ ajUo(s).m (3D
Herea; = —u(s1)/uqg(sy), and ug(s) and uq(s) are the so-

lutions of
LoUup=0- (0=s=<s$;),~ Up(0)=1,~ up(0)=0,~ (32
Lou; =1~ (0<s<s;),~ U4(0)=1,~ u;(0)=0-~ (33

The operato L, is given by
d2 ’ 12 2
= —s I ,2 —A — 5 = =
Ln—dsz+ . ds+(’8 + 2 r2>’ n=0.

For solutiors of the form (31), the first of the conditiors (30)
is satisfie automatically while the secoml is satisfia by the
location of the endpoint s,. Equatiors (9)—(11) determine
this location in dimensionles variables.

The amplituce Q is a constam for ever critical state.
Ultimately, we hawe to calculat Q,, becausgaccordirg to
(26)—(29), this provides afirst approximatia of the shapes
of the bifurcatad equilibrium surfaceslin the proces of solv-
ing for Qq, the regin of existene and the stability of the
bifurcated states are both determined.

Slobozhanin, Alexander, and Resnick 1897
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To obtan Q,, the solvability conditiors for the
boundary-vale problens for higher-orde approximations
are used Eat of the resultirg Fredholm-tyg problens is
self-conjuga¢ ard has the form

LNi—qgi=f;,= Nij(£s;,¢)=0, (34)

fNi dF:Ji (|22),
r

whet f; ard J; depen on the shage of I" and on the preced-
ing solutiors {N,.,q,} (k < i). Sinaethe homogeneasiprob-
lem (21) has the nontrivid solutiors {N,q,}, (34) has solu-
tions if and only if the orthogonaliy conditions

erlfi dlI'-q4J;=0,~ i=2~ (35
are satisfie for ead {N;,q4}.

The casa for which (21) has a unique nontrivid solution
will be analyza later. The points C ard E of the stability
boundary where two linearly independen nontrivid solu-
tions exig [solutiors (26), (27) ard (27), (28), respectively,
will not be considered.

If achang in systen parametesresulsin atransforma-
tion from one critical equilibrium stae to another then there
is no bifurcation Therefore for fixed A, if only the volume
isvaried N, = 0 at the point where the tangen to the stabil-
ity region bounday is verticd (i.e., at the point B of Fig. 2).
For othe points on the stability boundary the approximate
solution found by allowing only variatiorsin V enable us to
find the approximag solution for arbitray variatiors of the
systen parametes (in particulay when V is fixed ard A
changek

V. THE BIFURCATION EQUATIONS

In this section we derive the bifurcation equationsThese
equatiors determire the values of Q4 for the different seg-
mens of the stability bounday and are distinguishé by the
natue of the critical perturbatios tha lead to neutra stabil-
ity. In particular we emphasie the new resuls obtainal for
the stability bounday segmehmABC correspondig to criti-
cd nonaxisymmetid perturbations.

A. Segment mABC
From (A2) (in Appendk A) and (26), we obtain
f2=QiFo(s) + QiF 2(s)cos 2,
12
Fo(s) =772

!

z
ﬁ’+37)—F(s),

12/2 , Zr
Fa(s)=7 72 | B' =5 | +F(s),
F _l 13 1 12 12 ’ 'z 42’ S l
(S)=5 B\ 5" =27 +p" — T 2k
2/5
+r—3,

and see that (35) is satisfi@ fori = 2.
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To obtan the bifurcation equation we mug first find
N, ard g,. The solution N, of Eq. (22) has the form

N,=Q2go(s) +q20:1(8) + Q2ga(s)cos 2¢
+Q,z'(s)sin ¢, (36)

where Q; is constatand gj(s) (j = 0,1, are the solutions
to the equations

Logo=Fo(S),m Log1=1,~ Lygo=Fy(s).

Since Fy(s) and F,(s) are even functions it then follows
both from the symmety of T" with respet to the equatorial
plare and the form of Ly and L, tha the solution N,(s, ¢)
will satisfy (23) provided tha the functiors gj(s) (j
= 0,1,2 aregiven by

Jo=Do(8) + agUo(S), gl=U(s)=u1(s)+aluo(s),(37)

g2=by(s) + ayuy(s).

Here uy(s) ard u4(s) are the solutiors of (32) ard (33), and
bo(s), b,(s) ard u,(s) are the solutiors to

Lobo=Fo(s) (0=s=<s;),m by(0)=1,~ by(0)=0,
Lob,=F,(s) (0<s<s;),m b,(0)=1,~ by(0)=0,
Louy,=0- (0<s<s5;),~ Uy(0)=1,~ uy(0)=0.

The coefficientsay and «, are given by
= —bo(S1)/Up(S1), az=—ba(s1)/Uz(sy).

Substitutian of (26) and (36) into (24), ard using the fact that
gj(s) (j = 0,1,9 are even functions leads to the equality

02=QiD1+Dy,~ (39)
where D, ard D, are given by

D— 1 Jsl ’zd GO
1_4_qu° OTZ S— =,

1 sy
Do=5= r2(51)|z(51)|,—| Gk:J’ gr ds  (k=0,1).
ZG]_ 0

Finally, from the solvability condition

j leg dF:O
T

for the third approximatia problem togethe with the ex-
pressim for f4 [see (A3) in Appendk A] and (26), and (36)—
(38), we obtain the bifurcation equation

QiB,+A;=0- (39

The values of A; and B; depem on the shae of the profile

of the critical equilibrium surfa@ tha can be determined
accordimg to the methal describé in Sec 1. Expressios for

A; and B, are rathe cumbersomeard are given in Appen-
dix B.

B. Segment CDE

On the segmet mABC the orthogonaliy condition (35)
is identically satisfiel for i = 2, while the bifurcation equa-
tion is deduce from the condition (35) for i = 3. A similar
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situatian arises in the analyss of bifurcation along EFn. This

is due to the natuee of the problem where the critical axisym-
metric surfa@ (with an equatoria symmety plan@ is neu-
trally stabk eithe to nonaxisymmetd perturbatios (seg-
mert mABQ or to an axisymmetrt perturbation tha is

antisymmetrie with respet to the equatoria plane (segment
EFn). Along CDE, the critical perturbatio is axisymmetric
ard equatorialy symmetric Here the bifurcation equatiao is

deducd from the solvability condition (35) for the second
approximatia problem (i = 2). It hasthe form

Q2B,=—1~ (40)

The expressia for the coefficient B, is presentd in Appen-
dix B.

C. Segment EFn

For all points of this segmentexcep the point F, the
equalities (28) hold. Using the first of them we obtan f,
= Q2F4(s) and

’ 4

81 z' z
r_ — | _ 51212 r_ 1 12
B r) 22B<,3 r)+%,3 12,

It can be readily verified that (35) is satisfi@ fori = 2. Upon
determinatio of N, ard q,, the condition (35) fori = 3
reducs to the following bifurcation equation:

QiBgi A3: O.—|
The coefficiens A; ard B3 are presentd in Appendk B.

F3:r,2

(41)

VI. NUMERICAL AND ANALYTICAL RESULTS

In this section we presen the resuls of numerich and
analyticd analyss of the bifurcation equatiors obtainal in
Sec V. In particular SecsVI A and B ded with bifurcations
to nonaxisymmetd shaps and Tablke Il summarize the
types of bifurcation alorng ead bounday segment Except
for the case of catenoid we use dimensionles quantities
with gy 1 as the characteristi length For cross reference
with dimension& equations we note tha all dimensional
guantities excep q, are replacel in eah equatian by their
dimensionles analogs while q, is s& equa to unity. All
dimensionles quantities exceptp, ¢, and 7 [see (3)], are
distinguishe from their dimension& counterpas by a bar
overscript.

A. Segment Am

Numericd resuls for the AT, segmeh[A <0.4946 Fig.
2(a)] show tha A;>0 ard B;<0. In contrast within the
Tim brant (A>0.4949 both A; ard B; are positive The
dependeneof A;/B; on A is shown in Fig. 4.

Taking (7) into account expansios in powes of the
smal parameterv=pg, 1 can be usal to obtan asymptotic
expressioa for p(7), £'(7), 71, Ug(7), Us(7), Us(7), bo(7),
b,(7), A, Ay, and B; a large values of py. Restricting
ourselve to the determinatioa of the two principd terms
which define the behavio of A; and B;, we arrive at the
equalities

A=v+ 21+ 7l +o(v?),
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I

FIG. 4. The ratio of the bifurcation equation coefficients AillBil as a
function of slenderness\, within the segmehAm of the stability boundary.

A== |10 2+ 2| |+0(» ! 42)
1_2V2 v 4 O(V )1_' (
— 1

B;=— == (1-3v)+o0(v ?),

6mv°

from which we can see that

(Q1)1=—(Q1)>

—|AL/B,|¥2= \/377/\( 1- % A

Equatiors (42) ard (43) are in full agreemenwith numerical
resuls for smal A (or large pg).

The coefficiert B, vanishe at the point T, (see Table ).
It shout also be notal that the radius of convergene of the
expansios (19) tends to ze as the point T, is approached.
This mears that in a smal neighborhod of the point T, the
shaps of bifurcatal surface canna be expresse as a series
in half-integra powess of [V—V,|. In this caseit shoutl be
expectd tha expansios in powes |V—V, |3 are valid.*

Inspectia of the sigrs of A; ard B, and of the direction
of motion along critical surfae profiles (see Sec Il ) reveals
tha red solutiors of the dimensionles form of (39) exig in
a neighborhod (|V-V,|<1) eithe alorg AT; for
V<V, , or along Tym for V>V, . To afirst approximation,
the® solutiors determire (to within an arbitray rotation
abou the ¢ axis) the shape perturbation of surfaces that bi-
furcake in the indicatel (V<V, or V>V,) directions:
N=¢ \/|A1/Bl|§’(7)sin @.

On the bounday Am, the axisymmetrg equilibrium state
is critical with respetto nonaxisymmetd perturbatios and
is stabk with respet to axisymmetrt ones The problem
(21) has anonaxisymmetd solution and has no nontrivial

+0(A%?) = (43)
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FIG. 5. Bifurcation diagrans in the plare of the dimensionles variables
Qe ard V for the critical axisymmetre states belongirg to segmerg (a)

T.mard BT3, (b) AT, ard T5C, (c) AT, ard EFn, (d) T,B, ard () CDE
of the stability boundary The stabk states are denotel by solid curves (—)

and unstabé ones by dashe curves (---). The thick verticd solid line Q&

= 0 correspondto axisymmetre shape tha hawe an equatorih symmetry
plare (for emphasisthis line is separate from the V axis).

axisymmetrt solutions Thus axisymmetr¢ solutiors of the
equilibrium problem hawe aunique continuots extensia into
the supercritich region and can be expressd as aseries in
integrd powes of (V — V,) providal tha this quantit is
small Sketche of the bifurcatiors at points within the seg-
mens T;m and AT, are shown in Figs 5(a) and 5(b), re-
spectively.

For A > 0.4946 a bridge will adop stabk nonaxisym-
metric shaps wheneve stability is lost on the uppe bound-
ary. Plateati observe sud continuows shag transitiors in
experimend more than acentuy aga For A < 0.4946 how-
ever, an identicad evolution leads to adiscontinuity Accord-
ing to our experimenthresuls (see Sec VIl), the system
undergos a finite jump from acritical stak to a stabk non-
axisymmetrt one.

Fowle et al.?° (experimentally and Brown ard Scriverf°
(theoretically reachd the same qualitative conclusia for
rotating weightles bridges They found tha for critical
“thick’ ' (V > 1) bridges asupercritichbifurcation to stable
families of nonaxisymmetd shaps was possible Alterna-
tively, for slightly bulged bridges (i.e., bridges with V
slightly more than 1), loss of stability to nonaxisymmetric
perturbatios leads to subcriticd bifurcation?°

B. Segment ABC

Accordirg to our numericé results A is positive along
AB, changsiits sign at the point B, and is negative along BC.
The sign chang at point B has been explainel at the erd of
Sec IV. The coefficiert B, has negative values within the
segmerg AT, and T3C ard is positive within the segment
T,BT; [Fig. 2(b)]. The points T, ard T; (see Tabke |), like
the point T,, are singular The numeric4 values of A;/B;
alorg the segmeh ABC are representé in Fig. 6.

From (8), we can dedu@ expansios similar to those
describé in Sec VI A. We then obtan the principd terms
that defire the behavia of A, A1, and B, for large values of
po (i.e., nea the point A). Finally, in place of (42) and (43
we have
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FIG. 6. Dependene of coefficiens ratio A_llB_1 on A within the segments
AT,B (a) ard CT3B (b) of the stability boundary.

A=v—v?(1+mld)+0(1?),

Al 1+v

2+ 7} +o(v?
2| o),

"27

Bl=—m(1—3v)+o(v_2),

and

(Qu)1=—(Qp)p= 37A| 1+ % Al +0(A%2).

From the sigrs of the coefficiens A; ard B, ard from
the direction of motion alorg the critical profiles it can be
concludel tha the bifurcation takes place into the region V
>V, within the segmerg AT, and BT; ard into the region
V < V, within the segmerg T,B ard T;C. Consequently,
the bifurcation is supercritichwithin T,BT;, and is subcriti-
cd within AT, and T5;C [Figs 5(a)-5(d)].

C. Segments CDE and EFn and special cases

A detailed analyss of the bifurcation amorg axisymmet-
ric bridge shaps has been performel by Lowry ard Steer’
In particulay for fixed values of A, they constructd families
of possibe axisymmetre equilibrium states and presented
them in the (p,V)-plare (p = aq is the dimensionles pres-
sure jump at afree surface. The (p,V)-diagrans so obtained
representhe bifurcation structure From thes diagramsthe
stability or instability to axisymmetr¢ perturbatios can also
be determine for differert equilibrium branchs (or part of
them) usirg the location of the turning points in volume and
the brand points.

It has also been showr? that interior points of the bound-
ary segmeh CDE are the turning points in volume for axi-
symmetrc equatorialy symmetrc states Thus two branches
of axisymmetrt equatorialy symmetrc states tha are lo-
catel in the subcriticd region V > V. bifurcat from acriti-
cd stak correspondig to a point within CDE. One of the
branchs consiss of stabk states and the othe of unstable
ones [Fig. 5(e)]. The unstabé axisymmetrt (but equatorially

Slobozhanin, Alexander, and Resnick

Copyright ©2001. All Rights Reserved.



antisymmetri¢ states bifurcaie from evewy interior point of
EFn into the subcriticd region V >V, [Fig 5(c)].

Resuls of our calculatiors of the coefficiens B,, Az,
and B; of the bifurcation equatios (40) ard (41) along
CDE ard EFn are in complee agreemenwith the above
conclusions Thus we preseh resuls only for speci& cases.

Critical catenoid The parametes of the critical catenoid
(the point D) are given in Table I. In addition we hawe s;
= —ry/tanB; = 4.6396,, wherer, isthe equatoridradius
of the critical catenadl (ro = a sin 8; = 0.2104). Wefound
that B, = —3.534%} for the cas when the doman Q isto
the left with increasig s. Thus for V > V, = 0.2405 there
are two branche of equilibrium surface tha bifurcate from
the critical catenoid They are characterizé by N;
= =+ 0.531%r,*. The dimensionles function u(s)r, 2 for
the critical catenoil was calculatel using (31)—(33).

Almog cylindrical critical surfaces The solution of the
bifurcation problem for the critical surface close to that of a
cylinder is found using (7) and expansios for p(7), {'(7), A,
Uo(7), uy(7), andbs(7) (see Appendix Bin terms of the
smal parametej; = po — 1. Thisyieldsthefollowing result

— \F(zw—A)
Q== §W+0(1)--'

The discrepang betwee the values obtainal from (44) and
the numericaresuls is within 1% for |7 — A| < 0.35. Fur-
thermorgsineN; = Q;p’(7), we find that

_—+\F1 -2

mEN3 | T
2

1-—].~
o

Theresut for acritical cylinder (A = ) is a special case of
(45).

From the gener& theorl of bifurcation of solutiors of
nonlinea equatios (see for example Ref. 30), it can be
proved tha if the coefficiens A; and B; of the bifurcation
equatio are nonzerg then there are only two branche of
bifurcated equilibrium shapesFurthermorethes shape can
be representg as aseries in half-integrd powes of the de-
viation of the equilibrium parametes from their critical val-
ues This justifies our earlie assumptia tha the rough type
of bifurcation can be usel at all points of the stability bound-
ary excep at the singula points T,, T,, and T3 (and the
points C and E which were nat examinel here.

(44)

7
Z+COST

Xsin7+0 (45

VII. EXPERIMENTS

In Sec VI A we describé the natue of the stability
bounday segmeh Am. Here the axisymmetre equilibrium
stak is critical with respet to nonaxisymmetd perturba-
tions ard is stabk to axisymmetrt ones We noted tha on
this segmehwith A > A4 = 0.4946 a bridge will continu-
ously adop stabk nonaxisymmeti shape upm loss of sta-
bility of axisymmetr¢ shapesHowever for A < A, wepre-
dicted tha loss of stability leads to a discontinuos change of
a critical shape.
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FIG. 7. Bridgeimagesfor A = 0.25[(a)—(c)]and A = 1.02[(d)—(f)]. States
(a) ard (d) are stabk axisymmetre ones with volumes V; = 1.31 ard V,
= 2.8 that are respectivelyslightly less the associate (experimentalcriti-
cd volumes of 1.33 and 2.83 for the given A. The nonaxisymmetd bridges
(b) and (c) havevolumesof V; + 0.05 and V; + 0.05 while (e) and (f) have
volumesof V, + 0.0%ardV, + 0.19.

To investigae this we performel experimersg in a 3.8
X 10* cm?® Plateas tark unde almog neutraly buoyar con-
ditions A silicone oil (5 cs polydimethylsiloxae Dow
Corning 200 serieg was usal as abridge liquid, and a mix-
ture of wate and methant as asurroundig liquid bath The
mixture compositin was adjustel to achiewe a densiy dif-
ference Ap, between mixture and oil as small as possible.
Densities were measurd accuratef to 2.5 X 10 * g/cnt us-
ing a calibratel hydrometer The estimatel maximun value
of Ap was 5% 10 # g/cn?. The interfacid tension,o, was
145 = 05 dyne/cm The disk radiussa was 0.5 = 0.0 cm.
Experimens were conducté in a temperature-controlled
room which, togethe with the large therma mas of the
bath led to smal temperatue variatiors in the tank Re-
cordal temperatue variatiors did not exceel 0.01 K over 30
min, so o and Ap were almost constant for the duration of
ead experiment Thus the magnituc of the Bond number,
B = Apga®/o (hereg = 980 cm/$), wasat mog 10 2.

A liquid bridge of a sd slenderneswas formed between
coaxid disks High precisio steppimg motors were usal to
contrd the disk separatia while simultaneousl injecting
silicone oil. Oil was injected until the bridge was nea the
uppe stability limit for the slendernesundea consideration.
Precisey controlled amouns of oil were then addel incre-
mentally using a calibratel microsyringe The relative vol-
ume incremeih was abou 1 patt in 200 After ead addition
of oil, the bridge was allowed to deform and come to rest.
The bridge was imageal using a coherem high-magnification
Fourieg opticd arrangemeintogethe with ahigh-pas optical
filter. This permits visualization of edges of projectiors of
the liquid bridge surfae at approximatgl 100X magnifica-
tion. From this image the minimum distan@ | (shown sche-
matically on the larger scak photograpkin Fig. 7) from the
bridge surfa@ to a stationay reticule was measurd on a
compute screen Typically, the distan@ decrease slightly
with ead addition of oil until the stability limit is exceeded.

Slobozhanin, Alexander, and Resnick 1901

Copyright ©2001. All Rights Reserved.



When this occurs the bridge forms abulge The correspond-
ing deformation of the bridge is characterize as follows.

First the projectian of the edce of the surfae 180° from the

maximum bulge is located The distan@ betwea the edce of

the projectal image of the bridge surfae opposie the bulge
ard the stationay reticule is then recorded Furthe incre-

mentd additiors of oil lead to an increag in the distance
betwea the edge of the image ard the reticule This distance
is recordel for ead increment Becaus the resultirg incre-

menta deformatiors of the bridge are on the orde of several
microns care was taken to ensue the bridge was properly
isolated from vibration It was also necessar to ensue that
there was no backlas in the injection system.

A similar experimenthtechnique was usal by Rus® and
Steert” excep that they fixed the actud bridge volume v,
ard decrease the disk separatia to find the maximun rela-
tive volume stability limit. As regard this limit for axisym-
metric states our experimers (like the experiment¥’ per-
formed for A<1) agree@ with the theoretich prediction
(segmen Am) for relatively smal values of A. However at
large A, tangens at the endpoins of critical surfae profiles
showel adiscernibé deviation from the horizontal Here the
critical axisymmetre states were found to occu below the
theoretica limit. With large values of A (and volumes, an
axisymmetrt bridge is more sensitive to red finite amplitude
disturbancs and to nonzeo Bond numbers.

After loss of stability, the critical axisymmetrc shape
change to a stabk nonaxisymmetd shape However the
natue of this transition was found to be quite differert for
A=<04and A=0.6. Figure 7 shows a sequene of images of
aA=0.25 bridge nea the critical V value The theoretically
predictel critical volume is 1.36 the critical volume ob-
tained experimentalf was 1.33 For A = 0.225 alarge shape
deformatia occuss after the addition of only a smal volume
incremen [compae Figs 7(a) and 7(b)]. Furthe volume in-
creass lead to continuows incrementashag changs [Figs.
7(b) and 7(c)]. In contrastfor A=1.02 [Figs 7 (d)-7(f)], we
observe a continuots transitian from critical axisymmetric
shape to a sequene of the stabke nonaxisymmetd shaps as
the volume was increasedHere the theoreticé critical vol-
ume is 2.9 ard our experimenthcritical volume was be-
tween 2.83 and 2.85 In both casesour experimenthcritical
volumes were within 5% of the theoretich values ard the
nonaxisymmetd bridges were stabk at volumes far beyond
the maximum volume stability limit for axisymmetric
bridges.

The grapts in Fig. 8 shav the rate of chang of dimen-
sionles deformationé=1/a with the relative volume in the
vicinity of the axisymmetrt to nonaxisymmetid transition.
For A=<0.4, the curve peals sharpy in the immediat vicin-
ity of the critical volume With smalle A, the maximum
value of d¢/dV becomes larger. In contrast, far=0.6, the
curve is rounded and deformatia occuss continuousy over
a muc large range of volume Note tha even for
A =0.40Q the maximum value of d¢/dV is much larger than
for A=0.60.

Although hysteres was expectd for A<Ag, no hys-
teresg was observe eithe in our experimers or in thos of
Rus® ard Steert’ It is possibe tha the unstabeé bifurcating
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FIG. 8. Rak of chang of dimensionles bridge deformation¢ with relative
volume (d&/dV) as a function of relative volum¥ in the vicinity of the
critical volume V, correspondig to the axisymmetrc—nonaxisymmetric
transition.

nonaxisymmetd states exig only in a smal subcritica vi-
cinity of the segmehAT;.

VIIl. CONCLUSIONS

To a first approximation the bifurcation problen has
bee solved for all axisymmetrt critical states of a liquid
bridge excepp thoe correspondig to the points T,, T,,
T3, C, ard E on the bounday of the stability region shown
in Fig. 2. Motivated by the lack of a comprehensie system-
atic study of states tha are critical to nonaxisymmetad per-
turbations particula emphasi has been placal on the ex-
amination of this aspet of the bifurcation problem States
tha are critical to nonaxisymmetd perturbatios lie on the
segmeh mABC of the stability bounday for axisymmetric
bridges This segmen contairs the singula points T, T,,
ard T;. We found tha if the pah of the stability region
crosss the T;m or the T,BT5; segmentsstabk nonaxisym-
metric liquid bridges appear In this case the stabk axisym-
metric states are replacel continuousy by the stabke nonaxi-
symmetrc ones Expressios for thee nonaxisymmetric
shaps nea the stability bounday were obtained When sta-
bility is lost a the bounday segmenh T,{A T, or T3C, the
bridge shag changs discontinuously In particular loss of
stability along T;A was see to occu through alarge defor-
mation from the critical axisymmetrc stake to a stabke non-
axisymmetr¢ state.
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APPENDIX A: THE MEAN CURVATURE H OF A PERTURBED SURFACE AND THE FUNCTIONS f, AND f,
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Herg the primes denot partid derivatives of the functiors N, N;, and N, with respet to the argumers indicatal in the

subscripts.

APPENDIX B: COEFFICIENTS A4, B, B,, A3, AND B; OF THE BIFURCATION EQUATIONS
The coefficiens A; ard B, of the equatio (39) are

1 S1 S1
Al:G_l r2(31)|2(51)|E1,_| G]_: fo uqr ds+ alfo Ugr dS,

Sy S1
El:j (M11u1+M12u1+M13u’1')dS+a1f (M11U0+M12U6+M13U6)ds,
0 0

and

+ 2M13( b~ 5 b}

bb2

S1 1
Bl:f ZM]_]_ b b2 +M14
0

Sy 1 Sy
+a0f (2M11UO+M14U6+2M13u8)dS_Eazf [Z(Mll—M15)u2+M14ué+2M13ug]dS
0 0

2El ) 1
-— bor ds+a0f Uor ds—— qof rz'2 ds|,
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with

1251 ’ 4 2 r'z 12 Z' 121
Mu=r"z'{ B'=—| = Mpp=———|z + r2g'| B - 7| Mag=—rz747,
Z/
-5

z'\[9 z
Mlaz_rrZZ/(Br__)[g Bl2(r/2 4272)+

r

2

Z/2 z!

Mig=—rr'z B’ +3

Z/
+do T}'_' M15:_

12 ’

S| +2'% = r,8’4— 3 (1+22' %+ z 2,8’+15£
8r3 8r? r

3
_ /4 /3/3

e 21 7y 1 7
A L s A L

The coefficiert B, of the equatia (40) is

3
_ /2 12
27

2

B2 2 s 2(sy)]

3% 3 2 2 2 2 [ 2
alfo (M 21U0+ M 22U0U0+ M 23U0U’0+ M 24U0U”0)d5+ CllJ’O [3M 21u0u1
+ My (UgU; + 2UgubUy) + Moz Uh2uy + 2Uguhu)) + M ps(UBUS + 2ugufuy) + MpsuZ]ds
", 2

S1
+ alf [3M p1UgUi+ Mo (UfUZ+ 2UgUUy) + M og(Ugui 2+ 2ugUqUf) + M pg(UguZ+ 2ugu U
0

+2M25uou1]ds+f (M21u1+M22u u;+Moguqug +M24u2 T+ M25ul)ds]

where

13

3Z r'z'
Bt =),

1 z’ 1
Ma;=—r " Mg=—-2—— Mzs—_§r<ﬁ,_7)-" Mas==2rB", Mas=— 5 Qo

The coefficiens A; ard B3 of the equation (41) are

1 2
A3:G_1r (s1)|z(sy)|E3,

S S
Bng 1(2M31b3+2|\/|32bé+2M33bg+M34)ds+2a3j 1(M31U0+M32U6+M33U6)d5
0 0

2E3{

S
f bar ds+a3j Uof ds——qu "rr'2 ds|,
0

where

Sy S1
E3=j (Mguy+Mgous + M33U,1’)d3+041f (M3up+ Mgzug+ Mggug)ds,
0 0

72/ ’ Z' ? r'z 12 1 2t ’ Z' 12 ot
Mai=—1"22'[ B/ = | ;= Mgp=——— "2~ S 128'| B’ = —| ;= Mgg=—r1 23",

r r

12 z' 12 7'

z'4 z z
M34:_rr/4(r_4_2ﬁ/4 +r/4zrﬂ/(r_2+7TBr_SﬂrZ)_’_rr/ZZ/ZB/Z(_r_2+27ﬂ/_3312 ,

the function bs(s) is the solution of the problem

Lobs=F3(s) (0=<s<s;),m b3(0)=1~ b3(0)=0,

anda3 = - b3(31)/U0(sl) .
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