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Design and Validation for FPGA Trust
under Hardware Trojan Attacks

Sanchita Mal-Sarkar, Member, IEEE, Robert Karam, Student Member, IEEE,
Seetharam Narasimhan, Member, IEEE, Anandaroop Ghosh,
Aswin Krishna, Student Member, IEEE, and Swarup Bhunia, Senior Member, IEEE

Abstract—Field programmable gate arrays (FPGAs) are being increasingly used in a wide range of critical applications, including
industrial, automotive, medical, and military systems. Since FPGA vendors are typically fabless, it is more economical to outsource
device production to off-shore facilities. This introduces many opportunities for the insertion of malicious alterations of FPGA devices
in the foundry, referred to as hardware Trojan attacks, that can cause logical and physical malfunctions during field operation. The
vulnerability of these devices to hardware attacks raises serious security concerns regarding hardware and design assurance. In this
paper, we present a taxonomy of FPGA-specific hardware Trojan attacks based on activation and payload characteristics along with
Trojan models that can be inserted by an attacker. We also present an efficient Trojan detection method for FPGA based on a
combined approach of logic-testing and side-channel analysis. Finally, we propose a novel design approach, referred to as Adapted
Triple Modular Redundancy (ATMR), to reliably protect against Trojan circuits of varying forms in FPGA devices. We compare ATMR
with the conventional TMR approach. The results demonstrate the advantages of ATMR over TMR with respect to power overhead,
while maintaining the same or higher level of security and performances as TMR. Further improvement in overhead associated with

ATMR is achieved by exploiting reconfiguration and time-sharing of resources.

INTRODUCTION

FIELD programmable gate arrays (FPGA) are integrated
circuits (IC), consisting of an array of logic blocks and
distributed interconnect structure, which can be pro-
grammed and reprogrammed several times post-
manufacturing to implement logic functions. Early FPGAs
were used only as prototypes for implementing ASIC
designs on hardware for functional verification. In the past
decade, advances in fabrication processes have reduced the
performance gap between FPGAs and ASICs, leading to
FPGAs being the main solution in a variety of perfor-
mance-critical applications. Additionally, designs imple-
mented on FPGAs do not suffer the increasing non-
recurring engineering (NRE) costs of ASIC production.
FPGAs are typically designed as an interleaved array of
configurable logic blocks, programmable interconnects, and
distributed embedded memory blocks (EMBs). High
resource availability and the flexibility of the interconnect
network enables designs to perform multiple parallel oper-
ations each cycle for increased computational power com-
pared to sequential processors.
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Previous research on programmable logic devices has
primarily focused on tapping their potential for implement-
ing signal processing algorithms, building reconfigurable
systems, and for applications in a wide range of usage
domains, including satellite, automotive, and military sys-
tems. More recently, FPGAs have been used for encryption
and secure processing due to the efficient implementation
of cryptographic algorithms. The growing use of FPGAs in
diverse and critical applications has motivated designers to
consider the security of these devices. In this context, secu-
rity refers to protecting against Intellectual Property (IP)
Piracy, due to the substantial financial investment involved
in developing the IP. Little attention has been directed
towards security and assurance of the physical system itself.
Malicious alterations to the design are possible at several
stages of design flow in FPGAs, as shown in Fig. 1. Security
in every stage of the design flow is of growing importance;
in response, the Defense Advanced Research Projects
Agency (DARPA) [1] has initiated the TRUST in Integrated
Circuits program for hardware validation, including FPGA
device security and protection of third-party IP.

To the best of our knowledge, FPGA system protection
has been investigated by relatively few researchers [2],[4],
[3]. Hadzic et al. describe various logical and electrical
attacks possible to cause malfunction and physical des-
truction of an FPGA device. These attacks are caused by
creating internal conflicts in the device by inserting mali-
cious code in the configuration files of designs [3]. Drimer
presents attack models such as replay attacks, cloning,
authentication attacks, power analysis attacks, invasive and
semi-invasive attacks, and radiation attacks as related to the
security of FPGA design [4]. None of these prior works,
however, discusses hardware attacks in the foundry as a
means to cause malfunction and leak IP.
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Fig. 1. Simplified diagram of FPGA design flow from device design to
deployment showing possible stages for malicious alterations.

Trimberger discusses the issue of foundry trust as related
to the production of FPGAs [2]. However, Trimberger
claims that attacks on FPGA hardware in the foundry as a
means to tamper with the functionality of the final design
are unlikely for several reasons: (1) the foundry does not
know about the design being mapped or end application of
the devices; (2) a large number of reconfigurable resources
enables the usage of Triple Modular Redundancy (TMR), so
that critical functions are replicated three times, and a
majority vote circuit can be used to select the most common
output; (3) exhaustively testing the bitstream security fea-
tures can ensure that any attacks on them are detected dur-
ing testing; (4) a sample of chips can be destructively tested
after fabrication to identify extraneous logic.

However, even with the above-mentioned security
features ensuring the integrity of FPGA devices, we can
demonstrate that a variety of Trojan attacks are possible in
the foundry. First, we show that not all attacks have to
depend on the final design and it is possible to insert
malicious logic, which is independent of the design. Besides
causing malfunction, a Trojan in the FPGA can be used to
either partially or even completely leak the IP implemented
in the device. Moreover, an attacker in the foundry can dis-
tribute Trojans dependent on the internal logic values over
the chip. Even though such Trojans which depend on the IP
have a low probability of being triggered, this is still
unacceptable for mission-critical applications.

Second, although bitstream security functions can be
fully tested to ensure that no attacks are made on the
FPGA'’s security, an attack can be made to steal a key and
not cause a malfunction. Thus, thoroughly testing the secu-
rity functions may not help in protecting the IP from being
copied by an attacker. Furthermore, sampling the fabricated
devices may not provide complete confidence that the
device has not been altered during production; in other
words, though invasive testing may not reveal any Trojans,

their absence in the tested devices does not necessarily
imply absence on other untested devices. Since most FPGA
vendors are fabless and rely on off-shore foundries for
production, hardware Trojans inserted in the foundry pose
a practical threat to the functionality and reliability of the
device.

Third, the TMR technique suggested in [2] suffers from
high area, power, and performance overhead. Given the
relatively high power consumption and poor performance
of FPGAs relative to application specific ICs (ASICs), this
technique can be used only for a few logic functions, leaving
other functions vulnerable to attack. Moreover, the tech-
nique assumes that an attack will affect only one of
the identical functions-it will not be useful if the payload
of the Trojan is the output of the voting circuit.

Therefore, in this paper, we make the following key
contributions:

1)  We provide a detailed analysis of hardware Trojan
attacks in FPGA devices, as well as a taxonomy of
hardware Trojans in FPGA.

2) We present a trust validation approach for FPGA
devices, based on both functional and side-channel
validation, to counter diverse FPGA Trojan attacks.
These approaches enable detection of arbitrary Tro-
jan circuits in FPGA hardware.

3) We introduce a modified version of TMR, which we
call Adapted Triple Modular Redundancy (ATMR),
to enable robust protection against Trojan attacks
with considerably less power overhead than TMR.

The remainder of the paper is organized as follows.

Section 2 provides a brief overview of hardware Trojan and
how it differs from faults. Section 3 provides an analysis of
hardware Trojans that can be inserted into FPGA devices
during production. In Section 4 we discuss the methods that
can be used for detecting the Trojan attacks. We describe an
approach for run-time Trojan tolerance in Section 5. We
discuss the simulation results for the Trojan tolerance
scheme and important design/test considerations in
Section 7. Finally, we conclude in Section 8.

BACKGROUND

Hardware Trojan Attacks

Malicious modifications of integrated circuits, referred to as
Hardware Trojans, have emerged as a major security threat
due to widespread outsourcing of IC manufacturing to
untrusted foundries. An adversary can potentially tamper
with a design in these fabrication facilities by inserting mali-
cious circuitry, leading to potentially catastrophic malfunc-
tions in security-critical application domains, such as the
military, government, communications, space, and medi-
cine. Conventional post-manufacturing testing, test genera-
tion algorithms, and test coverage metrics often fail to
detect Hardware Trojans due to their diversity, complexity,
and rare triggering conditions.

An intelligent adversary can design a Trojan to only
trigger under very rare conditions on an internal node,
which is unlikely to arise during post-manufacturing test,
but can be triggered during long hours of in-field operation
[24]. The detection of Trojans by employing side-channel
parameters, such as power trace or delay overhead, is
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Fig. 2. (a) General model of a hardware Trojan circuit realized through
malicious modification of a hardware. (b) An example of combinational
Trojan. (c) An example of sequential Trojan.

limited due to the large process variations in nanoscale IC
technologies, detection sensitivities of small Trojans, and
measurement noise [25]. Often these issues mask the effect
of Trojan circuits, especially for ultra small Trojans. From an
adversary’s perspective, the desired features for a success-
ful Trojan are as follows: rarely activated to evade logic
based testing, low overhead to evade side-channel based
detection approach, and low side-channel signature to
evade Design for Security (DfS) hardening mechanisms.

The condition of Trojan activation is referred to as the
trigger, and the node affected by the Trojan is referred to as
its payload. Trojans can be classified based on their trigger-
ing conditions or payload mechanisms. The trigger mecha-
nism can be either digital or analog. Digitally triggered
Trojans can be classified into combinational and sequential
Trojans. Trojan can also be classified into digital and analog
based on the payload mechanisms. Digital Trojans invert
the logic values at internal nodes or modify the contents of
memory locations, while the analog payload Trojans may
affect circuit parameters, such as performance, power, and
noise margin.

A combinational Trojan is activated on the simultaneous
occurrences of a particular condition at certain internal
nodes, while a sequential Trojan acts as a time-bomb, exhib-
iting its malicious effect due to a sequence of rare events
after a long period of operation. Fig. 2a illustrates the gen-
eral scenario of a Trojan attack in a design, where a Trojan is
realized through the malicious modification of the circuit
with a trigger condition and payload. Fig. 2b shows an
example of combinational Trojan which does not contain
any sequential elements, and depends only on the simu-
Itaneous occurrence of a set of rare node conditions.
Conversely, the sequential Trojans shown in Fig. 2c undergo
a sequence of state transitions before triggering a malfunc-
tion. The 3-bit counter causes a malfunction at the node S on
reaching a particular count, and the count is increased only
when the condition a = 1, b = 0 is satisfied at the positive
clock-edge.

Protection against hardware Trojan has been widely
explored [25], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], by researchers. These approaches are based on the
following three approaches: (1) specialized functional
testing [14] that rely on triggering an unknown Trojan and
observing its effect in output ports of a design; (2) side-
channel analysis that rely on observing a Trojan effect in
physical parameters, such as supply current or path delay
[25], [40] and (3) design/integration approaches [31], [32],
[33], [34], [35] that either prevent a Trojan insertion or facili-
tate detection during production test.

Fault Versus Trojan

Conventional fault models can properly represent hardware
Trojans; however, standard functional/structural testing
methods, as well as fault tolerance schemes cannot adequately
protect against diverse Trojan attacks. The major differences
are that unanticipated behavior is not included in the fault list
[24], and hardware Trojans usually have a covert trigger
condition, which is expected to rarely occur during normal
field operation. On the contrary, traditional faults, run-time
failures, and soft-errors typically occur at random locations
and are sensitized through arbitrary, typically non-rare—and
hence easily detectable—condition. Due to the random occur-
rence of faults, in many cases they may turn out to be ineffec-
tive or benign [26]. The payload of a Trojan, however, is likely
to be carefully selected by an adversary to cause critical sys-
tem failure or information leakage.

With respect to post-silicon validation or run-time toler-
ance, the difference between faults and Trojans are two-
fold. First, faults induced by manufacturing defects are
static, and run-time failures are one-cycle transient failures.
However, hardware Trojans are dynamic, causing malfunc-
tion for one or more cycles after triggering, and can also go
back to a benign state after causing the malicious effect. In a
spatial sense, manufacturing faults and soft errors can occur
randomly in any part of a design. However, hardware
Trojans are inserted by intelligent adversaries and hence are
likely placed at strategic locations (e.g., in the key-depen-
dent logic of a crypto-chip, enabling key leakage) while
being hard-to-detect.

HARDWARE TROJAN ATTACKS IN FPGA

Before we describe the taxonomy of hardware Trojans in
reconfigurable hardware, it is necessary to understand why
such Trojans can be inserted in the foundry. Reconfigurable
hardware consists of a regular array of identical reprogram-
mable cells and other modules connected through a distrib-
uted programmable interconnect structure. Since most of the
chip is occupied by the regular structure of logic blocks and
interconnect, it is relatively easy (compared to ASICs) for an
attacker to reverse engineer the device and identify the regu-
lar structures as well as additional modules. For example, a
DSP core or clock manager can be easily identified from the
layout of the FPGA and can be a potential target for hardware
attacks as described in the next section [27] While the pro-
posed Trojan models and detection methods may be applica-
ble to many programmable logic devices, we focus on
hardware Trojans in the widely-used SRAM-based FPGAs

Programmability in FPGAs can be used to change the
logic and electrical properties of a system [3]. Although this
programmability provides flexibility to designers to quickly
implement their designs according to their requirements, it
can be exploited by an adversary to mount attacks to cause
malfunction, leak sensitive information, and even cause
physical damage [3],[5]. This also differentiates FPGA hard-
ware Trojans from ASIC Trojans where the former alter the
state of the system through malicious reprogramming after
configuration.

Wang, Tehranipoor, and Plusquellic proposed a taxon-
omy of hardware Trojans in ICs [6]. In this paper, we
present a taxonomy of FPGA-specific hardware Trojans that
alter the programmed state of logic and I/O blocks. We
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Fig. 3. Taxonomy of hardware Trojans in FPGA.

classify the variety of FPGA hardware Trojans into two
main categories as shown in Fig. 3 according to their activa-
tion and payload characteristics. While it may be possible to
classify FPGA Trojans based on other characteristics such as
size or distribution, we believe that the proposed classifica-
tion covers most FPGA Trojans and is adequate to evaluate
the capabilities and limitations of detection methods.

Activation Characteristics

Based on the activation characteristics, Trojans can fall into
two subcategories marked as condition-based and always-on
in Fig. 3. Always-on Trojans are always active and perform
their defined purpose of malfunction or leaking sensitive
information. An example in this subcategory would be a
Trojan that inverts all the bits of the configuration bitstream
as the device is being programmed. This class of Trojans
may not be inserted by an intelligent adversary since they
can be easily detected during conventional testing.

Condition-based FPGA Trojans, on the other hand, wait
until a particular condition is met before they become active
and cause malfunction. At this level, Trojans can be further
classified as logic-based and sensor-based (e.g., temperature,
delay). At the lowest level, logic-based FPGA Trojans can be
further divided into IP dependent and IP independent sub-
categories which we will discuss in detail with examples.

IP-Dependent Trojans. IP-dependent Trojans represent a
subclass of Trojans whose trigger signals depend on the
design implemented in the device. Fig. 4 shows a simplified
architecture of FPGAs consisting of a regular array of pro-
grammable logic blocks and interconnects. As shown in
Fig. 4, an adversary can insert a malicious circuit which
monitors the logic values of several nodes such as configu-
ration logic, outputs of logic modules, or look-up table
(LUT) values. When triggered, such a Trojan can cause mal-
function in many different ways, e.g., by altering the values
stored in LUTs or configuration cells in the interconnect net-
work to cause incorrect routing between logic blocks, or
writing random values into the embedded memory.

Since the final IP design is not available to the foundry
during device fabrication, an attacker who plans to insert
design-dependent hardware Trojans must do so without
assuming anything about the IP. Even though the probability
of such a Trojan becoming active is very low, an attacker may

I—.‘_l

[ IP-Depen. I ‘ IP-Indep. I

distribute many such Trojans over the entire chip to increase
the likelihood of causing malfunction. Given the growing
scope of the FPGA domain, IP-dependent Trojans are a practi-
cal threat that must be considered for hardware assurance.

IP-Independent Trojans. An intelligent attacker can also
insert Trojans whose activation conditions do not depend
on the final design. Such Trojans can be inserted to alter the
functionality of critical modules of the device. For example,
Xilinx Spartan-3, Virtex-II, Virtex-II Pro FPGAs contain a
separate module for clock management known as the digital
clock manager (DCM) as shown in Fig. 5. This module con-
tains a delay locked loop (DLL) for reconditioning clock sig-
nals. Additionally, it contains a frequency synthesizer for
producing multiples or divisions of the input clock. Config-
uration parameters for the DCM are stored in its local
SRAM. A simple Trojan design could simply increment an
n-bit counter each clock edge until a particular number is
reached, and then modify the configuration to produce a
faster clock. This in turn can cause the critical path logic to
fail in a sequential circuit.

As another example of IP-independent Trojans, consider
a simplified programmable I/O block shown in Fig. 6 which
contains buffers, enable logic, slew rate control, and level
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Fig. 4. Simplified architecture of an FPGA showing the trigger points that
a Trojan may use.
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shifters for logic level compatibility. Similar to the DCM, the
configuration of the I/O block is stored in local SRAM. A
counter-based Trojan could be inserted in the device; when
activated, this could modify the output-slew control, disable
the output logic, or cause physical damage with logic-level
incompatibility at the I/O port. Again, these Trojans could
be distributed in many I/O blocks to improve the chances
of causing malfunction.

Payload Characteristics

Hardware Trojans can also be classified based on their
intended behavior. Trojans can be inserted for causing mal-
function or for leaking sensitive information. In the former
case, Trojans alter the functionality of the design in some way,
while Trojans designed for leaking sensitive information may
do so without modifying the logic functionality of the design.

Trojans for Malfunction. Trojans in this category can be
further classified into two subcategories based on whether
they cause logical malfunction or physical malfunction. Tro-
jans presented in the previous sections cause logic malfunc-
tion by modifying the values in the LUTs, causing
undesired routing between two logic modules, etc. Fig. 7
shows additional examples of payloads affected by Trojans.

External

& Vdd Out
device I R

Output

s —F
T U L

Gnd CLK

Level Shiftgr

Fig. 6. Programmable 1/O block containing hardware Trojans to cause
logical and electrical malfunction.
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Fig. 7. Diagram showing examples of payloads that can be altered by an
implanted Trojan circuit.

Trojans intended to cause physical damage can create
electrical conflicts at the I/O ports or at the programmable
interconnects. Consider the programmable 1/O block in
Fig. 6. When an I/O port is configured to be an input by a
design, the configuration cells in the I/O block should
disable the output block to prevent internal conflicts. A
counter-based Trojan can be inserted in the foundry which
detects the state of the I/O port and begins counting. When
the counter counts to the final value, the Trojan may enable
the output logic when the port is configured as an input.
This would cause a high short-circuit current to flow
between the FPGA and the external device, possibly damag-
ing the system. These Trojans are similar to the MELT
viruses described in [3] except that Trojans causing physical
destruction may also be inserted in the foundry.

IP-Leak Trojans. Since IP designs involve a high develop-
ment cost and contain sensitive information, security is of
utmost importance Many high-end FPGAs such as Xilinx's
Virtex4 and Virtex5, and Altera’s StratixII and StratixIII
offer bitstream encryption to prevent unauthorized cloning
of the bitstream. Fig. 8 shows the security features in a
generic FPGA device that contains the programmable logic
array (bottom right in the figure), configuration logic which
controls the programming of the SRAM cells in the logic
array, interconnect network, and additional modules in the
device [7],[8]. The device also contains a decryptor module
for decrypting the bitstream using a key stored in a non-vol-
atile memory. Security measures in the device (1) prevent
the key from being read and sent to a port by clearing the
configuration data and keys when a read attempt is made,
(2) prevent readback of the configuration data, and (3)

Side channels
(e.g. MOLES)

Non-volatile memery

FPGA | Decryption Key |
-
Encrypted
5 Logic Covert Channels
b"ﬂmlam Array {e.g. JTAG port,
—{oecryptor] e
pratd
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Fig. 8. FPGA device with security features for bitstream decryption.
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Fig. 9. Hardware Trojan inside: (a) a configurable logic block (CLB) and
(b) an embedded memory block (EMB) of FPGA.

restrict decryptor access after configuration [2]. However,
all of these measures only prevent malicious code in an IP
from accessing the key or configuration data.

Hardware Trojans can leak the IP in two ways: by leaking
the decryption key, or by leaking the design itself. An
attacker in the foundry can insert an extraneous circuit
(Fig. 8) to tap the wires connecting the non-volatile memory
and decryptor module. Even if the decryptor module is
implemented in the logic array by using a decryptor bit-
stream as mentioned in [7], such an instantiated module
must have access to the non-volatile key for decryption. A
copy of the key can be stored in the Trojan, which may then
leak it through side-channels or covert-channels. Using
side-channels, a Trojan can hide the key in the power traces
or by emitting electromagnetic radiation containing the
information and an attacker can observe these signals to
steal the key. For example, the MOLES Trojan presented
in [9] uses a spread-spectrum technique to leak the key in
the power traces over several clock cycles. Alternatively, a
Trojan may also multiplex the JTAG port, USB port, or any
other programming port to leak the key through covert
channels when the ports are not being used.

Since SRAM-based FPGAs are volatile, an external
device must be used to store the encrypted design. If an
adversary is in possession of the FPGA device loaded with
the design, the encrypted bitstream can be stolen by eaves-
dropping the connection between an FPGA’s programming
ports and the external device storing the encrypted
bitstream. In other cases, a Trojan may fake a request to the
external device to send the programming data to the FPGA.
This time, however, the Trojan muxes the bitstream and

rather than sending it to the the decryptor, it may store
blocks of the bitstream at any given time and leak them
through side-channels or covert-channels.

Trojans in CLB/EMB

FPGA configurable logic blocks (CLBs) and embedded
memory blocks are highly flexible, but require significant
configuration to implement the desired functions. This
severely harms the memory or logic integration density in
FPGA which makes it more amenable for Trojan insertion.
Fig. 9 shows a FPGA CLB, which can act as a 2-input look
up table, a 4-bit Random Access Memory (RAM), or a 4-bit
shift register [29]. In Fig. 9a, the inserted Trojan has been
shown in red: the trigger condition is derived from the
memory content of two consecutive RAM locations, and can
harm the shift register functionality or the write enable
functionality of the memory block at run-time. The trigger
condition can also be generated from the output of other
CLBs, or alternatively can be derived from the output of
other functional units.

Fig. 9b shows a Trojan instance inserted inside an embed-
ded memory block in a commercial FPGA device [30].
Similar to a CLB, an EMB is also capable of executing func-
tionalities like shift register, FIFO etc. in addition to acting
as Random Access Memory. The control circuitry shown in
Fig. 9b decides between normal read operation and shift
register operation inside the EMBs. The inserted logic or
Trojan conditionally affects the shift operation inside a EMB
by using adjacent memory contents and so can be triggered
at run-time. It can be noted that the similar trigger condi-
tions can also be effectively used to leak the contents of the
memory to the output port. Such malfunctions can be
achieved by changing the address bits of the memory blocks
in different clock cycles and reading out the immediate next
location of the memory in each and every cycle so as to
obtain the complete memory contents stored in a particular
EMB or a set of EMBs.

TROJAN DETECTION METHODS FOR FPGA

In this section, we discuss some detection methods for
detecting FPGA hardware Trojans. These methods must be
used by the FPGA vendors when they receive the chips
from the off-shore foundry. We assume that the testing
facility used by a FPGA vendor is secure, eliminating the
possibility that an adversary in the testing facility could
intentionally not detect malicious alterations. Detection
methods can be classified into three categories: Visual detec-
tion techniques, logic testing, and side-channel analysis.

Visual Detection Methods. This class of detection methods
uses imaging to identify any malicious insertions in the
chip. These techniques include using X-ray imaging [10],
scanning optical microscopy (SOM), scanning electron
microscopy (SEM) [11], and picosecond imaging circuit
analysis (PICA), among others. These methods, however,
can be expensive in cost and analysis time. Moreover, these
techniques suffer from lack of resolution to decipher logic/
transistor /interconnect level information, primarily due to
the obstruction by the stack of metal layers in modern
FPGAs [12]. With increasing device density due to technol-
ogy scaling, effectiveness of the imaging techniques is
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Fig. 10. lterative logic-based self-checking test.

expected to reduce significantly. Partial de-layering of ICs
appears more effective [13]; however, it may in turn render
an FPGA non-functional. Due to the above limitations,
imaging analysis may not be a viable Trojan detection
technique.

Logic-Based Testing. Standard logic testing of FPGAs by
automatic test pattern generation (ATPG) tools is used for
detecting faults. Using input vectors, all the programmable
logic blocks can be tested to function correctly without
faults. For example, a stuck-at-0 fault in the programmable
logic blocks can be detected by mapping an AND function
in the blocks and applying all-1 inputs. However, since Tro-
jan models are very different from fault models, a better
approach is required to detect Trojans. For example, an
attacker can insert a Trojan which uses many values of the
LUT SRAM cells or configuration cells as trigger nodes, and
such a Trojan will not be detected using testing based on
fault models.

Due to the availability of a large number of programma-
ble blocks containing countless nodes, exhaustive testing of
all combinations of nodes is infeasible. For a k-input LUT,
having L = 2* cells in the logic block, F' = 22" distinct func-
tions are possible. For an n-input Trojan, the inputs can be
chosen in £C, ways from the L cells. Since each combination
can in turn be one out of 2" values, the total number of func-
tions that need to be mapped to exhaustively test a logic

block becomes F' = 22" x 2", For example, for a 2-input LUT
having four cells, a 2-input Trojan can be chosen from the
four cells in 4Cy = 6 ways. If the chosen two cells are desig-
nated a and b, then the trigger values for the Trojan can be
(ab,ab, ab, ab), requiring 24 functions to be mapped. How-
ever, since entire functions are mapped onto the LUTs,
mapping one function with values «,b, ¢,d can detect sev-
eral Trojans such as ab, bc, cd, etc., thus requiring fewer func-
tions to be mapped.

Still, if the trigger nodes are distributed among logic
blocks, the sheer number of logic blocks, LUTs, and configu-
ration cells makes it impossible for exhaustive testing to be
used for Trojan detection. Due to this restriction, we pro-
pose a statistical approach of iterative self-checking based
on the MERO test approach [14] as shown in Fig. 10. Since
the probability of activating a Trojan using the logic testing

LUTn

LUTn

approach decreases with the number of trigger inputs, we
assume that the number of trigger nodes n is small (two to
four) and only distributed within nearby CLBs.

Algorithm 1 shows the major steps in the proposed statis-
tical test approach. We begin with a cluster of logic blocks of
size S, the number of nodes B, random configuration set C,
and input pattern set I. For each configuration mapped to
the logic blocks, we activate the nodes to logic-0 and logic-1
several times using different input patterns. This procedure
is done concurrently with the other remaining clusters of
logic blocks, such that for each configuration all clusters are
tested simultaneously. The outputs of the clusters can be
tested by a few logic blocks configured as output response
analyzers (ORA). These ORAs can be exhaustively tested at
the beginning of the test procedure. Any Trojan that is acti-
vated will be observed at the primary outputs. Then, the
cluster size is iteratively increased (e.g., to include two
neighboring logic blocks) and the process is repeated. Such
a statistical approach of testing can be effective since an
attacker does not know the exact test procedure to cleverly
insert malicious circuits. Moreover, for larger combinational
and sequential Trojans, this approach can be useful to cause
partial activation of Trojans for detection using side-channel
techniques.

Algorithm 1. The Statistical FPGA Testing Approach

Inputs: Cluster of logic blocks of size S, the number of nodes B,
random configuration set C'and input pattern set I
Outputs: Trojan-free ICs
1: forall S = 2Y such that0 <Y < K do
for all nodes in S do
for all configurations in C' do
for all vector v; in I do
propagate values to ORAs (simultaneously test
other clusters of same size)
6 observe outputs of ORAs
7 end for
8: end for
9
0

end for
: end for

Redundancy and reconfigurability are two key features
of FPGA devices that can be that helpful for Trojan



detection. Just as these features are used to counter run-time
failures in FPGAs, so can they be used to counter against
FPGA hardware and design Trojans. In the case of FPGA
hardware, reconfigurability allows the activation of several
nodes in the logic blocks through different logic values.
Redundancy can be used during testing, for example, by
using N-modular redundancy to ensure that the trigger
nodes present in the ORAs can also be detected by compar-
ing the outputs of many ORAs. This is under the assump-
tion that Trojans in FPGA hardware (localized or
distributed) do not affect all the resources in the same way.
This can be coupled with dynamic run-time reconfigurabil-
ity to improve the level of security.

Side-Channel Analysis. Logic-based testing may not be
effective for activating large combinational or sequential Tro-
jans due to the extremely large number of possible trigger
nodes. Side-channel analysis involves the measurement and
analysis of information obtained from an IC’s side-channels.
The information could be based on timing, power consump-
tion, or electromagnetic radiation. Side-channel analysis has
been proposed previously as a powerful technique to detect
malicious insertions in an IC [14]. In this section, we specifi-
cally concentrate on side-channel information obtained from
power consumption in the device.

Static power contains comprehensive information reg-
arding all the gates in the chip (including malicious gates/
transistors). Trojans causing physical damage by creating
electrical conflicts can also be detected using side-channel
analysis since these Trojans result in a large current flow
through the power supply. A simple design file can be
loaded that configures I/O ports as inputs and then meas-
ures the supply current. If these Trojans simultaneously try
to configure the port as an output, then a very large current
can be detected by current sensors in the device, indicating
a malicious modification. Since on-chip current sensors may
also be tampered in the foundry during production, they
must be tested thoroughly to identify any tampering. An
alternative and secure strategy would be to use an on-board
current sensor to detect short-circuit conditions.

Trojans which do not cause physical damage and only
cause logical malfunction may be extremely difficult to
detect by analyzing static power. This is due to the difficulty
in isolating the contribution of the malicious insertions from
the measured power traces in ICs containing many millions
of transistors. On the other hand, transient or dynamic
power can be controlled by applying input vectors to reveal
information about a few gates which are switching at any
given time. The advantage of this type of analysis is that,
unlike logic-based testing, a Trojan does not have to become
active for detection; it merely needs to cause switching in
the Trojan to consume dynamic power. For the IP-indepen-
dent Trojans presented in Section 3, transient power analy-
sis can be an effective detection method. For example, a
counter-based Trojan inserted in the clock manager module
can be detected by applying a clock signal to the FPGA and
applying constant inputs to prevent logic blocks from
switching. An extraneous counter or any sequential circuit
will consume transient power as it transitions from one state
to another. This contribution to dynamic power can be iden-
tified and associated with malicious insertions after
accounting for process noise and clock coupling power.

HARDWARE TROJAN TOLERANCE IN FPGA

In this section, we propose a novel approach to protect
against Trojan circuits of varying forms in FPGA devices
(as discussed in Section 3). The protection approach is based
on tolerating Trojan effects during operation by either con-
taining the Trojan effect (through activation detection) or
bypassing the effect of Trojan activation using redundant
logic. The proposed Trojan tolerance approach takes its inspi-
ration from existing run-time fault tolerance approaches[15],
[16]. The focus of the Trojan tolerance approach is to achieve
maximum confidence with respect to trusted operation in the
presence of Trojans in FPGA hardware, while minimizing
the area, power, and performance overhead.

It is a challenge to maintain a satisfactory level of surviv-
ability with minimum cost. Each user requires different sur-
vivability level, optimizing some attributes at the expense
of others. A single Trojan mitigation scheme may not be sat-
isfactory to all FPGA users; therefore various schemes can
be combined in a coherent way to satisfy different users’
requirements. We propose a hybrid scheme of hardware
Trojan tolerance that combines adapted Triple Modular
redundancy and dynamic reconfiguration.

Dynamic reconfiguration in FPGA works around failures
while allowing time sharing of hardware components, and
therefore reduces area overhead while achieving high reli-
ability. However, increasing device failures can significantly
affect the yield, run-time reliability, and the number of map-
pable functions. In addition, hardware Trojans are diverse,
requiring different levels of resource usage, power con-
sumption, and response time [17], [18]. Although dynamic
reconfiguration allows us to reduce resource requirements,
it must be combined with a technique that is capable of
detecting Trojans and restoring the original functionality.

Trojan Tolerance through Adapted TMR (ATMR)
Triple modular redundancy is a well-known fault mitigation
technique that masks circuit faults by using redundant hard-
ware [15], [16], [19]. A TMR circuit has three copies of the
original circuit and a majority voter. A single fault in one of
the redundant hardware modules will not produce an error
at the output as the majority voter selects the result from the
two working modules. Several experiments have demon-
strated significant improvements in reliability when using
TMR through fault injection and radiation testing [19]. Use
of TMR has been explored earlier in FPGA in the context of
tolerating run-time failures, such as functional failures
induced by soft errors [20], [21]. However, the use of TMR in
FPGA results in very high (>3x) area overhead, as well as a
performance overhead incurred from additional routing
delay. Reducing these effects by selectively applying TMR
makes all non-covered functions vulnerable to attack. More-
over, the output of the voting circuit itself may be the target
of a Trojan. TMR also cannot protect the system against
attacks made to steal a key without causing malfunction.

Minor changes to TMR can not only reduce the overhead
associated with redundant hardware, but also enable it to
detect when an error has occurred, and which replica is
responsible for the error. This is accomplished by using
only two instances at a time instead of three. Using a
comparator circuit, the outputs of the two instances are
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Fig. 11. Proposed Trojan-tolerant application mapping scheme using
redundant computing blocks.

compared; if a mismatch occurs, only then will the third
replica, along with an arbiter circuit, be enabled. This ena-
bles the system to detect which of the two original replicas
was in error, output the correct result, and discard the erro-
neous replica. During operation, the circuit may halt for a
short time interval during the involvement of the third
replica and arbiter.

Fig. 11 shows three adders (O, R;, and S;) that are
mapped to the Trojan infected region of an FPGA, and their
corresponding outputs (p, ¢, and r). The comparator will
compare the outputs (p, ¢) of the first two adders (O;, Ry).
The third adder (S;) will not be used unless there is a mis-
match between the two outputs p and ¢. In case of a mis-
match, the comparator, with the help of the arbiter,
continues comparing the output r with the outputs (p, ¢)
until it finds a match and it determines which adder is in
error. Then the comparator outputs the correct result and
prevents the propagation of erroneous data.

Although the third replica is required to determine
which replica is in error, only two replicas are enough to
flag that at least one of them is infected with a Trojan, pre-
vent the propagation of the Trojan’s payload in the system,
and stop leakage of potentially sensitive data. Therefore the
scheme we have proposed, even without the third replica,
will be of particular interest to military and government
applications, as well as to commercial entities concerned
with guarding their highly sensitive data.

Improving Trojan Coverage with Design of
Variants

The Trojan tolerance scheme proposed in Section 5.1 can
provide protection against a single Trojan attack in either
the original or replica module. However, it cannot protect
against simultaneous activation of identical Trojan instances
in O; and R;. An adversary can incorporate the same Tro-
jans in two or more clusters or CLBs in an FPGA, so that
both O; and R; can be similarly affected. For example, this
can happen if O; and R; are identically mapped in two dif-
ferent clusters, both of which have a combinational Trojan
triggered by a specific combination of LUT content. In such
a scenario, two Trojans in O; and R; would trigger at the
same cycle with identical malicious effect and the proposed
tolerance approach would fail to detect it. To address this
scenario, we present an addition to the proposed Trojan tol-
erance approach. Mclntyre et al. [22] have proposed the use
of variants previously on multiple processing elements
(PEs) or cores of a chip to discover Trojans but they did not
explore it for other environments (e.g., FPGAs or ASICs).
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Fig. 12. Flowchart showing a variant generation approach from a gate-
level design along with an example.

In FPGA, the proposed ATMR scheme can further be
improved by implementing variants of adders for O; and R;
to ensure that O; and R; functionally compute the same result,
but the adders are implemented in a structurally different
manner. This can be achieved by applying different synthesis
constraints like area and latency to different instances of the
same module. It is highly unlikely that both adders (O; and
R;) will simultaneously trigger the same Trojan because dif-
ferent implementations involve different logic blocks, storage
elements, interconnects, and memory locations. An intelligent
attacker is likely to design sophisticated Trojans so that they
are triggered by a sequence of rare events or conditions [17].
Thus the probability of triggering the same Trojan by its var-
iants is extremely rare, and we can assume that both O; and
R; cannot simultaneously trigger the same Trojan.

A judicious design of structural variants can tolerate
simultaneous activation of Trojans in both original and
replica modules. The dissimilarity between the variants can
be exploited to defeat/avoid Trojans and design Trojan
tolerant FPGAs. The variants would differ in both LUT and
programmable interconnect structures while maintaining
the functional behavior and parametric specifications (e.g.,
critical path delay). One possible approach to making var-
iants is finding non-delay critical gates and regrouping
them. It ensures that the content of the LUT and the layout
of the design will be changed while the delay remains the
same. We regroup the logic gates to change both LUT
content and their interconnection possibly changing the
required number of LUT resources. Next, we convert the
regrouped LUTs as “hard macros” (so that they are not opti-
mized again by the synthesis tool). The last step is to re-
synthesize the circuit including the macros with the original
time constraints. Thus even when both replicas are infected
with a Trojan, the Trojan is very unlikely to be activated in
both the original and replica modules simultaneously.
Thus, the proposed scheme can overcome the limitation of
TMR in that it can protect the circuit from multiple Trojan
effects by employing variants of a processing unit. Fig. 12
shows the flow chart for implementing the variants.

Exploiting Reconfigurability to Reduce
Overhead
Many real-time applications do not require the highest level
of security and spare resources can be time-shared among
the faulty modules. For example, instead of using a dedi-
cated third redundant component, n number of redundant
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components can be shared among m (n < m) number of
faulty modules, depending on the required level of security.
Then the arbiter can select the component on demand
allowing efficient and flexible use of resources. Reconfigura-
tion also allows time-sharing of hardware components.
Fig. 13 shows several modules and their time sharing of
spare resources.

Different Trojan triggering scenarios and their Trojan
tolerance are discussed below.

Case 1. If only one adder triggers Trojans, then the Trojan
infected adder can be detected by using the spare adder S;
as explained in Fig. 11.

Case 2. If two adders trigger Trojans, then the following
cases can occur.

Case 2a: When two adders are from the same module, the
set of adders that are affected by similar Trojan instances =
{0;, R;}, wherei =1,2,3, or 4.

Case 2b: When two adders are from different modules,
the set of adders that trigger Trojans = {O;, R;}, where
i,j=1,2,3, or 4 and i # j.

Case 2a can be mitigated by using the variants of adders
for O; and R;. It is highly unlikely that both adders (O; and
R;) will simultaneously trigger the same Trojan because dif-
ferent implementations involve different logic blocks, stor-
age elements, logic structures, and memory locations. Thus
a judicious design of structural variants can avoid simulta-
neous activation.

Case 2b cannot be handled by using only one spare adder
with the highest level of security. Two spare adders S; and
Ss may be required in order to achieve the highest level of
trust in the case of two simultaneous failures as in Case 2b
(in general, to tolerate n number of simultaneous failures

with n < max # of modules, we need n spares). Each spare
resource is used to determine and replace a faulty adder in
each module.

Worst-Case Scenario. If multiple adders from multiple
modules trigger Trojans simultaneously, the set of adders
that trigger Trojans = { X1, Xy, X3, X4}, where X = O or R.

In the worst-case scenario, the highest level of security
can be achieved at the expense of four spare adders because
different implementations for O; and R; ensure that both
adders will not trigger the same Trojans at the same time.

Thus the number of spare resources (S;) varies from zero
to four to achieve the highest level of security, depending
on the number and the location of Trojan affected adders
(Fig. 13). However, many real-time applications do not
require the highest level of security and S; can be time-
shared among the faulty modules. The proposed hybrid
scheme that combines adapted TMR with reconfiguration
has the potential to reduce the overhead/power consump-
tion associated with TMR by decreasing the usage of redun-
dancies while allowing reconfiguration. The proposed
scheme can also overcome the limitation of TMR in that it
can protect the circuit from multiple single event upsets
(SEUs) by employing variants of adders.

SIMULATION RESULTS

In this section we present case studies with a commercial
FPGA device and a benchmark circuit to illustrate the effec-
tiveness of the proposed Trojan tolerance approach.

We consider the Altera Cyclone IV GX FPGA family of
devices and a 32-bit pipelined DLX processor benchmark
to analyze the effectiveness of proposed approach. First, we
present the mapping results for the execution unit of the
processor. We consider several instances of the execution
unit. Next, we present the mapping results for the entire
DLX processor. Area, delay and power overhead due to the
proposed tolerance mechanism are compared with those for
conventional TMR.

Table 1 compares the overhead, in terms of power,
resources, and performance of conventional TMR and the
proposed hybrid tolerance scheme without variants, with
variants, and with time-shared resources. For cases both
with and without variants, ATMR consumed 1.5x less
power than TMR to achieve the same level of security while
maintaining equivalent resource usage and performance as
TMR. This result is expected given that ATMR, unlike TMR,
uses the third spare resources/replicas only when Trojans
are activated and a mismatch occurs in the initial outputs.
Similar latencies for TMR and ATMR indicates that ATMR
does not incur a significant performance overhead. In the
case of time-shared resources, ATMR requires 1.4x fewer

TABLE 1
Comparison of Design Overhead between TMR and ATMR without Variants, with Variants, and with Time-Shared Resources

Without Variants With Variants Time-shared Res.
TMR ATMR x Impr. TMR ATMR x Impr. TMR ATMR x Impr.
Power (mW) 4.70 3.15 1.5x% 4.95 3.26 1.5x% 16.0 12.42 1.3x
Area (LE*) 850 856 1.0x 860 872 1.0x 3,166 2,184 1.4x
Latency (ns) 6.7 6.7 1.0x 6.4 6.4 1.0x 7.9 7.9 1.0x

*“Logic Elements, as reported by the Altera Quartus Il FPGA mapping tool



TABLE 2
Comparison of Design Overhead for TMR and ATMR
at the Component (C) and ALU (A) Levels of Granularity

Area Lat. Pow. xImpr. xImpr. xImpr.

(LEs) (ns) (mW) (Area) (Lat.) (Pow.)
ALU 225 6.4 14 - - -
TMR-C 1,928 10  7.05 8.6x 1.6x 7.9%
ATMR-C 1,940 10 51 8.6x 1.6x 5.7x
TMR-A 860 64  4.95 3.8x 1.0x 3.5%
ATMR-A 872 64  3.26 3.9x 1.0x 2.3%

resources than TMR, while consuming 1.3x less power, and
maintaining comparable performance.

DISCUSSION

In this section, we discuss several relevant issues related to
FPGA security and the proposed Trojan tolerance approach.

Trojans in the Control/Arbiter or Comparator

Logic
Most research on TMRs assumes that the voter circuits are
hardened structures, and therefore not vulnerable to hard-
ware Trojans. This assumption is not always true, leaving
the TMR system itself unprotected. Kshirsagar and Patri-
kar [23] proposed a novel fault-tolerant voter circuit for
TMR that improved the reliability of the digital systems.
Ban and Lirida [28] further enhanced the reliability of a sys-
tem by providing an alternative architecture for a majority
voter in TMR. However, their architectures are robust to
single fault but cannot handle multiple failures.

The proposed scheme can overcome the limitation of
TMR, since it can protect the circuits from multiple faults
by employing variants. We suggest two techniques to
determine if the arbiter or the comparator in the pro-
posed architecture is compromised: (1) majority voting,
or (2) exhaustively testing the comparator and arbiter
circuits for the presence of Trojans. The first approach
would improve the reliability of the system majority

voting on the voters/arbiters will result in high
overhead. The second approach, i.e. exhaustive testing
for Trojans, is feasible in this case because the voter/
arbiter circuits are relatively small with limited input
space, making this the preferred method.

Trojan in the Design (FPGA IP)

Hardware Trojans can also be inserted into the RTL or
netlist of the design IP. With the increasing complexity of
hardware designs, it is becoming increasingly common for
companies to purchase IP blocks, saving on the design and
verification effort. The prevalence of IP vendors makes IP
Trojan insertion a very real concern for real-world applica-
tions. The proposed approach, which aims to tolerate
Trojans in the physical hardware, can be combined with
Trojan verification and/or tolerance approaches [20] for the
IP. Additional, redundant hardware, such as that used in
hot-swapping [31] or hot-spares [31] can provide additional
fault tolerance against some Trojan attacks and increase
reliability for mission-critical systems. to provide compre-
hensive protection against Trojan attacks.

Granularity for ATMR
While selecting the granularity for designing ATMR, there is
a trade-off among the controller/comparator overhead, the
number of Trojans, reconfiguration complexity, and the delay
in Trojan detection. The advantages to finer-granularity
modules include fewer Trojans, simplicity in reconfiguration,
and accuracy in Trojan detection. However, fine-grained
detection will result in high controller/comparator overhead,
increased simulation time, and increased latency of the entire
system, which makes it hard to track the system-level propa-
gation of Trojans. On the other hand, coarse-grained modules
could result in multiple Trojans affecting the same circuit and
increased complexity in reconfiguration, but less controller/
comparator overhead and delay. Table 2 shows the area/
delay/power overheads for component level and ALU level
TMR and ATMR approaches. While component level TMR/
ATMR provides more security, it increases reconfiguration

TABLE 3
Comparison of Design Overhead for TMR and ATMR Correction Techniques on a DLX Processor

Area (LEs) Flipflops RegFile (bits) Delay (ns) Power (mW) x Impr. (Area) x Impr. (Lat) x Impr. (Pow.)
IF 199 128 0 5.6 6.89 - - -
TMR IF 813 384 0 5.7 20.1 4.1x 1x 2.9x
ATMR IF 835 384 0 5.7 11.4 4.2x 1x 1.7x
1D 222 128 2,048 49 11.96 - - -
TMR ID 988 384 6,144 49 33.96 4.5x% 1x 2.8%
ATMR ID 1,011 384 6,144 49 214 4.6x 1x 1.8x
EX 1,512 133 0 18 23.0 - - -
TMR EX 4,747 399 0 19.7 71.98 3.1x 1.1x 3.1x
ATMR EX 4,770 399 0 19.7 38.03 3.2x 1.1x 1.7x
MEM 105 101 0 5 2.03 - - -
TMR MEM 487 303 0 5 11.05 4.6x 1x 5.4x
ATMR MEM 510 303 0 5 5.5 4.9% 1x 2.7x
WB 44 0 0 4 1.24 - - -
TMR WB 186 0 0 4 3.09 4.2x 1x 2.5
ATMR WB 209 0 0 4 2.05 4.8% 1x 1.7x
DLX 2,082 490 2,048 18 29.04 - - -
TMR DLX 7,221 1,470 6,144 19.7 89.7 3.5x 1.1x 3.1x
ATMR DLX 7,244 1,470 6,144 19.7 485 3.5x% 1.1x 1.7x




latency and overall system latency (1.6x), while incurring
greater area (8.6x) and power (5.7x) overhead. Conversely,
ALU-level TMR and ATMR provide less security, but incur
smaller area (3.9x) and power (3.5x) overhead, while delay
remains unchanged; again, the power consumption for
ATMR is further reduced (2.3 x) because of the conditionally-
enabled third instance. These tradeoffs enable designers to
fine-tune the system security while considering relevant
overheads in the resultant hardware.

CONCLUSION

Malicious alterations to a design are possible at various
stages of the design flow. In this paper, we focused on mali-
cious changes that can be inserted into FPGA devices dur-
ing production. We presented a taxonomy of hardware
Trojan models specific to FPGAs, including those that cause
logical malfunctions and/or physical damage, and can be
inserted by an attacker in the foundry without knowledge
of the final design. We explained multiple detection strate-
gies that could be used to non-invasively test FPGAs to
identify the presence of Trojans. As FPGAs are being
increasingly used in a wide field of applications, the hard-
ware Trojan models must be fully understood before reli-
able detection strategies can be developed to provide
hardware assurance. In addition, we proposed a novel Tro-
jan tolerance scheme, namely ATMR, that protects FPGA
devices against Trojans of varying sizes and functionalities.
We compared the proposed scheme with the conventional
TMR approach and demonstrated that ATMR requires less
power overhead, while maintaining the same or higher level
of security and performances as TMR. Further improve-
ments in overhead have been achieved by exploiting recon-
figuration and reuse of the resources in ATMR without
compromising security.
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