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THE ROLE OF RNASE L IN TYPE I DIABETES AND 

DEVELOPMENT OF QUANTITATIVE LC-MS/MS METHODS 

FOR THE PHARMACOLOGICAL STUDIES OF ANTI-CANCER 

DRUG CANDIDATES 

 

CHUN ZENG 

ABSTRACT 

PROJECT I: 

The cause of type I diabetes continues to be a focus of investigation. In this study, we 

found that 2-5A dependent RNase L (RNase L), an IFN-α-inducible enzyme that 

functions in IFN action against viruses and cell proliferation, played an important role 

in dsRNA-induced onset of type I diabetes. By using RNase L deficient RIP-B7.1 

mice which are more vulnerable to environmental harmful factors such as viral 

infection, we demonstrated that deficiency of RNase L in mice resulted in a 

significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly 

I:C), a type of dsRNA, and streptozotocin (STZ). Immunohistostaining showed that 

the population of infiltrated CD8+ T-cells was remarkably reduced in the islets of 

RNase L deficient mice, implicating RNase L may contribute to type I diabetes onset 

through regulating immune responses. Furthermore, RNase L was responsible for the 
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expression of certain proinflammatory genes in the pancreas under the special 

condition.  

 

PROJECT II: 

It has been found that 6-hydroximino-4-aza-A-homo-cholest-3-one (HyM3) is a 

steroidal derivative with a significant anticancer effect.  

To develop a method for analyzing its pharmacological kinetics, HyM3 and the 

internal standard (3E)-Hydroximinocholest-6-one were extracted from mouse plasma 

samples through a protein precipitation procedure by mixing with acetonitrile (1:4 v/v) 

and then centrifuging at 12,400 g for 15 minutes. The supernatant (10 µl) was injected 

onto the LC/MS system consisting of a Shimadzu Prominence HPLC and an AB 

Sciex QTrap 5500 with positive electrospray ionization. A MRM mode was chosen 

for sensitive and specific detection of the analyte and internal standard. The HPLC 

separation employed a Phenomenex Kinetex C8 column (50x2.1 mm, 2.6µ) with a 

gradient mobile phase of 0.2% formic acid in water and 0.2% formic acid in 

acetonitrile at a rate of 0.2 ml/min. Full mass spectrometric scans of HyM3 and the 

internal standard showed protonated molecular ions of 431 and 416 m/z, and 

fragmentation of these two ions revealed predominant product ions of 370 m/z and 

344 m/z respectively. HyM3 was retained on the HPLC column for 6.4 minutes, while 

the internal standard was retained for 7.3 minutes. The method was calibrated for a 

concentration range from 0.500 to 200 ng of Hym3 per mL of plasma.  
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CHAPTER I 

INTRODUCTION 

Project I: The role of RNASE L in type I diabetes and 

renal function 

1.1 Overview of Type I Diabetes mellitus (DM) 

Diabetes mellitus is associated with a variety of complications including blindness, 

kidney failure, heart disease, painful nerve damage, and circulatory problems so 

severe they necessitate amputation [ 1 - 4 ]. The Centers for Disease Control and 

Prevention (CDC) reported in 2011 that more than 25.8 million Americans—8.3% of 

the population—have diabetes. This number is predicted to be doubled in the next two 

decades [5]. There are two types of diabetes: insulin-dependent diabetes mellitus 

(IDDM) or juvenile-onset diabetes and non-insulin-dependent diabetes mellitus 

(NIDDM). Diabetes costs the nation about $245 billion in 2012 [6]. 
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1.1.1 Epidemiology of DM 

Diabetes mellitus is caused by inherited and/or acquired deficiency in insulin 

production by the pancreas, or by the ineffectiveness of the insulin produced. Such 

deficiency or ineffectiveness results in increased concentrations of blood glucose, 

which in turn damages many of the body’s system, in particular the blood vessels and 

nerves. Type 1 and type 2 diabetes are the main forms of diabetes. 

 

As one of the most common non-communicable disease worldwide, diabetes is one of 

the most challenging health problems in the 21st century. In most developed countries, 

diabetes is the fourth or fifth leading cause of death. Substantial evidence shows that 

it is also epidemic in many developing countries. The incidence of diabetes is 

increasing greatly worldwide. And this trend is likely to keep going in the future 

decades.  (Figure 1-1 and figure 1-2) 
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Figure 1-1.The tread of the diabetes from 2000 to 2012, data from the Diabetes report 

card, 2014 
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Diagnosed and undiagnosed diabetes among people aged 20 years or older, United 

States, 2012

 

 

Figure 1-2. Data from the National Diabetes Statistics Report, 2014     

 

1.1.2 The etiology of TIDM 

The etiology of diabetes (Figure 1-3) continues to be a focus of investigation. Both 

genetic and environmental factors such as toxins, viruses, and diets are believed to 
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play an important role in its pathogenesis [7]. A reduction of insulin producing 

pancreatic β-cells has been considered as one of the key factors in the development of 

diabetes, particularly in type I diabetes [8,9]. In type I diabetes, autoimmunological 

destruction of the pancreatic β-cells results in an absolute loss of insulin production. 

Investigation of the molecular mechanisms underlying β-cell destruction has revealed 

that microbial infections recruit immune effectors mediating β-cell apoptosis, which 

in turn triggers autoimmune responses [9]. The NOD mouse is an ideal model of 

spontaneous type I diabetes, a T cell-mediated autoimmune disease. Histological 

studies have shown that infiltration of immune cells including macrophages and 

lymphocytes around the islets starts at 3 to 4 weeks of age, causing insulitis [10,11]. The 

role of CD4+ and CD8+ T-cells in the onset of type I diabetes has been well 

established in recent years. Clinical and animal studies have shown that CD8+ T cells 

take a central stage in the destruction of pancreatic β-cells and contribute to sustaining 

islet inflammation, leading to the onset of type I diabetes [10-13].   

 

The expression of proinflammatory genes has been implicated in the pathogenesis of 

type I diabetes [14]. In NOD mice, an increased expression of IFN-γ, TNF-α and IL-1β 

is associated with β-cell destructive insulitis [10, 11]. In recent years the role of IFN-α in 

autoimmune diseases including type I diabetes has been well established [ 15 ]. 

Increased levels of IFN-α in the sera of type 1 diabetes patients have been 

documented [ 16 ]. Transgenic mice expressing IFN-α in the β-cells develop 
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hypoinsulinemic diabetes associated with a mixed inflammation centered on the islet, 

which can be prevented with a neutralizing antibody to IFN-α [17]. It has been reported 

that the onset of type I diabetes in both the BB rat and STZ-treated mice is IFN-α 

dependent [18]. In addition, IFN-α also mediates induction of type I diabetes by poly 

I:C in the mice expressing the B7.1 costimulatory molecule on β-cells in islets [19]. 

Most recently, a study has revealed that blockade of IFN-α signaling by anti-IFNAR1 

in 2- to 3-week old NOD mice remarkably delays the onset and decreases the 

incidence of diabetes, suggesting the involvement of IFN-stimulated genes in the 

pathogenesis of type I diabetes [20] (Figure 1-4 and 1-5).  

 

Figure 1-3. The etiology of diabetes. ( Ermann et al , Nat Immunol. 2001) 
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Figure 1-4. Mechanisms of viral-induced type I Diabetes. (D. Devendra and G.S. 

Eisenbarth Clinical Immunology. 2004) 
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Figure 1-5.  The effect of viral dsRNA and interferon alpha on the pathogenesis of 

type I diabetes.  (D. Devendra and G.S. Eisenbarth Clinical Immunology. 2004) 

 

1.2 Introduction of IFN 

1.2.1 Type I IFN 

Human type I IFNs comprise a vast and growing group of IFN proteins such as IFN-α, 

IFN-β, IFN-κ, IFN-δ, IFN-ε, IFN-τ, IFN-ω and IFN-ζ. Type I IFNs are encoded by a 

gene cluster located on the short arm of chromosome 9 in humans and chromosome 4 

in mice. A map of the type I IFN gene contains 26 IFN genes and pseudogenes [21]. 

IFN-α that is produced by peripheral leukocytes (B cells and T-cells) and IFN-β that 

is secreted by fibroblasts, are both the most studied subfamilies of type I IFN and both 
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of them can be induced in mammalian cells in response to viral infection. All IFN-α 

genes encode for the same size primary proteins with 166 amino acids in length, 

except IFN-α2 that encodes for 165 amino acids [22]. No evidence was found for the 

existence of an intron, in either the coding or the non-coding segments of the gene [21]. 

IFN-α subfamily is up to 70% homologous at the protein level and from 80%-100% at 

the nucleotide level. IFN-β shows from 25%-30% homology with the IFN-α 

subfamily members at amino acid levels and 45% at the nucleotide level [23]. Type I 

IFNs bind to a specific cell surface receptor complex that consists of IFNAR1 and 

IFNAR2.  

 

1.2.2 Type II IFN 

INF-γ is the only member in type II IFN. The mature IFN-γ ligand is an anti-parallel 

homodimer, and it binds to the IFN-γ receptor complex, which is made up of two of 

each IFNγR1 and IFNγR2 subunits. It is produced in activated T-cells and natural 

killer cells [24]. Human IFN-γ is a 146 amino acids protein N-glycosylated at two sites 

and encoded on four exons, in contrary to intronless type I IFN[25]. The IFN-γ gene is 

located on chromosome 12 in humans and chromosome 10 in mice. IFN-γ is involved 

in the regulation of the immune and inflammatory responses. It is released by Th 1 

cells and recruits leukocytes to a site of infection, resulting in increased inflammation. 

It also stimulates macrophages to kill bacteria that have been engulfed. IFN-γ has 
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some anti-viral and anti-tumor effects, but these are generally weak; it, however, 

potentiates the effects of IFN-α and IFN-β.  

 

1.2.3 The signal transduction of IFNs 

IFNs bind to completely different cell surface receptors; however, the signal 

transduction pathways activated by the IFN-α/β and IFN-γ receptors partially overlap. 

IFNs exert their actions through cognate cell surface receptors that are largely species 

specific [26]. The α, β, and  ω IFNs appear to have a common receptor consisting of 

two subunits, IFNAR-1 and IFNAR-2. Binding of IFN α/β initiates the signaling 

cascade by causing dimerization of the receptor subunits, IFNAR1 and IFNAR2. This 

initial step triggers a conformation change that is propagated through the cell 

membrane and is responsible for the initiation of the phosphorylation cascade. 

IFN-mediated the signaling and transcriptional activation of cellular gene expression 

are best understood in the context of JAK-STAT pathway [27]. There are seven known 

members of the signal transducer and activator of transcription (STAT) family of 

proteins, Stat-1, Stat-2, Stat-3, Stat-4, Stat-5a, Stat-5b, and Stat-6, and four members 

of the Janus family of tyrosine kinase (JAK) enzymes, Jak-1, Jak-2, Jak-3, and Tyk-2. 

STATs are latent cytoplasmic transcription factors that become tyrosine 

phosphorylated by the JAK in response to cytokine stimulation. Different members of 

the JAK and STAT families have distinct functions in cytokine signaling. Of the 

known JAKs and STATs, the Jak-1, Jak-2, and Tyk-2 kinases and the Stat-1 and 
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Stat-2 transcription factors play central roles in mediating IFN-dependent biological 

responses, including induction of the antiviral state [ 28 ]. The first intracellular 

component of the signaling pathway that receives the “transduction pulse” is the JAK 

kinase, Tyk2, which is pre-associated with IFNAR1. Upon interferon stimulation, 

Tyk2 is immediately phosphorylated by JAK1, another JAK kinase, which is bound to 

IFNAR2. Activated Tyk2 then in turn phosphorylates JAK1. The activated JAK 

kinases, Tyk2 and JAK1, are responsible for the subsequent phosphorylation of 

IFNAR1 and IFNAR2 at specific tyrosine residues. STAT2 then binds to specific 

phosphorylated residues on IFNAR1. Upon docking, STAT2 is phosphorylated at a 

conserved tyrosine residue (Y701) by the JAK kinases thereby creating an additional 

docking port for STAT1, which is also subsequently phosphorylated at Y690. The 

phosphorylated STATs then dissociate from the receptor heterodimer and bind to p48 

(IRF9), a member of the IFN regulatory factor (IRF) family, forming the major IFN 

transcription factor, known as ISGF-3. ISGF-3 translocates to the nucleus and binds to 

specific regulatory DNA sequences (ISRE-IFN stimulated response elements) and 

initiates transcription of IFN-inducible genes.  

 

1.3 IFN-induced genes associated with its antiviral function 

IFNs display their biological function via inducing IFN-stimulated genes (ISGs). The 

well-studied ISGs associated with its antiviral action of IFNs are dsRNA-dependent 
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protein kinase R (PKR), the 2’-5’oligoadenylate synthetase (OAS), RNase L, the Mx 

protein GTPases [27]. 

 

1.3.1 Mx proteins 

Mx proteins are synthesized in IFN-treated vertebrate cells. The name of these 

proteins comes from their ability to inhibit the replication of myxoviruses, such as 

influenza. In human, Mx gene products are designated as MxA, and MxB, whereas in 

rat and murine species Mx gene products are designated as Mx1, Mx2, and Mx3. The 

location of Mx proteins in specific compartments is related to their biological function. 

Mx1 proteins are nuclear proteins and as a consequence of their location, they inhibit 

influenza virus in the nucleus. The mechanism of how Mx proteins inhibit the 

replication of different viruses is unknown. Proteins MxA and Mx1 of the Mx family 

of proteins are possibly the best characterized of the known IFN-inducible gene 

products with antiviral activity. It has been established that Mx alone is sufficient to 

block the replication of virus in the absence of any other IFN α/β-inducible proteins 

[27]. Mx proteins are GTPases that belong to the superfamily of dynamin-like GTPases 

[29]. The intrinsic GTPase activity of Mx proteins is required for their antiviral activity. 

The highly conserved tripartite GTP binding motif is present within the N-terminal 

region of the 70- to 80-kDa proteins. Mx proteins associate with themselves and, 

importantly, with viral protein complexes. The central and C-terminal regions of Mx 

play important roles in these protein-protein interactions [30]. Mx is inducible by 
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IFN-α and IFN-β but not by IFN-γ [31]. The Mx proteins [32] plays a pivotal roles in 

inhibiting two members of the Orthomyxoviridae family: influenza virus and Thogoto 

virus. The human genome contains two related Mx proteins, MxA and MxB, which 

are induced by IFN-α/β. The human MxA protein has 662 amino acids whereas the 

MxB protein has 715 amino acids. Both human MxA and MxB are mapped to 

chromosome 21. The MxA protein normally accumulates in the cytoplasm of 

IFN-treated cells and possesses antiviral activity. The antiviral activity of MxA, 

which undergoes oligomerization, is dependent upon GTP binding and hydrolysis. 

Cells that constitutively express the human MxA protein show a high degree of 

antiviral activity, displaying resistance to several members of the Orthomyxoviridae 

including influenza A and C viruses and Thogoto virus. Interestingly, a number of 

additional RNA viruses including members of the Bunyaviridae (LaCrosse virus, 

Hantavirus), Paramyxoviridae (measles virus, parainfluenza 3), Rhabdoviridae (VSV), 

and Togaviridae (Semliki Forest virus) are inhibited by MxA expression either in 

cultured cells or in transgenic mice [27].  

 

1.3.2 PKR 

The pkr gene encoding the IFN-inducible, RNA-dependent protein kinase, PKR, was 

isolated as lambda phage and P1 phage clones from human genomic DNA. The 

genomic nucleotide sequence revealed 17 exons encoding the 551–amino acid PKR 

protein [33]. PKR was known in the earlier literature as DAI or dsI; P1 kinase; 
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P1/eIF-2α kinase; p65, p67, or TIK (for the mouse enzyme); and p68 or p69 (for the 

human enzyme) [27]. In IFN-treated cells, PKR is found predominantly in the 

cytoplasm and associated with ribosomes; however, small amounts of PKR have also 

been localized to the nucleus. The expression of PKR is rapidly stimulated by IFNs 

and reaches levels approximately 5-10 folds higher than that in resting cells. This 

action of IFN is mediated through an ISRE (IFN-stimulated regulatory element) and 

GAS (gamma IFN-activated site) in the promoter region of the PKR gene. PKR 

contains two conserved dsRNA-binding motifs at the amino-terminus, RI (amino 

acids 55-75) and RII (amino acids 145-166). Both regions possess a similar core 

sequence, but RI alone appears to be necessary and sufficient to mediate dsRNA 

binding. It is believed that a combination of both domains creates a single binding site 

where the different domains bind to different regions of the dsRNA molecule [27]. No 

RNA sequence specificity has been identified. PKR is activated by double stranded 

RNA (viral RNA or secondary RNA structures), which results in a conformational 

change that uncovers the carboxyl-terminal catalytic domain of PKR. Approximately 

50 bp of duplexed RNA are required for its full activation, although shorter stretches 

of secondary structure on pre-dominantly single stranded RNA can activate PKR. 

This activates the kinase activity of PKR, which then undergoes 

autophosphorylation/activation in several serine and threonine residues. The activated 

kinase phosphorylates in turn the translation initiation factor eIF2-α at Ser51, 

resulting in inhibition of viral protein synthesis [34].  
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1.3.3 The 2-5A system 

The 2-5A system is an RNA degradation pathway that can be induced by IFNs. The 

system consists of two IFN-inducible enzymes: 2-5A synthetase (OAS) and RNase L 

[35]. IFNs interact with cell surface receptors to activate a set of genes through the 

JAK-STATs signal transduction pathway, some of which encode several 2-5 A 

synthetases that are dsRNA dependent. In general, dsRNA is produced during viral 

infection. DsRNA activates 2-5 A synthetases that can use intracellular ATP to 

synthesize 2-5A that is a unique group of heat-stable, 5’-phosphorylated, 2’-5’- 

phosphodiester-linked oligoadenylates, with general formula ppp(A2'p5')nA (n≥2). 

The 2’- 5’ phosphodiester linkage is unusual in contrast to the typical 3’- 5’ linkage 

present in RNA and DNA chains. 2-5A binds RNase L with high affinity, converting 

it from its inactive, monomeric state to a potent dimeric endoribonuclease, thus 

leading to the interruption of many fundamental processes which are essential for cell 

function and virus replication (Figure 1-6). Cells over expressing RNase L overcome 

viral infection, while over expression of a dominant mutant of RNase L results in an 

increase of the susceptibility to viral infection. The role of 2-5 A system as a host 

defense against some types of viruses is well established, but additional possible 

biological roles of the 2-5A system, such as in cell growth and differentiation, heat 

shock, atherosclerotic plaque, pathogenesis of type I diabetes, and apoptosis were also 

reported [36].  
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1.4A 2-5A Synthetase (OAS) 

OAS activity has been demonstrated to be present in cells from mouse to humans, 

even in reptiles and several avian species. OAs catalyzes the following reaction: 

 

A number of growth factors can induce the expression of OAS.  Epidermal growth 

factor can induce a 3-to 5-fold increase of OAS in human fibroblastomas, while 

PDGF induces OAS in murine BALB/c3T3 cells. NGF increases the expression of 

OAS from 5- to 25- folds in the rat pheochromocytoma cell line (PC12) [37]. Cyclic 

AMP also enhances the OAS mRNA at the transcriptional level [38]. IFN-α, IFN-β and 

IFN-γ all are able to induce an increase in OAS activity. Interestingly it has been 

found that a given IFN subtype can differentially induce specific isoforms of OAS. In 

Hs294t melanoma cells, after treatment with IFN-α, the isoform p40 was induced to 

twice the extent of p100 [39]. In contrast, IFN-γ induced both isoforms equally. The 

induction of p69 and p100 isoforms by IFN-γ has been studied in Daudi, fibroblast, 

and colon adenocarcinoma cells in vitro and in vivo and there were significant 

differences in induction between cell types [40]. The OAS activity has been found in a 

variety of cell types during differentiation. Differentiation of skeletal muscle cells in 

several species has been found to be associated with OAS induction and 2-5A 

formation. Cell differentiation induced by chemicals or cytokines has been associated 

with an increase of the OAS level. A 27-fold increase in the expression of OAS was 
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observed in human HL-60 cells after treatment with dimethyl sulfoxide [41]. Induction 

of differentiation in U937 cells by hydroxyvitamin D3 was associated with IFN 

production and an increase in OAS [42]. On the other hand, OAS activity has been 

found to be low in normal proliferating diploid Syrian hamster (FC13) cells [43]. Taken 

together, all suggest a role of OAS in the anti-proliferative effects of IFN. Levels of 

OAS depend also on a phase of the cell cycle. Using mouse embryo tertiary 

fibroblasts progressing synchronously through the cell cycle as determined by 

fluorescence-activating cell sorting, OAS levels were found to be low in quiescent 

cultures, as well as during G1 and early S. They then rose 10-fold in late S and 

decreased sharply in G2 [44]. A similar, though quantitatively a lower pattern, was 

found for RNase L. High OAS levels result in the inhibition of EMCV, mengovirus, 

and vaccinia replication. Mammalian OAS is an important mediator of the antiviral 

activity of IFNs. The existence of distinct 69- and 100-kDa forms of OAS, in addition 

to the smaller (40 and 46 kDa) forms, has been established. Both human and mouse 

2-5A synthetase gene families encode four forms of enzymes. The human p40-46 

forms are coded for by 1.6 and 1.8 kb mRNAs, which are derived from the same gene 

through cell type-specific differential splicing between the 7th and an additional 8th 

exon of this gene, which is localized to chromosome 12 [45] . The p40 and p46 OAS 

isoforms are localized in nuclei. p69 OAS was localized in cytoplasm but it was found 

in closer association with the nuclear membrane [46]. P100 is localized in cytoplasm 

[36]. Interestingly, OAs is persistently activated in patients with type 1 diabetes, 

suggesting the involvement of the 2-5A system in the disease [47]. 
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1.4B RNase L 

RNase L is a unique ribonuclease because it requires an unusual allosteric effector, 

2-5A, to catalyze the cleavage of single-stranded RNA [15]. 2-5A was discovered [48] 

in extracts of IFN treated cells in the presence of dsRNA and ATP [49]. RNase L is 

found in mammalian cells from mouse to humans, but not in fish, insects, plants and 

bacteria [50]. In mice, RNase L is highly expressed in the spleen, lung, liver, and 

kidney at 5 days of age and then decrease with age, except in the spleen where it 

remains high until adulthood [51]. RNase L is localized in the nuclei and cytoplasm [52]. 

Its levels were found to be elevated during cell differentiation, as well as in growth 

arrested cells [53]. Additionally, introduction of 2-5A into cells impaired cell growth 

[54]. Surprisingly, the increased RNase L levels were found in colorectal cancer tissues 

although its role in the pathogenesis of this disease is largely unknown [55]. Human 

and murine RNase L has been successfully cloned [[22]]. Many computer-assisted 

homology searches, deletion analysis and site directed mutagenesis revealed the 

structural and functional domains of RNase L (Figure 1-7). RNase L consists of three 

domains, namely the N-terminal ankyrin domain, the protein kinase homology 

domain, and the C-terminal ribonuclease domain. The N-terminal ankyrin repeat 

domain, a region containing nine ankyrin-like macromolecular recognition repeats 

(the ninth ankyrin repeat is incomplete), is responsible for 2-5A binding, and the 

C-terminal domain is responsible for catalytic activity [56]. 
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B.1 Structure of 2-5A dependent RNase L 

A successful molecular cloning of murine and human RNase L by Zhou and Hassel [57] 

opened the door to the structural analysis of the enzyme. The sequence of full-length 

human RNase L was obtained from a composite cDNA (HZB1) genomic construct. 

Human RNase L gene encodes a sequence of 741 amino acids (m.w. 83,539 kDa) 

with unique structural and functional motifs (Figure. 1-7). In the presence of 2-5A 

activators, RNase L dimerizes to form catalytically active enzyme [58]. There are a 

group of negatively charged amino acids from positions 451-459 and a positively 

charged group at 677-684, and the composition of human RNase L is greater than 

one-third charged amino acid residues with 113 aspartic acids plus glutamic acids and 

arginine plus lysines; however the significance of the charge distribution is unknown. 

A bipartite model for the structure of RNase L emerged in which the regulatory 

functions of the molecule are located in the N-terminal half, whereas the catalytic 

domain is present in the C-terminal half [59]. RNase L contains: 

Ankyrin repeats 

The analysis of the sequence of RNase L revealed that N-terminal 330 residues 

contained 9 ankyrin (ANK) repeats, with an average length of 33 residues with 35% 

sequence homology to human erythrocyte ANK [58]. The ninth ankyrin repeat is 

incomplete. It has been reported that the crystal structure of the N-terminal ankyrin 

repeat domain (ANK) of human RNase L is associated with the 2-5A binding [56]. 

This finding was the first structural view of an ankyrin repeat structure directly 
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interacting with a nucleic acid, rather than with a protein. According to the paper, the 

ANK domain folds into eight ankyrin repeat elements and forms an extended curved 

structure with a groove running across the long concave surface. Each repeat is 

formed by ~33 amino-acid residues and consists of pairs of antiparallel α-helices 

stacked side by side, which are connected by a series of intervening β-hairpin motifs. 

The 2-5A molecule is accommodated at a concave site and directly interacts with 

ankyrin repeats 2–4. The structural basis for 2-5A recognition by ANK is essential for 

designing stable 2-5A with a high likelihood of activating RNase L. It is believed that 

2-5A binding could induce a conformation change in the enzyme that releases an 

internal clamp on the catalytic domain imposed by ankyrin repeats. Presumably, 2-5A 

binding could result in the unmasking of an interaction domain, permitting 

dimerization and activation of RNase L [35]. Fluorescence spectra of RNase L showed 

clear difference in the presence and absence of 2-5A [60]. The alterations in spectra 

supported conformation changes of the protein. Time-resolved anisotropy 

measurements indicated that 2-5A binding led to a significant decrease in the 

rotational radius of the protein. In addition, 2-5A provides the domain with resistance 

to protease digestion as a result to conformational change. These results indicate that 

the ankyrin-repeat domain of RNase L constricts its structure by binding of 2-5A [60]. 

Ankyrin repeats are highly conserved protein/protein interaction domains, that are 

present in the amino-terminal half of the enzyme. Proteins that contain ankyrin 

repeats function in transcriptional control, cell cycle regulation, and differentiation [61], 

but the function of these repeats in RNase L has never been addressed, although a 
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controlling role of them in dimerization and activation of the enzyme has been 

suggested [57]. RNase L is the only nuclease known to contain ankyrin repeats. 

 

Duplicated P-loop-like motif 

Duplicated P-loop-like motif (GLY-LYS-THR) was implicated in mediating 2- 5A 

binding [57]. Two P-loop motifs have been localized between amino acids 218 and 294. 

Substitution of both lysines in p-loop, at position 240 and 274, with aspargines 

diminished the binding ability for 2-5A [59]. The result suggested that lysines played a 

crucial role in the sequence and they were considered the key amino acids that 

interacted with phosphate groups of nucleotides. Ankyrin repeats 7th and 8th were 

implicated in 2-5A binding until it was established [56] that 2nd and 4th ankyrin 

repeats were responsible for the binding according to its crystal structure. RNase L 

interacts in vivo with RLI protein, its inhibitor that does not show any significant 

homologies with RNase L except that both proteins contain two P-loop motifs. The 

RLI gene was localized to locus 4q31 by in situ hybridization indicating that this gene 

and other enzymes of the 2-5A pathway are not organized in cluster in the human 

genome [62]. RLI cDNA codes a 68-kDa polypeptide which expression is not regulated 

by IFN [63]. 
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B.1.3 Cysteine rich region within a protein kinase homology is in the C-terminal half 

of the enzyme but its kinase activity has never been detected. On the basis of a 

computer-assisted analysis, it was proposed that RNase L was a functional active 

protein kinase because it matches 11 typical protein kinase domains [64]. However, 

some of the proposed protein kinase domains in RNase L are either incomplete or 

differ significantly from known protein kinase domains. It is believed that RNase L 

has significant homology in its C-terminal half with protein kinase domains VI and 

VII and some additional homology to other protein kinase domains, especially with 

domain II [35]. It would appear that RNase L is evolved, at least in part, from a protein 

kinase. The similarity is due to evolutionary convergence to gain functions in 

common with protein kinases, such as ATP binding activity [57]. In protein kinases, the 

conserved lysine in domain II functions in binding to the α- and β- phosphoryl groups 

of ATP and the conserved aspartate in domain VII chelates Mg2+ complexed with 

ATP [35]. Both of these amino acids present in the protein kinase homology region of 

RNase L as well. Within the protein kinase homology region of RNase L a 

high-cysteine-content region is present [57]. Residues 401-436 in human RNase L, and 

residues 395-444 in murine RNase L, bear resemblances to some zinc fingers, 

protein/nucleic acid-binding domains [65], suggesting a role in RNA binding. Because 

zinc is known to inhibit the catalytic activity of RNase L, it is difficult to explain the 

function of the cysteine-rich region [58]. On the basis of deletion-mutant analysis [59], 

the region between Glu711 and His 720 was revealed to be essential for RNA binding. 
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Scanning mutagenesis examination indicated that both Tyr 712 and Phe 716 provide 

the enzyme with a RNA binding activity [66]. 

 

B.2 Localization of the RNase L gene 

The gene for RNase L, designated RNS4, maps to human chromosome 1q25 by 

fluorescence in situ hybridization [67], that is deleted or rearranged in prostate and 

breast cancer cells, and  some gastric adenocarcinomas and oral squamous cell 

carcinomas [68, 69]. 

 

B.3 RNase L antiviral activity 

The classical IFN-dependent antiviral response to viral infection involves the 

regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular 

endoribonuclease RNase L, which inhibits protein synthesis and induces apoptosis by 

cleaving rRNA [70]. Considerable evidence exists relating RNase L to the antiviral 

activity of IFN [16]. EMCV, a cardiovirus, that is a member of Picornaviruses and 

causes mild febrile illness in a number of species, including humans, has been often 

evaluated in conjunction with the 2-5A system. Accumulation of 2-5A as measured 

by rRNA cleavage has been observed in EMCV- and IFN- treated cells and the 

observed elevation of 2-5A provides direct evidence for the activation of OAS by 

viral dsRNA and the RNase L involvement in RNA degradation [71]. Increased levels 
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of resistance to EMCV infection occurred in human glioblastoma T98G cells stably 

transfected with a human OAS cDNA, which resulted in constitutive OAS production 

[72]. In other similar studies, transfection of murine cDNAs encoding the 43-kDa OAS 

into NIH 3T3 cells results in varying levels of constitutive OAS production, as well as 

greatly increased resistance to EMCV infection [73]. It has been reported that the 

antiviral effect of IFN-α/β for EMCV was reduced by 250-fold when expression of 

the SVT2/ZB1 mutant prevented 2-5A-dependent rRNA cleavage [74]. After RNase L 

was truncated by 89 C-terminal aminoacid residues, its catalytic activity was 

completely absent in stably expressed murine SVT2 cells and it resulted in inhibition 

of the 2-5A system. A number of studies have found an increase of 2-5A levels, 

activation of RNase L and characteristic rRNA breakdown in vaccine-virus infected, 

IFN-treated cells [75]. 

 

The induction of an antiviral state by type I IFNs was evaluated in primary trigeminal 

ganglion cells using herpes simplex virus type 1 (HSV-1). The cells treated with 

mouse IFN-β showed the greatest resistance to HSV-1 infection. In the cells treated 

with IFN-α and IFN-β, suppression of HSV-1 replication occurred through an RNase 

L dependent pathway [76]. Over expressed RNase L by >100-fold compared with 

levels of the endogenous murine RNase L in 3T3/pLZ suppressed the replication of 

diverse viruses: EMCV, vesicular stomatitis virus, human parainfluenza virus-3, and 

vaccinia virus. Additional reductions in viral growth were obtained by treating 
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3T3/pLZ cells with IFN (alpha + beta) before infections. These results directly 

demonstrate the anticellular and antiviral potential of the 2-5A system [77]. The 2-5A 

system is also active in the cells with HIV infection [78]. The HIV-1 gene product tat 

causes a dramatic increase in the steady-state levels of HIV-1 long terminal repeat 

(LTR)-derived mRNAs. The interaction of tat with a region in the HIV LTR called 

TAR mediates this up-regulation of HIV mRNAs but the TAR RNA sequence 

activates OAS [79]. The expression of vector containing OAS that was introduced into 

coding region downstream of a 3’-LTR of HIV-1 was activated by the HIV tat protein. 

Apparently through the tat-mediated trans-activation of OAS, resulting in an increase 

of 2-5A oligonucleotides, the replication of HIV was inhibited in cells transfected 

with the vector. It has been [80] postulated that HIV-trans–activated OAS could block 

HIV replication, leading to design a possible therapeutic approach that may be used to 

treat AIDS. To determine the involvement of RNase L in the control of human 

immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene 

was replaced with human RNase L cDNA. HIV-1 provirus containing sense 

orientation RNase L cDNA increased expression of RNase L, resulting in 500- to 

1000-folds inhibition of virus replication in Jurkat cells for about 2 weeks [81]. 

Subsequently, a partial deletion of the RNase L cDNA resulted in an increase of virus 

production. The anti-HIV activity of RNase L correlated with a decrease of HIV-1 

RNA along with acceleration in cell death accompanied by DNA fragmentation. The 

findings demonstrate that RNase L impairs HIV replication.  
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B.4 The potential role of RNase l in the immune system 

RNase L is present at constitutive basal levels in most mammalian cells and is 

induced by IFNs, especially in mouse cells [57]. There are remarkable differences of 

RNase L levels in different tissues. High levels of RNase L expression were found in 

the spleen and the thymus, which implicates that the enzyme may play a role in the 

immune system. Mice with targeted disruption of RNase L have enlarged thymuses 

containing excess numbers of thymocytes, implicating that RNase L may be involved 

in T-cell development [35]. Furthermore, the immune response to DNA-based vaccine 

[82] and suppression of skin allograft rejection are impaired in RNase L null mice [83], 

suggesting that RNase L plays a role in immune responses. It has been reported [84] 

that RNase L is involved in activation of p-38 MAPK and JNK by dsRNA and EMCV. 

The consequence of the activation of these pathways is the production of 

pro-inflammatory and pyrogenic cytokines, such as IL-1β, IL-6, TNF-α, and INF-γ 

which promotes immune responses. 

 

B.5 RNase L is a tumor suppressor  

Over-expression of RNase L in NIH 3T3 cells markedly enhances the antiproliferative 

function of IFN, whereas the dominant-negative RNase L suppresses the 

anti-proliferative activity of IFN in SVT2 cells [74]. The 2-5 A/RNase L system 

contributes to apoptosis of viral infected cells by both degrading cellular RNA and 
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blocking anti-apoptotic proteins such as Bcl-2 [75]. Proapoptotic function of RNase L 

may limit some diseases such as prostate cancer. Several studies linked the hereditary 

prostate cancer 1 (HPC1) allele to the RNase L gene [85,86,87] located at chromosome 

1q25, a region deleted or rearranged in some breast cancers. The studies suggest that 

mutations in RNASEL predispose men to an increased incidence of prostate cancer. 

The RNase activities of missense variants of human RNase L were compared after 

expression in a mouse RNase L -/- cell line. Several variants (G59S, I97L, I220V, 

322F, Y529C, and D541E) produced similar levels of RNase L activity as a wild-type 

enzyme, but the R462Q variant, previously implicated in up to 13% of unselected 

prostate cancer cases, bound 2- 5A at wild-type levels but had a 3-folds decrease in 

RNase L activity. The deficiency in RNase L (R462Q) activity was correlated with a 

reduction in its ability to dimerize into a catalytically active form. Furthermore, the 

RNase L mutant (R462Q) was defective in causing apoptosis in response to 2-5A 

consistent with its possible role in prostate cancer development. It has been proposed 

[89] that RNase L functions as a tumor suppressor on the basis of its ability to degrade 

RNA, thus initiating a cellular stress response that leads to apoptosis. The anti-tumor 

activity of RNase L can be induced by a small molecule, 2-5A. Indeed, 2-5A 

activation of RNase L produces a remarkable stimulation of transcription (>/=20-fold) 

for genes that suppress virus replication and prostate cancer [ 88 ]. Among the 

2-5A-induced genes are several IFN-stimulated genes, including IFN-inducible 

transcript 1/P56, IFN-inducible transcript 2/P54, IL-8, and IFN-stimulated gene 15. 

2-5A also potently elevated the expression of macrophage inhibitory 
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cytokine-1/nonsteroidal antiinflammatory drug-activated gene-1, a TGF-beta 

superfamily member implicated as an apoptotic suppressor of prostate cancer. 

Transcriptional signaling to the macrophage inhibitory cytokine-1/nonsteroidal 

anti-inflammatory drug-activated gene-1 promoter was deficient in HeLa cells 

expressing a nuclease-dead mutant of RNase L, which was JNK and ERK dependent, 

and both were activated in response to 2-5A treatment. These findings suggest that 

activation of RNase L by 2-5A may produce antitumor response as demonstrated in a 

mouse model of prostate cancer [89]. 2-5A also induces apoptosis in prostate cancer 

cells. The androgen receptor and RNase L interact in a ligand dependent manner, 

which may be associated with prostate cancer initiation and progression [ 90 ]. 

Furthermore, overexpression of wild type RNase L conferred IFN sensitivity to a 

dihydrotestosterone inducible reporter gene, whereas R462Q-mutated RNase L is 

unable. It is suggested that RNASEL variants Glu265X and Arg462Gln might 

contribute to the tumorigenesis of sporadic and familial pancreatic cancer [91].  

 

B.6 RNase L plays a role in the regulation of gene expression 

Documented evidence has shown that RNase L plays an important role in the 

regulation of the stability of several gene products such as ISG43, ISG15 [92], PKR [93], 

MyoD mRNA in myocytes [94] and mitochondrial mRNAs in H9 lymphocytes [95]. 

ISG43 expression was negatively regulated by RNase L in IFN-treated cells. ISG43 

induction is a primary response to IFN treatment and requires a functional JAK/STAT 
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signaling pathway. The kinetics of ISG43 induction was identical in wild type and 

RNase L-knockout fibroblasts; however, the decline in ISG43 mRNA following IFN 

treatment was markedly attenuated in RNase L-knockout fibroblasts. The delayed 

shut-off kinetics of ISG43 mRNA corresponded to an increase in its half-life in 

RNase L-deficient cells. ISG15 mRNA also displayed RNase L-dependent regulation. 

These findings show a novel role for the 2-5A system in the attenuation of the IFN 

response [92]. 

 

The role of RNase L in the transient control of the IFN response was also suggested 

[96]. Khalid et al. found that ectopic expression of RNase L prevented the IFN 

induction of PKR. After RNase L-null cells were treated with IFN-α, PKR induction 

was increased and PKR mRNA stability was enhanced as well. In addition, the 

phosphorylated form of eIF2α appeared with extended kinetics compared with that in 

similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was 

also demonstrated by monitoring inhibition of viral protein synthesis. The role of 

RNase L and RLI in muscle differentiation was determined by transfection of C2 

mouse myoblasts with sense and antisense RLI cDNA constructs [94]. Importantly, the 

over expression of RLI in C2 cells was able to inhibit RNase L activity, as a result, an 

increased level of MyoD mRNA was observed, leading to accelerate kinetics of 

muscle differentiation. Inversely, transfection of an RLI antisense construct resulted 

in increased RNase L activity, reduced MyoD mRNA production, and delayed 
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differentiation. Consistent with these observations, MyoD mRNA levels were also 

decreased in C2 cells transfected with an inducible RNase L construct. Therefore, 

these data suggest that RNase L is directly involved in myoblast differentiation, 

probably through its role in regulating MyoD stability. In addition, RNase L in also 

found to interact with eRF3/GSPT1, a human translation termination factor, to 

regulate the expression of a gene at its translational level [97]. 

 

1.4C 2’-5’-phosphodiesterase 

2’-5’-phosphodiesterase (2’-PDE) is the third enzyme of the 2-5A system. The 

recombinant human 2'-PDE expressed in mammalian cells cleaves the 2'-5’ 

phosphodiester bond of 2-5A analogs, leading to destruction of 2-5A in the cells [98]. 

No sequences with high homology to this human 2'-PDE are found, so it is considered 

to be a unique enzyme without isoforms. Suppression of 2'-PDE by a small interfering 

RNA and a 2'-PDE inhibitor resulted in significant reduction of viral replication, 

whereas overexpression of 2'-PDE protected cells from IFN-induced antiproliferative 

activity. These observations identify 2'-PDE as a key regulator of the 2-5A system 

and as a potential novel target for antiviral and antitumor treatments [98]. The activity 

of the 2'-5' phosphodiesterase is very high in quiescent cells while the levels of OAS 

and RNase L are high at the end of S phase [99].  



 31 

 

 

Figure 1-7. The structure of RNase L.  (Chakrabarti A, Jha BK, Silverman RH. J 

Interferon Cytokine Res. 2011) 
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1.5 Our hypothesis 

These observations implicate that RNase L may play an important role in the immune 

system. Indeed, studies have revealed that skin allograft rejection is suppressed in 

mice lacking RNase L, suggesting the involvement of RNase L in T cell immunity, 

particularly CD4+ T cell mediated immunity [100]. In addition, alphavirus-based DNA 

vaccination against a non-mutated tumor-associate self-antigen (tyrosinase-related 

protein-1, TRP-1) is severely impaired in RNase L null mice, indicating that RNase L 

plays an important role in host immune system against cancer [101]. 

In this study, we present evidence showing that RNase L may be involved in the 

pathogenesis of type I diabetes. RNase L deficient RIP-B7.1 mice significantly 

delayed the onset of diabetes induced by STZ and poly I:C. Immunohistostaining 

revealed that the population of infiltrated CD8+ T cells was remarkably reduced in the 

islets of RNase L deficient mice, implicating RNase L may contribute to type I 

diabetes onset through mediating the infiltration of immune cells. Furthermore, RNase 

L regulated the expression of certain proinflammatory genes in the pancreas under the 

special condition. Our results suggest a novel role of RNase L in the development of 

type I diabetes. 
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PROJECT II: 

DEVELOPMENT OF QUANTITATIVE LC-MS/MS 

METHODS FOR THE PHARMACOLOGICAL 

STUDIES OF ANTI-CANCER DRUG 

CANDIDATES 

1.7 Overview of 6-hydroximino-4-aza-A-homo-cholest-3-one 

The synthesis of some aza-homosteroid compounds with unusual and interesting 

structures has been reported recently [1-4] (Figure 1-8). These compounds exhibit 

valuable biological activities such as cytotoxicity and antibacteria. Study of 

aza-homosteroids indicates that the presence of the characteristic group (-NH-CO-) in 

the aza-homosteroid molecule has been demonstrated to be important in lowering 

toxicity and improving anti-tumor activity of the compounds in cancer treatment [5]. 

 

It was reported that 6-hydroximino-4-aza-A-homo-cholest-3-one and 

6-hydroxyl-4-aza-A-homo-cholest-3-one (Figure 1-9), new steroidal lactams 

displayed antiproliferative activity against some cancer cells through inducing cancer 

cell apoptosis by activation of the intrinsic pathway. The apoptotic function of the 
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compounds was demonstrated by release of cytochrome C, activation of caspase 3 and 

annexin V labeling. Furthermore, the compound was able to inhibit tumor growth in 

an athymic mouse model. (Table 1-1) 

 

Figure 1-8. Steroidal derivatives 

 

Figure 1-9. The structure of 6-hydroximino-4-aza-A-homo-cholest-3-one 

 

Table 1-1. In vitro anti-tumor activities (IC50 in µmol /L) of the compounds 

Compound 
Carcinoma Cell Lines 

GNE 2 SPC-A Tu 686 PC-3 HT-29 

1 12.1 74.5 24.9 14.5 10.6 

2 15.8 35.3 31.2 18.3 15.5 
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1.8 Pharmacological studies of anti-cancer drug candidates 

The monitoring of anticancer drugs in biological fluids and tissues is important during 

both pre-clinical and clinical development and often in routine clinical use. 

Traditionally, liquid chromatography (LC) in combination with ultraviolet (UV), 

fluorescence, or electrochemical detection is employed for this purpose. The 

successful hyphenation of LC and mass spectrometry (MS), however, has 

dramatically changed this. MS detection provides better sensitivity and selectivity 

than UV detection and, in addition, is applicable to a significantly larger group of 

compounds than fluorescence or electrochemical detection. Therefore, LC-MS has 

now become the method of first choice for the quantitative bioanalysis of many 

anticancer agents. There are still, however, a lot of new developments to be expected 

in this area, such as the introduction of more sensitive and robust mass spectrometers, 

high-throughput analyses, and further optimization of the coupled LC systems. Many 

articles have appeared in this field in recent years. In this study, we use LC-MS as a 

powerful tool for the quantitative analysis of anticancer drugs in biological samples. 

 

The efficacy and toxicity of many anticancer drugs are related to parent drug and/or 

metabolite concentrations in body fluids and tissues. Therefore, during both 

pre-clinical and clinical drug development, profound knowledge of the 

pharmacokinetic properties (absorption-distribution-metabolism-elimination; ADME) 

of the drug is essential. Furthermore, since anticancer agents often have narrow 
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therapeutic ranges and inter-and intra-patient variability in pharmacokinetic properties 

are high, drug monitoring in routine clinical use may be required for safe and 

efficacious therapeutic use [1]. Traditionally, liquid chromatography (LC) has been 

employed for this purpose. Since most anticancer agents are non-volatile, 

thermolabile, and polar compounds, they are usually not amendable to gas 

chromatography (GC). LC-detection involves predominantly ultraviolet (UV), 

fluorescence, or electrochemical detection. UV detection, however, is not very 

sensitive and suffers from low specificity, while fluorescence and electrochemical 

detection, although more sensitive and specific than UV detection, are limited to 

compounds with fluorescent or electro-active groups or do otherwise require 

derivatization. Quantitative detection of small molecules by mass spectrometry (MS), 

off-line LC-MS for qualitative analysis and on-line GC-MS has been common 

practice for many years. On-line LC-MS for quantitation purposes, on the other hand, 

was complicated until the introduction of atmospheric pressure ionization (API) 

techniques (e.g. atmospheric pressure chemical ionization (APCI) and electrospray 

ionization (ESI)) in the 1980s. In recent years LC-MS interfaces have further 

improved, mainly because techniques such as ionspray (ISP; pneumatically assisted 

ESI), turbo-ionspray (TISP; pneumatically assisted ESI with an additional hot drying 

gas perpendicular to the spray), and heated nebulizer (HN)-APCI (pneumatically 

assisted APCI) became available that facilitate the evaporation of LC solvents.  
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1.9 Quantitative LC-MS/MS method development 

1.9.1 High Performance Liquid Chromatography (HPLC) 

Chromatography is a physico-chemical separation method: a dissolved substance 

mixture is piped by a mobile phase (gas or liquid stream) through a stationary phase. 

The separation is based on the different physical and chemical characteristics of the 

single components in the substance mixture. Today High-performance liquid 

chromatography is one of the most used analytical separation techniques, because of 

its sensitivity, its adaptability to accurate quantitative determinations, its suitability for 

separating non-volatile species or thermally fragile ones, and its widespread 

applicability to substances that are of interest in industry and science [6].   

 

1.9.2 Chromatographic working principles 

The chromatographic separation starts by applying the sample in the column. The 

different components move depending on the elution method with different velocities 

through the column and are detected at the end of the column. The result is a 

chromatogram which shows the peaks of the different components in dependence to 

the time, when the substances left the column and are detected. The time needed for 

the way from the injection to the exit of the column is called dead time. Through 

interactions between the sample components and the stationary phase the elution of 

the components is slowed down (Figure 1-10), described by the retention time. The 
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peaks are also characterized by their peak width, full width at half maximum, peak 

height, and peak area. Under optimal circumstances the peaks are slim and symmetric. 

But dispersion effects are responsible for peak broadening. So the shape of the peak 

gives information about the quality of the separation of the column. Peak shapes with 

variations on the increasing (fronting) or decreasing side (tailing) indicate 

inhomogeneity or separation problems. Homogeneous peaks should be slim and 

regular [7].  

 

Figure 1-10. Schematic illustration of a chromatogram 

“High Performance Liquid Chromatography” is a particular kind of column 

chromatography. The system consists of a device that pumps the mobile phase, an 

injector to apply the sample, a column and a detector.   

 

The separation efficiency of the column is dependent on the particle diameter and the 

pore size of the particles. Due to this separation efficiency the development of HPLC 
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as separation process is possible. The smaller the particle sizes and the more 

homogeneously the particle size distribution of the stationary phase in the column, the 

higher is the separation performance. But the small particle sizes lead to a high 

packing density of the stationary phase. Now the force of gravity is not enough 

anymore for the transport of the mobile phase. Therefore the mobile phase has to be 

pumped through the column with special HPLC pumps. These pumps supply flow 

rates from 0.1 ¨C 10 mL/min and pressures up to 400 bars.   

  

a. Stationary Phase 

Basically, besides silica gel and its modifications, all stationary phases used in column 

chromatography can be also used in HPLC. In the pharmaceutical sector the most 

important stationary phase today is the C-18 reversed phase (Table 1-2) 

Table 1-2. Stationary Phases used in HPLC 
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b. Mobile Phase 

The mobile phase transports the substances through the column. Hydrophilic solvents 

have a high elution force with polar stationary phases, lipophilic solvents have a high 

elution force with reversed phases. In the so-called eluotropic row, solvents are 

classified according to their elution force, for example:  

 

1.9.3 Reversed-phase chromatography (RPC) 

In reversed phase chromatography the stationary phase is nonpolar and is called 

“reversed Phase”. The stationary phases are, for example, silica gels modified with 

lipophilic groups like alkyl-, phenyl- or cyclohexylrests. As mobile phase 

methanol-water or acetonitrilewater mixtures with appropriate additives (buffer, acids) 

are often used [4]. The choice of the mobile phase is dependent on the characteristics 

of the substance, which is examined, and the stationary phase. The elution of 

substances on a particular stationary phase can be controlled through the composition 

of the mobile phase. The mobile phases used for HPLC have to be very pure and 

should be degassed before use. The separation performance of the system is also 

dependent on the elution velocity. Too small or too high flow rates impair the 

separation.   
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1.9.4 Detectors 

The substances arrive at the detector after they have passed the separation column. 

The detection of the substances is an important prerequisite for the proof and the 

quantification of analyzed components. So the detector should have a high sensitivity 

for to be determined substances. These detectors are UV/VIS detectors, fluorescence 

detectors, electrochemical detectors, conductivity detectors and mass selective 

detectors (mass spectrometry). The interconnection of a HPLC system with a mass 

spectrometer is the most elaborate detection process in HPLC. The HPLC system is 

connected with the mass spectrometer by a special interface. The substances separated 

by HPLC are evaporated and ionized in the interface and brought into the mass 

spectrometer where they are analyzed [4]. 

Table 1-3. Typical Chromtographic characteristics for analytical HPLC application [8] 
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1.10 Mass spectrometry (MS) 

Mass spectrometry is an analytical technique used to determine the molecular mass of 

free ions in a high vacuum. A mass spectrometer is comprised of an ion source, in 

which gaseous ions are formed, a mass analyzer, which separates the ions with respect 

to their mass to the charge ratio (m/z) and a detector that measures the ion flow. As a 

result, a mass spectrum is generated in which the relative frequencies of the ions are 

plotted against their m/z ratios. The ionization of the analytes can either be made by 

uptake or loss of an electron or a proton. This is, for instance, reached by bombarding 

the sample with electrons (electron impact ionization, EI), with atoms or ions (fast 

atom bombardment (FAB) ionization) or with photons (laser desorption/ionization, 

LDI). For polar, non-volatile molecules it is possible to do the ionization of the 

dissolved sample in an electric field (electrospray ionization, ESI) or from the solid 

phase by means of matrix-assisted laser desorption/ionization (MALDI). For the 

separation and the detection of analyte ions there are several analyzers with 

appropriate detectors. The separation of the ions can be effected:   

a. By the combination of a magnetic field with an electric field (sector 

instruments) 

b. In the high-frequency field of a quadrupole system (quadrupole instruments) 

c. According to their flight time in a test tube in conjunction with a pulsed ion 

generation (time-of-flight, TOF, instruments).  

Ions can also be collected in an electric ion trap (ion trap) or magnetic ion trap (ion 
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cyclotron resonance cell ICR) followed by mass analysis of characteristic resonance 

frequencies.  

 

1.10.1 Ion source 

The connection of LC and MS is done by means of an ion source. The ion source has 

not only the task to vaporize and ionize the analyte, but also to remove excessive 

solvent from the HPLC to keep up the required high vacuum in the MS. In the present 

work the ionization is done by Electro spray ionization (ESI) (Figure1-11). 

Ionization principle: 

In the electric field, the ions are transferred into the gas phase at atmospheric pressure. 

This process consists of four steps:  

a. Formation of small charged droplets of electrolyte solution. 

b. Continuous loss of solvent by evaporation of these droplets, whereas the 

charge density increases at the droplet surface. 

c. Repeated spontaneous degradation of the droplets (Coulomb explosion). 

d. Desolvation of the analyte at the transfer into the mass spectrometer.  
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Figure 1-11. Principle of electrospray ionization 

The ESI process begins with the continuous supply of dissolved analyte molecules to 

the tip of a conductive capillary. The applied electric field between the capillary tip 

and a mass spectrometer also penetrates the analyte solution and separates the ions. 

For the detection of positively charged ions (positive mode), the positive ions are 

pulled to the liquid surface. Accordingly, the negative ions are pushed in the opposite 

direction until the electric field is withdrawn within the liquid through the 

redistribution of negative and positive ions. The positive ions accumulated at the 

liquid surface are further drawn towards the cathode. This produces a characteristic 

liquid cone (Taylor cone), because the surface tension of the liquid counteracts the 

electric field. In the sufficiently high electric field the cone is stable and is released 

from the tip, a continuous filament-like liquid flow with a few millimeters in diameter. 

At some distance from the anode this liquid flow becomes unstable and is divided into 

tiny droplets. The surface of the droplets is enriched with positive charges. Since there 

are no negative counter ions anymore, there is a positive net charge. The first formed 
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droplets have a diameter of a few micrometers and have a high charge density (about 

105 charges per droplet). These droplets are close to the stability limit (Rayleigh limit) 

concerning their composition, size and charge. This stability limit is determined by 

the repulsive Coulomb force of same charges and the cohesive surface tension of the 

solvent. The Rayleigh equation [9] indicates when the charge Q is equal to the surface 

tension γ: 

 

By the evaporation of the solvent and at constant charge Q, the droplets shrink until 

the radius exceeds the Rayleigh limit. Now the droplets break through the repulsion of 

the same charges in many small droplets of a few nanometers in diameter (Coulomb 

explosion). The last step of the ESI process is the evaporation of the rest of the 

solvent and the transfer of the produced ions into the mass spectrometer [7].  

 

1.10.2 Mass analyzer 

The produced ions are analyzed with a mass analyzer. It scans the ions and puts out a 

mass spectrum, in which the detected masses and the corresponding retention times 

are shown. The higher the detected peak is, the more ions of the same mass are in the 

sample. Usually two connected mass analyzers are used to achieve a lower detection 
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limit and a higher selectivity. Between these two mass analyzers there is a collision 

chamber in which the mother ions are fragmented into smaller pieces. With this 

tandem mass spectrometry individual components can be detected specifically within 

a complex mixture. The most frequently used mass analyzers are the triple quadrupole 

and the quadrupole ion trap mass analyzers.  

 

1.10.3 Tandem mass spectrometry 

With triple quadrupole instruments (Figure 1-12), not only detailed information on the 

mass but also on the structure of the ions can be obtained. The triple quadrupole mass 

spectrometer consists of four quadrupoles Q0 to Q3 with two measuring quadrupoles 

(Q1 and Q3). Q0 is a so-called assistant quadrupole which is operated with alternating 

current. It focusses the generated ions and transfers them efficiently into the center of 

the quadrupole field where they begin to oscillate. Q1 is the first measuring 

quadrupole which scans the ions. Q2 is a collision chamber which can be filled with 

gas (e.g. nitrogen). By collision with inert gas atoms, the ions coming out from Q1 

fragment into Q2. The molecular weights of the resulting fragment ions are then 

determined in quadrupole Q3. The triple quadrupole mass spectrometer can operate in 

different modes of measurement.  
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Figure 1-12. Composition of a Triple Quadrupole Mass spectrometer. (Applied 

Biosystems 2001) 
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CHAPTER II 

 INVESTIGATION OF THE CONTRIBUTION OF 

RNASE L TO THE PATHOGENESIS OF TYPE I 

DIABETES 

2.1 Introduction 

In this study, an RNase L deficient RIP-B7.1 mouse line was created which is more 

vulnerable to environmentally harmful factors such as viral infection. The onset of 

type I diabetes was found to be significantly delayed in these RNase L deficient 

RIP-B7.1 mice induced by polyinosinic:polycytidylic acid (poly I:C), a type of 

double-stranded RNA which is used to mimic viral infection, and Streptozotocin 

(STZ), a drug which can artificially induce type I-like diabetes in experimental 

animals. Immunohistostaining showed that the population of infiltrated CD8+ T-cells 

was remarkably decreased in the islets of RNase L deficient mice after poly I:C 

treatment, implicating RNase L contributing to type I diabetes onset by regulating 

immune responses. Furthermore, RNase L was responsible for the expression of 
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certain proinflammatory genes in the pancreas under the special condition. This 

project provides new insight into the molecular mechanism leading to β-cells 

destruction in diabetes. 
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2.2 Reagents and Methods 

2.2.1 Tissue Culture and treatment    

NIH 3T3 cells, NIT-1 (ATCC) and mouse embryonic fibroblasts (MEF) were grown 

in DMEM (Cleveland Clinic, OH) supplemented with 10% fetal bovine serum (PAA 

Laboratories, MA) and antibiotics in a humidified atmosphere of 5% CO2 at 37oC. For 

treatment, NIT-1 cells were grown to 90% confluence and incubated with 1,000 U/ml 

murine IFN-α (R&D Systems) for 14 h. BMMs were generated from the bone 

marrow cells of RNase L wild type and deficient C57BL/6 mice by using a 

modification of a previously reported method [1]. 

 

2.2.2 Generation of an RNase L deficient C57BL/6.RIP-B7.1 mouse    

An RNase L-/- mouse (C57BL/6) was cross-bred with a C57BL/6.RIP-B7.1 mouse 

(Barbara Davis Center of Childhood Diabetes, University of Colorado Health 

Sciences Center, CO). Genotyping for RNase L and B7.1 was performed by using 

PCR with the condition: denaturing at 96oC for 4 min, for each cycle, denaturing at 

96oC for 45 sec, annealing at 55oC for 45 sec, and extension at 72oC for 1.5 min, for 

32 cycles, then an additional cycle at 72oC for 5 min. The pair of RNase L primers 

was: 5’GCA TTG AGG ACC ATG GAG AC3’ and 5’GGA GGA GAA GCT TTA 
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CAA GGT3’; for B7.1, the primers were: TGA AGC CAT GGG CCA CAC3’ and 5’ 

GGC TCC TTG TCG GCG TTC TA3’.  

2.2.3 Diabetes induction  

Six-week-old C57BL/6 RNase L deficient RIP-B7.1 and C57BL/6 RIP-B7.1 wild 

type mice were injected intraperitoneally (i.p.) with poly I:C (Sigma, St. Louis, MO) 

daily at a concentration of 5 µg/g body weight for 7 days, and then immunized 

(i.p.)with 25 µg/mouse for insulin ( Eli Lilly, Indianapolis, IN) on day 14 after poly 

I:C treatment. Blood glucose was measured weekly with the Glucose Oxidase 

Reagent Set (Pointe Scientific, Canton, MI). Briefly, 10 µl of plasma was mixed with 

1ml of the working reagent provided by the manufacturer and incubated at 37oC for 

exactly 5 min. After incubation, the absorbance at 500 nm were read and recorded.  

The mice were considered diabetic after two consecutive blood glucose values ≥250 

mg/dl. 

 

2.2.4 Immunohistostaining   

The pancreas obtained from the mice was fixed in 10% formalin, paraffin embedded 

and sectioned at 5µm, subsequently stained with hematoxylin and eosin. Pancreatic 

sections were microscopically examined for infiltration of immune cells. The tissue 

sections were stained with rat polyclonal antibodies against CD4, CD8, F4/80, CD11b 

(eBioscience, San Diego, CA) and a monoclonal antibody to insulin (Abcam, 
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Cambridge, MA), followed by incubating with a peroxidase anti-peroxidase antibody 

(ICN, Costa Mesa, CA). Images were developed by using 3-3'-diaminobenzidine as a 

chromogen (Dako, Carpinteria, CA).  

 

2.2.5 Flow Cytometry      

Single cell suspension from the spleens was stained with conjugated mAbs including 

FITC-CD4, PE-CD8, FITC-IgD, PE-B220, APC-Gr.1, FITC-CD11b (BD Pharmingen, 

San Jose, CA). Cell-associated fluorescence was analyzed with a FACScan instrument 

and associated Winlist 5 software. 

 

2.2.6 Western blot analysis    

After treatment, cells were washed twice with ice-cold PBS and collected with a 

scraper. The cytoplasmic extracts were prepared by suspension of the cell pellets in 

the NP-40 lysis buffer (10 mM Tris-HCl, pH8.0, 5 mM Mg(OAc)2, 90 mM KCl, 0.2 

mM PMSF, 100 units/ml aprotinin, 10 µg/ml leupeptin and 2% NP-40). After 

centrifugation at 10,000 x g in a microcentrifuge at 4oC for 10 min, the cell extracts 

(100 µg per sample) were fractionated on SDS-10% polyacrylamide gels and 

transferred to PVDF membranes (Millipore, Billerica, MA). The membranes were 

blocked with 5% nonfat milk in PBS containing 0.02% sodium azide and 0.2% (v/v) 

Tween 20, and incubated with different primary antibodies for 1 h at room 
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temperature. The membranes were then washed with PBS containing 0.2% (v/v) 

Tween 20 and incubated with specific secondary antibodies conjugated with 

horseradish peroxidase (Cell Signaling, Billerica, MA) for 1 h at room temperature. 

After washing, the proteins were detected by a chemiluminescent method according to 

the manufacturer’s specification (Pierce, Rockford, IL).  Pancreatic tissue extracts 

obtained from mice (2/group) treated with or without poly I:C (Sigma, St. Louis, MO) 

every other day at a concentration of 5 µg/g body weight for one week (three times) 

were analyzed as described above. 

 

2.2.7 Enzyme-linked immunosorbent assay (ELISA)  

The expressing level of proinflammatory genes in the extracts of the pancreases was 

measured by ELISA with commercial available kits (eBioscience, San Diego, CA and 

R&D Systems, Minneapolis, MN).  Briefly, flat bottom 96-well ELISA plates were 

coated with a capture antibody at 4°C according to manufacturer’s instruction.  After 

overnight incubation at 4°C, the plates were washed three times and blocked with the 

blocking buffer provided in the kit, and then incubated with standards and cell culture 

medium samples for 2 h at room temperature. After washing the plates, a specific 

biotinylated antibody was added to each well and incubated for 1 h, followed by 

washing and 30 min incubation with avidin peroxidase. Then, substrates containing 3, 

3' 5, 5'-tetramethylbenzidine (TMB) and hydrogen peroxide were added, and the 

reaction was terminated by adding 50 µl of phosphoric acid after 30min.  Plates were 
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read at 450nm in a 96-well LD 400C microplate reader (Beckman Coulter, Fullerton, 

CA).   

 

2.3 Results  

2.3.1 IFN-α and poly I:C induced the expression of RNase L in the 

tissues and cells    

RNase L is expressed in nearly all types of mammalian cells from mouse to man [23]. 

To examine the expressing level of RNase L in the pancreas, the tissue extracts of 

eight different organs from a C57BL/6 mouse (Jackson Laboratory) were analyzed by 

the 2-5A binding assay [30]. As shown in Figure 2-1A, there are remarkable tissue 

differences in RNase L levels. High levels of RNase L expression were found in the 

lung, spleen and thymus. However, the basic level of RNase L in the pancreas was 

very low. Similar to our previous result, RNase L was found to be highly expressed in 

primary immune cells (Figure 2-1B). This observation implicates a possible role of 

RNase L in the immune system. To determine if IFN-α is able to induce the 

expression of RNase L in pancreatic cells, NIT cells, a murine β-cell line, were 

treated with IFN-α and the induction of RNase L was examined by Western blot 

analysis. Obviously, the expression of RNase L was highly inducible in β-cells 

(Figure 2-1C). Double stranded RNA such as poly I:C can be used to mimic viral 

infection in vitro and in vivo.   
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To determine if poly I:C is able to induce the up-regulation of RNase L expression in 

the pancreas, mice were treated with or without poly I:C and the expression of RNase 

L in the pancreatic tissue extracts was measured. Clearly, poly I:C was a potent 

inducer of RNase L expression in the pancreas (Figure 2-1D).  

 

Figure 2-1. The expressing levels of RNase L in the tissue extracts from eight organs 

(A) and immune cells (B). Sp-cells: primary splenocytes; BMM: bone 

marrow-derived macrophages; NIH3T3: mouse fibroblasts; MEF: mouse embryonic 

fibroblasts.  (C) IFN-α induces the expression of RNase L in NIT-1 cells. NIT-1 

cells were treated with 1,000 units/ml of IFN-α for 16 h and RNase L in the cells was 

determined by Western blot analysis. (D) Mice (2/group) treated with or without poly 

I:C at a concentration of 5 µg/g body weight every other days for one week (three 

A.

B.

C.

D.
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times) and the level of RNase L in the pancreatic tissue extract was determined by 

Western blot analysis with a polyclonal antibody to mouse RNase L. 

 

2.3.2 RNase L is associated with subclasses of immune cells in the spleen   

Splenic cells, in particular B cells, play an important role in autoimmune diseases 

such as systemic lupus erythematosus (SLE) and type I diabetes. To determine if 

deficiency of RNase L impacts the subclasses of immune cells in the spleen, splenic 

cells isolated from RNase L+/+ and -/- mice treated with or without either LPS or Poly 

I:C were subjected to flow cytometry sorting based on cell surface markers. As shown 

in Figure 2-2A, the population of CD4+/CD8+ T cells in the spleen of RNase L-/- mice 

was 37% less than that in the spleen of RNase L+/+ mice, whereas the population of 

the double labeled T cells was 72% less in the spleen of RNase L-/- mice compared to 

that in RNase L+/+ mice after treatment with LPS. Similar to CD4+/CD8+ T cells, the 

population of B220+/Ig D+ B cells in the spleen of RNase L -/- mice was 39% less than 

that in the spleen of RNase L+/+ mice after LPS stimulation although the population of 

B220+/Ig D+ B cells in the spleen of intact RNase L-/- mice was slight higher than that 

in the spleen of RNase L+/+ mice under the same condition.  In contrast, the 

population of Gr.1+/CD11b+ macrophages was almost doubled in the spleen of RNase 

L-/- mice in compared to that in RNase L +/+ mice in the presence of LPS although the 

ratio of these cell population in both type of untreated mice was nearly equal.  

Interestingly, Poly I:C treatment increased the population of double labeled 
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CD4+/CD8+ T cells by 46% in RNase L wild type mice, but no significant change in 

the RNase L-/- mice. Similar to LPS treatment, the population of B220+/Ig D+ was 

decreased by 45% after Poly I:C treatment in RNase L-/- mice whereas the double 

labeled cells in Poly I:C treated RNase L+/+ mice were only slightly more than that in 

untreated mice. However, the differential change of Gr.1+/CD11b+ cells after Poly I:C 

treatment were very close although the percentile of the double labeled cells were 

significantly increased compared to that in both types of intact mice. Taken together, 

the results implicate that RNase L may be associated with developing the subclasses 

of immune cells in the spleen.  

A-1. 
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   A-2.

 

A-3. 

 

+/+ Gr.1-CD11b +/+ Gr.1-CD11b-LPS

-/- Gr.1-CD11b -/- Gr.1-CD11b-LPS
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B-3.

 

Figure 2-2. Population of immune cells in the spleen   Six-week-old male RNase 

L deficient and wild type mice (3mice/group) were treated with or without 25 µg LPS 

or 5 µg/g body weight poly I:C for each mouse every other day for a week. The 

splenic cells combined from three mice were subjected to cell sorting after labeled 

with CD4, CD8, B220, Ig D, Gr.1 and CD11b alone or combined. A-1 and B-1: 

CD4/CD8; A-2 and B-2: B220/Ig D; A-3 and B-3: Gr.1/CD11b. 

 

2.3.3 Lack of RNase L delayed the onset of type I diabetes    

Viral infection is believed to be a potent factor in triggering autoimmune responses in 

the pancreas, resulting in destruction of β-cells, leading to absolute deficiency of 

insulin. Indeed, poly I:C, a type of dsRNA commonly used to mimic viral infection, is 
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able to effectively induce the onset of type I diabetes in C57BL/6 mice expressing 

B7.1 on β-cells in the islets under a rat insulin promoter (RIP), which is IFN-α 

dependent [20]. RNase L can be induced by both poly I:C and IFN-α in vitro and in 

vivo, and medicates the functions of IFN-α. To determine the role of RNase L in the 

onset of type I diabetes induced by poly I:C, RNase L deficient RIP-B7.1 mice were 

created by cross-breeding an RNase L-/- mouse (C57BL/6) with a C57BL/6.RIP-B7.1 

mouse (RIP-B7.1 mouse). The genotype of these mice was determined by PCR as 

shown in Figure 2-3A. First, the onset of type I diabetes induced by using STZ, a 

glucose analogue known to induce diabetes in experimental animals, in wild type and 

RNase L deficient mice was investigated. Mice were interperitoneally (i.p.) injected 

with 40 mg/kg STZ for five consecutive days, and the blood was collected from the 

saphenous vein and the level of glucose was measured as described in the Methods. 

As shown in Figure 2-3B, mice with RIP-B7.1 were more sensitive to STZ-induced 

diabetic onset and RNase L deficiency markedly delayed the progress of this disease 

in the RIP-B7.1 mice. To determine if RNase L mediates poly I:C induced onset of 

type I diabetes, RNase L+/+ and -/- RIP-B7.1mice were be injected (i.p.) with 5 µg/g 

body weight poly I:C daily for 7 days, and then immunized (i.p.) with insulin at 25 

µg/mouse on day 14 after poly I:C treatment. Diabetic progress in these mice was 

monitored every week and the mice were considered diabetic after two consecutive 

blood glucose values ≥250 mg/dl. As shown in Figure 2-3C, the onset of diabetes was 

significantly delayed in the RNase L deficient RIP-B7.1 mice.   
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B. 

 

C. 

 

Figure 2-3. Effect of RNase L on STZ and poly I:C-induced diabetes  A. 

Genotyping of B7.1-RL-/- mice. B. Incidence of diabetes in RNase L (RL)+/+ and -/- 

(n=10 for each group), B7.1-RL+/+ (n=8) and B7.1-RL-/-  (n=9) mice after injection 
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with 40mg/kg STZ for five consecutive days. C. Incidence of diabetes in B7.1-RL+/+ 

(n=9) and B7.1-RL-/- (n=8) mice after injected (i.p.) with 5 µg/g body weight poly I:C 

daily for 7 days, and then immunized (i.p.) with 25 µg/mouse of insulin on day 14 

after poly I:C treatment. The glucose levels in the blood samples were measured by 

using a blood sugar test kit (Pointe Scientific). The mice were considered diabetic 

after two consecutive blood glucose values ≥ 250 mg/dl. 

 

2.3.4 RNase L facilitates infiltration of immune cells    

RNase L is highly expressed in the thymus, spleen and all immune cells examined. 

Since the infiltration of immune cells initiates the progress of this disease, we 

attempted to investigate if the delay of type I diabetes onset is caused by slowdown of 

immune responses in the pancreas of mice deficient RNase L. RNase L+/+ and -/- 

RIP-B7.1mice were treated with poly I:C for 40 days. The mice were sacrificed and 

the pancreatic tissues were embedded and sectioned at 5 µm, subjected to 

hematoxylin and eosin (H&E) staining. Interestingly, the population of infiltrated 

immune cells was strikingly reduced in the islets of RNase L deficient mice, 

suggesting the involvement of RNase L in poly I:C-induced diabetes onset may be 

through regulating the infiltration of immune cells (Figure 2-4A). To determine the 

identity of these infiltrated immune cells, immunohistostaining for macrophages, CD4 

and CD8 T cells were performed. Apparently, the majority of the infiltrated immune 

cells in the islets of the pancreas from RNase L +/+ mice was CD8 positive T cells 
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although some of CD4 positive T cells were found in the islets from both types of 

mice (Figure 2-4B). However, macrophages were undetectable in the islets from both 

types of mice by using either CD11b or F4/80 as a biomarker (data not shown).  The 

finding indicates that CD8 positive T cells may be the effector cell in the destruction 

of β-cells in the islets of the pancreas from RNase L+/+ RIP-B7.1 mice after poly I:C 

treatment. 

 

A. 

 

   

 

 

RNase L +/+ RNase L -/-

Control)

Poly I:C
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Figure 2-4. Infiltration of immune cells in the islets   A. Hematoxlin and eosin 

stained pancreatic islets from B7.1-RL+/+ and B7.1-RL-/- mice after treatment with or 
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without poly I:C. B.  Immunohistological staining of CD4+ and CD8+ T cells in the 

islets from both types of mice after poly I:C treatment. C. Immunohistological 

staining of insulin in the islets from both types of mice before and after poly I:C 

treatment. Magnification x 40. 

 

2.3.5 The expression of proinflammatory cytokines in the pancreatic 

tissues    

In addition to IFN-α, several proinflammatory genes such as TNF-α, IL-1β and IFN-γ 

are believed to contribute to the development of type I diabetes [11, 12]. To determine if 

deficiency of RNase L results in any reduction of the expression of TNF-α, IL-1β, 

IL-6 and IFN-γ, RNase L+/+ and -/- RIP-B7.1mice were treated with poly I:C at a 

concentration of 5 µg/g body weight every other days for a week  and the level of 

these gene products in the pancreatic extracts was determined by ELISA. As shown in 

Figure 2-5, deficiency of RNase L reduced 37.5% and 48.5% of IFN-γ and TNF-α 

production respectively induced in the pancreas by poly I:C although the expression 

of IL-1β and IL-6 was found to be only slightly higher in the pancreas from RNase L 

+/+ mice.  
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Figure 2-5. RNase L regulates the expression of proinflammatory genes   RNase 

L deficient and wild type RIP-B7.1 mice were treated with poly I:C at a concentration 

of 5 µg/g body weight every other days for a week  and the level of these factors in 

the pancreatic extracts was determined by ELISA using an ELISA kit for each of the 

analyzers. Experiments were performed two times in triplicates. Data are presented as 

mean ±SD. 

 

2.4 Discussion and future studies 

RNase L deficient mice RNase L null mice show enlarged thymus glands and 

increased T cell numbers at their early age, which likely results from reduced cell 

apoptosis, suggesting that RNase L may be involved in T cell development and 

functions. Indeed, skin allograft rejection is suppressed in mice lacking RNase L, 

implicating the involvement of RNase L in T cell immunity, particularly CD4+ T-cell 

mediated immunity [28]. Alphavirus-based DNA vaccination against a non-mutated 
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tumor-associate self-antigen (tyrosinase-related protein-1, TRP-1) is severely 

impaired in RNase L null mice, indicating that RNase L plays an important role in 

host immune system against cancer [29]. Our study revealed that lymphocytes isolated 

from RNase L deficient mice displayed markedly attenuated cytotoxic activity (46% 

lower) against retinal endothelial cells (data not shown). B7-1 and B7-2 are 

homologous costimulatory ligands expressed on the surface of antigen presenting 

cells (APCs). Binding of these molecules to the T cell costimulatory receptors, CD28 

and CTLA-4, is essential for the activation and regulation of T cell immunity [31]. 

Although expression of the B7.1 costimulator alone is not sufficient to induce 

diabetes in mice, β-cells expressing the molecule are more vulnerable to 

environmental harmful factors such as viral infection, resulting in destruction and 

leading to disease [32]. As a mimic of viral infection, poly I:C treatment alone can 

induce insulitis, but  not diabetes in C57BL/6 mice. However, it can effectively 

induce diabetes in C57BL/6 mice expressing B7.1 on β-cells in the islets under a rat 

insulin promoter (RIP) [20]. In this study, we present evidence showing that RNase L 

deficient RIP-B7.1 mice display a significant delay of type I diabetes onset induced 

by poly I:C, suggesting that RNase L may be associated with the pathogenesis of this 

disease.  

 

RNase L mediating IFN functions against viral infection and cell proliferation has 

been well established. A line of evidence has shown that IFN-α plays a vital role in 
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initiating autoimmune responses although the molecular mechanism is continuing to 

be a focus of investigation. Studies have revealed that type I diabetes onset in animal 

models induced by STZ and poly I:C is IFN-α dependent [19, 20]. In human, incidences 

in the development of type I diabetes have been widely documented during IFN-α 

therapy for viral infection such as hepatitis B and C viral infection [33, 34]. How IFN-α 

promoting the onset of type I diabetes remains to be further elucidated. RNase L is 

one of the key enzymes in the 2-5A system of IFN-α function. 2-5A activation of 

RNase L results in apoptosis in cells. It is believed that apoptosis is one of the key 

factors in triggering autoimmune responses in islets [35].  Thus, our results suggest 

that poly I:C treatment may induce an increase of IFN-α production in islets and 

subsequently activate the 2-5A system, leading to β-cell apoptosis, which further 

promotes the autoimmune responses, resulting in destruction of all β-cells and 

diabetes onset, and deficiency of RNase L in mice delays the onset of type I diabetes. 

Actually, this hypothesis is supported by a previous study which poly I:C induces cell 

apoptosis in pancreatic islets, resulting in release of islet autoantigens, triggering the 

autoimmune responses. In contrast, none of the bacterial products such as LPS and 

CpG are able to produce diabetes in these mice because they cannot induce islet cells 

to undergo overt apoptosis [36]. 

 

RNase L may directly be involved in the function of immune cells to impact the 

development of type I diabetes. Although T lymphocytes are primarily the effectors, 
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studies have indicated that B cells may play a vital role in the pathogenesis of 

autoimmune diseases. In NOD mice, the contribution of B cells was clearly 

demonstrated by the remarkable reduction in insulitis and diabetes incidence after B 

cell depletion using anti-IgM antibodies at birth or in NOD mice genetically deficient 

in B cells [37, 38]. By using the same animal model, studies have shown that B cells 

function as islet antigen–presenting cells for autoreactive T cells and produce 

antibodies which are directly pathogenic. In clinical trials, patients with type I 

diabetes treated with rituximab, a chimeric monoclonal antibody against the protein 

CD20 that is primarily found on the surface of B cells, displayed partially preserved 

β-cell function at one year post treatment as evidenced by decreasing C-peptide and 

less insulin requirements, suggesting an essential role of B cells in the development of 

this disease [39].  Interestingly, the population of B220+/Ig D+ double labeled B cells 

and CD4+/CD8+ double labeled T cells was 39% and 72% down after LPS treatment 

(Figure 2-4A) or 46% and 45% down after poly I:C treatment (Figure 2-4B)  in the 

spleen of RNase L deficient mice, implicating that delayed onset of type I diabetes 

may be due to an attenuated immune responses as a result of that a harmful molecule 

such as LPS or poly I:C decreases the population of certain immune cells. The effect 

of RNase L on immunity is a focus of our investigation currently.    

 

The production of proinflammatory genes in the islets plays a critical role in the 

pathogenesis of type I diabetes. It has been demonstrated that disruption of IFN-γ 
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function by using either IFN-γ specific Abs or soluble IFN-γ receptors (IFNγR) 

significantly reduces the incidence of spontaneous diabetes in NOD mice, implicating 

the importance of IFN-γ in the development of this disease [40, 41]. Complete protection 

from diabetes was observed when TNFR1, but not TNFR2 was knocked out in NOD 

mice although the direct effect of TNFR1 on β-cell death in vivo has not been defined 

clearly [42]. It has been reported that RNase L mediates the expression of certain genes 

through regulating RNA turnover [43, 44]. Our observation suggests that RNase L 

specifically regulating the expression of proinflammatory genes in the pancreas may 

contribute to type I diabetes onset induced by poly I:C. Thus, this study highlights the 

potential benefits of targeting RNase L in type I diabetes treatment. 
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CHAPTER III 

QUANTITATIVE DETERMINATION OF HYM3 

WITH LC-MS/MS 

3.1 Introduction 

Various steroidal derivatives have an anticancer effect. 6-Hydroximino-4-aza-A- 

homo-cholest-3-one was found to be an effective drug candidate. In this study, an 

analytical method has been developed to study the pharmacokinetics and 

pharmacodynamic aspects of the drug candidate, and its metabolism characteristics in 

mice. This project involved development and validation of a rapid and sensitive 

LC-MS/MS method for determination of the compound in mouse plasma. Method 

validation was fully performed according to the FDA guidelines. 
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3.1.1 Method Summary 

Sample preparation was realized by a protein precipitation procedure, and LC was 

performed by using a Phenomenex-Kinetex-C8 column with a gradient mobile phase 

of 0.2% formic acid in water and 0.2% formic acid in acetonitrile at a rate of 0.2 

ml/min. For measurement, 10 µL of the supernatant was injected onto LC/MS system 

consisting of a Shimadzu Prominence HPLC and an AB Sciex QTrap 5500 mass 

spectrometer with positive electrospray ionization. A MRM mode was chosen for 

sensitive and specific detection of the analyte and internal standard. The method 

developed has been validated in mouse plasma according to the FDA guidance. The 

quantitative assessment of Hym3 fills the gap of lacking analytical method for the 

pharmacokinetic studies. 

 

3.2 Material and methods 

3.2.1 Chemicals and solutions 

Hym3 and (3E)-hydroximinocholest-6-one, an internal standard (IS), were kindly 

provided by the College of Chemistry and Life Science, Guangxi Teachers Education 

University (Nanning, China).  Deionized water was collected from the Barnstead 

NANOpure® water purification system (Thermo Scientific, Waltham, MA, USA). 

Formic acid was purchased from Acros (Morris Plains, NJ, USA). Dimethylsulfoxide 

(DMSO), HPLC-grade acetonitrile and ethyl acetate were obtained from Sigma–
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Aldrich (St. Louis, MO, USA). Pooled blank mouse plasma was from Equitech-Bio 

(Kerrville, TX, USA).  

 

Hym3 and IS stock solutions were prepared according to the following procedure: 

first, the compounds were weighted out by an analytical balance and dissolved 

separately into acetonitrile to a concentration of 1.00 mg/mL. For Hym3, the stock 

solution was transferred into 1.5-mL microcentrifuge tubes as per aliquot of 100 µL. 

For the IS, the stock solution was divided evenly into 25 µL per tube. Afterward, the 

solution in the microcentrifuge tubes was dried in a DNA120 SpeedVac® 

(ThermoSavant, Hollbrook, NY, USA) vacuum evaporator at 25℃ and the dried 

stocks were kept at −20℃ until use. Before use, 1.00 mL of deionized water was 

added into the microcentrifuge tube to make the working solution of Hym3 and IS at 

100 and 25.0 µg/mL, respectively. The Hym3 and the IS working solutions were 

freshly prepared before analysis. The mobile phase of LC was prepared by a gradient 

mobile phase of 0.2% formic acid in water and 0.2% formic acid in acetonitrile at a 

rate of 0.2 ml/min. 

 

3.2.2 LC-MS/MS instrumentation 

The LC–MS/MS system was composed by a Shimadzu Prominence HPLC and an AB 

Sciex QTrap 5500 mass spectrometer (AB Sciex, Toronto, Canada) with positive 
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electrospray ionization. The HPLC unit included two binary pumps, a degasser, an 

autosampler, an inline Phenomenex filter (0.5 µm pore) a Phenomenex Kinetex C8 

column (50x2.1 mm, 2.6µ) (Torrance, CA, USA) and Analyst software version 1.4.2 

was utilized for the LC–MS/MS system operation, data acquisition and processing. 

For each LC-MS/MS analysis, the injection volume of the sample onto the column 

was 10 µL. Isocratic elution was utilized in the chromatographic separation. The flow 

rate was set as 200 µL/min. The post-column switching valve was programmed so 

that only the column eluate after 5.0 min was diverted to the mass spectrometer for 

analysis. The positive electrospray- ionization (ESI+) mode was adopted when 

operating the mass spectrometer. The mass spectrometer was tuned by direct infusion 

of a solution containing 10.0 µg/mL of Hym3 and 10.0 µg/mL of IS dissolved in the 

mobile phase. The flow rate of infusion was set as 3 µL/min with a syringe pump 

(Harvard Apparatus, South Natick, MA, USA). Full mass spectrometric scans of 

HyM3 and IS showed protonated molecular ions of 431 and 416 m/z, and 

fragmentation of these two precursor ions revealed predominant product ions of 370 

and 344 m/z respectively. MRM channels were set at m/z 431→370 for HyM3 and 

416→344 for IS.  The optimized parameters for detecting Hym3 and IS were set as 

following: the ion spay voltage (IS) was 5500 eV; the temperature was at 300℃; the 

heating gas (GS1), nebulization gas (GS2), and Curtain gas (CUR) were 45, 45, and 

20 psi, respectively. Compound parameters, including declustering potentials (DP), 

entrance potential (EP), collision energy (CE), and collision exit potential (CXP) for 

both Hym3 and IS were set at 90, 7.0, 15.0, and 20V, respectively.  
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3.2.3 Preparation of standard solutions and plasma controls 

Hym3 standard solutions at the concentration of 10.0, 20.0, 40.0, 100.00, 200.0, 400.0, 

1000.0, 2000, and 4000 ng/mL were prepared by a serial dilution of 100 µg/mL Hym3 

working solution. The IS was diluted from the 100 µg/mL working solution to 400.0 

ng/mL. 

The calibrators (0.500, 1.00, 2.00, 5.00, 10.0, 20.0, 50.0, 100, and 200 ng/mL) of 

Hym3 in mouse plasma were obtained individually by mixing 200 µL of pooled blank 

plasma, together with 5.0 µL of Hym3 standard solution (at twenty times of the 

concentration of the related calibrator) and 10.0 µL of IS standard solution at 400 

ng/mL.  

 

3.2.4 Protein precipitation of Hym3 

Plasma calibrators, controls and animal samples were extracted by using a protein 

precipitation protocol: 800 of ACN were mixed with the plasma sample in a 1.5mL 

microcentrifuge tube. Then, the sample was subjected to a short vortex for 1 min, 

followed by a centrifugation at 13000×g for 10 min. Next, 85% of the organic (upper) 

layer (ca. 850 µL) was transferred into a clean 1.5-mL microcentrifuge tube and dried 
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by vacuum evaporation on the DNA 120 SpeedVac® at 25 ℃. The sample residue 

was finally reconstituted with 850 µL of deionized water. 

 

3.2.5 Matrix effect and recovery studies 

To study the matrix effect, 200 µL pooled blank plasma mixed with 10 µL of water 

was extracted with the protocol described in Section 3.2.4. Afterward, a mixture of 

Hym3 and the IS standard solutions were spiked into the post-extract matrix. The 

prepared samples possessed Hym3 of 1.25, 15.0 and 180 ng/mL, and the IS of 20.0 

ng/mL. The peak area ratios of Hym3 to IS in the spike-after-extraction (SAE) 

standards were compared with those of the corresponding authentic pure standards. 

 

To obtain the recovery data, Hym3 plasma calibrators (1.25, 15.0 and 180 ng/mL, 

with the IS at 20.0 ng/mL) were analyzed. IS normalized recovery of Hym3 was 

calculated by comparing the peak area ratios of Hym3 to IS in the plasma calibrators 

with those of the corresponding SAE standards. The absolute recovery of the IS was 

obtained by comparing the peak areas of the IS in the plasma calibrators with those of 

the corresponding SAE standards. 
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3.2.6 Stability studies 

Mouse plasma test controls (1.25 and 180 ng/mL) were prepared as described in 

Section 3.2.3 except the IS standard was added prior to the LLE. All experiments 

were run in triplicate and the results were compared with freshly prepared plasma 

controls. For the freeze and thaw stability study, the test controls were undergone 

three freeze and thaw cycles. In each cycle, the test controls were frozen at −20℃for 

at least 24 h and thawed at room temperature without help. The short-term 

temperature stability study was carried out by leaving the test controls at the room 

temperature (25℃) for 4–24 h. For the long-term stability, the test controls were 

stored at −20℃ for 90 days prior to analysis. 

 

3.3 Results and discussions 

3.3.1 Method development 

Mass spectrometric detection of Hym3 and the IS 

In this study, “auto-tune” function of the analyst software was utilized for the 

instrument response optimization. Due to their chemical properties, Hym3 and the IS 

can form protonated species more easily than the deprotonated species through 

electrospray ionization. Thus, the positive electrospray ionization mode was utilized 

for the identification and quantification of Hym3 and the IS. Figure 3.1 A and B 
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demonstrates the predominant molecular ions of Hym3 and the IS at m/z 431 for 

[Hym3+H]+ and m/z 416 [IS+H]+, respectively. With collision-induced-dissociation 

(CID) introduced by argon gas in the second quadrupole, these two molecular ions 

were further dissociated into product ions illustrated in Figure 3.1 C and D, 

respectively. The major product ion of the protonated Hym3 and the IS were shown at 

m/z 370 and m/z 344, respectively. As a result, MRM channels were set at m/z 431→

370m/z for HyM3 and 416→344 m/z for the internal standard. To understand the 

fragmentation mechanisms in CID, the m/z difference of the compound before and 

after CID were compared. Summarized with the structural information of the 

compounds, the proposed fragmentation mechanism is shown in Figure 3-2. 

 

Figure 3-1. The mass spectra of Hym3 and the internal standard 
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Figure 3-2. The proposed fragmentation bonds of Hym3 and the IS. 

 

LC separation of Hym3 

Both compounds can be considered as more hydrophobic than hydrophilic. Based on 

this information, three C-18 reverse phase columns, a Phenomenex Gemini® columns 

(2.0mm×50mm, 5 µm particle size with 110Å pore size) and a YMC ODS-AQ® 

column (2.0mm×50mm, 5 µm particle size with 120Å pore size) and a C8 a 

Phenomenex Kinetex C8 column (50x2.1 mm, 2.6µ) have been tried for optimized LC 

separation. Both columns successfully retained Hym3 and the IS on the column for 

over 3 column volumes and were able to provide base line separation between Hym3 

and the IS. However, the Phenomenex Kinetex C8 column was able to provide better 

peak shape compared to the other columns. Meanwhile, since Hym3 and the IS are 

basic compounds, 0.2% of formic acid was added into the mobile phase in order to 

facilitate the protonation of the analytes, which enhanced the sensitivity of MS 

detection. 
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The increased hydrophilicity of the analyte after the addition of the formic acid also 

reduced the retention times of the analyte and the IS, leading to shorter retention time 

and faster LC analysis. 

To optimize the separation efficiency, the percentage of acetonitrile in the mobile 

phase was adjusted. Although a complete baseline resolution between Hym3 and the 

IS could be achieved with a mobile phase consisted of 35.0% acetonitrile, 0.2% 

formic acid and 65% deionized water (v/v/v), the total LC time was as long as 5 min, 

but the Matrix effect was too big to use the isocratic elution. To eliminate the 

interferences between the two compounds, a gradient mobile phase of 0.2% formic 

acid in water and 0.2% formic acid in acetonitrile at a rate of 0.2 ml/min was applied 

(Figure 3-3). 
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Figure 3-3. Representative MRM chromatograms of analytes in mouse plasma. 

Fig.3-3 Representative MRM chromatograms of analytes in mouse plasma   (A) 

double-blank plasma (no Hym3 detected); (B) 0.50 ng/mL Hym3 in plasma (at LLOQ 

with a S/N of 17.2); (C) 18.0 ng/mL Hym3 in plasma; (D) double-blank plasma (no IS 

detected); and (E) 20 ng/mL IS in plasma. 

3.3.2 Method validation 

The performance of the method developed was validated according to the FDA 

guidance for industry bioanalytical method validation [1].  
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Matrix effect and recovery studies   

In the studies of matrix effect and recovery, triplicate measurements were performed 

for each of three different concentration levels (i.e., low, medium, and high). The 

matrix effect was normalized by the signal of the Matrix Factor of IS (MFIS), and thus 

was calculated with the equation as following:  

 

A represents the peak area of the analyte; while A’ indicates the peak area of the IS. 

(A/A’) indicates the peak area ratio of the analyte to the IS. Thus, (A/A’) matrix 

indicates the peak area ration in the post-extraction matrix and (A/A’) solvent indicates 

that in pure solvent.  

 

As Table 3-1 illustrated, the MFIS in mouse plasma matrices varied between 1.03-1.10. 

Meanwhile, the values of MFIS were quite consistent over the concentration range 

reproducible with standard deviation (SD) ≤0.02.  
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To reduce the variation caused by instrument, the recovery was also studies as the IS 

normalized form (RIS). It was calculated with the equation below: 

 

(A/A’) extraction represents the peak area ratio in extracted plasma samples. 

The summarized recovery data can be viewed in Table 3-1. The values ranged from 

97 to 98%. The absolute recoveries (RC’) of the IS from both plasma samples were 

also calculated by using the equation below:  

 

Here A’extraction stands for the peak area of the IS in the extracted plasma sample; 

while A’matrix represents the peak area of the IS in the post-extraction matrix. The 

values of RC’ ranged from 96 to 99% in mouse plasma and the results were 

reproducible and consistent within the calibration range. 

Table 3-1. Matrix effect and recovery 
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Calibration of curve, accuracy, and precision  

The calibration curve of Hym3 in mouse plasma was established with nine non-zero 

plasma calibrators. For each set of calibrator, one double-blank (with neither Hym3 

nor IS) plasma sample and one zero (with IS only) plasma sample were also included. 

The concentrations of Hym3 for the non-zero calibrators were 0.50, 1.00, 2.00, 5.00, 

10.0, 20.0, 50.0, 100 and 200 ng/mL. The linear calibration curves ranged from 0.50 

to 200 ng/mL were established by plotting A/A’ in mouse plasma versus the 

concentrations of Hym3. The weighting factor for both calibration curves were 

utilized as 1/x (the reciprocal of Hym3 concentration). Both calibration data were 

given in Table 3-2. In the determination of the lower limits of quantification (LLOQ), 

the plasma calibrator with the lowest concentration, yet still fit in the calibration curve 

with acceptable accuracy and precision. The concentrations of the calibrators were 

back-calculated according to the calibration equation with the information of the A/A’. 

The accuracy and precision were calculated as they have been described in the 

previous chapter. The accuracy and precision for the mouse plasma ranged from 1 to 

3% and from 3 to 5%, respectively. All values fell within the acceptable criteria (i.e., 

≤±15% at all concentrations except at LLOQ where ≤±20%) suggested by the 

FDA guidance.  

 

The precision of the method was evaluated in two aspects: the intra-and inter assay 

precisions. To determine the precisions, five replicates of plasma control samples at 
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low-, mid- and high-concentration levels (LQC, MQC and HQC) were prepared and 

analyzed. The accuracies of the above studies were between 1 to 4% (Table 3-3). As 

expected, they fell well within the acceptable criteria suggested by the FDA guidance. 

 

Table 3-2. Data for calibration equations of Hym3 in mouse plasma 

 

Calibration Equations: Mouse plasma: Y = 0.0385 (± 0.012) x - 0.00107 (± 0.00304) 

(r2= 0.999 ± 0.000) 

 

Each measured concentration was based on three measurements carried out on three 

different days and the S.D. values showed in the table indicated the standard deviation 

of each triplicate measurement. The calibration equations were based on three 

separate measurements carried out on three different days.  
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Table 3-3. Accuracy, intra- and inter-assay precisions of Hym3 in mouse plasma. 

 

The concentration of LQC, MQC and HQC of Hym3 were 1.25, 15 and 180 ng/mL, 

respectively. The concentration of IS was 20.0ng/mL. 

 

Stability studies 

Two concentration levels, 1.25 and 180 ng/mL, were utilized in the stability test. 

Triplicate measurements were performed at each concentration level. The stability 

results were summarized in Table 3-4. As shown in the table, no significant loss of 

Hym3 was observed in mouse plasma under the storage conditions and its recovery 

ranged between 96 and 98% after stored at room temperature for 24 h and three 

freeze-and-thaw cycles. In addition, a long-term storage of HYM3 in mouse plasma at 

-20 ℃ also showed adequate recoveries. Based on these experimental facts, we 

conclude that Hym3 is pretty stable in either its stock solution or the spiked mouse 

plasma, which is important for deciding the operative time in pharmacokinetic study 

of the drug candidate in the future. 
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Table 3-4. Stability data of Hym3 under different test conditions 

 

 

3.3 Conclusions and future studies 

Based on all the experimental data as described above, a quantitative LC–MS/MS 

method for the assessment of Hym3 in mouse plasma has been developed. In brief, 

the analytes in mouse plasma were extracted by ethyl acetate, separated by 

Phenomenex Kinetex C8 column (50x2.1 mm, 2.6µ), and then analyzed through the 

tandem mass spectrometry. Method validation has been performed in mouse plasma 

according to the FDA guidance. The linear range of the method was from 0.50 to 

200ng/mL in mouse plasma. Due to its high accuracy, precision, and sensitivity, the 

method will be useful for studying pharmacokinetics and pharmacodynamics of 

Hym3 in its preclinical and clinical trials as a potent drug candidate for cancer 

treatment in the future.   
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