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Analytical Solutions for Vertical Flow in Unsaturated, Rooted Soils
with Variable Surface Fluxes

Fasong Yuan and Zhiming Lu*

ABSTRACT ical formulation. Based on the nature of the linearization
and/or approximation of Richards’ equation, the exist-Analytical solutions to Richards’ equation have been derived to
ing analytical solutions may be divided into two classes;describe the distribution of pressure head, water content, and fluid
one uses exponential constitutive relationships (Gard-flow for rooted, homogeneous soils with varying surface fluxes. The

solutions assume that (i) the constitutive relations for the hydraulic ner, 1958; Warrick, 1975; Lomen and Warrick, 1978; Sri-
conductivity and water content as function of the pressure head are vastava and Yeh, 1991; Basha, 2000; Chen et al., 2003),
exponential, (ii) the initial water content distribution is a steady-state the other uses power law forms (Van Genuchten, 1980;
distribution, and (iii) the root water uptake is a function of depth. Broadbridge and White, 1988; Ross and Parlange, 1994;
Three simple forms of root water uptake are considered, that is, uni- Warrick and Parkin, 1995; Kim et al., 1996; Hogarth and
form, stepwise, and exponential functional forms. The lower boundary Parlange, 2000). Analytically solving Richards’ equationof the rooted soil profile studied is a water table, while at the upper

with a sink term describing root water uptake is ex-boundary time-dependent surface fluxes are specified, either infil-
tremely difficult because the uptake is related to a rangetration or evaporation. Application of the Kirchhoff transformation
of variables, such as root depth, water content, andallows us to linearize Richards’ equation and derive exact solutions.

The steady-state solution is given in a closed form and the transient salinity (Feddes and Raats, 2004). Existing analytical
solution has the form of an infinite series. The solutions are used to solutions to this problem usually assume that root water
simulate the hydraulic behavior of the rooted soils under different uptake is an exponential function of root depth to ease
conditions of root uptake and surface flux. The restricted assumptions the mathematical derivation (Raats, 1974; Rubin and
for the solutions may limit the applicability, but the solutions are Or, 1993; Basha, 2000; Schoups and Hopmans, 2002). In
relatively flexible and easy to implement compared to other analytical reality, many modelers rely on numerical approximationand numerical schemes. The analytical solutions provide a reliable

schemes to simulate the hydraulic behavior of the unsat-and convenient means for evaluating the accuracy of various numerical
urated soils with root water uptake (Neuman et al.,schemes, which usually require sophisticated algorithms to overcome
1975; Feddes et al., 1976; Van Dam and Feddes, 2000).convergence and mass balance problems.
However, numerical solutions usually require sophisti-
cated algorithms to overcome convergence and mass con-
servation problems (Milly, 1985; Celia et al., 1990; VanSince the early studies by Philip (1957) and Gard-
Dam and Feddes, 2000). Although subject to more re-ner (1958), the search for analytical solutions to
strictive assumptions, analytical solutions are relativelyRichards’ (1931) flow equation has yielded a variety of
easy to implement and thus provide an effective meansmathematical expressions describing the water content
for evaluating the accuracy of numerical schemes. War-distribution in unsaturated zones (Raats, 2001; Raats
rick (1974) proposed steady-state solutions to Richards’et al., 2002). Many analytical solutions describe the down-
equation for exponential and discrete sink functions ofward water movement that is induced by infiltration
depth. Lomen and Warrick (1978) developed transient(Philip, 1969; Warrick et al., 1985; Srivastava and Yeh,
solutions for the case that the sink term is a sequence1991; Warrick et al., 1991; Ross and Parlange, 1994;
of time-dependent functions of depth. The complexChen et al., 2003). In reality, other processes, such as
form of their solutions limits their applicability. Hereplant root water uptake and capillary rise etc., also affect
we develop a new set of analytical solutions to transientthe vertical water movement. However, analytical solu-
flow for rooted soils with time-dependent varying sur-tions capable of handling the abovementioned three

processes simultaneously are scarce. face fluxes. The initial water contents are assumed to
Analytically solving Richards’ equation with various be in steady state. Exponential water retention and hy-

initial and boundary conditions is challenging because of draulic conductivity relationships are used to linearize
the highly nonlinear relationship between the hydraulic Richards’ equation, and the sink term is assumed to
conductivity and the pressure head. Linear or quasilinear be a function of depth. Lastly, analytical solutions to
approximations are usually needed to facilitate mathemat- transient flow in rooted soils with varying surface fluxes

are used and discussed through illustrative examples.

Fasong Yuan, Agric. Research and Extension Center, Texas A&M
Univ., El Paso, TX 79927, USA. Zhiming Lu, Hydrology, Geochemis- MATHEMATICAL FORMULATION
try, and Geology Group (EES-6), Los Alamos National Lab., Los
Alamos, NM 87545. Received 16 Mar. 2005. *Corresponding author For one-dimensional flow in unsaturated soils with
(zhiming@lanl.gov). root water uptake, the flow equation can be written as
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�(0, t) � �1(t) �
Ks

�
exp(��1) [8]
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z�L
� �q1(t) [9]

where � is called the matrix flux potential (L2 T�1), D �
Ks/{�(�s ��r)} is the soil moisture diffusivity (L2 T�1).

In this study, we assume that the initial soil water dis-
tribution is a steady state rather than a uniform profile.
In the following sections, we will derive the steady-state
solution and then use it as an initial condition for a
transient solution.

Fig. 1. Schematic of hypothetical water content (�) distribution in Steady-State Solutions
unsaturated soils. �s is the water content at saturation, �r is the

The steady-state matric flux potential �s satisfies theresidual water content, ET denotes evapotranspiration through
root water uptake, q1 is time-dependent varying surface flux, and ordinary differential equation:
q(z , t ) is water flow below soil surface. Note that both ET and q
are positive upward. d2�s

dz2
� �

d�s

dz
� S(z) � 0 [10]

�(z ,0) � �0(z), [2] and the boundary conditions

and boundary conditions �s(0) �
Ks

�
exp(��1) [11]

�(0, t) � �1 [3]

�d�s

dz
� ��s�

z�L
� �q0 [12]�K(�)���

�z
� 1��

z�L
� �q1(t) [4]

where q0 is the surface flux at the time t � 0. Let
where � is the pressure head (L), K(�) is the hydraulic

�s � φ �
q0 � Ksexp(��1)

1 � �L
z �

Ks

�
exp(��1) [13]conductivity (LT�1), C(�) � d�/d� is the differential water

capacity (L�1), � is the volumetric water content, S rep-
then the steady-state equation and its boundary condi-resents the root water uptake (T�1), z is the vertical co-
tions becomeordinate pointing upward (L) (see Fig. 1), �0 is the initial

pressure head specified in the domain (L), �1 is the pre- d2φ
dz2

� �
dφ
dz

� [S(z) � A] � 0 [14]scribed pressure head at the lower boundary (L), q1(t)
is the time-dependent flux at the upper boundary (nega-

φ(0) � 0 [15]tive flux for infiltration, LT�1), and t is the time (T).
For mathematical convenience, we choose exponen- �dφ

dz
� �φ�

z�L
� 0 [16]tial models to describe the dependence of the hydraulic

conductivity and the water content on the pressure head,
where A � �(q0 � Kse��1)/(1 � �L). The solution tothat is, K(�) � Kse�� and � � �r � (�s � �r)e��. The lat-
Eq. [14] to [16] can be expressed formally aster leads to C(�) � d�/d� � �(�s ��r)e��. Here Ks is the

hydraulic conductivity (L T�1) at saturation, �s is the φ(z) � �
L

0
G(z, x)[S(x) � A]dx [17]

water content at saturation (L3 L�3), and �r is the residual
where the Green function G(z, x) for this case is de-water content (L3 L�3), and � is the soil pore-size distri-
fined asbution parameter (L�1), which represents the reduction

rate of the hydraulic conductivity and water content as
� is usually negative in unsaturated soils. Using the Kirch-

G(z,s) � �
exp(��z)

�
[1 � exp(�s)] 0 � s � z � L

1
�

[exp(��z) � 1] 0 � z � s � L
hoff transformation (Gardner, 1958; Lu and Zhang, 2004).

�(z , t) � �
�

�∞
K(�)d� �

K(�)
�

[5]

[18]

Combining Eq. [13], [17], and [18], one has
Richards’ equation can be linearized as

�s(z) �
Ksexp[�(�1 � z)]

�
�

q0

�
[exp(��z) � 1]

�2�

�z2
� �

��

�z
� S(z) �

1
D

��

�t
[6]

� �
L

0
G(z ,x)S(x)dx [19]

Equation [19] gives a general solution to steady verti-with initial and boundary conditions



cal flow problems. For any given uptake term S as a func-
�s(z) �

Ksexp[�(�1 � z)]
�

�
q0

�
[exp(��z) � 1] �tion of z, the corresponding steady-state solution for

the matrix flux potential �s can be derived by carrying
out the integral in Eq. [19]. For complicated functional exp(��z)

�
�
n

j�1

Sj(zj � zj�1) �
1
�

�
n

j�k�1

Sj(zj � zj�1) �
forms of the uptake term S, the integral in Eq. [19] may
need to be evaluated numerically. However, for some exp(��z)

�2 �
k�1

j�1

Sj[exp(�zj) � exp(�zj�1)] �particular uptake functions, the steady-state solution
can be derived analytically through Eq. [19] as follows.

Sk

�2
{�(zk � z) � 1 � exp[�(zk�1 � z)] [22]

Uniform Root Uptake
This particular case is of interest in connection withIn the simplest case, the root uptake term is a constant

observed root length or root mass in individual layers.S(z) � S0 	 0 for all 0 � z � L. Integrating Eq. [19] yields

Exponential Uptake�s(z) �
Ksexp[�(�1 � z)]

�
�

q0

�
[exp(��z) � 1] �

The distribution function of root uptake may be ex-
pressed in an exponential form (Raats, 1974; RubinS0

�2
[(�L � 1)exp(��z) � �(L � z) � 1] [20] and Or, 1993; Schoups and Hopmans, 2002), S(z) �

S0exp[
(z�L)] where S0 is the maximum uptake at the
For z � 0, the matrix flux potential �s(0) � Ksexp(��1)/� land surface (T�1) and 
 is a constant (L�1) representing
,which is independent of the root uptake S and of course the rate of reduction in root uptake. Carrying out the
consistent with Eq. [8] and [11]. integral in Eq. [19] yields

�s(z) �
Ksexp[�(�1 � z)]

�
�

q0

�
[exp(��z) � 1] �Step Functions

In general, the depth of the rooted zone is less than that S0{exp[
(z � L)] � exp(��z � 
L) � exp(��z) � 1}
�


�of the vadose zone; that is, the root uptake takes place
only in the upper portion of the vadose zone. In this case,
the root uptake may be approximated by S(z) �S0H(z � S0{exp[
(z � L)] � exp(��z � 
L)}

�(� � 
) [23]L1), where H(z � L1) is the Heaviside function defined
as H (z � L1) � 0 for 0 � z � L1 and H (z � L1) � 1 The steady-state pressure head and water content can
for L1 � z � L. Integrating Eq. [19] yields the steady- be computed from � � (1/�) ln(��s /Ks) and � � �r �
state solution �(�s � �r)�s /Ks .

In case with L approaching infinity, Eq. [23] becomes

�s(Z) � �
q0

�
�

S0[� � 
 � �exp(�
Z)]
�
(� � 
)

[24]

where Z � L � z is the depth below the land surface.
Given the assumption that hydraulic conductivity is a
linear function of water content (�) or matrix flux poten-�s(z) �

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
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Ksexp[�(�1 � z)]
�

�
q0

�
[exp(��z) � 1] �

S0(L � L1)
�

[exp(��z) � 1] 0 � z � L1

Ksexp[�(�1 � z)]
�

�
q0

�
[exp(��z) � 1] �

S0[�(L � L1) � exp(�L1)]
�2

exp(��z) �

S0

�2
[�(L � z) � 1] L1 � z � L

tial (�s), Eq. [24] has the similar form of the solution
given by Raats (1976, Eq. [16]).

Transient Solutions
The steady-state solution �s is now taken as the initial

condition �0 for the transient problem Eq. [6] through[21]
[9]. Taking the Laplace transformation, we have the ordi-

It is easy to check that both the steady-state solution nary differential equation
�s and its first-order derivative are continuous at z �
L1. In the case that L1 � 0, that is, uniform root uptake d2�̃

dz2
� �

d�̃

dz
�

s
D

�̃ �
�s

D
�

S
s

� 0 [25]
in the entire domain, from the second part of the solu-
tion we can verify that the above solution reduces to with boundary conditions
Eq. [20]. On the other hand, if L1 � L, that is, no uptake
at all, from the first part of this solution, we can easily �̃(0) �

�1(z)
s

[26]
see that the term with uptake disappears.

More generally, if the uptake function S(z) is defined �d�̃

dz
� ��̃�

z�L
� �q̃(s) [27]as a piecewise step function on 0 � z0 � z1 � ··· � zn � L

as S(z) � �n
i�1SiH(z � zi�1)H(zi � z), the steady-state

solution can be written as, for any zk�1 � z � zk , where s is the Laplace-transform complex variable, �̃ �



Fig. 2. Wetting profiles of (a) pressure head and (b) water content for soils without root water uptake (� � 0.01 cm�1).

L(�), and q̃1 � L(q1). Solving Eq. [25] to [27] and taking where �s,q1
is the final steady-state solution of the transient

the inverse of the Laplace transformation, we finally ob- problem with surface flux q1 and can be obtained on
replacing q0 in �s by q1. Correspondingly, Eq. [30] cantain the matrix flux potential � for transient flow (see

Appendix A for details) be simplified to

q(z , t) � q1 � �
L

z
S(x)dx � 4�(q0 � q1)exp��(L � z)

2 ��(z , t) � �s(z) � 8Dexp��(L � z)
2 �

�
∞

n�1

sin(�nL)[sin(�nz) � 2�ncos(�nz)]
2� � �2L � 4� 2

nL
exp[�D��2

n �
�2

4 �t]
�
∞

n�1

��2
n �

�2

4 �sin(�nL)sin(�nz)

2� � �2L � 4L�2
n

G(t) [28] [32]

G(t) � �
t

0
[q0 � q1(�)]exp[�D��2

n �
�2

4 �(t � �)]d� [29] ILLUSTRATIVE EXAMPLES
AND DISCUSSION

where �n is the nth positive root of equation sin(�L) � In this section, we will discuss the analytical solutions
(2�/�)cos(�L) � 0. Note that the transient part in Eq. through numerical examples, in which we compute the
[28] does not depend on the root uptake, which is due distributions of the pressure head, water content, and
to the assumption that the uptake term S(z) is time- water flux across a 100-cm soil profile with the lower
independent. The flux water flow below the land surface boundary confined by the water table (Fig. 1). The water
at any time can be derived from q(z,t) � d�/dz � �� content at saturation and residual water content of the
and is given by soils are assumed to be 0.45 and 0.20 cm3 cm�3 (Sriva-

stava and Yeh, 1991). The hydraulic conductivity at satu-
q(z , t) � q0 � �

L

z
S(x)dx � 8Dexp��(L � z)

2 � ration is taken as 1.0 cm h�1. The initial water content
profile is assumed to be a steady-state profile with a sur-
face influx of 0.1 cm h�1; that is, q0 � �0.1. Both constant
and varying surface fluxes are considered for the upper

�
∞

n�1

��2
n �

�2

4 �G(t)sin(�nL)

2� � �2L � 4L�2
n

��

2
sin(�nz) � �ncos(�nz)� [30] boundary conditions.

In the case that q1 is a constant, Eq. [28] can be simpli- Constant Surface Flux
fied to In this case we assume that a constant infiltration of

0.9 cm h�1 (i.e., q1 � �0.9) occurs and lasts for at least
�(z , t) � �s,q1

(z) � 8(q0 � q1)exp��(L � z)
2 � a few days. The transient distribution of the pressure

head and the water content can be computed based on
the solution (31) and the exponential hydraulic param-�

∞

n�1

sin(�nL)sin(�nz)
2� � �2L � 4L�2

n

exp[�D��2
n �

�2

4 �t] [31]
eter models. Figures 2 and 3 show the computed distri-



Fig. 3. Wetting profiles of (a) pressure head and (b) water content for soils without root water uptake (� � 0.1 cm�1).

butions of the pressure head and the water content for condition considered. This is especially the case near
the soil surface where the soil water content approacheshomogeneous soils with � � 0.01 cm�1 and � � 0.1 cm�1,

respectively, for a period of 50 h. Note that the root the steady state faster than further down in the soil.
In the presence of root water uptake, we consider auptake is ignored in the two examples. The calculated

results are exactly the same as those of Srivastava and rooted soil profile with a maximum root depth of 40 cm
(i.e., L1 � 60 cm in Fig. 1) and assume that the dis-Yeh (1991). Both the pressure head and water content

profiles are similar in shape because of the similar form tribution of root water uptake can be described by the
Heaviside function. The maximum water uptake at theof the exponential hydraulic parameter model used. The

soil water moves faster in the soils with � � 0.01 cm�1, land surface (S0) is taken as 0.02 h�1 for � � 0.01 cm�1,
and 0.0025 h�1 for � � 0.1 cm�1. Figures 4a and 4b showbut the time needed to reach the steady state is nearly

the same (about 50 h) due to the same surface boundary changes in the water content distribution for such rooted

Fig. 4. Comparison of wetting profiles in rooted soils under constant surface flux (q1 � �0.9 cm h�1). (a) � � 0.01 cm�1, S0 � 0.02 h�1. (b) � �
0.1 cm�1 and S0 � 0.0025 h�1.



Fig. 5. Comparison of soil water distribution in rooted soils under varying surface fluxes q1(t ). (a) � � 0.01 cm�1 and S0 � 0.02 h�1. (b) � �
0.1 cm�1 and S0 � 0.0025 h�1. (c) Exponential surface input function.

soils during a period over 30 to 50 h. The initial water forcing, for example, irrigation, rainfall and evaporation,
content profile for the rooted soils with � � 0.01 cm�1 etc. Here we consider that the surface flux is an expo-
is much drier than that without root uptake (Fig. 2b). nentially decaying function of time, namely q1(t) � q0 �
The initial moisture profile approaches a new steady exp(kt) where  � �0.8 cm h�1 and k � �0.1 h�1. This
state approximately 30 h after the beginning of the in- simple surface flux model allows q1 to approach q0 when
crease in infiltration rate. On the other hand, the water t becomes sufficiently large (Fig. 5c). The moisture con-
content profile of the rooted soils with � � 0.1 cm�1 is tents at any time and depth are computed through Eq.
similar to that without root uptake (Fig. 3b), as the root [28] using the exponential surface flux model and the
uptake component is relatively small, which accounts results are presented in Fig. 5a and 5b for the rooted
for �11% of the infiltration. soils. Both of the rooted soils receive the same amount

of water from the upper boundary, but exhibit rather
Time-Dependent Surface Flux different patterns of the water content distributions. The

soil profile with � � 0.01 cm�1 is on average wetter thanIn reality, the upper boundary conditions always vary
with time as a result of agricultural practices and weather the soil with � � 0.1 cm�1 even though the amount of



Fig. 6. Temporal development of water flows. (a) � � 0.01 cm�1, S0 � 0.02 h�1, and k � 0. (b) � � 0.01 cm�1, S0 � 0.02 h�1, and k � �0.1. (c)
� � 0.1 cm�1, S0 � 0.0025 h�1, and k � 0. (d) � � 0.1 cm�1, S0 � 0.0025 h�1, and k � �0.1. Infiltration (q1) is in thick solid curves, flow at
interface between root zone and subsoil (q2) in thin solid curves, and flow near the water table (q3) in dashed curves. Note that k is a constant
in q1(t ) � q0 � �exp(kt), � � �0.8 cm h�1.

water loss through root uptake is larger than that re- on assumptions that (i) the hydraulic conductivity and
water content are exponential functions of the pressureceived from infiltration. This is because the larger root

water uptake in the soil with � � 0.01 cm�1 favors the head, (ii) the initial water contents are in steady state,
and (iii) the distribution of root water uptake is a func-capillary rise that brings water from the water table into

root zones. On the other hand, the impact from the rapid tion of depth. Both steady state and transient solutions
are given and discussed through illustrative examples.change in q1 on the soil moisture content is much deeper

in the soil with � � 0.1 cm�1 and the response time in- Equation [28] gives an alternative single form of the
one-dimensional solutions of Basha (2000, their Eq. [24],creases with the increasing depth.

To evaluate the transient water flow in response to [26], [38], and [51]). The analytical solutions are validated
by comparing the computed pressure head and waterchanges in the surface flux, we use Eq. [30] to compute

the flow (q2) at the interface between the root zone and content using other analytical solutions (Srivastava and
Jim Yeh, 1991). The analytical solutions are useful to pre-subsoil and the flow at the water table (q3) (Fig. 6). In

the rooted soil with � � 0.01 cm�1 (Fig. 6a and 6b) the dict the vertical distribution of the water content and the
water flux. This analytical solution is not applicable indifference between q2 and q3 is relatively small. Both q2

and q3 approach �0.1 cm h�1 for the constant surface flux cases where the exponential hydraulic parameter model
is not appropriate. An implicit assumption of a shallowand 0.7 cm h�1 for the exponentially decaying surface

flux when t 	 50 h. Note that the positive values of q2 water table with a fixed depth is needed for the solu-
tions, that is, water table does not rise with infiltration orand q3 suggest that water moves upward, that is, capillary

rise. In the cases of constant surface flux (Fig. 6a and fall with root water uptake. Another limitation of the
analytical solutions is imposed by the assumption related6c) the absolute value of q2 is always not less than that

of q3, while in the cases of varying surface flux (Fig. 6b to the sink term of root water uptake. In reality, the dis-
tribution of root uptake is not only a function of depthand 6d) the absolute value of q2 is not always greater

than that of q3. It is easy to check the mass is conservative but also related to other factors, for example, water con-
tent, salinity, and even plant physiological parameters.in all the cases. Additionally, the response time of q2 is

usually shorter than that of q3. The time lag is likely Nevertheless, the analytical solutions provide an addi-
tional tool for validating and/or checking the accuracyassociated with the hydraulic conductivity.
of numerical schemes.

SUMMARY AND CONCLUSIONS
APPENDIX AWe solved Richards’ equation for water flow in unsat-

urated, rooted soils under time-dependent varying upper In equations [25]–[27], let �̃ � φ � �s /s , we obtain
equations for the new variable φboundary conditions. The analytical solutions are based



d2φ
dz2

� �
dφ
dz

�
s
D

φ � 0 [A1] sin(�nL) �
2�n

�
cos(�nL) � 0 [A13]

φ(0) � 0 [A2]
Since the residue of est F(s) at s � �D(�2

n �
�2

4
) is

�dφ
dz

� �φ �
z�L

�
q0

s
� q̃1(s) [A3]

Res�exp(st)F(s),�D��2
n �

�2

4 �� �
The characteristic equation for Eq. [A1] is

�2 � �� �
s
D

� 0 [A4]
8D

��2
n �

�2

4 �sin(�nL)sin(�nz)

2� � �2L � 4L�2
n

exp[�D��2
n �

�2

4 �t]
and its two solutions are [A14]

the inverse transformation of F(s) can be derived as�1,2 �
�

2
� 	 s

D
�

�2

4
� �

�

2
� � [A5]

L�1{F(s)} �

The general solution of φ can be written as

φ(z) � C1exp(�1z) � C2exp(�2z) [A6] 8D �
∞

n�1

��2
n �

�2

4 �sin(�nL)sin(�nz)

2� � �2L � 4L�2
n

exp[�D��2
n �

�2

4 �t]
where C1 and C2 are constants to be determined. Using

[A15]boundary conditions [A2] and [A3], one can solve these
two constants Finally, we solve the Kirchhoff transformed variable �

C1 � �C2 �
exp(�L/2)

2
q0/s � q̃1(s)

�

2
sinh(�L) � �cosh(�L)

�(z , t) � �s(z) � 8Dexp��(L � z)
2 � �

∞

n�1

[A7]

and ��2
n �

�2

4 �sin(�nL)sin(�nz)

�2L � 2� � 4L�2
n

φ(z) � exp��(L � z)
2 � [q0/s � q̃1(s)]sinh(�z)

�

2
sinh(�L) � �cosh(�L) �

t

0

[q0 � q1(�)]exp[�D��2
n �

�2

4 �(t � �)]d�
[A16][A8]

The Laplace transformed variable �̃ can be written as
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