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BIOGEOGRAPHY-BASED OPTIMIZATION FOR 

COMBINATORIAL PROBLEMS AND COMPLEX SYSTEMS 

 

 
DAWEI DU 

 
 

ABSTRACT 

Biogeography-based optimization (BBO) is a heuristic evolutionary algorithm 

that has shown good performance on many problems. In this dissertation, three problems 

are researched for BBO: convergence speed and optimal solution convergence of BBO, 

BBO application to combinatorial problems, and BBO application to complex systems. 

The first problem is to analyze BBO from two perspectives: how the components of BBO 

affect its convergence speed; and the reason that BBO converges to the optimal solution. 

For the first perspective, which is convergence speed, we analyze the two essential 

components of BBO – population construction and information sharing. For the second 

perspective, a mathematical BBO model is built to theoretically prove why BBO is 

capable of reaching the global optimum for any problem. In the second problem 

addressed by the dissertation, BBO is applied to combinatorial problems. Our research 

includes the study of migration, local search, population initialization, and greedy 

methods for combinatorial problems. We conduct a series of simulations based on four 

benchmarks, the sizes of which vary from small to extra large. The simulation results 

indicate that when combined with other techniques, the performance of BBO can be 

significantly improved. Also, a BBO graphical user interface (GUI) is created for 
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combinatorial problems, which is an intuitive way to experiment with BBO algorithms, 

including hybrid BBO algorithms. The third and final problem addressed in this 

dissertation is the optimization of complex systems. We invent a new algorithm for 

complex system optimization based on BBO, which is called BBO/complex. Four real 

world problems are used to test BBO/Complex and compare with other complex system 

optimization algorithms, and we obtain encouraging results from BBO/Complex. Then, a 

Markov model is created for BBO/Complex. Simulation results are provided to confirm 

the model. 
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CHAPTER I 

INTRODUCTION 

1.1 Biogeography-Based Optimization 

With the advance of today’s technology, simple systems cannot satisfy the needs 

of industry. Complex systems have become the mainstream. Control and optimization are 

more complicated and challenging as system complexity increases. Sophisticated 

algorithms designed for special types of problems have been invented, requiring a full 

understanding of these problems. But if we turn to heuristic algorithms, it is not necessary 

to completely understand the system before applying them for control or optimization. In 

contrast with other algorithms which are designed for special types of problems, heuristic 

algorithms can easily adapt to almost any type of problem with only minor changes. The 

main drawback of the heuristic algorithm is that it needs long computation time before 

achieving desirable results. But with powerful computers, this drawback is tolerable.  
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Biogeography-based optimization (BBO) is an algorithm which was introduced in 

2008 [1]. This algorithm is inspired by the distribution of species over time and area. The 

environment of BBO is an archipelago which consists of islands, where each island 

includes many species (features). Each feature is called a suitability index variable (SIV). 

Each island is considered as a potential solution to an optimization problem. The 

performance of each solution is evaluated by the problem’s cost function, and we use the 

habitat suitability index (HSI) to indicate the level of performance. The method to share 

features between islands is called migration and the method to randomly modify an island 

is called mutation. These two methods describe the evolution of the population in BBO. 

The basic procedure of the BBO algorithm is as follows: 

1. Define the mutation probability, and elitism parameter. Mutation and elitism are the 

same as in genetic algorithms (GAs) [2].  

2. Initialize the population.  

3. Calculate the immigration rate and emigration rate for each island. Good solutions 

have high emigration rates and low immigration rates. Bad solutions have low 

emigration rates and high immigration rates.  

4. Probabilistically choose the immigrating islands based on the immigration rates. Use 

roulette wheel selection [3] based on the emigration rates to select the emigrating 

islands.  

5. Migrate randomly selected SIVs based on the selected islands in the previous step. 

6. Probabilistically perform mutation based on the mutation probability for each island. 

7. Calculate the fitness of each individual island. 
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8. If the termination criterion is met, terminate; otherwise, go to step 3 for the next 

generation. 

The original BBO algorithm shows good potential when compared over 14 

benchmark problems with seven well-know competitors – ant colony optimization (ACO), 

differential evolution (DE), evolutionary strategy (ES), GA, probability-based 

incremental learning (PBIL), particle swarm optimization (PSO), and stud genetic 

algorithm (SGA) [1]. Due to its performance, it is widely used in many areas, such as 

power control [4], fuzzy robot controller tuning [5], and traveling salesman problem (TSP) 

[6]. Also, a Markov model [7] and dynamic system model [8] have been derived for BBO, 

which can predict the performance of BBO theoretically before applying it to real world 

problems. They are useful methods to analyze the performance of BBO and also provide 

a solid proof why BBO obtains such good performance. 

Although BBO achieves outstanding results in benchmark tests, it still has room 

to improve. Most heuristic algorithms are considered as a framework, or family of 

algorithms. Taking GAs as an example, many GAs are invented for different purposes. 

Examples include: non-dominated sorting genetic algorithm (NSGA) [9], genetic 

algorithm with multistep crossover (GA/MSX) [10], etc. These algorithms all belong to 

the GA family, but their details are different. Most of the details in a heuristic algorithm 

can be modified or replaced for different types of problems to gain maximum 

performance.  

In this dissertation, we perform an analysis of how to increase the efficiency of a 

heuristic algorithm. The efficiency metric is the convergence speed. BBO is used as an 



 

 

4 

example to demonstrate the analysis. It can also be considered as a guideline for how to 

create a hybrid BBO with better efficiency. 

Combinatorial problems are NP-hard problems [11], and their large search spaces 

make them incompatible with traditional mathematical methods. This makes them a 

perfect benchmark for heuristic algorithms. For the demonstration and simulation 

purposes of this dissertation, the traveling salesman problem (TSP) is used as the 

prototypical example of a combinatorial problem. For a 100-city TSP, the total number of 

candidate solutions is 100! = 9.3326 × 10157. Using exhaustive search methods is a dead 

end for this type of problem. BBO has the potential to be a powerful tool for 

combinatorial problems. In this dissertation, we create hybrid BBO algorithms with high 

efficiency for combinatorial problems. 

The final contribution of this dissertation is to apply BBO to complex systems, 

which consist of multiple interacting subsystems. Each of the subsystems has multiple 

objectives and multiple constraints. The reason for applying BBO to complex systems is 

that a complex system includes three factors which cannot be easily addressed and solved 

by traditional methods: multi-systems, multi-objectives, and multi-constraints. Since 

complex systems are commonly used in today’s industry, providing a solution method for 

complex systems can be a significant contribution to industry. Also, these three factors 

are difficult even for heuristic algorithms [9]. As a heuristic algorithm, BBO faces the 

same challenge. 
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1.2 Literature Review 

BBO has proven its performance based on comparisons with other algorithms in a 

series of benchmark tests [1]. These tests can be roughly considered as efficiency tests 

based on the convergence time and final results. In [12], [13], [14], [15], and [16], hybrid 

BBO algorithms are introduced for different types of problems and circumstances. The 

simulation results from these papers show performance improvement compared to the 

original algorithm in certain areas.  

1.2.1 Combinatorial Problems 

Combinatorial problems are not new to heuristic algorithms. They are considered 

as standard benchmarks for heuristic algorithms. Combinatorial problems represent a 

special category of problems. Inside this category, there are many subcategories. Some of 

them have significant effects in our daily life. For example, the vehicle routing problem, 

the knapsack problem, the TSP, etc. 

Vehicle routing problems were first proposed in 1959 [17]. For this type of 

problem, the aim is to design the optimal route for picking up or delivering people or 

goods from one or several locations to a number of scattered locations with certain 

constraints. Vehicle routing problems are a common type of combinatorial problem, and 

many real world problems, like bus routing [18], mail delivery [19], etc., belong to this 

category. 
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The knapsack problem is another type of combinatorial problem. It can be traced 

back to 1897 [20]. The description of this problem is: when given a set of objects which 

have different weights and values, choose some objects from this set to maximize the 

total value but still be under the weight limit. It also appears in real world applications 

such as selection of capital investment [21]. 

TSP, a famous combinatorial problem, is an ancient problem whose origins have 

been lost in the mists of history. The TSP was first formulated as a mathematical problem 

by Karl Menger in 1930 [22]. There are three major reasons that the TSP has become a 

standard benchmark for heuristic algorithms. First, the TSP is an easily stated problem 

and is similar to many practical problems, such as sensor selection [23], the mailman 

problem [24], robotic path planning [5], and many others. Second, the TSP can easily be 

modified to become a multi-objective problem [25], and solving multi-objective 

problems is a practical challenge in many areas of engineering and industry. Third, the 

optimal TSP solution is extremely hard to find using analytical methods. Even using 

numerical methods, it is still quite a challenge.  

In [26], BBO has been applied to TSPs. The new algorithm is called the 

biogeography migration algorithm for traveling salesman problem (TSPBMA), which is a 

specially modified version of BBO for combinatorial problems which achieves good 

results. In [27], BBO with circular opposition (BBO/CO) was introduced as a modified 

version of BBO which achieved promising results for 16 TSP benchmarks. Two 

techniques are implemented to create BBO/CO: circular opposition and combinatorial 

BBO migration, which is also called the simple version of inver-over crossover that will 

be introduced in the following sections of this dissertation. Although specially designed 
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BBOs were invented in those papers, they only discussed modification in the migration 

component. But in this dissertation, besides the migration component, the discussion will 

be extended to new areas in BBO including the population construction, the local search 

optimization, and the greedy method. 

1.2.2 Complex Systems 

The material in this section is based on [28], which is one of the dissertation 

author’s publications, and which is used here with permission. Complex systems have 

become an important topic. In [29], we read that a complex system has the following 

properties: 1) a complex system contains a large number of elements; 2) the elements 

have interactions with each other; 3) the interactions are rich; 4) the interactions contain 

certain complex characteristics such as nonlinearity. In [30], a complex system is defined 

as "[a]n assembly of interacting members that is difficult to understand as a whole." 

Complex systems can have various structures, as long as they satisfy the above 

definitions. 

The mathematical description of a system comprises equations and inequalities 

that include the definitions of variables, the ranges of variables, and the connections 

between variables. Optimizing a system is equivalent to mathematically defining the 

system, and then finding the feasible solutions that (approximately) optimize the 

objective functions. But when the order of the equations or inequalities is relatively large, 

or those equations or inequalities are highly nonlinear, the solutions must be obtained 

numerically rather than analytically [31]. Unfortunately, most complex systems include 

interacting subsystems that are either continuous or NP-hard, and thus contain a huge 
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number of possible solutions. The inclusion of subsystems in complex systems adds even 

more complexity than that involved in a single system. 

For example, a complex system can have a multilevel structure, such as a 

decentralized planning problem with multiple executors in a hierarchical organization. 

The simplest case of a multilevel problem is the bilevel problem [32]. The description of 

a bilevel problem is as follows. 

 
min
x,y

H (x, y)

subject to F(x, y) ≤ 0
 (1.1)  

Equation (1.1) describes an upper level problem. In contrast, a lower level 

problem is described as 

 
min ( , )

subject to ( , ) 0
y
h x y

f x y ≤
 (1.2) 

In Equation (1.2), for each value of x, there exist a solution, y. Variable x is called 

the upper level variable, and y is called the lower level variable. F(x, y) is the upper level 

constraint, and f(x,y) is the lower level constraint. The bilevel problem is a special case of 

a multilevel problem. When a problem has multiple levels in a hierarchical organization 

and also has connections as shown in Equation (1.1) and (1.2), it is called a multilevel 

problem. 

Many real world applications are typical multilevel problems. One example is the 

aircraft design problem [33], which is extremely complicated and involves thousands of 

components. Network design [34] is another multilevel problem, whose goal is to 

optimize the balancing of transportation, construction costs, and maintenance costs of a 
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network. It is similar to the aircraft design problem: large size, large number of 

components, and extreme difficulty for optimization. Besides these two problems, 

coordination of multidivisional firms [35], and electric utility planning [36] are also 

considered multilevel problems. Many algorithms have been invented to solve these types 

of problems, such as extreme point algorithms (EPA) [37] and collaborative optimization 

(CO) [38], both of which belong to the multi-disciplinary design optimization (MDO) 

category. 

In the 1970s and 1980s, computer aided design became a mature approach for 

aircraft design, including economic factors, manufacturability, reliability, etc. Aircraft 

design was the initial motivation of MDO [39]. With thousands of parts and parameters 

in airplane design, MDO provided a revolution in the aircraft industry. In 1989, the 

American Institute of Aeronautics and Astronautics (AIAA) established the technical 

committee on MDO [39]. 

As mentioned above, MDO is a class of optimization methods. Numerous 

algorithms belong to this class, such as: multidisciplinary feasible (MDF), which is the 

most popular MDO algorithm [40]; individual discipline feasible (IDF), which does not 

require system decomposition [41]; and CO, which is effective for many complex 

systems, and which has been widely adopted in industry [38].  

Traditional MDO algorithms are frameworks that provide basic conceptual 

structures without specifying the detailed underlying algorithms. In [42], the definition of 

MDO is given as follows: “an MDO method for a given problem consists of an MDO 

formulation and an optimization algorithm.” The particular optimization algorithm is 

usually chosen based on the specific problem or the user’s preference. Different MDO 
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methods can share the same underlying optimization algorithm. Conversely, the same 

MDO method can be implemented with different underlying optimization algorithms. 

Therefore, the major difference between MDO algorithms is the MDO formulation, or in 

other words, the structure of the method. 

The most popular MDO algorithms include MDF, CO, and IDF. MDF is perhaps 

the most well known MDO algorithm. It is often considered the standard solution method 

for multidisciplinary problems. The structure of a typical MDF algorithm is shown in 

Figure 1. The top level of MDF is system optimization. The second level is called 

multidisciplinary analysis (MDA), which passes coupled variables among subsystems to 

obtain feasible solutions at the subsystem level after a certain number of iterations. After 

reaching the iteration limit, the second level passes its solution to the first level, and this 

completes one optimization cycle. The iteration cycle limit is usually defined by the user. 

The structure of MDF enables it to be a very competitive optimization method when the 

subsystems are highly coupled. 

 

Figure&1:&Multidisciplinary&feasible&(MDF)&formulation&
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CO is another typical MDO algorithm, and has a bilevel structure which is shown 

in Figure 2. The first level is the system optimizer, which optimizes the feedback from 

the subsystem optimizers. The second level is the combination of the subsystem 

optimizers, which optimize each subsystem. Unlike MDF, the subsystem optimizations in 

CO are independent from each other, which means that CO puts more focus on 

subsystem optimization, which is advantageous for systems with extremely complex 

subsystems that are loosely coupled. 

 

Figure&2:&Collaborative&optimization&(CO)&

 

IDF is an all-in-one MDO algorithm. The most significant benefit of IDF is that it 

can optimize all of the subsystems together without subsystem optimizations. For most 

MDO algorithms, decomposition of the system is necessary. But unlike CO, IDF does not 

require subsystem optimization. It treats subsystems more like objective functions. As 

long as we have the objectives and constraints for each subsystem, IDF can be 

implemented. As we see from the structure of IDF in Figure 3, IDF includes subsystem 
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analysis but not subsystem optimizers, which makes it an all-in-one algorithm. 

Optimization only operates at the global system level. 

 

Figure&3:&Individual&discipline&feasible&(IDF)&formulation&

 

A new BBO algorithm for complex systems will be introduced in Chapter 4. 

Since MDF, IDF and CO are well-established algorithms in the MDO category, we will 

compare this BBO algorithm with those popular algorithms on four real world complex 

systems to reveal its potential. 

1.3 Dissertation Organization 

Chapter 2 comprises the first original contribution of this dissertation, where we 

introduce the efficiency analysis and convergence analysis for heuristic algorithms. 

Heuristic algorithms are usually time consuming. An efficiency analysis is used to 

compare the performances of algorithms. The most efficient algorithm should achieve the 

optimal solution with the shortest computation time. For the same algorithm, different 
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setups can result in very different performances. The first task of Chapter 2 is to 

determine the performance of algorithms under different population initialization 

methods, migration methods and mutation methods. The probability of convergence to 

the global optimal solution is always a concern when implementing a heuristic algorithm. 

Usually users think there is no guarantee that heuristic algorithms will eventually obtain 

the optimum, which results in heuristic algorithms being labeled as unreliable algorithms. 

But is that a true accusation? The second task of Chapter 2 is to conduct an analysis of 

this question.  

Chapter 3 comprises the second original contribution of this dissertation, where 

we apply BBO to combinatorial problems. As we know, the original BBO is designed for 

problems with a single objective, and no constraints. So it is not originally designed for 

combinatorial problems. In Chapter 3, multiple modifications are applied to BBO. TSPs 

are used as benchmarks for performance tests. We build a BBO GUI based on Matlab® 

which provides a BBO framework for TSPs. There are 100 TSPs from TSPLib [43] as the 

default benchmark problems, and users are encouraged to implement their own 

algorithms and add their own benchmarks using this GUI.  

Chapter 4 comprises the third original contribution of this dissertation, where the 

solution method for complex systems using BBO is introduced. As we know, a complex 

system consists of multi-subsystems, and subsystems share similar objectives and 

constraints. Despite the complex structure of such systems, they are common in today’s 

industry. In Chapter 4, BBO is applied to complex systems for system optimization. Also, 

a Markov model is built for BBO/Complex, and simulation is provided to confirm this 

mathematical model. 
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In the last chapter, we conclude the dissertation and propose future work and 

directions for the next steps in research. 
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CHAPTER II 

EFFICIENCY ANALYSIS FOR HEURISTIC ALGORITHMS 

The material in this chapter is partially based on [6], which is one of the author’s 

publications. It is used with permission. BBO belongs to the category of heuristic 

algorithms, which are a good complement to traditional optimization methods, especially 

for large, complex systems. But there are some concerns about typical heuristic 

algorithms, such as: 1) heuristic algorithms usually have long computation time; 2) there 

is no guarantee of finding the global optimum. Since BBO is a heuristic algorithm, it 

inevitably inherits those concerns. In this chapter, we will provide an analysis of BBO 

based on these major concerns.  

2.1 Analysis of Performance Efficiency and Computational Speed 

BBO mimics nature and can be considered an evolutionary process. Even though 

BBO evolution is much faster than that in nature, it still involves many individuals and 

needs to perform crossover and mutation for the population. Compared with the 
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traditional ways we solve problems, it is a slower path to the solution. Is there a way to 

speed up heuristic algorithms? 

First, we need to analyze the reasons that heuristic algorithms are computationally 

intensive. A typical heuristic algorithm consists of four components: 

1. Initial population construction  

2. Cost calculation 

3. Recombination 

4. Mutation 

Any of these four steps may be the source of significant computational time. 

Since cost calculation is problem dependent, we only analyze the remaining three 

components. 

2.1.1 Initial Population Construction 

A heuristic algorithm needs an initial population of candidate solutions, but this 

population construction only happens in the first generation. In the following generations, 

the population is updated by recombination and mutation, and this updated population is 

used in the next generation. 

Most algorithms randomly create an initial population. This method can simplify 

the optimization algorithm, especially for problems with complex structure and many 

tuning parameters. Although population initialization is only performed once in the 

algorithm, it still can cause inefficiency. 
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First, random initialization is not an efficient method to create a population. As 

always, a good starting point is half the way to success. For most problems, no matter 

how complex they are, we usually have at least some problem specific background 

knowledge. 

For example, suppose we try to find the optimal five features for some problem. 

The basic setup of BBO for this problem might be as follows: population size is 2; 

number of features in each individual is 5; crossover probability is 0.5; mutation 

probability is 0.01; and the size of the feature pool (search space) is 30. 

Assume the optimal features are feature 1, feature 2, feature 3, feature 4 and 

feature 5. Suppose the order of features in the individual does not affect the overall 

performance. The optimal solution and the two individuals in the initial population might 

be created as shown in Figure 4. This example will be continued in the following section. 

 

 

Figure&4:&Optimal&solution,&individual&1,&and&individual&2&

&
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2.1.2 Mutation 

 

Suppose mutation is the only method in the previous example to create 

individuals for the next generation. Assuming that we have an individual k, the 

probability of obtaining the optimal individual is calculated as follows. 

 poptimal = 1− pmutation + pmutation
1

nfeature

⎛

⎝⎜
⎞

⎠⎟
pmutation

1
nfeature

⎛

⎝⎜
⎞

⎠⎟

nnot−in−common

 (2.1) 

nfeature: Number of features in the feature pool. 

nin-common : Number of features common to individual k and the optimal individual.  

nnot-in-common: nnot-in-common = nfeature – nin-common. 

pmutation: Mutation probability. 

Applying Equation (2.1) to our example in Figure 4, the probability that 

individual 1 mutates to the optimal individual is 3.33×10−4. The probability that 

individual 2 mutates to the optimal individual is 1.22 × 10−14. 

Thus individual 1 has a much better chance to be mutated to the optimal solution. 

Also, it is easy to see that the similarity level between individual 1 and the optimal 

solution is much higher than the similarity level between individual 2 and the optimal 

solution. This example shows how better population initialization achieves better 

efficiency. 
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The role of mutation is to introduce new information to the population. As the 

population evolves, all the individuals tend to cluster near locally optimal solutions and 

so the population as a whole lacks diversity. Since the probability of mutation is low, its 

role at the beginning of the heuristic algorithm is not critical. But closer to the end of the 

simulation, it becomes the only way to introduce new features required to achieve the 

globally optimal solution. 

Can we improve the efficiency of mutation? Here, we use the same example as in 

Figure 4 to calculate the probability of mutating individual 1 to the optimal solution after 

one generation. The result is shown in Figure 5. 

  

Figure&5:&The&probability&of&obtaining&the&optimal&solution&with&different&mutation&

rates&after&one&generation&
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The best probability we obtain is 2.80 × 10−3 when pmutation is 0.21. It is 8.48 times 

better than when the mutation rate is 0.05. When we have a better understanding of the 

problem, it is easy to maximize the efficiency of a heuristic algorithm by tuning 

parameters in different phases. Even for mutation, different setups result in dramatic 

differences. 

 

2.1.3 Recombination 

 

The previous section only analyzed mutation. But for most heuristic algorithms, 

recombination is a more efficient way to create new individuals. So in this section, we 

analyze the probability of achieving the optimal solution based solely on crossover for 

different population initialization methods. 

The recombination procedure is as follows: 

1. Determine if individual k1 will participate in recombination based on the calculated 

recombination probability. If yes, go to step 2; otherwise, check the next individual.  

2. Probabilistically choose an individual to share its features based on roulette wheel 

selection. This individual is called individual k2. 

3. Randomly choose some features from individual k2 to replace features in individual 

k1. 

Now, we create two populations for comparison purposes. The first one is randomly 

created, and the second one is created based on our knowledge of the problem, which is 

similar to creating the population in a TSP problem with the nearest neighbor strategy 
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(NNA) [44]. There is no guarantee that the individuals that are specially created will be 

closer to the optimal solution. But there should be a better chance. 

Suppose we have the same optimal solution as in the previous example in Figure 

4. In this example, we compare two different populations to analyze the importance of the 

initial population for recombination. Figure 6 shows the optimal solution, along with two 

possible populations, each population containing two individuals. 

 

Figure&6:&Optimal&solution,&population&1,&and&population&2&

&

Population 1 is randomly initialized, and it only contains three features from the 

optimal solution in the population. Population 2 is initialized by manual intervention, or 

expert knowledge, based on problem specific knowledge. Although no optimal individual 

exists in either population, population 2 contains all the necessary features to obtain the 

optimal solution. 
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After one recombination, what is the probability of obtaining at least one optimal 

individual? Assume we have m individuals, and each individual contains n features. Each 

individual has the same probability to be selected for recombination. 

! pc: The probability of recombination. 

! num(i, j): Number of occurrences of feature j in individual i. 

! po: The probability that at least one individual becomes the optimal solution after 

one recombination. 

An algorithm that calculates the probability that individual i becomes the optimal 

individual after one recombination is shown as follows: 

1. Set po,k =1, l=1, k=1  

2. Determine if the l-th feature in individual i is contained in the optimal solution. We 

call the l-th feature in individual i feature b. If yes, go to step 3; else, go to step 4.  

3. po,k = po,k 1− pc + pc
num(i,b)

i=1

m∑
m × n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. Go to step 5.  

4. po,k = po,k pc
num(i,b)

i=1

m∑
m × n

. Go to step 5. 

5. If l < n, then l = l + 1, and go to step 2. Else if k < m, then k = k + 1 and l = 1, and go 

to step 2; otherwise, terminate.  

The probability of obtaining at least one optimal individual in the population after 

performing recombination once on each individual is 
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 po = 1− (1− po,k )
k=1

m

∏  (2.2) 

As we show in Figure 6, population 1 is randomly initialized, and population 2 is 

constructed using problem specific knowledge. All individuals in population 2 are close 

to the optimal solution. When we set pc = 0.5, the probability of obtaining at least one 

optimal individual after one recombination for population 1 is 0; but for population 2, it is 

0.59%. 

For the example in Figure 6, the population only consists of two individuals. For 

real world applications, the population size is much larger, usually over 50. In the 

following example in Figure 7, we increase the population size to 100. But based on 

problem specific background knowledge, we can narrow the feature pool size to 7 instead 

of 30. For population 1, its feature pool contains feature 1 to feature 7. But for population 

2, its feature pool contains feature 1 to feature 30. 
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Figure&7:&Optimal&solution,&features&of&population&1,&and&features&of&population&2&

 

Let pc = 0.5 as before. Then we calculate the probability of obtaining at least one 

optimal individual in the population after performing recombination once on each 

individual. For population 1, the probability is 54.85%. But for population 2, it is only 

0.97%. Thus, it is more likely that a heuristic algorithm starting with population 1 will 

outperform the same algorithm starting with population 2 when all else is equal. It also 

means that population initialization can play a significant role in increasing the efficiency 

of a heuristic algorithm. 
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2.1.4  Information Sharing in TSPs 

Information sharing is a key technique in heuristic algorithms. In most heuristic 

algorithms, we call it recombination, or crossover. Usually, there are two ways to create 

new individuals: one is by combining information from multiple individuals to create a 

new individual (crossover), and the other is to mutate an individual to obtain a new one 

(mutation). Mutation rates are fairly low, because high mutation rates may cause damage 

to the performance of the population. Statistically speaking, most of the new information 

it introduces is not useful. The best time for mutation is when the population converges to 

local optima, and new information is needed in the population. So mutation is not a rapid 

way to improve the overall quality of the population, and that is why crossover usually 

plays the key role in heuristic algorithms. 

Heuristic algorithms are generally time consuming. In order to build a faster 

heuristic algorithm, we need to improve its efficiency in all aspects. If we make crossover 

more efficient, it may increase efficiency, especially for large problems. Is there room to 

improve the efficiency of crossover? The answer is YES, but we still need problem 

specific background knowledge. The flexibility of heuristic algorithms is beneficial, but 

we may see severe efficiency issues if we do not use using background knowledge for the 

algorithm design. 

In the following example, we construct a closed 6-city traveling salesman 

problem (TSP) which involves Las Vegas, San Diego, Phoenix, Chicago, Cincinnati, and 

Atlanta. The locations of the cities are shown in Figure 8. 
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Figure&8:&6RCity&Problem&in&TSP&

 

Figure 9 and Figure 10 show the worst and best scenario for this 6-city TSP. The 

worst scenario of the trip is Chicago to Las Vegas to Atlanta to Phoenix to Cincinnati to 

San Diego to Chicago. The best scenario of the trip is Chicago to Cincinnati to Atlanta to 

Phoenix to San Diego to Las Vegas to Chicago. 
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Figure&9:&Worst&Scenario&in&TSP&

 

Figure&10:&Best&Scenario&in&TSP&

 

Assume we have a population that contains two individuals, which are the best 

and worst scenario. The two individuals are shown in Figure 11. 
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Figure&11:&Population&containing&both&best&and&worst&scenario&

The simple crossover method which is used in the previous example is not a good 

fit for TSPs. As we know, a TSP is a typical combinatorial problem. Each feature by 

itself does not contain any information, but it is rather the sequence of features in an 

individual that determines its performance. In this case, the simple crossover method 

mentioned earlier in this chapter will cause two problems. First, it may result in an 

invalid tour. For example, we should not go to the same city twice in the same trip. Also, 

we have to travel to all the cities during a single trip without missing any of them, 

otherwise the tour is invalid. Second, simple crossover is designed for exchanging the 

features in an individual but not the sequence information contained in an individual. Our 

goal is to obtain the sequence information from good individuals, then share it with other 

individuals. Sharing individual features will not help. Because all the individuals contain 

the same features, the only difference is the sequence of the features. 

Sequence information based crossover can solve these issues. In 1991, order-

based crossover (OX2) was introduced [45]. This crossover method is designed for 

scheduling problems and is also suitable for TSPs. Since OX2 is designed for scheduling 
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problems, the information exchange is based on the sequence information, so there are no 

invalid individuals generated during crossover. 

The procedure of OX2 crossover is as follows. 

1. Randomly select several positions in Individual 2. Record the cities in these 

positions and the sequence of the selected cities. 

2. In Individual 1, find the cities recorded in step 1, and record their positions. Replace 

the cities in these positions in Individual 1 with the same group of cities but in the 

sequence recorded in step 1. 

Here is an example to illustrate how OX2 works. Assume we have two individuals, 

Individual 1 and Individual 2, which are shown in Figure 12. 

 

Figure&12:&Population&containing&both&best&and&worst&Scenario&

 

An example of OX2 crossover is given as follows. 

1. Randomly select positions 2, 4, and 6 in Individual 2. 

2. The cities in those positions are city 6, 4, and 5. 

3. Find the locations of city 6, 4, and 5 in Individual 1. 

4. Replace the cities in these locations in Individual 1 in the order 6, 4, 5. 
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After OX2, the new individual is shown in Figure 13. OX2 crossover created a 

valid child. This child inherits sequence information from both parents. 

 

Figure&13:&OX2&crossover&of&two&individuals&

 

The creation of a good crossover strategy is based on a good understanding of the 

problem. The flexibility of heuristic algorithms is its advantage. Standard crossover may 

still be used in a problem if it does not result in invalid candidate solutions. But we also 

need to deal with efficiency issues. Consider the diversity of modern science, where each 

field requires years of learning and training. We cannot provide a simple algorithm to 

solve all problems in all research areas. A heuristic algorithm can be considered as a tool, 

or a framework. We need to define details to guarantee correct functioning and 

satisfactory efficiency. For example, the PID controller is widely used in industry. 

Assume there is a system containing thousands of PID controllers. How should we tune 

all the parameters when a system has a complicated structure with a huge number of 

components? Heuristic algorithms can be an effective approach. 

Efficiency is not a strong point for heuristic algorithms, since heuristic algorithms 

mimic nature and nature is notoriously inefficient. If there is a traditional solution method 

that can obtain results by solving equations, it should be much faster than most heuristic 
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algorithms. But if there is a problem with a complex structure and many intractable 

components, then heuristic algorithms are more efficient. But a single heuristic algorithm 

is not a panacea for all problems. A good design based on problem specific background 

knowledge can dramatically improve the efficiency of a heuristic algorithm. 

2.2 Analysis of Convergence 

Unlike traditional optimization methods, BBO uses evolution to generate new 

individuals for each generation, which eventually leads to the optimal solution. The 

ultimate goal for any optimization algorithm is to achieve the global optimum. In contrast 

to traditional methods, most heuristic algorithms, such as GA and BBO, are considered 

global optimization methods. The following example illustrates the difference between a 

global optimization method, and a traditional optimization method which can easily get 

stuck in local optima − for example, gradient descent with small step size [46]. In the 

following equation, x is the input (independent variable), and y is the output (cost value). 

We are looking for the global minimum of y. 

 

  

y =
x − 2.5( )2

+ 20,      0 ≤ x < 4

x − 6( )2
+18.25,   4 ≤ x ≤10

⎧

⎨
⎪

⎩
⎪

  (2.3)  
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Figure&14:&Plot&of&Equation&(2.3)&with&local&and&global&minimums&

 

Figure 14 shows that the cost contains two minimum values – one is a local 

minimum and the other is the global minimum. When we apply gradient descent to this 

problem and search for the minimum value, we may encounter one of the scenarios 

depicted in Figure 15 or Figure 16. 
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Figure&15:&First&scenario&of&gradient&descent&with&different&starting&points&

 

Figure&16:&Second&scenario&of&gradient&descent&with&different&starting&points&

 

Figure 15 and Figure 16 illustrate two common scenarios. If the initial guess point 

is close to a local minimum and we use a small step size, the algorithm will find a local 
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minimum instead of the global minimum. In the other scenario the step size is small, but 

the initial guess is close to the global minimum, so the algorithm can reach it without 

getting stuck in the local minimum.  

Although gradient descent may reach the global minimum, it is still a local 

optimization method. The same situation applies to most other numerical optimization 

methods. In contrast to these traditional methods, heuristic algorithms are considered as 

global optimizers, which are a major advantage compared with traditional optimization 

algorithms. But there is still a question needed to be answered – will BBO always 

converge to the global optimal solution?  

Markov models are traditional but effective ways to prove the convergence of an 

algorithm. In [7], a Markov model is derived for BBO. In the following part of this 

section, we will use the Markov model to perform a convergence analysis of BBO.  

In BBO, there are two operations available to create new islands: migration and 

mutation. We can model these operations to derive the probability that island u becomes 

to island v after one generation. We make the assumption that each feature type in an 

island has its own search domain, so migration between islands only happens between the 

same types of features. 

The probability that the s-th feature in island u becomes the s-th feature in island v 

due solely to migration is 

 

  

Pr(u(s) = v(s)) = 1− pi( )10 u(s)− v(s)( ) + pi

µ jj∈J (s)∑
µ jj=1

n∑  (2.4) 
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where pi is migration probability. J(s) is the set of islands which contain the same feature 

as the s-th feature in island v. µj is the emigration rate of island j. n is the search space 

size. We can then calculate the probability that individual v becomes individual u due 

solely to migration. 

 

  

Pr(u = v) = Pr(usi ) Pr(u(s) = v(s))
s=1

k

∏

               = Pr(usi ) 1− pi( )10 u(s)− v(s)( ) + pi

µ jj∈J (s)∑
µ jj=1

n∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟s=1

k

∏
 (2.5) 

where   Pr(usi )  is the probability that u is selected for immigration, and k is the total 

number of features in each island (that is, the problem dimension).  

According to Equation (2.5), we cannot guarantee that island u can become island 

v because there is a probability that J(s) is null, and at the same time, the s-th feature in u 

is not equal to the s-th feature in v. In that case we obtain Pr(u=v) = 0. Since migration 

can exchange only features that are present in the population between islands, we will not 

obtain the optimal solution unless all the optimal features are already contained in the 

feature pool of the population. But this is highly unlikely, especially when a problem is 

continuous with an infinite number of possible features.  

Mutation is another operation that can create new islands. Unlike migration, 

mutation can create new features which do not exist in the feature pool of the population. 

The probability that the s-th feature in island u becomes the s-th feature in island v due 

solely to mutation is 
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Pr(u(s) = v(s)) = 1− pm( )10 u(s)− v(s)( ) + pm

1
nf

  (2.6) 

where pm is the mutation rate and nf is the total number of candidate features in the s-th 

position. For continuous problems, nf is infinite in theory. But in practice, there is always 

a certain problem dependent precision for any numerical method, which means that the 

total number of possible features will not be infinite, even for a continuous problem. So nf 

might be a large number, but it will not be infinite. Then the probability that individual u 

becomes individual v after one generation can be calculated as 

 

  

Pr(u = v) = Pr(u(s) = v(s))
s=1

k

∏
 (2.7) 

Unlike migration, we obtain   0 < Pr(u = v) <1 . As long as we include mutation in 

our algorithm, it is guaranteed that   0 < Pr(u = v) <1  whether we use migration or not. If 

we use elitism in our algorithm, which means always retain the best island from one 

generation to another. Then we run BBO for t generations, the probability that we will 

obtain the optimal solution v is  

 

  

Pr(u = v) = 1− 1− Prg (u = v)( )
g=1

t

∏

lim
t→∞

Pr(u = v) = lim
t→∞

1− 1− Prg (u = v)( )
g=1

t

∏⎛
⎝⎜

⎞
⎠⎟
= 1

 (2.8) 

where, Prg(u=v) is the probability that individual u becomes individual v in the g-th 

generation. From Equation (2.8), when we run BBO for a large number of generations, 
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the probability of obtaining optimal island v is close to 1. Since we use elitism in this 

algorithm, the optimal solution will be retained in the population after we obtain it. 

According to this convergence analysis of BBO, as long as we include mutation and 

elitism in BBO, we guarantee convergence to the optimal solution. This shows that BBO, 

like other EAs, is a global optimization algorithm which provides a significant 

improvement compared to traditional numerical methods. This proof is true for all 

heuristic algorithms which contain mutation and elitism. 
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CHAPTER III 

BBO FOR COMBINATORIAL PROBLEMS 

3.1 Combinatorial Problems 

Combinatorial problems have a finite set of candidate solutions. Usually, 

exhaustive search is not suitable because of the large size of the problem. The TSP is a 

classic example of a combinatorial problem. The definition of a TSP is that a salesman 

has to travel to c different cities, so he needs to plan a c-city trip and find the shortest, or 

most time efficient route. In this case, each candidate solution is a combination of cities 

in some specific order. This is a typical example of a combinatorial problem. 

For combinatorial problems, the only guaranteed way to find the optimal solution 

is by searching through all possible combinations, which is called exhaustive search. But 

in most cases, the size of the search space is too large for exhaustive search. For example, 

in a 100-city TSP problem, the number of possible solutions is 100! = 9.33 × 10157. That 

is the reason that we turn to heuristic algorithms as the solution method. 
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Nature obeys the rule of survival of the fittest. Weak and unhealthy creatures are 

usually abandoned by nature. Strong and smart creatures can usually obtain more 

resources and have a better chance of survival. Nature is always dominated by the fittest 

creatures. Evolution is a process to eliminate weaker species and promote stronger 

species. Heuristic algorithms like GA, ACO, BBO, and others, are all nature-based 

algorithms. They all obey the same rule – survival of the fittest. Two things need to be 

determined in a nature-based algorithm. First, how do we measure the fitness of each 

individual? Second, how do we improve those individuals? 

Fitness is usually easy to determine; for most algorithms, we use an objective 

function to measure the fitness or performance of an individual. Note that cost and fitness 

are opposite ways of measuring the same thing. As performance improves, cost decreases, 

and fitness increases. The second challenge is how to improve the individuals in our 

algorithm. When translating this into a heuristic algorithm, it means obtaining an efficient 

population modification method. 

The two most common methods to modify a population are recombination (or 

crossover) and mutation. Crossover is an evolutionary method that involves more than 

one individual by mixing features from different individuals – it is called migration in 

BBO. Mutation is a way to modify individuals by introducing randomly selected features. 

In this chapter, TSP is considered as a representative combinatorial problem. TSPs will 

be used as benchmark problems to test crossover and mutation methods specially created 

for combinatorial problems. 
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3.2 Migration in the Traveling Salesman Problem 

BBO migration is the method for combining or modifying features based on 

parent individuals to create offspring, or new individuals. It is also the most important 

component in BBO. Combinatorial problems are coded differently than other types of 

problems. Each element in the individual contains no information by itself, but when we 

put the elements together in one individual, the order of elements determines the 

goodness of an individual. To use TSP as an example, an element in an individual is a 

city. Just knowing that a city is in a tour will not help us determine the distance (or cost) 

of the entire trip. In order to determine the distance, we need to know the order of all the 

cities in the tour. Since the original BBO algorithm is not designed for combinatorial 

problems, we need to modify the original migration methods. Three types of migration 

methods are introduced: matrix crossover, cycle crossover, and inver-over crossover. 

These methods have been used in other EAs in past research, but are integrated with BBO 

here for the first time. 

3.2.1 Matrix Crossover 

Matrix crossover is introduced by Fox and McMahon in [47]. The advantage of 

matrix crossover is that it is straightforward and easy to operate. With matrix crossover, 

an offspring can inherit partial information from both parents, but it will also contain 

unique information belonging only to itself. The drawback of matrix crossover is that all 

sequence information is represented by matrices, which requires for a high computational 
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effort when transforming between tour information in an array expression and tour 

information in a matrix expression. 

The detailed procedure of matrix crossover is as follows. First, for a c-city 

problem, we need to convert the sequence information of each individual to a c × c 

matrix. Each row in the matrix expression provides us the position information of a city 

in the trip. For example, the k-th row represents the position information of city k. In this 

expression, each column in a particular row represents a certain city. The number in each 

column represents the ordering relationship between the column city and row city. For 

example, if city g is before city k, the number in the g-th row in the k-th column is 1. If 

city g is after city k, the number in the g-th row in the k-th column is 0. Based on this 

method, we convert all the individuals in the population to a matrix expression. 

Second, based on roulette wheel selection, we select individuals to perform 

migration. Once the parents are selected, we perform AND logic operation on two parent 

matrices to obtain the child matrix. 

Third, since the child matrix will be incomplete after the previous two steps, we 

randomly fill in necessary information to create a valid child. 

In the last step, we transform the child from its matrix expression to a sequential 

representation. Figure 17 gives an example of how to apply matrix crossover. 
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Figure&17:&Example&of&matrix&crossover&with&a&5Rcity&TSP&

3.2.2 Cycle Crossover 

Cycle crossover has been tested in [48], and resulted in superior performance 

against competitors. It also achieved satisfying results in [26]. In this section, it is used as 

the default migration method in BBO. The application of cycle crossover is fairly easy. In 

contrast to matrix crossover, no tour format transformation is needed, and cycle crossover 

guarantees that every child is valid and complete. For these reasons, cycle crossover has 

been widely used in EAs for combinatorial problems. 
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The basic procedure of cycle crossover is as follows. 

1. We randomly select a city as the starting point in parent 1 and record its position.  

2. In parent 2, we find the city in the position recorded in parent 1, and then record this 

city. We go back to parent 1, search for the city we found in parent 2, and then 

record its position in parent 1.  

3. We repeat step 2 until we obtain a closed cycle, which means that we have returned 

to the starting city. Then we copy the cities from the closed cycle in parent 2, and 

the cities that are not in the closed cycle in parent 1, to obtain child 1. Similarly, we 

copy the cities from the closed cycle in parent 1, and the cities that are not in the 

closed cycle in parent 2, to obtain child 2. 

We provide an example in Figure 18 to illustrate the application of cycle crossover. 

In this figure, city 2 in parent 1 is randomly selected as the starting point city. Following 

the basic procedure of cycle crossover, the closed cycle we find is city 2 - city 1 - city 4 - 

city 8 - city 3 - city 2. 
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Figure&18:&Example&of&cycle&crossover&with&9Rcity&TSP&

3.2.3 Inver-over Crossover 

The third migration method is called inver-over crossover, originally invented in 

[49]. Like cycle crossover, all the children generated by inver-over crossover are 

guaranteed to be valid and complete. Inver-over crossover does not require any 

expression transformation. The basic procedure of inver-over crossover is as follows. 

1. Randomly select a city in parent 1 as the starting point, which is called city s.  

2. Find city s in parent 2 and choose the city that follows it as the ending point, city e. 

Then find city e in parent 1.  

3. Reverse the cities between the city following city s, and city e, in parent 1. An 

example is provided in Figure 19.  
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Figure&19:&Example&of&inverRover&crossover&with&5Rcity&TSP&

3.3 Local Search Optimization 

Combinatorial problems make good benchmarks because of their special 

characteristics. For example, most benchmarks are composed of variables, and each 

variable has its own search domain. In that case, heuristic algorithms need to search each 

variable in its own domain for the optimal solution. But combinatorial problems are 

different. Again, we use TSP as an example, in which the coordinates of each city are 

fixed. The task of heuristic algorithms is to rearrange the order of the cities and search for 

the optimal solution. In other words, each individual in the population has enough 

information to create an optimal solution. 

Local search optimization can find the optimal solutions only by modifying an 

individual candidate solution. For TSP, all the necessary cities to create an optimal 

solution are contained in each individual. Since the combination of techniques can be 

more powerful than a single technique [13], in the BBO modification in this section, we 
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will introduce local search as a complement to migration. In the next part of this section, 

we introduce three local optimization methods which have been successfully 

implemented in TSPs: 2-opt, 3-opt, and k-opt. These methods are applied after migration 

as a complement to our migration strategy. 

3.3.1 2-opt and 3-opt 

2-opt is a simple but effective local research method invented in 1958 [50]. 

Although this method is easy to operate, it shows good performance with TSPs. The 

operation of 2-opt is as follows. 

1. Find a random individual in the population.  

2. Break two links in this individual. 

3. Randomly connect the cities which only have one link connected, with the constraint 

that the resulting path includes all cities.  

In Figure 20, we apply 2-opt to an 8-city TSP. 

 

Figure&20:&Example&of&2Ropt&with&8Rcity&TSP&
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3-opt is an updated technique based on 2-opt [50]. Instead of replacing two links 

in the individual, 3-opt will break three links then randomly reconnect the cities. Even 

though 2-opt and 3-opt have good performance in sequence-based problems, their 

disadvantage is obvious: the number of the links to break and reconnect is predefined, 

and does not adapt to the problem. 

3.3.2 k-opt 

In order to address the disadvantage of 2-opt and 3-opt, k-opt was introduced and 

discussed in [50]. k-opt is a method for adaptively choosing the number of links to break 

and reconnect. According to experimental results, when the number of replaced links 

increases, the performance of k-opt increases. But the computational burden also 

increases. We need to find a balance between the expected performance and the 

computational burden. For the first few optimization generations, the population is still 

diverse and there is a lot of information for migration to exploit. In this case, we do not 

need k-opt to act aggressively, so k should be a small number. But as the optimization 

algorithm progresses, the algorithm begins to converge. In this situation, we need to 

increase the effectiveness of k-opt to increase the rate of population improvement, so we 

should use a bigger k value. We conclude that k should increase as the generation count 

increases. One way of doing this is shown as follows. 

 k = gcc
2gm

⎢

⎣
⎢

⎥

⎦
⎥

 
(3.1) 

c: number of cities. 
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gm: maximum generation number. 

gc: current generation number 

3.4 Population Initialization and Greedy Method 

Migration, mutation, and local search optimization are the three main components 

in most BBO implementations. Their roles are to improve the performance of the entire 

population. We can also increase the rate of population improvement by applying new 

techniques in the heuristic algorithm. In this section, we will focus on using a modified 

population initialization algorithm, and using greedy methods, to increase the rate of 

population improvement. 

3.4.1 Population Initialization 

Population initialization is usually the first step for heuristic algorithms. Most of 

the systems we apply heuristic algorithms to have complex structures. We do not have a 

good understanding of the effect of each independent variable in those systems. That 

means we do not know how to create an initial population based on our expertise, so 

instead we randomly create it. This is no doubt the simplest method for population 

initialization. However, it is also the most inefficient way to create an initial population. 

Fortunately, random population initialization is not the only method for population 

initialization; for certain problems like the TSP, there are certain ways of creating an 

initial population which can provide a great benefit to EA performance. 
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For TSPs, the most commonly used technique is NNA [44]. The detailed 

procedure is as follows. 

1. Randomly select a city as the end point of the trip (it is also the starting point).  

2. Calculate the distance between the end point city and the cities which are not 

included in the trip. The first time through this loop, this will include all cities 

except for the starting/end point city. 

3. Based on the distances calculated in step 2, find the nearest city to the end point city. 

Link these two cities, and name the most recently added city as the end point city.  

4. If all the cities are included in the trip, terminate; otherwise, go to step 2.  

The procedure is fairly easy to operate, and is clearly not time consuming even for 

large-scale problems. The most time consuming part is the calculation of the Euclidean 

distances between cities. For a TSP with c cities, the total number of calculations of 

Euclidean distance is 

 number of calculations = c(c −1)
2  

(3.2)  

For a 1000-city problem, the total number of calculations is 499,500, which is an 

acceptable number when considering the problem size. 

3.4.2 Greedy Methods 

Greedy methods have a long history as effective techniques in heuristic 

algorithms, and many algorithms use it as a basic component. The definition of greedy 

methods is implied by its name: always choose the short-term benefit, and refuse to 
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accept any short-term losses [51]. Being greedy at every step may not be the best choice 

for all situations. But in some problems, like the TSP, greedy methods can be a helpful 

complement to optimization algorithms. 

In BBO, we can use greedy methods in three places – migration, local 

optimization, and mutation. As we know, migration is a function for an individual to 

share information with other individuals to generate offspring. Although the individuals 

with better performance have higher probabilities to share features, and the individuals 

with worse performance have high probabilities to import features, there is no guarantee 

that the child will outperform its parents. In this way, local optimization methods are 

similar to migration; we cannot guarantee that offspring perform better than their parents. 

Mutation introduces random information to the population. New individuals have 

unpredictable performance in this case. Should we need to keep the offspring with 

worsened performance? If the diversity of the population is low, even though the 

offspring has worse performance than either of the parents, we may still want to keep it. 

But if we want the performance of the entire population to improve in the short term, then 

we should use greedy methods to abandon offspring with worse performance. 

3.5 TSP Simulation 

In this section, the techniques mentioned in the previous sections are tested on 

four TSP benchmarks. All the benchmarks are selected from the standard TSP benchmark 

library TSPLib [43]: ulysses16, st70, rat575, and u2152. In order to obtain a broad 
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comparison between techniques, benchmark sizes vary from small to extra large 

problems. ulysses16 is a 16-city TSP; st70 is a 70-city TSP; rat575 is a 575-city TSP; and 

u2152 is a 2152-city TSP.  

In this dissertation, the aim is not only to find the best modification of BBO, but 

also to compare BBO with other popular optimization algorithms. Four popular 

competitors are selected: GA [52], NNA [44], ACO [53], and simulated annealing (SA) 

[54]. In order to guarantee fairness in our comparisons, we set two common termination 

criteria for each algorithm. The algorithm will terminate when either of them is met. 

! Number of evaluations of cost function: 10,000  

! CPU time: 300 sec 

Also, since the performance of heuristic algorithms varies from simulation to 

simulation due to their stochastic nature, a single simulation may not reflect the true 

performance of an algorithm. To guarantee a fair comparison, Monte Carlo simulations 

are performed. We conduct each simulation d times, and take the average performance as 

the overall performance metric. Here, we use d = 20. 

In order to compare the performance of different techniques, we use the default 

BBO setup for each of the BBO modifications for all the components that are unmodified. 

The default BBO setup is as follows. 

! Population size: 100 

! Number of elite individuals per generation: 1  

! Population initialization: Random 

! Migration: Cycle crossover 
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! Mutation rate: 0.01 

! Local optimization method: None  

! Greedy Methods: None 

3.5.1 Population Initialization 

First we test the performance of different population initialization methods. We 

designed six population initialization methods: no NNA; NNA for 1 individual; NNA for 

5 individuals; NNA for 50 individuals; NNA for 75 individuals; and NNA for 100 

individuals (the entire population). The simulation results are shown in Table i. 

 Best distance and CPU time per simulation (sec) 
 No NNA 1 NNA 5 NNA 50 NNA 75 NNA 100 NNA 

ulysses16 Distance 
SD 

75.68 
0.40  

74.72 
0.68 

74.23 
0.55 

 
 
 
 
 
 
 
 

74.65 
0.32 

74.66 
0.56 

74.62 
0.25 

CPU Time 3.11 3.13 3.13 3.21 3.24 3.25 
st70 Distance 

SD 
1432 
29.07 

728 
22.51 

729 
32.99 

727 
33.57 

726 
27.27 

725 
31.20 

CPU Time 4.23 4.55 4.56 4.61 4.62 4.65 
rat575 Distance 

SD 
128090 
2608.86 

54487 
1235.90 

54483 
1370.21 

54481 
1312.16 

54485 
1249.56 

54482 
1458.13 

CPU Time 19.23 19.31 19.34 19.37 19.56 19.58 
u2152 Distance 

SD 
241745 
2162.19 

74355 
790.00 

74322 
838.27 

74323 
809.13 

74333 
952.63 

74325 
746.03 

CPU Time 40.23 41.92 42.35 42.58 42.62 42.66 

Table&i:&Performance&of&NNA&in&BBO,&the&best&results&averaged&over&20&Monte&Carlo&

simulations,&and&the&standard&deviations&of&the&best&distances.&The&best&results&in&

each&row&are&shown&in&bold&font.&
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When compared on the basis of computation time, No NNA is the quickest. But 

the performance difference between no NNA and 1 NNA is large, especially for larger 

scale problems. When we apply NNA to the BBO algorithm, the performance between 

different setups is very similar. The standard deviations show that BBO performs 

significantly better with NNA than without NNA. Based on the simulation results, the 

best overall setup is 1 NNA, which means NNA is only used on one individual.  

3.5.2 Crossover Methods 

Next we test different crossover methods. Three crossover methods were 

discussed earlier: matrix crossover, cycle crossover and inver-over crossover. Their 

performances are shown in Table ii. 

 Best distance and CPU time per simulation (sec) 
 Matrix Cycle Inver-Over 

ulysses16 Distance 
SD 

74.22 
0.55 

75.68 
0.40 

74.21 
0.32 

CPU Time 0.64 3.11 0.97 
st70 Distance 

SD 
2725 
86.09 

1432 
29.07 

820 
17.34 

CPU Time 2.22 4.23 1.05 
rat575 Distance 

SD 
102763 
3006.57 

128090 
2608.86 

78765 
1657.42 

CPU Time 300.00 19.23 2.93 
u2152 Distance 

SD 
434209 
5620.58 

241745 
2162.19 

237372 
2012.46 

CPU Time 300.00 40.23 10.23 

Table&ii:&Performance&of&matrix&crossover,&cycle&crossover&and&inverRover&crossover,&

the&best&results&averaged&over&20&Monte&Carlo&simulations,&and&the&standard&

deviations&of&the&best&distances.&The&best&results&in&each&row&are&shown&in&bold&font.&
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The simulation results show that inver-over crossover dominates the other 

methods on all the benchmarks, both in terms of performance and computation time. It 

also has smaller standard deviations for all benchmark problems. Also, the computation 

time of matrix crossover becomes very long when the problem size increases, so it is not 

a good choice for large-scale problems. 

3.5.3 Local Optimization 

Next we evaluate local optimization methods. Three methods were proposed: 2-

opt, 3-opt, and k-opt. When using local optimization, we apply the local optimization to 

each individual in the population at the end of each generation. The performances of the 

different local optimization methods are shown in Table iii. 

The setup with the best computation time is BBO without local optimization 

methods. Despite the small increases in simulation time, improvement in performance is 

obvious when using local optimization. For a small size problem, 2-opt and 3-opt 

outperform k-opt, but with large-scale problems, k-opt is the best choice. 
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TSP Best distance and CPU time per simulation (sec) 
 No-opt 2-opt 3-opt k-opt 

ulysses16 Distance 
SD 

75.68 
0.40 

74.67 
0.37 

74.65 
0.47 

80.59 
0.41 

CPU Time 3.11 3.18 3.23 3.57 
st70 Distance 

SD 
1432 
29.07 

1180 
28.23 

1695 
31.87 

1773 
29.76 

CPU Time 4.23 5.67 6.72 7.55 
rat575 Distance 

SD 
128090 
2608.86 

100069 
2235.98 

97759 
1781.32 

94763 
1341.92 

CPU Time 19.23 25.45 27.56 30.01 
u2152 Distance 

SD 
241745 
2162.19 

240001 
1943.12 

235987 
1903.74 

235876 
1788.56 

CPU Time 40.23 54.34 58.31 153.99 

Table&iii:&Performance&of&NoRopt,&2Ropt,&3Ropt&and&kRopt,&the&best&results&averaged&

over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&the&best&distances.&

The&best&results&in&each&row&are&shown&in&bold&font.&

3.5.4 Greedy Methods 

Now we test different greedy method setups. Three setups are introduced: first, no 

greedy method; second, half of the population uses a greedy method (the individuals that 

use greedy methods in this approach are randomly selected); third, the entire population 

uses a greedy method. In all three of the setups, we apply the greedy method to migration, 

local optimization, and mutation. The performances of different greedy method setups are 

shown in Table iv. 

 

 

 



 

 

56 

TSP Best distance and CPU time per simulation (sec) 
 No Greedy Half Greedy All Greedy 

ulysses16 Distance 
SD 

75.68 
0.40 

79.41 
0.35 

88.51 
0.32 

CPU Time 3.11 3.12 3.15 
st70 Distance 

SD 
1432 
29.07 

1770 
34.34 

2795 
52.86 

CPU Time 4.23 4.62 4.73 
rat575 Distance 

SD 
128090 
2608.86 

10360 
1863.21 

10456 
1897.96 

CPU Time 19.23 19.35 19.47 
u2152 Distance 

SD 
241745 
2162.19 

242356 
2129.75 

23632 
1736.12 

CPU Time 40.23 42.44 43.12 

Table&iv:&Performance&of&different&greedy&method&setups,&the&best&results&averaged&

over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&the&best&distances.&

The&best&results&in&each&row&are&shown&in&bold&font.&

 

These simulation results tell us that greedy methods slow down the optimization 

process in general. For small TSP sizes, greedy methods reduce performance; however, 

for larger TSP sizes, greedy methods improve performance. 

3.5.5 Comparison with Other Algorithms 

Based on the previous simulation results, the best overall setup for BBO is the 

following: 1 NNA for population initialization; inver-over crossover; k-opt for local 

optimization; and all greedy for the greedy method setup. Here, we compare the results 

between BBO, GA, NNA, ACO, SA, and Modified BBO for TSPs (BBO/TSP). The 

setups of these algorithms are as follows. 
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! GA: Population size is 100; Crossover is a combination of flip crossover, swap 

crossover and slide crossover; Crossover rate is 0.5; Mutation rate is 0.01. 

! NNA: It is not a heuristic algorithm, so no tuning parameters are needed. 

! ACO: Population size is 20 ants; Initial pheromone value is 10−6; Pheromone update 

constant is 20; Exploration constant is 1; Global pheromone decay rate is 0.9; Local 

pheromone is decay rate 0.1; Pheromone sensitivity is 1; Visibility sensitivity is 1. 

! SA: Initial temperature is 2000; Maximum trails at a temperature is 10 times the 

population size. 

! BBO/TSP: Population size is 100; Number of elite individuals per generation is 1; 

Population initialization is 1 NNA; Migration method is inver-over crossover; Local 

optimization method is k-opt; Greedy method is all greedy. 
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TSP Best distance and CPU time per simulation (sec) 
 GA NNA ACO SA Default BBO BBO/TSP 

ulysses16 Distance 
SD 

74.63 
0.49 

104.43 
0.16 

74.62 
0.61 

74.77 
0.45 

75.68 
0.40 

74.21 
0.34 

CPU Time 3.41 0.18 0.38 1.01 3.11 5.12 
st70 Distance 

SD 
1509 
37.95 

3208 
120.50 

1359 
48.12 

741 
24.16 

1432 
29.07 

802 
23.64 

CPU Time 6.22 0.19 4.47 3.98 4.23 5.21 
rat575 Distance 

SD 
12493 
244.32 

12952 
352.39 

68311 
1861.99 

12399 
255.10 

128090 
2608.86 

76321 
1131.00 

CPU Time 11.12 0.24 300.00 8.18 19.23 24.32 
u2152 Distance 

SD 
82205 

1301.57 
82209 

1590.31 
150341 
3117.80 

709209 
8188.67 

241745 
2162.19 

77828 
786.49 

CPU Time 18.45 0.67 300.00 23.16 40.23 6.04 

 

Table&v:&Performance&of&GA,&NNA,&ACO,&SA,&default&BBO&and&BBO/TSP,&the&best&

results&averaged&over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&

the&best&distances.&The&best&results&in&each&row&are&shown&in&bold&font.&

 

Based on the simulation results in Table&v, in ulysses16, BBO/TSP achieved the 

best overall solutions. Although the computation time is slightly longer than the others, it 

is still tolerable. In st70, SA has the best performance, and BBO/TSP has the second best, 

which is close to the results from SA, and far better than others. In rat575, SA is the best 

choice as far as the solution quality, but it is more time consuming compared to NNA, 

and BBO/TSP only has fair performance on this benchmark. With the largest benchmark, 

u2152, BBO/TSP achieved the best performance and fastest convergence speed among 

all of the heuristic algorithms. According to these results, BBO/TSP has the best overall 

performance. 
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3.6 BBO GUI for TSP 

According to the results from the previous section, hybrid BBO can be much 

more effective than its predecessors. Hybridization has become the trend for algorithm 

design. The key to designing a hybrid algorithm is that each component in the algorithm 

should be fairly independent from the others. In other words, the algorithm is a well-

designed framework with a modular design pattern. So each component is an independent 

module. Components like population initialization, crossover, greedy methods, and local 

optimization, are considered as modules in the algorithm. With a standard input/output 

(I/O) interface, each module can be easily replaced with alternative, newly designed 

modules.  

Algorithm modulation can benefit researchers when attempting new techniques. It 

requires minimal modification to implement different algorithmic techniques with a well-

designed I/O interface. Because of the popularity of BBO, numerous hybrid algorithms 

have been developed [13] [14] [15]. But there is no consistent format for BBO algorithms, 

so the effort to implement new techniques into BBO can be significant. In this section, 

we will introduce a GUI for BBO as applied to TSPs. Also, we will introduce a 

modularized format for BBO. 

3.6.1 Module Categories in BBO 

Before designing an algorithm, there is a question we need to address – what is 

the structure of the algorithm? Since we need to design a modularized BBO algorithm, 
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the answer to this question should be divided into two parts: how to design modules, and 

how to connect modules. 

There are five module categories in BBO for TSP: 

1. BBO framework 

2. Population initialization  

3. Recombination 

4. Local optimization 

5. Greedy methods 

The BBO framework is the most important module category. This category only 

includes one module, which is called the BBO framework module, and it cannot be 

replaced by an alternative module. This module contains the fundamental BBO 

algorithms and defines the interface with the other modules. All the other modules need 

to be connected to the BBO framework module in order to function correctly.  

Since the BBO framework module serves as the interface for the entire algorithm, 

it needs to provide standard connections to other modules. We prefer a plug-and-play 

system, so every module is independent from each other, and the communication between 

modules are solely based on the I/O interfaces in the BBO framework modules. The I/O 

format for each module besides the BBO framework module is shown as follows. 

! Population initialization 

Inputs: 1) Coordinates of all cities; 2) Number of SIVs per individual (i.e., number of 

TSP cities); 3) Randomly generated city order for each individual. 
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Output: 1) city order for each individual after applying a population initialization 

technique. 

! Recombination 

Inputs: 1) coordinates of all cities; 2) tour distance of each individual; 3) number of 

individuals in the population; 4) number of SIVs per individual (i.e., number of TSP 

cities); 5) city order for each individual. 

Outputs: 1) city order for each individual after applying a recombination method; 2) tour 

distance of each individual after applying the recombination method. 

! Local optimization 

Inputs: 1) coordinates of all cities; 2) city order for each individual; 3) Current generation 

number. 

Outputs: 1) city order for each individual after applying the local optimization method; 2) 

tour distance of each individual after applying the local optimization method. 

! Greedy method 

Inputs: 1) the city order for each individual; 2) the tour distance of each individual; 3) the 

city order of each individual; 4) the tour distance of each individual. 

Outputs: 1) the city order for each individual after applying the greedy method; 2) the 

tour distance of each individual after applying the greedy method. 

 

 



 

 

62 

3.6.2 Default Modules 

Population initialization is the second module category. The purpose of this 

module category is to preprocess the population before applying the BBO algorithm. 

There are many traditional methods which can significantly increase the quality of the 

entire population without much computational effort. Although we cannot obtain the 

optimal solution or even be close to the optimal solution, our goal here is only to provide 

a better start for BBO. Based on the simulation results from the previous section, NNA 

can provide a high quality initial population for BBO, and lead to better final results. In 

this category, researchers can also design their own preprocessing algorithms following 

the I/O format described above. In the BBO GUI for the TSP, we provide five default 

modules for population initialization: NNA0, NNA1, NNA5, NNA10, NNA100. The 

numbers in the module names represent how many individuals will be initialized with 

NNA. For example, NNA1 means that we only perform NNA on one individual.   

Recombination (or crossover) is the most critical component in BBO. The same 

algorithm with different crossover methods can have very different performances on the 

same benchmark problem. In this case, a crossover upgrade might be the main focus for 

an algorithmic modification. For most algorithms, crossover methods are deeply 

embedded in the algorithms. So in order to test different crossover methods, algorithms 

need to be rewritten most of the time. The goal of our GUI design is to provide a platform 

so researchers can switch between different techniques with minimal effort. As long as 

the crossover modules follow the I/O format described above, nothing else needs to be 

changed after plugging them into the BBO framework module. The default crossover 
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modules include: matrix crossover module, cycle crossover module, and inver-over 

crossover module.  

Local optimization is a complementary technique for crossover. The focus of 

local optimization is local search rather than global search. The default modules of local 

optimization include: opt2 module (perform 2-opt), opt3 module (perform 3-opt), optk 

module (perform k-opt). 

Greedy methods are very effective in some cases, so we also include it as a 

module category. Researchers can develop different greedy strategies to achieve the best 

results. There are four default greedy modules provided in this GUI: greedy0 module, 

greedy1 module, greedyhalf module and greedyall module. The greedy0 module does not 

implement any greedy method. The greedy1 module implements a greedy method on one 

individual. The greedyhalf module implements a greedy method on half of the population. 

The greedyall module implements a greedy method on all the individuals.    

3.6.3 TSP GUI based on BBO 

The BBO GUI is built with the modules mentioned in the previous subsections. 

Since the entire GUI interface is too large to display on a single figure, we discuss the 

interface one piece at a time in this section. The first part of the GUI is the TSP 

benchmark selection, which is shown in Figure 21. 
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Figure&21:&The&BBO&benchmark&selection&

 

In this GUI, there are a total of 100 TSP benchmark problems, and users can 

choose any of them from the menu shown in Figure 21. 

The second part of the GUI is the BBO setup, which contains two user-defined 

parameters - population size and generation limit. Those two parameters are problem 

dependent, and users can choose appropriate values based on their experience. The BBO 

setup window is shown in Figure 22. 

 

Figure&22:&The&BBO&setup&selection&

 

The third part of the GUI is the BBO technique module, which includes 

population initialization, migration, local optimization, and greedy method. Each module 
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contains several options. Any user-created module will automatically be displayed as an 

option in the corresponding module category. 

 

Figure&23:&The&BBO&technique&selection&&

 

The fourth part of the GUI is the control panel, and it includes the plot selection 

menu, the run button, and the clear button. This GUI contains four plot locations. The 

user can choose any of them for their cost vs. generation plot. The reason we decide to 

provide four plots in the GUI is because we encourage users to draw plots at different 

locations with different selected techniques. Side by side comparison is the most intuitive 

way to visualize the performance comparison of different techniques. The run button is 

used to begin the BBO algorithm. The clear button is used to clear the selected plots from 

the GUI. 
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Figure&24:&GUI&control&panel&

 

The fifth part of the GUI is the plot section, which includes four plots. Users can 

select any of those locations to draw the output plots from a given BBO simulation. 

 

Figure&25:&Plots&in&GUI&

 

The sixth part of the GUI is the function panel. You can save figures, save data 

from figures, and access the help file from this panel. 
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Figure&26:&Function&panel&of&GUI&

 

The last part of the GUI is the TSP map. Plotting a TSP map to display the best 

solution at each generation is an intuitive way to visualize the improvement of the best 

BBO solution from one generation to the next. 

 

Figure 27: TSP map of GUI 

&

With this GUI, users can easily implement different techniques on the 100 

benchmark problems that have been provided, and can also add their own TSPs. Also, 
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based on the standardized I/O interface, new techniques can be implemented with 

minimal effort.  
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Figure 28: BBO GUI for TSPs 
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CHAPTER IV 

COMPLEX SYSTEM OPTIMIZATION 

 
The material in this chapter is based on [28], which is one of the dissertation 

author’s publications. It is used here with permission. Optimization problems with 

complex structures are hard to solve. For a nonlinear problem with multi-objectives and 

multi-constraints, a heuristic algorithm is a good option because of its flexibility and ease 

of implementation. For real world engineering applications, we find that few systems are 

simple. Most consist of several interacting subsystems, each of which has multi-

objectives and multi-constraints. The optimization of a complex system is a challenge 

because we cannot treat each subsystem separately. The selected optimization methods 

need to consider the entire system. Since the subsystems are not totally independent from 

each other, it is ideal if we can combine their optimization by synchronizing the local and 

global optimization procedures. 
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4.1 Structure of Complex Systems 

In modern industry, system structures are complex. It is hard to find a system with 

only one input, one output, one objective, and no constraints. Instead, multi-inputs, multi-

outputs, multi-objectives, and multi-constraints are common. Modularity has also become 

common in industrial design for several reasons. First, the maintenance of modularized 

systems is relative easy. Problem diagnosis can be localized in each component. Second, 

updating such systems will not affect the entire system. We also find that adding more 

components, or replacing components in a modularized system, can be easily 

accomplished. A complex system is usually a modularized system, with a structure that 

consists of multi-modules. The only connection between each module is the parameter 

inputs and outputs. In other words, a complex system consists of relatively independent 

subsystems. Each subsystem has its own inputs, outputs, objectives, and constraints. 

We use automobile assembly processing as an example of a complex system. A 

manufacturing plant is usually configured to assemble more than one model of vehicle. 

Each model built in the plant can be considered a subsystem. Each subsystem is different. 

For this reason, each subsystem can be treated as an independent system. But these 

subsystems still belong to the same system, and usually they have some aspects in 

common. For example, they may share similar objectives, like compatibility of parts, 

total cost of each vehicle, or assembly costs. This same situation also applies to the 

constraints. For example, the material cost and labor cost are common constraints in the 

assembly process. In this case, it is not necessary to optimize each subsystem individually. 

Although the subsystems are not identical to each other, they still share similar objectives 
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and costs. So information exchange between subsystems is mutually beneficial to every 

subsystem. Without individually optimizing for each subsystem, we treat all subsystems 

as one integrated system. We can now study the global optimization of all subsystems, 

which is referred to as the optimization of a complex system.  

4.2 Algorithms for complex system optimization 

Some problems, such as TSPs, truck routing, or sensor selection, are 

combinatorial, or cannot be characterized by equations. Optimization methods such as 

Newton’s method or gradient descent are not suitable in this case. Other than using brute-

force search, a heuristic algorithm is the best possibility that remains. 

In a complex system, each subsystem has its own objectives and constraints. 

When compared with simple systems, the complex system has three extensions: from 

single objective to multiple objectives, from no constraints to multiple constraints, and 

from optimizing only one system to optimizing multiple subsystems. With a problem 

involving multi-objectives and multi-constraints, two types of techniques are used to deal 

separately with each objective and constraint. The final results are then calculated based 

on the combination of these techniques. When we are confronted with the problem of 

optimizing multi-systems, we enter new territory relative to traditional optimization 

theories. It is not only a theoretical achievement to solve these types of problems, but also 

a significant contribution to the industry. Multi-objectives and multi-constraints represent 

most of the problems faced by industry today. If we can optimize similar problems all at 
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once, rather than one at a time, we can significantly increase the efficiency of the 

optimization process. 

Based on its performance on benchmarks [1], we decide to implement BBO for 

complex systems. Since complex systems are much different than simple systems, due to 

having multi-systems, multi-objectives, and multi-constraints, we need to change the 

structure of BBO so that it is suitable for complex systems [55]. The major change is in 

migration. First, the ranking strategy is different because we need to assign ranks to 

individuals based on the performance of all objectives. Also, migration becomes more 

complex, because we need to migrate both within single subsystems, and also between 

subsystems. In addition to the change in migration, other parts of BBO are also changed. 

One such change is with regard to the population setup. Since we have more than one 

subsystem, there is more than one subpopulation contained within the population. The 

modification of BBO for complex system optimization will be discussed in detail in the 

following sections of this chapter. 

4.3 BBO for Complex Systems 

In this section, we focus on the modification of BBO for complex systems. The 

following features of complex systems must be considered: the multi-subsystems 

structure, the multi-objectives of each subsystem, and the multi-constraints of each 

subsystem. 



 

 

74 

The original BBO algorithm was designed for a single objective, no constraints, 

and single-system problems. But since then, BBO has been extended to multi-objective 

problems [56] and multi-constraint problems [57]. As we recall from Chapter 1, the main 

feature of complex systems is its multi-subsystem structure. Therefore, our major goal is 

to extend BBO to systems with multi-subsystems, where each subsystem contains multi-

objectives and multi-constraints. Our new algorithm is called BBO/Complex.  

Our first BBO extension involves its environment, or its population structure. The 

original BBO environment is an archipelago that consists of islands. The islands 

represent possible solutions to the problem. This BBO environment is based on the 

premise that BBO is a single system optimization algorithm. Complex systems contain 

more than one subsystem, each of which is partially independent from the others. 

Therefore, the environment of BBO/Complex includes n archipelagos, where n is the 

number of subsystems.  The second difference between BBO and BBO/Complex 

involves objectives and constraints. The original BBO algorithm only includes one 

objective and no constraints, but BBO/Complex includes multi-objectives and multi-

constraints. The new environment of BBO/Complex is as follows [55]. 

1. P = {A1, A2, A3, ...} is a population that is comprised of archipelagos. Each 

archipelago corresponds to one subsystem. 

2. Ah = {Ih1, Ih2, Ih3, ...; Oh1, Oh2, Oh3, ...; Ch1, Ch2, Ch3, ...} is an archipelago that is 

comprised of islands Ihi, objectives Ohi, and constraints Chi. 

3. Ihi = {Shi1, Shi2, Shi3, ...} is an island that is comprised of SIVs, also called candidate 

solution features, independent variables, or design variables. 
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As previously discussed, each archipelago corresponds to a subsystem. So each 

archipelago contains three groups of components. The first group of components is a 

group of islands, and each island is a possible solution to the subsystem optimization 

problem. The second group of components is a group of objectives for the subsystem. 

The last group of components is the set of constraints for the subsystem. The combination 

of all three groups of components in the subsystem is called an archipelago. 

Mutation in BBO/Complex is identical to that in standard BBO. But migration in 

BBO/Complex needs to be modified due to the fact that the environment of 

BBO/Complex contains more than one subsystem. In the following subsections we 

consider two types of migration: within-subsystem migration and cross-subsystem 

migration. 

4.3.1 Within-subsystem migration 

In standard BBO, the fitness of an island is linearly related to the objective 

function because the system consists of only one objective function and no constraints. 

So the only performance measurement comes from the objective function. But in a 

complex system, the performance of an island is not reflected by only one objective 

function. That is the only difference between migration in BBO, and within-subsystem 

migration in BBO/Complex, but it is a major difference. Due to the fact that each 

subsystem contains multi-objectives and multi-constraints, we need to combine all of this 

information to determine the fitness of each island and its resulting migration rate.  
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We note here that Pareto-optimal solutions are often used in multi-objective 

algorithms [58]. But Pareto approaches require decision makers to select a single solution 

from a set of Pareto-optimal solutions, all of which are considered to be equally optimal. 

The Pareto approach has the advantage of providing multiple candidates to the decision 

maker as potential solutions, but has the drawback of requiring the decision maker to 

select from a potentially large set of such candidate solutions. Our approach avoids the 

need for a human decision maker, which may be desirable for certain problems.  

In BBO/Complex, a modified version of the non-dominated ranking system 

(NDRS) [9] is used as the ranking system for islands. NDRS was initially designed for 

single systems with multi-objectives [59]. NDRS eliminates the weighting factors used in 

weighted ranking algorithms. NDRS can be easily deployed in almost any single-system, 

multi-objective optimization algorithm without major modification [60]. An updated 

version of NDRS was introduced in [61] as the ranking system in the multi-objective 

genetic algorithm (MOGA). That version uses non-consecutive integers as ranks to 

reflect the relative performance of each individual in a population. We are inspired here 

by both NDRS and the MOGA ranking system. But neither NDRS nor MOGA deals with 

constraint violation, which is a major concern in our work, as well as in most real-world 

optimization problems. So our modified NDRS considers constraint violations. We 

consider two factors that determine the relative performance of a candidate solution: 

fitness values and constraint violations. In our modified NDRS, the constraints have a 

higher priority than the fitness values. Violations of constraints significantly degrade the 

relative rank of individuals. Assume that we have a subsystem with the following 

characteristics: the population size is n; the number of objectives is m; the number of 
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constraints is k; Ri is the rank of the i-th island (to be determined below); and Vi is the 

number of constraint violations of the i-th island. Algorithm 1 outlines the modified 

NDRS procedure. 

Algorithm*1:*Modified*non2dominated*ranking*system*(NDRS).*Vi*is*the*number*of*

constraint*violations*of*the*i2th*island,*and*Ri*is*the*relative*rank*of*the*i2th*island,*

where*a*lower*rank*is*better.*m*is*the*number*of*optimization*objectives.*

 
After performing the above version of NDRS, we have the rank of each island in 

the subsystem. A smaller rank means better performance. For example, suppose have 4 

R1 = R2 =… = Rn = 0; 
V1 = V2 =… = Vn = 0; 
for i = 1 to n do 

for c = 1 to k do 
 if constraint c of island i is violated then 
  Vi = Vi + 1 
 end if 
end for 

end for 
for i1 = 1 to n do 

for i2 = i1 to n do 
 if Vi1 > Vi2 

Ri1 = Ri1 + m  
else if Vi1 < Vi2 

Ri2 = Ri2 + m  
else if Vi1 = Vi2 

for o1 = 1 to m do 
if objective o1 of island i1 is better than o1 of i2 then 

Ri2 = Ri2 + 1 
else if objective o1 of island t2 is better than o1 of t1 

then 
Ri1 = Ri1 + 1 

end if 
end for 

end if 
end for 

end for 
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islands and each of the islands has 3 objectives and 3 constraints. The objective and 

constraint violation information might be given in Table vi. Based on those data, the rank 

of each island is calculated according to the modified NDRS method in the last column of 

Table vi. 

 Objective 1 Objective 2 Objective 3 Constraint Violation Rank 
Island 1 1 2 3 0 0 
Island 2 2 4 2 1 4 
Island 3 3 1 4 1 5 
Island 4 1 1 1 2 9 
Table*vi:*Rank*calculation*example*with*the*modified*NDRS.*A*lower*objective*

means*better*performance,*and*lower*ranks*are*better*than*higher*ranks.*

 

The ranks obtained from the modified NDRS are shown in Table vi, but one thing 

that needs to be mentioned is that the ranks assigned to the islands are 0, 4, 5, and 9. 

Ranks are not necessarily consecutive integers. The reason is that NDRS reflects the 

performance of an island by including the number of partial domination counts in a rank 

rather than simply ordering the islands. This gives more granularity for rank values, 

which is important when probabilistically choosing migrating islands in BBO.  

4.3.2 Cross-subsystem migration 

Standard BBO only contains one type of migration: within-subsystem migration, 

which has been modified for BBO/Complex as shown above. But BBO/Complex also 

includes cross-subsystem migration. Cross-subsystem migration is different because each 

subsystem has its own ranking system. The comparison of ranks across subsystems is 
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meaningless, because ranks assigned to each island in a subsystem only represents the 

relative goodness of the island in that specific subsystem. If we consider two islands in 

two different subsystems, we cannot determine which island is better by simply 

comparing their ranks, because ranks from different subsystems are calculated differently 

based on the different subsystem objectives and constraints. Instead, cross-subsystem 

migration is based on three factors – distance between islands, the similarity level of 

objectives, and the similarity level of constraints.  

4.3.2.1 Distance between islands 

The first factor to consider in cross-subsystem migration is the distance between 

islands. As we know, heuristic algorithms require population diversity [2]. BBO 

migration is based on sharing SIVs among islands. If the population has a low diversity, 

most of the islands are similar to each other, and the probability that an island improves 

after migration is low. In this case, migration may not effectively contribute to 

improvement in the population.  

Mutation is the technique that introduces new SIVs to the population, and 

mutation does not depend on the diversity of the population. But the mutation rate is 

usually a small number, for example, 1%, because large mutation rates negate the 

effectiveness of migration and reduce the evolutionary algorithm to a random search. The 

new information introduced to the population through mutation sometimes includes 

useful SIVs. But most of the time, those SIVs are useless and can even degrade the 

population. In general, mutation is not a rapid or efficient technique for evolution.  
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Usually we use Euclidean distance to calculate the distance between islands. This 

calculation is straightforward for islands with the same structure. The Euclidean distance 

between island a and b in archipelago h, both of which have c SIVs, is  

 
  
Dhab = Shak − Shbk( )2

k=1

c

∑  (4.1) 

This calculation is valid if and only if both islands share the same structure, which 

means they have the same SIV type at the same location in the vector that defines the 

candidate solution. But in a complex system, subsystems usually have different island 

structures. That is, the independent variables in subsystems are not commensurate. For 

example, the SIV types in island 1 may be labeled type 1, 2 and 3; but the SIV types in 

island 2 may be labeled 2, 3, and 4. Equation (4.1) is not appropriate to calculate the 

distance between islands 1 and 2 in this case, because we cannot find the corresponding 

SIVs on both islands for the type 1 SIV and the type 4 SIV.  

For BBO/Complex, we need a new technique to calculate the distance between 

islands with different structures. The partial distance strategy (PDS) is widely used in 

statistics to calculate Euclidean distances with missing data [62]. This is similar to our 

situation. Instead of missing data, we have missing SIV types. In order to implement PDS, 

we need to modify the data structure of the islands. First, we define each island to include 

all the SIV types on all islands, and this definition provides a unified format for islands. If 

an island did not originally include a specific SIV type, we assign an N/A value to the 

SIV and treat it as missing data. Assuming that there are a total of t types of SIVs, the 

unified format is given as follows: 

 [ ]1 2SIV ,SIV ,N/A,...,SIVtx =  (4.2) 
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The implementation of PDS in BBO/Complex is given as follows. 

 

  

Dghab =
t

Kghab

Sgak − Shbk( )2
Kghabk

k=1

t

∑ , if Kghab > 0

0,                                             if Kghab = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (4.3) 

 

  

Kghabk =
0, if Sgak =N / A or Shbk = N / A

1, if Sgak ≠ N / A and Shbk ≠ N / A

⎧
⎨
⎪

⎩⎪

Kghab = Kghabk
k=1

t

∑
 (4.4) 

Dghab is the partial distance between island a in archipelago g and island b in 

archipelago h; and t is the total number of SIV types. As an example, suppose we have 2 

islands: island 1 = [0 1 2 3, N/A, 4], and island 2  = [1, 3, N/A, N/A, 5, 5]. Island 1 has 5 

SIVs, and island 2 has 4 SIVs, and the two islands have 3 SIVs in common. Then the 

distance is calculated based on Equation (4.3) and (4.4) as 4.90. 

 

4.3.2.2 Similarities between objectives and constraints 

 The second and third factors in the island distance calculation are the similarity 

level of the objectives and the similarity level of the constraints. Subsystems with similar 

objectives and constraints are more likely to benefit each other through migration than 

subsystems that are not closely related. Our calculation of similarity level is based on the 

fast similarity level calculation (FSLC) [55]. Suppose there are two islands, each of 

which has a vector of independent variables: U = [u1, u2, u3, …] and V = [v1, v2, v3, …] 

(either objectives or constraints). The similarity level (SL) of these vectors is calculated 

by FSLC in Algorithm 2. 
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Algorithm 2: Similarity level calculation. U and V are the sets of objectives or constraints 

of two islands (candidate solutions). 

 

4.3.2.3 Summary of cross-subsystem migration 

Now that we have discussed the three factors for cross-subsystem migration, we 

summarize cross-subsystem migration as follows. First, calculate the migration 

probability between islands based on the similarity level between subsystems.  

 

  

Pmigration =

1
2

OS
OSmax

+ CS
CSmax

⎛

⎝⎜
⎞

⎠⎟
,  if OSmax > 0 and CSmax > 0

1
2

OS
OSmax

,                   if OSmax > 0 and CSmax = 0

1
2

CS
CSmax

,                   if OSmax = 0 and CSmax > 0

0,                               if OSmax = 0 and CSmax = 0

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (4.5) 

OS is the objective similarity level between two islands; OSmax is the maximum 

inter-archipelago objective similarity level in the population; CS is the constraint 

similarity level between two islands; CSmax is the maximum inter-archipelago constraint 

similarity level in the population. 

SL = 0 
for each u ∈"U   

for each v ∈ V  
if u and v are the same type then 

SL = SL + 1 
end if 

end for 
end for 
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The probability for a pair of subsystems to perform cross-subsystem migration is 

linearly related to the above migration probability. After calculating the above probability, 

we need to choose emigrating islands for each immigrating island. We use roulette wheel 

selection [3] to select the emigrating island. Islands with better partial distances will have 

a better chance to be selected as the emigrating island. Figure 29 shows an example of 

emigrating island selection across subsystems. 

 

Figure*29:*An*example*of*emigrating*island*selection*for*immigration*to*island*1*in*

subsystem*1.*First,*calculate*the*partial*distances*between*island*1*in*subsystem*1,*

and*each*island*in*subsystem*2.*Then*create*a*roulette*wheel*based*on*the*partial*

distances.*Finally,*probabilistically*select*the*emigrating*island*based*on*roulette*

wheel*selection.*
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4.3.3 Summary of BBO/Complex 

BBO/Complex is summarized as follows. 

1. Define the control parameters: population size, stopping criteria, mutation 

probability, and elitism parameter. A typical setup for BBO is that population size is 

100, stopping criteria is 100,000 cost function calls, mutation probability is 0.05, 

and elitism parameter is 1. 

2. Initialize the population. This is usually done with randomly-generated individuals. 

3. Calculate the constraint and objective similarity levels between all pairs of 

subsystems. 

4. Calculate the rank of islands in each subsystem.  

5. Within-subsystem migration: Probabilistically choose the immigrating islands based 

on the island ranks. Use roulette wheel selection based on the emigration rates to 

select the emigrating islands. Emigration rates are linearly related to the island ranks. 

After each immigrating island selects its corresponding emigrating island, we 

perform within-subsystem migration. Each SIV in an immigrating island will have a 

chance to be replaced by an SIV from an emigrating island. This process is the same 

as migration in standard BBO. 

6. Cross-subsystem migration: Find suitable pairs of subsystems based on similarity 

levels. Calculate distances between each pair of islands across all different 

subsystems. Use roulette wheel selection based on partial distances to select the 

emigrating islands. Then begin cross-subsystem migration. Each SIV in an 
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immigrating island will have a chance to be replaced by an SIV from an emigrating 

island, and this probability is PSIVmigration which can be predefined by users.    

7. Probabilistically perform mutation on each island based on mutation probability. 

8. In each subsystem, save the islands with the best performances as elite islands. 

Replace the worst islands in the population with the previous generation’s elite 

islands.  

9. If the termination criterion is not met, go to step 4; otherwise, terminate. 

The structure of BBO/Complex is conceptually different than MDF, IDF, and CO. 

As we see from Figure 1, Figure 2, and Figure 3, MDF, IDF, and CO provide different 

strategies to optimize systems. But they are just frameworks, and we can choose any 

optimization method, like gradient descent or a GA, as the optimizer within the 

framework. But BBO/Complex is in a different category, because it includes both the 

framework and the optimization algorithm, as shown in Figure 30. It provides an efficient 

way to communicate between subsystems during the optimization process, and it 

provides a unique migration strategy to share information both within and across 

subsystems. Comparing MDF, IDF, CO, and BBO/Complex, we see that cross-subsystem 

migration in BBO/Complex is an innovation that can significantly enrich information 

sharing among subsystems.  
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Figure*30:*BBO/Complex*formulation*

4.4 Simulation 

In this section, we compare the performance of BBO/Complex on real world 

benchmark problems with other well-known MDO algorithms: MDF, IDF, and CO. As 

we mentioned before, these three MDO algorithms are frameworks which require an 

additional optimization method as a complementary but essential component. The 

optimization algorithm we use in all three of these MDO algorithms is BBO without 

cross-subsystem migration. The benchmark problems are obtained from [62], and include 

the speed reducer problem, the propane combustion problem, the heart dipole problem, 

and the power converter problem. Each benchmark includes several subsystems, and each 

subsystem includes multi-objectives and multi-constraints. Detailed information about 

each benchmark can be found in the appendix. 
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The reason we choose these benchmarks is that they can be formulated as 

complex systems with inter-connected subsystems. There are two decomposition 

strategies: one is based on the physical system and one is based on the system 

requirements. In this section, we decompose the systems based on system requirements. 

Based on [64] and [65], traditional MDO algorithms usually lack the capability of dealing 

with multi-objectives, so their decomposition is based on the principle that each 

subsystem has one objective and multi-constraints. This type of decomposition is suitable 

for traditional optimization methods because it avoids the need to consider all objectives 

at once. Due to the fact that BBO is a heuristic algorithm, and with supporting results 

from [66] and [67], BBO/Complex is expected to perform well on multi-objective 

problems. It has more flexible decomposition options than traditional MDO algorithms. 

Our decomposition option for BBO/Complex is that each subsystem has multi-

objectives and multi-constraints. But in order to provide a fair comparison between other 

MDO algorithms and BBO/Complex, we also introduce a BBO/Complex version that 

uses the same decomposition strategy as the other MDO algorithms. So we have two 

versions of BBO/Complex in this section: the first one uses the same decomposition 

method as CO, MDF, and IDF, and is called BBO/Complex/Single; the other one uses 

multi-objectives in each subsystem, and is called BBO/Complex/Multi. 

* For* each* benchmark* test,* we* compare* the* performance* of* each* algorithm*

using*both*constraint*violation*and*cost.*We*perform*100*Monte*Carlo*simulations*

for* each* algorithm* and* each* benchmark* problem* to* accurately* measure*

performance.* The* termination* criterion* is* 100,000* cost* function* evaluations.* The*

constraint*violation*index*is*calculated*for*each*generation*as*the*average*number*of*
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constraint* violations* among* all* Monte* Carlo* simulations.* They* are* all* normalized*

between*0*and*1.*The*constraint*violation*index*is*0*if*there*are*no*violations.*The*

second*performance*metric* is* based*on* the* cost* function* values.*We* calculate* the*

rank* for*each*algorithm*using*modified*NDRS* in*each*Monte*Carlo*simulation,*and*

then* obtain* the* averge* rank* over* 100*Monte* Carlo* simulations.* The* optimization*

goal*of*each*benchmark*is*to* find*the*minimum*value*of*the*cost*without*violating*

any* constraints.* Since* each* benchmark* contains*multi2objectives,*we*use*NDRS* to*

calculate* the* rank* of* each* algorithm* based* on* its* cost.* But* we* have* two* priority*

levels:*the*first*goal*is*to*find*feasible*solutions,*and*the*second*goal*is*to*reduce*cost.*

Priority*level*one*overrides*priority*level*two.*

4.4.1 The Speed Reducer Problem 

The first benchmark we test is the speed reducer problem. It contains 3 objectives, 

11 constraints, and 7 design variables, as detailed in the appendix. The performance of all 

algorithms on the first benchmark is shown in Table vii, which shows that 

BBO/Complex/Single has the best performance on the speed reducer benchmark, 

including the best cost rank and the minimum constraint violation. MDF, CO, and 

BBO/Complex/Multi are slightly worse than BBO/Complex/Single. IDF has the worst 

performance in terms of both cost rank and constraint violation.  
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 NDRS Cost Rank SD Violation 
BBOComplex/Single 2.41 2.06 0.04 

MDF 2.62 2.11 0.05 
CO 5.17 2.10 0.08 

BBOComplex/Multi 7.80 1.59 0.14 
IDF 12.00 0 0.27 

Table*vii:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*speed*reducer*problem*after*100,000*function*calls.*For*each*metric,*a*smaller*

number*means*better*performance.**

4.4.2 The Power Converter Problem 

The second benchmark is the power converter problem. It has 6 design variables, 

8 state variables, 2 objectives, and 4 constraints, as detailed in the appendix. Table viii 

shows the performance of the algorithms on the power converter problem. The 

performances of all algorithms are fairly close to each other. We have good results on this 

problem because all algorithms achieve a 0 constraint violation. CO is the best algorithm 

in terms of cost, and BBO/Complex/Multi has the second best performance.  

 NDRS Cost Rank SD Violation 
CO 3.51 0.56 0 

BBOComplex/Multi 3.73 0.47 0 
MDF 3.76 0.57 0 

BBOComplex/Single 3.77 0.57 0 
IDF 5.23 1.35 0 

Table*viii:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*

for*the*power*converter*problem*after*100,000*function*calls.*For*each*metric,*a*

smaller*number*means*better*performance.**
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4.4.3  The Heart Dipole Problem 

The third benchmark is the heart dipole problem. It has 6 design variables, 2 

objectives, and 5 constraints, as detailed in the appendix. Table ix shows that 

BBO/Complex/Single, BBO/Complex/Multi and MDF achieve a 0 constraint violation, 

which means that the best individuals for each Monte Carlo run are feasible. When we 

combine cost rank and constraint violation, BBO/Complex/Single has the best 

performance on this benchmark, and BBO/Complex/Multi is the second best.   

 NDRS Cost Rank SD Violation 
BBOComplex/Single 1.35 1.30 0 
BBOComplex/Multi 1.36 1.16 0 

MDF 3.29 1.17 0 
IDF 6 0 0.20 
CO 8 0 0.40 

Table*ix:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*heart*dipole*problem*after*100,000*function*calls.*For*each*metric,*a*smaller*

number*means*better*performance.**

4.4.4 The Propane Combustion Problem 

The fourth benchmark is the propane combustion problem. It has 1 design variable, 3 

objectives, and 4 constraints, as detailed in the appendix. According to Table x, 

BBO/Complex/Multi is the best algorithm for this benchmark because it is the only 

algorithm that achieves a 0 constraint violation. BBO/Complex/Single achieves the 

second best performance with a constraint violation slightly greater than 0.  
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 NDRS Cost Rank SD Violation 
BBOComplex/Multi 1.71 1.58 0 
BBOComplex/Single 2.99 2.06 0.02 

CO 4.75 1.99 0.04 
MDF 9.76 0.46 0.25 
IDF 10.79 0.49 0.25 

Table*x:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*propane*combustion*problem*after*100,000*function*calls.*For*each*metric,*a*

smaller*number*means*better*performance.**

4.5 Summary of Benchmark Tests 

The benchmark results show that BBO/Complex/Multi is the only algorithm that 

obtains feasible solutions on three of the benchmarks. For the speed reducer benchmark, 

none of the algorithms finds a feasible solution, but BBO/Complex/Single comes the 

closest. Among all four benchmarks, BBO/Complex/Multi achieves the best performance 

once and the second best performance twice, and BBO/Complex/Single achieves the best 

performance twice and the second best performance once. Among the non-

BBO/Complex algorithms, CO is the best, achieving the best performance once. 
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4.6 Markov model of BBO/Complex 

As typified by BBO algorithm described earlier, most heuristic algorithms have a 

similar evolution process in their search for an optimal solution. In contrast with more 

traditional and analytic optimization algorithms, there is no guarantee that we can obtain 

the optimal solution with heuristic algorithms.  

Markov models are general tools that are used to describe the probability of 

transitioning from one state to another. If we can develop a Markov model for a system, 

the probability of the appearance of each state can be calculated mathematically. If we 

treat a Markov state as a distribution of individuals in a heuristic algorithm, then we can 

use the Markov model to calculate the probability of the appearance of any given 

population distribution, which means that we can calculate the probability that the 

optimal solution will be found by the heuristic algorithm. In this way, Markov models 

can be used to mathematically analyze the performance of heuristic algorithms for given 

optimization problems. Markov models have been successfully applied to various 

heuristic algorithms, such as simple genetic algorithms [68], simulated annealing [69], 

the genitor algorithm, and the CHC algorithm [70]. In 2010, a Markov model was 

developed for BBO, and that was the first time that the performance of BBO was 

analyzed mathematically and theoretically [7].  The following sections extend the BBO 

Markov model to the BBO/Complex algorithm. 
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4.6.1 Development of a Markov model of BBO/Complex 

Markov models describe the probability that a system transitions from one state to 

another. They are discrete-time random processes on a finite state space. Assume that 

there are T possible states in some system. Then a T×T transition matrix can be defined to 

describe the probability of transitioning between each pair of states. We call this 

transition matrix P. The probability that state Si transits to state Sj is given by Pij, which is 

also called the transition probability. If a Markov model can transition from any state to 

any other state, then P does not include any zero entries, and the transition matrix P of 

the Markov chain is called regular. If P is regular, we can obtain the steady state 

transition matrix Pss as follows [7], [71]: 

 lim
n→∞

Pn = Pss   (4.6) 

Equation (4.6) gives the transition matrix after an infinite number of transitions. 

Each row in Pss is the same as every other row, and the i-th element in each row is the 

limiting probability of the occurrence of state i as the number of transitions approaches 

infinity. 

If BBO/Complex is implemented on a system with discrete independent variables, 

then it has a finite number of population distributions, and we can derive a Markov model 

for it. Each population distribution represents a state in the Markov model. As shown in 

Equation (4.6), Pss is independent from the initial state. In BBO, this means that the final 

population distribution is independent of the initial population. This result is of great 

importance in building a Markov model for BBO/Complex. We only need the transition 

matrix to predict the final population distribution (in the limit as the generation count 
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approaches infinity), and this limiting distribution is independent from the initial 

population. For the simulations that will be used to verify the Markov model later, we do 

not need to be particular about the initial population − all initial populations will 

eventually lead to the same final population distribution.  

The environment of BBO/Complex is comprised of M subsystems. We assume 

here that the independent variables of the optimization problem are binary, although we 

note that any discrete space can easily be mapped into a binary space. The number of bits 

in each island (candidate solution) in subsystem i is denoted as bi. The population size of 

BBO for subsystem i is denoted as ni. The total number of possible solutions in 

subsystem i is denoted as Ni, and the total number of possible solutions in the entire 

system is denoted as N. Ni and N are calculated as follows: 

 
Ni = 2bi

N = Ni
i=1

M

∏       
 (4.7) 

The j-th island (candidate solution) in the population of subsystem i is denoted as 

yij. The j-th point in the search space of the subsystem i is denoted as xij. We use vij to 

denote the total number of xij islands in subsystem i. So the combined BBO/Complex 

population can be generally represented as follows: 



 

 

95 

 

 

Population = y11,…, y1N1
⎡⎣ ⎤⎦, y21,…, y2N2

⎡⎣ ⎤⎦,…, yM1,…, yMNM
⎡⎣ ⎤⎦{ }

                  = x11,…, x11

v11
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v12

! "# $# ,…, x1N1
,…, x1N1
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⎢
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⎢

⎤

⎦
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⎥

⎧
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⎪

⎩⎪
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                       x21,…, x21

v21
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v2N2
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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                                                   %

                       xM1,…, xM1

vM 1
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vM 2

! "# $# ,…, xMNM
,…, xMNM

vMNM
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫
⎬
⎪

⎭⎪

 (4.8)   

For convenience in notation, we have ordered the yij islands in the same order as 

the xij search space points. Based on Equation (4.8), the population in subsystem i can be 

written in a more compact format as follows: 

 

 

yik =

xi1,  when k = 1,...,vi1                             
xi2,  when k = vi1 +1,...,vi1 + vi2            

!

 xiNi ,  when k = vil
l=1

Ni−1

∑ +1,..., vil
l=1

Ni

∑                 

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (4.9) 

for i = 1, …, M. In Equation (4.9), yik denotes the k-th island in the population of 

subsystem i. We use yik(s) to represent the s-th bit in the k-th island in the population of 

subsystem i. Equation (4.9) can be written as follows: 

 
yik = xiz(k )

z(k) = min r,  such that vil > k          
l=1

r

∑   (4.10) 

Based on the definition of BBO/Complex, islands in different subsystems have 

different structures and contain different types of SIVs. For ease of notation, we use a 
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unified format to represent each island in the BBO/Complex population, as shown in 

Equation (4.2). 

A Markov model describes the transitions between states. Each state in 

BBO/Complex is a specific population distribution. Each generation of BBO/Complex 

updates its population with migration and mutation. A transition between states 

corresponds to the evolution of the population in one generation of BBO/Complex. So in 

order to build a transition matrix, we need to model migration and mutation in 

BBO/Complex. In the following subsections, we study the migration and mutation 

processes, and use them to build the transition matrix for the Markov model of 

BBO/Complex. 

 

4.6.1.1 Migration 

Migration is the main technique that BBO uses to share information among 

islands. In the original BBO algorithm, the basic procedure of migration is to 

probabilistically select an immigrating island (an island that imports SIVs) and an 

emigrating island (an island that exports SIVs). Then we probabilistically choose some 

SIVs from the emigrating island, and use them to replace the SIVs in the immigrating 

island. Figure 31 illustrates a simple migration process. 
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Figure*31:*An*example*of*migration*between*two*islands.*

 

In BBO/Complex, the migration process is more complicated. Rather than having 

just one population, it contains multiple populations, one for each subsystem. Each 

subsystem is relatively independent from the others, which means the construction of the 

population of each subsystem is relatively independent from the others. Also, there are 

two types of migration in BBO/Complex, within-subsystem migration and cross-

subsystem migration, which introduces further complexity to the Markov model 

development. 

There are four assumptions we make in this section to develop the Markov model. 

They are similar (but expanded) versions of the assumptions used to develop the Markov 

model for the original BBO algorithm [7]. 

First, a BBO solution will not be replaced until the end of the generation. In other 

words, BBO is generational rather than steady-state [2]. This assumption guarantees that 

the migration probabilities remain the same throughout each generation. 

Second, an island can emigrate to itself. The immigrating and emigrating islands 

are probabilistically chosen from the entire population. So there is a chance that the 
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immigrating and emigrating islands are the same. This is similar to a chromosome 

crossing over with itself in a GA. 

Third, migration only happens between SIVs with the same type. The 

environment of BBO/Complex is a group of archipelagos. Each archipelago has a unique 

population structure, depending on the subsystem with which it is associated. So islands 

from different archipelagos might not contain the same SIV types. SIVs represent 

features, and each feature has a unique domain. That is the reason that migration is only 

valid between the same SIV types. For example, suppose some island consists of five 

SIVs, where SIV1 is the proportional gain of a PID controller, SIV2 is the integral gain of 

a PID controller, and SIV3 is the derivative gain of a PID controller. Each SIV has a 

unique type, definition, and parameter domain. For example, the domain of SIV1 might 

be from 0.5 to 1, while the domain of SIV2 might be from 0.1 to 0.4. Migration between 

SIV1 and SIV2 would not make sense because SIV1 represents a proportional gain wile 

SIV2 represents an integral gain, which is a completely different parameter with a 

completely different function.   

Fourth, we use predetermined migration rates for each island rank rather than 

calculating the migration rates each generation. All the ranks are calculated each 

generation based on the non-dominated sorting method [9]. The emigration rate µ and 

immigration rate λ of each island are calculated based on the rank of the island, which is 

similar to the original BBO algorithm, except here we use ranks based on multi-

objectives and multi-constraints, instead of ranks based on scalar cost values. 
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Within-Subsystem Migration 

BBO/Complex contains two types of migration: within-subsystem migration and 

cross-subsystem migration. Within-subsystem migration is similar to the original 

migration method in BBO, and it is used for migration between islands within the same 

subsystem. This migration process has two possible situations. First, since migration is 

selected probabilistically, it might not be performed, which means the features in the 

potential immigrating island will not be changed from one generation to the next. This 

situation is represented for the k-th individual in the i-th subsystem as follows:  

 yik (s)t+1 = yik (s)t = xiz(k )(s)  (4.11) 

The second situation is that a feature is selected to migrate to the immigrating 

island. The probability of obtaining a certain bit at a certain locus in a given island is 

proportional to two factors: the total number of occurrences of that bit in the entire 

subsystem population; and the emigration rates of the islands that contain those bits. This 

probability is calculated for the k-th individual in the i-th subsystem as follows: 

 

Pr(yik (s)t+1 = xil (s) | immigration) =
vijµijj∈Jil (s )∑
vijµijj=1

ni∑
  

 

(4.12) 

where Jil(s) is the set of islands in subsystem i that contain the same bit in position s as 

island xil: 

 Jil (s) = j : xij (s) = xil (s){ }   (4.13) 
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Considering both situations described above and combining them into one 

equation, we obtain the probability of obtaining a given bit from within-subsystem 

migration: 

 

1

1

1

( )
( ) 0 ( ) ( )

1

Pr ( ( ) ( ))
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   Pr(immigration)( ( ) ( ) | immigration)
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ik t il

ik t il

ij ijj J s
iz k iz k il iz k n
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µ
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∈

=

=
= =
+ =

= − − +
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∑

             

 (4.14) 

Assume we have q bits in our unified island format, as given in Equation (4.2). 

The probability that the k-th individual in the i-th subsystem is equal to a given island xil 

can be calculated based on Equation (4.14), which shows the probability of obtaining a 

single bit. We use Pikl
(1)(v) to denote this probability, which is a function of the current 

population vector v at the t-th generation. (The term population vector will be defined 

later, but for now we simply need to know that it represents the current population in the 

BBO algorithm.) This probability is given as follows: 

 

 

Pikl
(1)(v) = Pr(yik ,t+1 = xil )

             = (1− λiz(k ) )10 (xiz(k )(s)− xil (s))+ λiz(k )

vijµijj∈Jil (s )∑
vijµijj=1

ni∑
 

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥s=1

q

∏        
 (4.15) 

 

Cross-Subsystem Migration 

The second type of migration is called cross-subsystem migration, which is the 

migration process between subsystems. Cross-subsystem migration is more complicated 
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than within-subsystem migration for two reasons: (1) the island structure varies from 

subsystem to subsystem; (2) ranking cannot be used to compare the performance cost of 

islands across subsystems, because rank information is useless when islands do not share 

identical cost and constraint functions. Issue one can be addressed with our unified island 

structure, which is shown in Equation (4.2). For issue two, we need to introduce a new 

strategy for island selection that is specifically geared toward the optimization of multiple 

related subsystems, and this strategy will be introduced later in this section.  

For cross-subsystem migration, when considering the possibility of immigration 

to a given individual, we have the same two possibilities as we do for within-subsystem 

migration: (1) migration is not performed (recall that the migration decision is made 

probabilistically); (2) migration is performed. The first scenario is exactly like the 

corresponding scenario in within-subsystem migration. The only thing we need to 

reconsider here is the second possibility, and how to compute the probability of 

occurrence of each island after migration, since ranks within a subsystem do not indicate 

their cost values relative to islands in other subsystems. BBO/Complex introduces the 

concept of distances between islands for the selection of islands in cross-subsystem 

migration [62], [28]. The motivation of this method is based on the concept of diversity: a 

larger diversity in a population provides more opportunities to find an optimal solution. 

The probability that we obtain a given bit xil(s) at a given position s in the k-th individual 

yik in the i-th subsystem is calculated as follows:  
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Prim−cross−sub( yik (s)t+1 = xil (s) | immigration from subsystem m)

= Pr(no immigration)( yik (s)t+1 = xil (s) | no immigration)

   + Pr(immigration)( yik (s)t+1 = xil (s) | immigration)

= (1− λiz(k ) )10(xiz(k ) (s)− xil (s))+ λiz(k )

vmjσ ilmjj∈Jil (s)∑
vmjσ ilmjj=1

nm∑
              

 (4.16) 

σilmj: distance between island l in subsystem i and island j in subsystem m. 

The probability that yik,t+1=xil after cross-subsystem migration can be calculated 

based on Equation (4.16), and is denoted as Pikl(2)(v).  

 

Pikl
(2)(v) = Pr(yik ,t+1 = xil )

             = (1− λiz(k ) )10 (xiz(k )(s)− xil (s))+ λiz(k )

vmjσ ilmjj∈Jil (s )∑
vmjσ ilmjj=1

nm∑
 

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥s=1

q

∏    
 (4.17) 

 

Combined Within-Subsystem Migration and Cross-Subsystem Migration 

Recall that the beginning of this chapter provides the detailed BBO/Complex 

procedure. According to this procedure, there are three steps in modifying a population, 

with the sequence given as follows: within-subsystem migration, cross-subsystem 

migration, and mutation. To find the total probability of obtaining a given island, we need 

to combine the probabilities of those three processes. Based on our derivations up to this 

point, we combine the probabilities of the two types of migration, and we use Pikl(3)(v) to 

denote this probability. 

 Pikl
(3)(v) = Pikj

(1)(v)Pijl
(2)(v)

j=1

ni

∑        (4.18) 
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This is the probability that yik is equal to xil after both within-subsystem and cross-

subsystem migration have been considered. 

 

4.6.1.2 Mutation 

 

Mutation is another way to alter islands in BBO/Complex. In order to calculate 

the probability of obtaining a certain island after two migrations and one mutation, we 

need to follow two steps. First, we obtain the probability of transforming a given island to 

another given island due to mutation, and then we combine this probability with Equation 

(4.18) to obtain the total probability. 

Assuming that the mutation rate is predefined and constant, we can easily create a 

mutation matrix for each subsystem. When we denote the mutation matrix as Ui for 

subsystem i, the mutation probability that island xir mutates to island xil is represented by 

Uirl which is the l-th element in the r-th row in the mutation matrix Ui. So the size of Ui is 

ni × ni. We next combine Ui with Equation (4.18) to obtain the probability that yik,t+1=xil 

after within-subsystem migration, cross-subsystem migration, and mutation have all been 

considered: 

 (4) (1) (2)

1 1
( ) ( ) ( )         

i in n

ikl ikj ijr irl
r j

P v P v P v U
= =

=∑∑  (4.19) 

Now we will extend the probability from the island level to the population level. 

Before we do that, there is a term that needs to be introduced – population vector. In 

BBO/Complex, the population distribution is represented by a population vector. This is 
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best illustrated by example. Assume we have two subsystems with four possible islands 

in subsystem 1, and four possible islands in subsystem 2. Then the population vector 

contains eight elements as illustrated in Figure 32.   

 

Population vector 

Island-11 
Count 

Island-12 
Count 

Island-13 
Count 

Island-14 
Count 

Island-21 
Count 

Island-22 
Count 

Island-23 
Count 

Island-24 
Count 

Figure*32:*Population*vector*for*a*system*that*is*comprised*of*two*subsystems,*

where*each*subsystem*has*a*search*space*cardinality*of*four.*The*population*vector*

has*eight*elements.*Island2ik*represents*the*number*of*xik*individuals*in*subsystem*k.*

 

As an example based on Figure 32, a population vector [0 0 2 2 3 1 0 0] indicates 

that subsystem 1 contains two island-3 individuals, and 2 island-4 individuals; and 

subsystem 2 has three island-1 individuals and one island-2 individual.  

We follow the method from [7], [72], and use the generalized multinomial 

theorem to find the probability that population vector v transitions to population vector u 

in subsystem i after one generation, and we use Pri(u|v) to denote this probability: 
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1 1

1 1

Pr ( | ) ( )

: {0,1},  1 for all ,   for all        
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∑ ∑
(4.20) 

Based on Equation (4.20), we obtain the transition matrix Pi for subsystem i. Each 

element in Pi represents the probability of transitioning from one possible population 
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vector to another. Pi is a Ti×Ti matrix, where Ti is the total number of possible population 

vectors in subsystem i. Ti can be calculated as follows [7]: 

 Ti =
ni + Ni −1

Ni

⎛

⎝
⎜

⎞

⎠
⎟  (4.21) 

Note that there are Ti×Ti combinations of u and v vectors in Equation (4.20). 

These Ti×Ti different probabilities comprise the entries of the Pi transition matrix. After 

obtaining the transition matrices of each subsystem, we combine the matrices to form the 

transition matrix P for the entire system. The size of P is T×T, where T is the total 

number of possible population vectors for the entire system:  

 T = Ti
i=1

M

∏  (4.22) 

where M is the number of subsystems in the entire complex system. The P matrix can be 

calculated in pseudo-code as shown in Algorithm 3. 
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Algorithm*3:*Pseudo2code*to*construct*P*matrix*

After calculating transition matrix P, the probability of each possible population, 

in the limit as the generation count approaches infinity, can be calculated based on 

Equation (4.6).  

4.6.3 Simulation 

In the first part of this chapter, we introduced a method to calculate the limiting 

probability of each possible population, which exactly predicts the steady state 

probability of each population vector during BBO/Complex. Now, we use a sample 

problem to confirm the newly derived Markov model.  

FOR (z1= 0; z1++; z1<t) { 
SET Count = 0; 

FOR (z2=0; z2++; z2<t1) {  
FOR (z3=0; z3++; z3<t2) { 

   !  

FOR (zM+1=0; zM+1++; zM+1<tM) { 
P(Count, z1) = P1(z2,z1)P2(z3,z1)...Py(zM+1,z1); 

Count++;  
} 

} 
} 

} 
M: number of subsystems 

t: number of possible population distributions for entire system  
ti: number of possible population distributions for subsystem i  
Pi(i,j): element in i-th row and j-th column of the transition matrix of 
subsystem i 
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The sample problem is a complex system which has two subsystems. Each 

subsystem contains two bits. Subsystem 1 contains type-1 and type-2 bits; subsystem 2 

contains type-1 and type-3 bits. The subsystems share type-1 bits in common. The 

possible islands of subsystem 1 and subsystem 2 in a unified format are shown in Table 

xi and Table xii. 

 Type-1 bit Type-2 bit Type-3 bit 

Possible island 1 0 0 N/A 

Possible island 2 0 1 N/A 

Possible island 3 1 0 N/A 

Possible island 4 1 1 N/A 

Table*xi:*Possible*islands*of*subsystem*1*

 

 Type-1 bit Type-2 bit Type-3 bit 

Possible island 1 0 N/A 0 

Possible island 2 0 N/A 1 

Possible island 3 1 N/A 0 

Possible island 4 1 N/A 1 

Table*xii:*Possible*islands*of*subsystem*2*

Each subsystem includes two cost functions. A smaller cost means better 

performance. The cost functions for subsystem 1 are given as follows: 

 
y11 = 2x11 + x12 +1

y12 =
y11

x11 + x12 +1
+1

 (4.23) 
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! y11: first cost value of an island in subsystem 1 

! y12: second cost value of an island in subsystem 1 

! x11: first bit of an island in subsystem 1 

! x12: second bit of an island in subsystem 1 

The cost functions for subsystem 2 are given as follows: 

 
y21 = 2x21 + x23 +1

y22 =
x21 + x23 +1
y21 +1

+1
 (4.24) 

! y21: first cost value of an island in subsystem 2 

! y22: second cost value of an island in subsystem 2 

! x21: first bit of an island in subsystem 2 

! x22: second bit of an island in subsystem 2 

In order to verify the BBO/Complex Markov model derived in the previous 

section, we have two requirements for the simulation setup. First, we need to perform 

Monte Carlo simulations of BBO/Complex to obtain average performance. Second, the 

generation limit of each BBO/Complex Monte Carlo simulation should be large enough 

that the simulation results converge to steady state values. These number of Monte Carlo 

simulations, and the number of generations of each simulation, are determined 

empirically. The simulation setup is shown as follows. 

! Monte Carlo simulations: 100 

! BBO/Complex generations for each Monte Carlo simulation: 5000 
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! Number of subsystems: 2 

! Number of islands per subsystem (population size): 4 

! Number of bits per island: 3 

We optimize this sample problem with three different mutation rates in 

BBO/Complex: 0.001, 0.01, and 0.1.  

Mutation Rate Population Vector Probability 

Markov Simulation 
0.001 4 0 0 0 4 0 0 0 0.9489 0.9590 

3 1 0 0 4 0 0 0 0.0287 0.0194 

4 0 0 0 3 1 0 0 0.0105 0.0074 

4 0 0 0 3 0 1 0 0.0060 0.0070 
3 0 1 0 4 0 0 0 0.0044 0.0058 

0.01 4 0 0 0 4 0 0 0 0.6051 0.5901 

3 1 0 0 4 0 0 0 0.1655 0.1770 
4 0 0 0 3 1 0 0 0.0647 0.0631 

4 0 0 0 3 0 1 0 0.0385 0.0425 

3 0 1 0 4 0 0 0 0.0284 0.0294 

0.1 3 1 0 0 4 0 0 0 0.0425 0.0348 
3 1 0 0 3 1 0 0 0.0371 0.0268 

2 2 0 0 4 0 0 0 0.0329 0.0274 

2 2 0 0 3 1 0 0 0.0287 0.0218 
3 1 0 0 3 0 1 0 0.0278 0.0258 

Table*xiii:*The*five*most*likely*populations*for*three*mutation*rates.*

 

Based on the cost functions for each subsystem and the non-dominated ranking 

system, the optimal population vector is [4 0 0 0 4 0 0 0]. According to the results shown 

in Table xiii, when the mutation rate is 0.001, the probability of obtaining the optimal 
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population vector calculated by the Markov model is 0.9489, and the probability 

calculated by the simulation is 0.9590. This confirms that the optimal population vector 

dominates other populations, and we have a high probability of obtaining it. Also, the 

simulation results match the theoretical results well.  

When the mutation rate is 0.01, the most probable population vector is still the 

optimal one, but the probability of the optimal population vector falls to around 60%. 

Although performance is degraded, the probabilities calculated by the Markov model and 

by the simulation are still close.  

When the mutation rate is 0.1, the most probable population vector is [3 1 0 0 4 0 

0 0], which is not the optimal population vector. The optimal population vector [4 0 0 0 4 

0 0 0] is only the 7th most likely according to the Markov model, and the 5th most likely 

according to the simulation (not shown in Table xiii). Since the probability values are 

relatively small for the top five population vectors, the differences between the Markov 

model results and the simulation results are larger compared to when the mutation rate is 

lower, but the differences between theory and simulation are still small. The theoretical 

Markov model results are exactly correction, but the simulation results are only 

approximate due to the stochastic nature of the BBO/Complex algorithm. 

Based on Table xiii, the Markov model is verified by the simulation results. 

Finally, note that the calculation time for the Markov model probabilities was 492 

seconds, but the average calculation time of each set of Monte Carlo simulations was 

1166 seconds. In this case, the Markov model not only obtained more accurate steady-

state results than the simulation, but also did so with less computational time.  
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1  Conclusion 

 

In Chapter 2, the focus was on an efficiency test and convergence analysis for 

heuristic algorithms. Heuristic algorithms are often implemented on large systems with 

complex structures. Analytical optimization of these systems is hard to achieve. In 

addition, optimization based on heuristic algorithms is time consuming, and the quality of 

the final result is not guaranteed. Flexibility is one of the main benefits of heuristic 

algorithms, but heuristic algorithms have drawbacks. Flexibility allows us to implement 

heuristic algorithms without knowing the details of the problem, but it also results in slow 

convergence. In Chapter 2, we tested two aspects of BBO:  the initial population 

construction and the information sharing process. In both aspects, use of problem specific 

characteristics can have a large effect. Specially modified algorithms clearly outperform 

algorithms without any modification. Also, we conducted a convergence analysis based 
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on BBO, and it showed that the mutation technique can guarantee that BBO will 

eventually find the optimal solution, which makes BBO a true global optimization 

method. 

In Chapter 3, we introduced BBO for combinatorial problems. Since TSP is a 

representative example of combinatorial problems, all the simulation examples in 

Chapter 3 were TSPs. First, based on the results from Chapter 2, we saw that a good 

population initialization method can result in significant differences in performance. We 

introduced a population initialization method, NNA, into BBO. Based on the simulation 

results, we saw that it provided a big improvement compared to standard BBO. Second, 

crossover methods specially designed for TSP were introduced to BBO. When combining 

BBO with other crossover techniques like matrix crossover, cycle crossover and inver-

over crossover, BBO becomes compatible with combinatorial problems. Third, local 

optimization methods were introduced into BBO. As we know, the information sharing 

strategies of most heuristic algorithms are designed for global optimization. The 

advantage of this type of design is that heuristic algorithms can search for the globally 

optimal solution, and not get easily stuck in locally optimal solutions. In contrast, local 

optimization methods are designed for seeking locally optimal solutions. Since the 

domain of the local search area is fairly small, the search process is much faster than a 

global search. For combinatorial problems, each possible solution contains all the 

necessary information to construct an optimal solution. When combining the power of 

both global optimization and local optimization, we improved the performance of BBO. 

The simulation results also confirmed this. The last technique we introduced into BBO 

was greedy methods, and it showed its potential on large problems. In the end, a modified 



 

 

113 

BBO was created which benefits from the previous studies by combining the techniques 

with the best performance: 1 NNA for population initialization; inver-over crossover; k-

opt for local optimization; and all greedy for the greedy method. The modified BBO 

obtained promising simulation results when compared with other well-known algorithms. 

At the end of Chapter 3, a TSP GUI was built based on BBO. This GUI contains all the 

compatible TSPs from TSPLib, and provides a user-friendly interface to let users 

intuitively explore the different techniques in Chapter 3. This GUI is not only a test 

platform, but also a modularized BBO implementation with a well-designed interface 

between the main BBO algorithm and the other modules, including population 

initialization, migration, mutation, etc. Users can easily build their only BBO algorithms 

with other techniques of their choice with this GUI. This GUI can be a useful tool for 

both teaching and researching. 

In Chapter 4, a new topic was addressed: BBO for complex systems. Systems 

built in recent years are more complicated than ever, and complex systems have become 

quite common these days. The aim of traditional heuristic algorithms is usually to 

optimize one system. Complex systems have three major challenges: multi-objectives, 

multi-constraints, and multi-subsystems. The last challenge, multi-subsystems, has not 

been widely addressed before now in evolutionary optimization research. In Chapter 4, a 

newly designed BBO algorithm called BBO/complex was introduced. Based on the new 

immigration probability calculation method and the ranking method, we successfully 

created a BBO algorithm for complex systems. BBO/Complex uses the original 

framework of standard BBO, but extends it to a multi-archipelago environment to suit the 

structure of complex systems. BBO/Complex has one significant difference from its 
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predecessors – it combines the optimization framework and the low-level optimization 

approach into a single algorithm. This is quite different from MDF, IDF, and CO, all of 

which are only frameworks for complex system optimizers, and which need a low-level 

optimization method as an additional tuning parameter. The low-level optimization 

approaches incorporated in MDF, IDF, and CO are typically traditional algorithms like 

gradient descent, Newton’s method, etc. But those algorithms can easily get stuck in a 

local optimum. Based on [7] and [73], standard BBO can guarantee convergence to the 

optimal solution given enough generations. Besides the traditional advantages of BBO, 

the BBO/Complex algorithm also introduces new features, like a ranking system that 

evaluates candidate solutions based on both performance and constraints, the use of PDS 

to maintain the diversity of the population, within-subsystem migration for information 

sharing within subpopulations, and cross-subsystem migration for information sharing 

between subpopulations. The simulation results indicated that BBO/Complex is a 

competitive multidisciplinary optimization algorithm.  

In the second part of Chapter 4, a Markov model was derived for BBO/Complex, 

and it was confirmed by a bi-subsystem sample problem. When the mutation was low – 

0.001 or 0.01 − the optimal vector dominated the population with a probability of around 

95% and 60% respectively. But with a high mutation rate of 0.1, the probability of 

obtaining the optimal population vector was only around 2.7%. Although the population 

probabilities were different with different mutation rates, the theoretical results calculated 

by the Markov model matched the simulations well, thus confirming the Markov model. 

According to our results, the computational requirements of the Markov model can be 

much less than those of simulations for small problems. Markov models are useful for 



 

 

115 

predicting the performance of heuristic algorithms, and quantifying the performance of 

different components in a heuristic algorithm without relying on long simulation times. 

Markov models can thus be helpful for algorithm design and parameter tuning. But 

Markov models also have a disadvantage. The computational effort can be very high for 

large problems. For a complex system with M subsystems, the total number of possible 

populations is 

 T =
ni + Ni −1

Ni

⎛

⎝
⎜

⎞

⎠
⎟

i=1

M

∏      (5.1) 

                
ni :  cardinality of search space in subsystem i
Ni :  population size of subsystem i

 

Based on this equation, the total number of possible populations in our small 

sample system was 1,225. When we have a larger population size or a non-binary 

problem, this number will increase to an extremely large number that will result in a large 

transition matrix that cannot be handled with current computational resources.  

5.2  Future Work 

In this dissertation, we introduced three topics: efficiency tests and convergence 

analyses of heuristic algorithms, BBO for combinatorial problems, and BBO for complex 

systems. In the next step of our research, we will continue in these three directions. 

First, we discussed the efficiency tests and convergence analyses for heuristic 

algorithms in this dissertation. But our conclusions were based on the probability 
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calculation after one generation. In the next step of our research, we can derive the 

percentage of the occurrence of optimal results based on a Markov model of the 

algorithm or a dynamic system model for each of the modified versions of BBO. We can 

use these models to analyze the performance of new variations of BBO. 

Second, combinatorial problems are challenging benchmarks for heuristic 

algorithms. In order to improve the performance of BBO, we introduced new migration 

methods, local optimization methods, population initialization methods, and greedy 

methods. In future research, new techniques will be introduced to create hybrid BBOs 

dedicated to combinatorial problems. We also want to extend our research to real world 

applications, such as vehicle routing problems. We also want to use other popular 

solution methods like GA and ACO to solve the same problem for comparison. 

Third, future work for BBO/Complex can be extended in four directions: 

convergence speed, adaptation, computational efficiency, and advanced testing. 

Convergence speed is one of the primary concerns for heuristic algorithms. Parallel 

computation can be used to decrease convergence time by dividing a task into multiple 

subtasks and solving them in parallel. One of the classic parallel computation models is 

the master-slave model. The master is in charge of job assignment and global calculations. 

The slaves perform subtasks that are assigned by the master, and return the results to the 

master. This structure can be adapted to BBO/Complex by viewing the master as the 

system optimizer and each slave as a subsystem optimizer. Computation time can be 

decreased dramatically with this structure, especially for problems with a large number of 

subsystems.  
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The second direction for future research in BBO/Complex is adaptation. In 

BBO/Complex, we find a solution to a complex system with a combination of within-

subsystem migration and cross-subsystem migration. But other types of migration could 

also be implemented. A proper migration method can significantly increase performance 

for different types of problems. So we can design a series of migration methods, like 

migration for complex systems with tight subsystem coupling, migration for complex 

systems with loose subsystem coupling, migration for complex systems with many design 

variables, etc. Then we can classify the migration methods according to their 

performances on various types of problems and create a BBO/Complex algorithm that 

adaptively chooses the most efficient migration methods according to the selected 

problem.   

The third direction for future research involves the computational effort of 

Markov modeling. Because of the heavy computational burden mentioned above, Markov 

models are limited to problems with small population sizes and binary island structures, 

which do not capture the structure of real world problems. This limitation might be able 

to partially addressed by combining similar Markov model states into a single state [74]. 

The last direction for future research in the area of BBO/Complex is further 

testing. As mentioned in Chapter IV, complex systems typically contain multiple 

subsystems, multiple objectives, and multiple constraints. In this dissertation, a Markov 

model was developed for complex systems with multiple subsystems and multiple 

objectives. In future research, a Markov model can be developed for complex systems 

that also include multiple constraints. 
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APPENDIX B: BENCHMARK PROBLEMS FOR BBO/COMPLEX 

This appendix gives details about the benchmark problems used in this dissertation. 

Speed Reducer 

The speed reducer problem is a gear box design problem [62], [64], [75]. The 

objective is to minimize the gear box weight, and the von Mises stresses for shaft 1 and 2. 

This problem contains 3 objectives, 11 constraints, and 7 design variables. This problem 

is defined as follows. 

  

min  F1 = 0.7854x1x2
2(3.3333x3

2 +14.9334x3 − 43.0934)−1.5079x1(x6
2 + x7

2 )+

               7.477(x6
3 + x7

3)+ 0.7854(x4x6
2 + x5x7

2 )
 

  
min  F2 =

745x4

x2x3

⎛

⎝⎜
⎞

⎠⎟

2

+1.69×107  

  
min  F3 =

745x5

x2x3

⎛

⎝⎜
⎞

⎠⎟

2

+1.575×108  

 such that   

  
g1 =

27
x1x2

2x3

−1≤ 0  

  
g2 =

397.5
x1x2

2x3
2 −1≤ 0  

  
g3 =

1.93x4
3

x2x3x6
4 −1≤ 0  
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g4 =

1.93x5
3

x2x3x7
4 −1≤ 0  

  
g5 =

745x4

x2x3

⎛
⎝⎜

⎞
⎠⎟
+1.69×107

0.1x6
3 −1100 ≤ 0  

  
g6 =

745x5

x2x3

⎛
⎝⎜

⎞
⎠⎟
+1.575×108

0.1x6
3 −850 ≤ 0  

  g7 = x2x3 − 40 ≤ 0  

  
g8 =

x1

x2

−12 ≤ 0  

  
g9 =

−x1

x2

+ 4 ≤ 0  

  
g10 =

1.5x6 +1.9
x4

−1≤ 0  

  
g11 =

1.1x7 +1.9
x5

−1≤ 0  

The objectives, decision variables, and constraints are defined as follows. 

F1 :  overall weight of gearbox
F2 :  von Mises stress for shaft 1
F3 :  von Mises stress for shaft 2

                   



 

 

132 

x1 :  gear face width
x2 :  tooth module
x3 :  number of teeth of pinion
x4 :  distance between bearing 1
x5 :  distance between bearing 2
x6 :  diameter of shaft 1
x7 :  diameter of shaft 2

      

g1 :  bending stress of gear tooth
g2 :  contact stress of gear tooth
g3 :  transverse deflection of shaft 1
g4 :  transverse deflection of shaft 2
g5 :  stress in shaft 1
g6 :  stress in shaft 2
g7 − g11 :  dimension requirement for shafts

 

 

Power Converter 

The power converter problem [62], [75] consists of two subsystems – the 

electrical subsystem and the loss subsystem. It has 6 design variables, 8 state variables, 2 

objectives, and 4 constraints. The system is described as follows. 

  
min  F1 = 0.78×104 x1

2 6x6 +
π x1

2
⎛
⎝⎜

⎞
⎠⎟
+ 6.747 ×104 x1x2x3  

  
min  F2 = 25x5 +

5×102(1− y2 )
88y2

 

 such that  

  
g1 =

2x2(x2 − 2×10−3 − x2x3)
0.4

≥ 0  
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g2 =

5×102 −
5.65(1− y3)

105 x4

0.3×10−4

x5

5
≥ 0  

  
g3 = 0.3−

x4 100+
5.65(1− y4 )0.5

105 x4

⎛

⎝⎜
⎞

⎠⎟

x2 y6

≥ 0  

  
g4 = x4 −

28.25(1− y4 )
107 ≥ 0  

 State variables:  

  
y1 = 0.78×104 x1

2 6x6 +
π x1

2
⎛
⎝⎜

⎞
⎠⎟
+ 6.747 ×104 x1x2x3 + 25x5 +

5×102(1− y2 )
88y2

 

  

y2 =
500

y3

3.25×102

32

 

  

y3 =
500

y2

3.25×102

32

 

  

y4 =
500

y2

4.25×102

32

 

  
y5 =

7.6x1x21.724×10−8

x3

 

  y6 = x1
2  

  
y7 =

π x1

2
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y8 =

5.65(1+ y3)
y6x2105  

The objectives, decision variables, states, and constraints are defined as follows. 

F1 :  weight of primary winding
F2 :  weight of secondary winding

       

x1 :  core center leg width
x2 :  turns
x3 :  copper size
x4 :  inductance
x5 :  capacitance
x6 :  core window width

        

y1 :  component weight
y2 :  circuit efficiency
y3 :  duty cycle
y4 :  minimum duty cycle
y5 :  inductor resistance
y6 :  core cross-sectional area
y7 :  magnetic path length
y8 :  inductor value

                 

g1 :  fill window constraint
g2 :  ripple specification
g3 :  core saturation
g4 :  minimum inductor size  

 

Heart Dipole 

The heart dipole problem [62], [75], [76] is based on the electrolytic 

determination of the dipole moment in the heart. This problem contains 2 objectives, 5 



 

 

135 

constraints, and 6 design variables. This problem was modified from its original 

formulation in order to be testable with MDO algorithms. Therefore, although the 

problem is a common MDO benchmark, the objectives do not have any physical meaning. 

The problem is defined as follows. 

  

min  F1 = x1((1− x2 )2 − x3
2 )− 2x1(1− x2 )x3 + (1− x1)(x2

2 − x4
2 )− 2(1− x1)x2x4 −1+

               x1((1− x2 )2 − x3
2 )+ 2x1(1− x2 )x3 + (1− x1)(x2

2 − x4
2 )+ 2(1− x1)x2x4 −1

 

  

min  F2 = x1(1− x2 )((1− x2 )2 − 3x3
2 )+ x1x3(x3

2 − 3(1− x2
2 ))+ (1− x1)x2(x2

2 − 3x4
2 )+

               (1− x1)x4(x4
2 − 3x2

2 )−1+ x1(1− x2 )((1− x2 )2 − 3x3
2 )− x1x3(x3

2 − 3(1− x2 )2 )+

               (1− x1)x2(x2
2 − 3x4

2 )− (1− x1)x4(x4
2 − x2

2 )−1

 

 such that  

  g1 = x3x1 + x4(1− x1)− x5(1− x2 )− x6x2 −1 < 0.1 

  g2 = x5x1 + x6(1− x1)+ x3(1− x2 )+ x4x2 −1 < 0.1 

  g3 = x1((1− x2 )2 − x3
2 )− 2x1(1− x2 )x3 + (1− x1)(x2

2 − x4
2 )− 2(1− x1)x2x4 −1> 0  

  g4 = x1((1− x2 )2 − x3
2 )+ 2x1(1− x2 )x3 + (1− x1)(x2

2 − x4
2 )+ 2(1− x1)x2x4 −1> 0  

  

g5 = x1(1− x2 )((1− x2 )2 − 3x3
2 )+ x1x3(x3

2 − 3(1− x2 )2 )+ (1− x1)x2(x2
2 − 3x4

2 )+

       (1− x1)x4(x4
2 − 3x2

2 )−1> 0
 

  

g6 = x1(1− x2 )((1− x2 )2 − 3x3
2 )− x1x3(x3

2 − 3(1− x2 )2 )+ (1− x1)x2(x2
2 − 3x4

2 )−

       (1− x1)x4(x4
2 − 3x2

2 )−1> 0
 

The objectives, decision variables, and constraints are defined as follows.
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F1 :  sum of g3  and g4

F2 :  sum of g5  and g6
          

x1 :  magnitude of dipole 1 on x-axis
x2 :  magnitude of dipole 2 on x-axis
x3 :  magnitude of dipole 1 on y-axis
x4 :  magnitude of dipole 2 on y-axis
x5 :  coordinate of dipole 1 on x-axis
x6 :  coordinate of dipole 2 on x-axis
x7 :  coordinate of dipole 1 on y-axis
x8 :  coordinate of dipole 2 on y-axis

 

g1 − g6 :  predefined constraints to determine the magnitude, 
              directions, and locations of two dipoles.

 

 

Propane Combustion 

The propane combustion problem is a chemical equilibrium problem [62], [75], 

[77]. This problem contains 3 objectives, 4 constraints, and 11 design variables. This 

problem is described as follows. 

  min F1 = 2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 −10  

  
min F2 = x2x4 − x6

40x1

x11

,  x11 = xi
i=1

i=10

∑  

  
min F3 = x1x2 − x7

40x4

x11

+ x1 x3 − x4x9

40
x11

 

 such that  

  g1 = 2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 −10 > 0  
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g2 = x2x4 − x6

40x1

x11

> 0  

  
g3 = x1x2 − x7

40x4

x11

> 0  

  
g4 = x1 x3 − x4x9

40
x11

> 0  

The objectives, decision variables, and constraints are defined as follows. 

F1 :  first product of combustion
F2 :  second product of combustion
F3 :  sum of third and fourth product of combustion     

x1 − x10 :  number of moles of each product formed 
               for each mole of propane burned
x11 :  sum of x1  to x10   

g1 :  first product of combustion
g2 :  second product of combustion
g3 :  third product of combustion
g4 :  fourth product of combustion
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