
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2014

Biogeography-Based Optimization for
Combinatorial Problems and Complex Systems
Dawei Du
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Du, Dawei, "Biogeography-Based Optimization for Combinatorial Problems and Complex Systems" (2014). ETD Archive. 82.
https://engagedscholarship.csuohio.edu/etdarchive/82

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/82?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

BIOGEOGRAPHY-BASED OPTIMIZATION FOR

COMBINATORIAL PROBLEMS AND COMPLEX SYSTEMS

DAWEI DU

Master of Science in Electrical Engineering

Cleveland State University

August, 2009

This dissertation is submitted in partial fulfillment of requirements for the degree

DOCTOR OF ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

April, 2014

We hereby approve the dissertation
of

Dawei Du

Candidate for the Doctor of Engineering degree.
This dissertation has been approved for the Department of

!
and CLEVELAND STATE UNIVERSITY

College of Graduate Studies by
!
!
!

Dr. Dan Simon, Dissertation Committee Chairperson − Department & Date

!
!
!

Dr. Lili Dong, Dissertation Committee Member − Department & Date

!
!
!

Dr. Wenbing Zhao, Dissertation Committee Member − Department & Date

!
!
!

Dr. Yongjian Fu, Dissertation Committee Member − Department & Date

!
!
!

Dr. Yuping Wu, Dissertation Committee Member − Department & Date

!

!
!

Student’s Date of Defense

The student has fulfilled all requirements for the Doctor of Engineering degree
Dr. Dan Simon, Doctoral Program Director

ACKNOWLEDGMENTS

I would like to thank the following people: Dr. Dan Simon, for all his diligent

guidance as my supervisor, and his unselfish help in all aspects of my research; Dr.

Jeffrey Abell, for his valuable advice and ideas; my other committee members, Dr. Lili

Dong, Dr. Wenbing Zhao, Dr. Yuping Wu, and Dr. Yongjian Fu, for their time and

suggestions; Mehmet Ergezer, Richard Rarick, Oliver Tiber, Steve Szatmary, George

Thomas, Berney Montavon, and David Sadey, for their patience in giving me all the help

I needed; and my wife Yuanchao Lu and my entire family, for their support in my life.

 iv

BIOGEOGRAPHY-BASED OPTIMIZATION FOR

COMBINATORIAL PROBLEMS AND COMPLEX SYSTEMS

DAWEI DU

ABSTRACT

Biogeography-based optimization (BBO) is a heuristic evolutionary algorithm

that has shown good performance on many problems. In this dissertation, three problems

are researched for BBO: convergence speed and optimal solution convergence of BBO,

BBO application to combinatorial problems, and BBO application to complex systems.

The first problem is to analyze BBO from two perspectives: how the components of BBO

affect its convergence speed; and the reason that BBO converges to the optimal solution.

For the first perspective, which is convergence speed, we analyze the two essential

components of BBO – population construction and information sharing. For the second

perspective, a mathematical BBO model is built to theoretically prove why BBO is

capable of reaching the global optimum for any problem. In the second problem

addressed by the dissertation, BBO is applied to combinatorial problems. Our research

includes the study of migration, local search, population initialization, and greedy

methods for combinatorial problems. We conduct a series of simulations based on four

benchmarks, the sizes of which vary from small to extra large. The simulation results

indicate that when combined with other techniques, the performance of BBO can be

significantly improved. Also, a BBO graphical user interface (GUI) is created for

 v

combinatorial problems, which is an intuitive way to experiment with BBO algorithms,

including hybrid BBO algorithms. The third and final problem addressed in this

dissertation is the optimization of complex systems. We invent a new algorithm for

complex system optimization based on BBO, which is called BBO/complex. Four real

world problems are used to test BBO/Complex and compare with other complex system

optimization algorithms, and we obtain encouraging results from BBO/Complex. Then, a

Markov model is created for BBO/Complex. Simulation results are provided to confirm

the model.

 vi

TABLE OF CONTENTS

 Page

NOMENCLATURE ... X!

ACRONYMS ... XII!

LIST OF TABLES ... XIV!

LIST OF FIGURES ... XVI!

INTRODUCTION .. 1!

1.1! Biogeography-Based Optimization .. 1!

1.2! Literature Review ... 5!

1.2.1! Combinatorial Problems ... 5!

1.2.2! Complex Systems ... 7!

1.3! Dissertation Organization .. 12!

EFFICIENCY ANALYSIS FOR HEURISTIC ALGORITHMS 15!

2.1! Analysis of Performance Efficiency and Computational Speed 15!

2.1.1! Initial Population Construction ... 16!

2.1.2! Mutation .. 18!

2.1.3! Recombination .. 20!

2.1.4! Information Sharing in TSPs ... 25!

2.2! Analysis of Convergence ... 31!

 vii

BBO FOR COMBINATORIAL PROBLEMS ... 38!

3.1! Combinatorial Problems .. 38!

3.2! Migration in the Traveling Salesman Problem .. 40!

3.2.1! Matrix Crossover .. 40!

3.2.2! Cycle Crossover .. 42!

3.2.3! Inver-over Crossover .. 44!

3.3! Local Search Optimization .. 45!

3.3.1! 2-opt and 3-opt .. 46!

3.3.2! k-opt .. 47!

3.4! Population Initialization and Greedy Method .. 48!

3.4.1! Population Initialization .. 48!

3.4.2! Greedy Methods .. 49!

3.5! TSP Simulation .. 50!

3.5.1 Population Initialization ... 52!

3.5.2 Crossover Methods .. 53!

3.5.3! Local Optimization ... 54!

3.5.4! Greedy Methods .. 55!

3.5.5 Comparison with Other Algorithms ... 56!

3.6! BBO GUI for TSP .. 59!

 viii

3.6.1! Module Categories in BBO ... 59!

3.6.2! Default Modules .. 62!

3.6.3! TSP GUI based on BBO ... 63!

COMPLEX SYSTEM OPTIMIZATION ... 70!

4.1! Structure of Complex Systems ... 71!

4.2! Algorithms for complex system optimization .. 72!

4.3! BBO for Complex Systems .. 73!

4.3.1! Within-subsystem migration ... 75!

4.3.2! Cross-subsystem migration ... 78!

4.3.2.1 Distance between islands .. 79!

4.3.2.2 Similarities between objectives and constraints 81!

4.3.2.3 Summary of cross-subsystem migration 82!

4.3.3! Summary of BBO/Complex .. 84!

4.4! Simulation .. 86!

4.4.1! The Speed Reducer Problem ... 88!

4.4.2! The Power Converter Problem .. 89!

4.4.3 The Heart Dipole Problem .. 90!

4.4.4! The Propane Combustion Problem ... 90!

4.5! Summary of Benchmark Tests ... 91!

 ix

4.6 Markov model of BBO/Complex .. 92!

4.6.1 Development of a Markov model of BBO/Complex 93!

4.6.1.1 Migration ... 96!

4.6.1.2 Mutation .. 103!

4.6.3 Simulation .. 106!

CONCLUSION AND FUTURE WORK .. 111!

5.1 ! Conclusion .. 111!

5.2 ! Future Work .. 115!

REFERENCES .. 118!

APPENDICES ... 128!

APPENDIX A:! DAWEI DU’S PUBLICATIONS .. 128!

APPENDIX B:! BENCHMARK PROBLEMS FOR BBO/COMPLEX 130!

 x

NOMENCLATURE

Dghab: partial distance between island a in archipelago g and island b in archipelago h

J(s): set of islands which contain the same feature as the s-th feature in island v

k: total number of features in each island

m: number of objectives

N: total number of possible solutions in the entire system

Ni: population size of subsystem i

n: search space size

nf: total number of candidate features in the s-th position

nfeature: number of features in the feature pool

ni: cardinality of search space in subsystem i

nin-common: number of features common to individual k and the optimal individual

num(i, j): number of occurrences of feature j in individual i

P: transition matrix

Pss: steady state transition matrix

pc: probability of recombination

pi: migration probability

pm: mutation rate

 xi

pmutation: mutation probability

po: probability that at least one individual becomes the optimal solution after one

recombination

Pr(u=v): probability that individual v becomes individual u

Pr(usi): probability that u is selected for immigration

Prg(u=v): probability that individual u becomes individual v in the g-th generation

Ri: rank of the i-th island

Ti: total number of possible population vectors in subsystem i

t: total number of SIV types

Ui: mutation matrix

Vi: number of constraint violations of the i-th island

v: population vector

σilmj: distance between island l in subsystem i and island j in subsystem m

λ: immigration rate

µ: emigration rate

 xii

ACRONYMS

ACO: ant colony optimization

AIAA: American Institute of Aeronautics and Astronautics

BBO: biogeography-based optimization

BBO/CO: BBO with circular opposition

BBO/TSP: BBO for TSPs

BBO/Complex: BBO for complex systems

CO: collaborative optimization

DE: differential evolution

EPA: extreme point algorithms

ES: evolutionary strategy

GA: genetic algorithm

GA/MSX: genetic algorithm with multistep crossover

HSI: habitat suitability index

I/O: input/output

IDF: individual discipline feasible

MDA: multidisciplinary analysis

MDO: multi-disciplinary design optimization

 xiii

MDF: multidisciplinary feasible

MOGA: multi-objective genetic algorithm

NDRS: non-dominated ranking system

NNA: nearest neighbor algorithm

NSGA: non-dominated sorting genetic algorithm

OX2: order-based crossover operator

PBIL: probability-based incremental learning

PDS: partial distance strategy

PSO: particle swarm optimization

FSLC: fast similarity level calculation

SA: simulated annealing

SGA: stud genetic algorithm

SIV: suitability index variable

SL: similarity level

TSP: traveling salesman problem

TSPBMA: biogeography migration algorithm for traveling salesman problem

 xiv

LIST OF TABLES

Table Page

Table i: Performance of NNA in BBO, the best results averaged over 20 Monte Carlo

simulations, and the standard deviations of the best distances. The best results in each

row are shown in bold font. .. 52!

Table ii: Performance of matrix crossover, cycle crossover and inver-over crossover, the

best results averaged over 20 Monte Carlo simulations, and the standard deviations of the

best distances. The best results in each row are shown in bold font. 53!

Table iii: Performance of No-opt, 2-opt, 3-opt and k-opt, the best results averaged over

20 Monte Carlo simulations, and the standard deviations of the best distances. The best

results in each row are shown in bold font. .. 55!

Table iv: Performance of different greedy method setups, the best results averaged over

20 Monte Carlo simulations, and the standard deviations of the best distances. The best

results in each row are shown in bold font. .. 56!

Table&v:&Performance&of&GA,&NNA,&ACO,&SA,&default&BBO&and&BBO/TSP, the best results

averaged over 20 Monte Carlo simulations, and the standard deviations of the best

distances. The best results in each row are shown in bold font. 58!

Table vi: Rank calculation example with the modified NDRS. A lower objective means

better performance, and lower ranks are better than higher ranks. 78!

 xv

Table vii: NDRS cost ranks, standard deviation of ranks, and constraint violations for the

speed reducer problem after 100,000 function calls. For each metric, a smaller number

means better performance. .. 89!

Table viii: NDRS cost ranks, standard deviation of ranks, and constraint violations for the

power converter problem after 100,000 function calls. For each metric, a smaller number

means better performance. .. 89!

Table ix: NDRS cost ranks, standard deviation of ranks, and constraint violations for the

heart dipole problem after 100,000 function calls. For each metric, a smaller number

means better performance. .. 90!

Table x: NDRS cost ranks, standard deviation of ranks, and constraint violations for the

propane combustion problem after 100,000 function calls. For each metric, a smaller

number means better performance. ... 91!

Table xi: Possible islands of subsystem 1 ... 107!

Table xii: Possible islands of subsystem 2 .. 107!

Table xiii: The five most likely populations for three mutation rates. 109!

 xvi

LIST OF FIGURES

Figure Page

Figure 1: Multidisciplinary feasible (MDF) formulation .. 10!

Figure 2: Collaborative optimization (CO) ... 11!

Figure 3: Individual discipline feasible (IDF) formulation ... 12!

Figure 4: Optimal solution, individual 1, and individual 2 ... 17!

Figure 5: The probability of obtaining the optimal solution with different mutation rates

after one generation ... 19!

Figure 6: Optimal solution, population 1, and population 2 ... 21!

Figure 7: Optimal solution, features of population 1, and features of population 2 24!

Figure 8: 6-City Problem in TSP .. 26!

Figure 9: Worst Scenario in TSP .. 27!

Figure 10: Best Scenario in TSP ... 27!

Figure 11: Population containing both best and worst scenario 28!

Figure 12: Population containing both best and worst Scenario 29!

Figure 13: OX2 crossover of two individuals ... 30!

Figure 14: Plot of Equation (2.3) with local and global minimums 32!

Figure 15: First scenario of gradient descent with different starting points 33!

 xvii

Figure 16: Second scenario of gradient descent with different starting points 33!

Figure 17: Example of matrix crossover with a 5-city TSP .. 42!

Figure 18: Example of cycle crossover with 9-city TSP .. 44!

Figure 19: Example of inver-over crossover with 5-city TSP .. 45!

Figure 20: Example of 2-opt with 8-city TSP ... 46!

Figure 21: The BBO benchmark selection .. 64!

Figure 22: The BBO setup selection ... 64!

Figure 23: The BBO technique selection .. 65!

Figure 24: GUI control panel .. 66!

Figure 25: Plots in GUI ... 66!

Figure 26: Function panel of GUI ... 67!

Figure 27: TSP map of GUI .. 67!

Figure 28: BBO GUI for TSPs ... 69!

Figure 29: An example of emigrating island selection for immigration to island 1 in

subsystem 1. First, calculate the partial distances between island 1 in subsystem 1, and

each island in subsystem 2. Then create a roulette wheel based on the partial distances.

Finally, probabilistically select the emigrating island based on roulette wheel selection. 83!

Figure 30: BBO/Complex formulation ... 86!

Figure 31: An example of migration between two islands. .. 97!

 xviii

Figure 32: Population vector for a system that is comprised of two subsystems, where

each subsystem has a search space cardinality of four. The population vector has eight

elements. Island-ik represents the number of xik individuals in subsystem k. 104!

1

CHAPTER I

INTRODUCTION

1.1 Biogeography-Based Optimization

With the advance of today’s technology, simple systems cannot satisfy the needs

of industry. Complex systems have become the mainstream. Control and optimization are

more complicated and challenging as system complexity increases. Sophisticated

algorithms designed for special types of problems have been invented, requiring a full

understanding of these problems. But if we turn to heuristic algorithms, it is not necessary

to completely understand the system before applying them for control or optimization. In

contrast with other algorithms which are designed for special types of problems, heuristic

algorithms can easily adapt to almost any type of problem with only minor changes. The

main drawback of the heuristic algorithm is that it needs long computation time before

achieving desirable results. But with powerful computers, this drawback is tolerable.

2

Biogeography-based optimization (BBO) is an algorithm which was introduced in

2008 [1]. This algorithm is inspired by the distribution of species over time and area. The

environment of BBO is an archipelago which consists of islands, where each island

includes many species (features). Each feature is called a suitability index variable (SIV).

Each island is considered as a potential solution to an optimization problem. The

performance of each solution is evaluated by the problem’s cost function, and we use the

habitat suitability index (HSI) to indicate the level of performance. The method to share

features between islands is called migration and the method to randomly modify an island

is called mutation. These two methods describe the evolution of the population in BBO.

The basic procedure of the BBO algorithm is as follows:

1. Define the mutation probability, and elitism parameter. Mutation and elitism are the

same as in genetic algorithms (GAs) [2].

2. Initialize the population.

3. Calculate the immigration rate and emigration rate for each island. Good solutions

have high emigration rates and low immigration rates. Bad solutions have low

emigration rates and high immigration rates.

4. Probabilistically choose the immigrating islands based on the immigration rates. Use

roulette wheel selection [3] based on the emigration rates to select the emigrating

islands.

5. Migrate randomly selected SIVs based on the selected islands in the previous step.

6. Probabilistically perform mutation based on the mutation probability for each island.

7. Calculate the fitness of each individual island.

3

8. If the termination criterion is met, terminate; otherwise, go to step 3 for the next

generation.

The original BBO algorithm shows good potential when compared over 14

benchmark problems with seven well-know competitors – ant colony optimization (ACO),

differential evolution (DE), evolutionary strategy (ES), GA, probability-based

incremental learning (PBIL), particle swarm optimization (PSO), and stud genetic

algorithm (SGA) [1]. Due to its performance, it is widely used in many areas, such as

power control [4], fuzzy robot controller tuning [5], and traveling salesman problem (TSP)

[6]. Also, a Markov model [7] and dynamic system model [8] have been derived for BBO,

which can predict the performance of BBO theoretically before applying it to real world

problems. They are useful methods to analyze the performance of BBO and also provide

a solid proof why BBO obtains such good performance.

Although BBO achieves outstanding results in benchmark tests, it still has room

to improve. Most heuristic algorithms are considered as a framework, or family of

algorithms. Taking GAs as an example, many GAs are invented for different purposes.

Examples include: non-dominated sorting genetic algorithm (NSGA) [9], genetic

algorithm with multistep crossover (GA/MSX) [10], etc. These algorithms all belong to

the GA family, but their details are different. Most of the details in a heuristic algorithm

can be modified or replaced for different types of problems to gain maximum

performance.

In this dissertation, we perform an analysis of how to increase the efficiency of a

heuristic algorithm. The efficiency metric is the convergence speed. BBO is used as an

4

example to demonstrate the analysis. It can also be considered as a guideline for how to

create a hybrid BBO with better efficiency.

Combinatorial problems are NP-hard problems [11], and their large search spaces

make them incompatible with traditional mathematical methods. This makes them a

perfect benchmark for heuristic algorithms. For the demonstration and simulation

purposes of this dissertation, the traveling salesman problem (TSP) is used as the

prototypical example of a combinatorial problem. For a 100-city TSP, the total number of

candidate solutions is 100! = 9.3326 × 10157. Using exhaustive search methods is a dead

end for this type of problem. BBO has the potential to be a powerful tool for

combinatorial problems. In this dissertation, we create hybrid BBO algorithms with high

efficiency for combinatorial problems.

The final contribution of this dissertation is to apply BBO to complex systems,

which consist of multiple interacting subsystems. Each of the subsystems has multiple

objectives and multiple constraints. The reason for applying BBO to complex systems is

that a complex system includes three factors which cannot be easily addressed and solved

by traditional methods: multi-systems, multi-objectives, and multi-constraints. Since

complex systems are commonly used in today’s industry, providing a solution method for

complex systems can be a significant contribution to industry. Also, these three factors

are difficult even for heuristic algorithms [9]. As a heuristic algorithm, BBO faces the

same challenge.

5

1.2 Literature Review

BBO has proven its performance based on comparisons with other algorithms in a

series of benchmark tests [1]. These tests can be roughly considered as efficiency tests

based on the convergence time and final results. In [12], [13], [14], [15], and [16], hybrid

BBO algorithms are introduced for different types of problems and circumstances. The

simulation results from these papers show performance improvement compared to the

original algorithm in certain areas.

1.2.1 Combinatorial Problems

Combinatorial problems are not new to heuristic algorithms. They are considered

as standard benchmarks for heuristic algorithms. Combinatorial problems represent a

special category of problems. Inside this category, there are many subcategories. Some of

them have significant effects in our daily life. For example, the vehicle routing problem,

the knapsack problem, the TSP, etc.

Vehicle routing problems were first proposed in 1959 [17]. For this type of

problem, the aim is to design the optimal route for picking up or delivering people or

goods from one or several locations to a number of scattered locations with certain

constraints. Vehicle routing problems are a common type of combinatorial problem, and

many real world problems, like bus routing [18], mail delivery [19], etc., belong to this

category.

6

The knapsack problem is another type of combinatorial problem. It can be traced

back to 1897 [20]. The description of this problem is: when given a set of objects which

have different weights and values, choose some objects from this set to maximize the

total value but still be under the weight limit. It also appears in real world applications

such as selection of capital investment [21].

TSP, a famous combinatorial problem, is an ancient problem whose origins have

been lost in the mists of history. The TSP was first formulated as a mathematical problem

by Karl Menger in 1930 [22]. There are three major reasons that the TSP has become a

standard benchmark for heuristic algorithms. First, the TSP is an easily stated problem

and is similar to many practical problems, such as sensor selection [23], the mailman

problem [24], robotic path planning [5], and many others. Second, the TSP can easily be

modified to become a multi-objective problem [25], and solving multi-objective

problems is a practical challenge in many areas of engineering and industry. Third, the

optimal TSP solution is extremely hard to find using analytical methods. Even using

numerical methods, it is still quite a challenge.

In [26], BBO has been applied to TSPs. The new algorithm is called the

biogeography migration algorithm for traveling salesman problem (TSPBMA), which is a

specially modified version of BBO for combinatorial problems which achieves good

results. In [27], BBO with circular opposition (BBO/CO) was introduced as a modified

version of BBO which achieved promising results for 16 TSP benchmarks. Two

techniques are implemented to create BBO/CO: circular opposition and combinatorial

BBO migration, which is also called the simple version of inver-over crossover that will

be introduced in the following sections of this dissertation. Although specially designed

7

BBOs were invented in those papers, they only discussed modification in the migration

component. But in this dissertation, besides the migration component, the discussion will

be extended to new areas in BBO including the population construction, the local search

optimization, and the greedy method.

1.2.2 Complex Systems

The material in this section is based on [28], which is one of the dissertation

author’s publications, and which is used here with permission. Complex systems have

become an important topic. In [29], we read that a complex system has the following

properties: 1) a complex system contains a large number of elements; 2) the elements

have interactions with each other; 3) the interactions are rich; 4) the interactions contain

certain complex characteristics such as nonlinearity. In [30], a complex system is defined

as "[a]n assembly of interacting members that is difficult to understand as a whole."

Complex systems can have various structures, as long as they satisfy the above

definitions.

The mathematical description of a system comprises equations and inequalities

that include the definitions of variables, the ranges of variables, and the connections

between variables. Optimizing a system is equivalent to mathematically defining the

system, and then finding the feasible solutions that (approximately) optimize the

objective functions. But when the order of the equations or inequalities is relatively large,

or those equations or inequalities are highly nonlinear, the solutions must be obtained

numerically rather than analytically [31]. Unfortunately, most complex systems include

interacting subsystems that are either continuous or NP-hard, and thus contain a huge

8

number of possible solutions. The inclusion of subsystems in complex systems adds even

more complexity than that involved in a single system.

For example, a complex system can have a multilevel structure, such as a

decentralized planning problem with multiple executors in a hierarchical organization.

The simplest case of a multilevel problem is the bilevel problem [32]. The description of

a bilevel problem is as follows.

min
x,y

H (x, y)

subject to F(x, y) ≤ 0
 (1.1)

Equation (1.1) describes an upper level problem. In contrast, a lower level

problem is described as

min (,)

subject to (,) 0
y
h x y

f x y ≤
 (1.2)

In Equation (1.2), for each value of x, there exist a solution, y. Variable x is called

the upper level variable, and y is called the lower level variable. F(x, y) is the upper level

constraint, and f(x,y) is the lower level constraint. The bilevel problem is a special case of

a multilevel problem. When a problem has multiple levels in a hierarchical organization

and also has connections as shown in Equation (1.1) and (1.2), it is called a multilevel

problem.

Many real world applications are typical multilevel problems. One example is the

aircraft design problem [33], which is extremely complicated and involves thousands of

components. Network design [34] is another multilevel problem, whose goal is to

optimize the balancing of transportation, construction costs, and maintenance costs of a

9

network. It is similar to the aircraft design problem: large size, large number of

components, and extreme difficulty for optimization. Besides these two problems,

coordination of multidivisional firms [35], and electric utility planning [36] are also

considered multilevel problems. Many algorithms have been invented to solve these types

of problems, such as extreme point algorithms (EPA) [37] and collaborative optimization

(CO) [38], both of which belong to the multi-disciplinary design optimization (MDO)

category.

In the 1970s and 1980s, computer aided design became a mature approach for

aircraft design, including economic factors, manufacturability, reliability, etc. Aircraft

design was the initial motivation of MDO [39]. With thousands of parts and parameters

in airplane design, MDO provided a revolution in the aircraft industry. In 1989, the

American Institute of Aeronautics and Astronautics (AIAA) established the technical

committee on MDO [39].

As mentioned above, MDO is a class of optimization methods. Numerous

algorithms belong to this class, such as: multidisciplinary feasible (MDF), which is the

most popular MDO algorithm [40]; individual discipline feasible (IDF), which does not

require system decomposition [41]; and CO, which is effective for many complex

systems, and which has been widely adopted in industry [38].

Traditional MDO algorithms are frameworks that provide basic conceptual

structures without specifying the detailed underlying algorithms. In [42], the definition of

MDO is given as follows: “an MDO method for a given problem consists of an MDO

formulation and an optimization algorithm.” The particular optimization algorithm is

usually chosen based on the specific problem or the user’s preference. Different MDO

10

methods can share the same underlying optimization algorithm. Conversely, the same

MDO method can be implemented with different underlying optimization algorithms.

Therefore, the major difference between MDO algorithms is the MDO formulation, or in

other words, the structure of the method.

The most popular MDO algorithms include MDF, CO, and IDF. MDF is perhaps

the most well known MDO algorithm. It is often considered the standard solution method

for multidisciplinary problems. The structure of a typical MDF algorithm is shown in

Figure 1. The top level of MDF is system optimization. The second level is called

multidisciplinary analysis (MDA), which passes coupled variables among subsystems to

obtain feasible solutions at the subsystem level after a certain number of iterations. After

reaching the iteration limit, the second level passes its solution to the first level, and this

completes one optimization cycle. The iteration cycle limit is usually defined by the user.

The structure of MDF enables it to be a very competitive optimization method when the

subsystems are highly coupled.

Figure&1:&Multidisciplinary&feasible&(MDF)&formulation&

11

CO is another typical MDO algorithm, and has a bilevel structure which is shown

in Figure 2. The first level is the system optimizer, which optimizes the feedback from

the subsystem optimizers. The second level is the combination of the subsystem

optimizers, which optimize each subsystem. Unlike MDF, the subsystem optimizations in

CO are independent from each other, which means that CO puts more focus on

subsystem optimization, which is advantageous for systems with extremely complex

subsystems that are loosely coupled.

Figure&2:&Collaborative&optimization&(CO)&

IDF is an all-in-one MDO algorithm. The most significant benefit of IDF is that it

can optimize all of the subsystems together without subsystem optimizations. For most

MDO algorithms, decomposition of the system is necessary. But unlike CO, IDF does not

require subsystem optimization. It treats subsystems more like objective functions. As

long as we have the objectives and constraints for each subsystem, IDF can be

implemented. As we see from the structure of IDF in Figure 3, IDF includes subsystem

12

analysis but not subsystem optimizers, which makes it an all-in-one algorithm.

Optimization only operates at the global system level.

Figure&3:&Individual&discipline&feasible&(IDF)&formulation&

A new BBO algorithm for complex systems will be introduced in Chapter 4.

Since MDF, IDF and CO are well-established algorithms in the MDO category, we will

compare this BBO algorithm with those popular algorithms on four real world complex

systems to reveal its potential.

1.3 Dissertation Organization

Chapter 2 comprises the first original contribution of this dissertation, where we

introduce the efficiency analysis and convergence analysis for heuristic algorithms.

Heuristic algorithms are usually time consuming. An efficiency analysis is used to

compare the performances of algorithms. The most efficient algorithm should achieve the

optimal solution with the shortest computation time. For the same algorithm, different

13

setups can result in very different performances. The first task of Chapter 2 is to

determine the performance of algorithms under different population initialization

methods, migration methods and mutation methods. The probability of convergence to

the global optimal solution is always a concern when implementing a heuristic algorithm.

Usually users think there is no guarantee that heuristic algorithms will eventually obtain

the optimum, which results in heuristic algorithms being labeled as unreliable algorithms.

But is that a true accusation? The second task of Chapter 2 is to conduct an analysis of

this question.

Chapter 3 comprises the second original contribution of this dissertation, where

we apply BBO to combinatorial problems. As we know, the original BBO is designed for

problems with a single objective, and no constraints. So it is not originally designed for

combinatorial problems. In Chapter 3, multiple modifications are applied to BBO. TSPs

are used as benchmarks for performance tests. We build a BBO GUI based on Matlab®

which provides a BBO framework for TSPs. There are 100 TSPs from TSPLib [43] as the

default benchmark problems, and users are encouraged to implement their own

algorithms and add their own benchmarks using this GUI.

Chapter 4 comprises the third original contribution of this dissertation, where the

solution method for complex systems using BBO is introduced. As we know, a complex

system consists of multi-subsystems, and subsystems share similar objectives and

constraints. Despite the complex structure of such systems, they are common in today’s

industry. In Chapter 4, BBO is applied to complex systems for system optimization. Also,

a Markov model is built for BBO/Complex, and simulation is provided to confirm this

mathematical model.

14

In the last chapter, we conclude the dissertation and propose future work and

directions for the next steps in research.

15

CHAPTER II

EFFICIENCY ANALYSIS FOR HEURISTIC ALGORITHMS

The material in this chapter is partially based on [6], which is one of the author’s

publications. It is used with permission. BBO belongs to the category of heuristic

algorithms, which are a good complement to traditional optimization methods, especially

for large, complex systems. But there are some concerns about typical heuristic

algorithms, such as: 1) heuristic algorithms usually have long computation time; 2) there

is no guarantee of finding the global optimum. Since BBO is a heuristic algorithm, it

inevitably inherits those concerns. In this chapter, we will provide an analysis of BBO

based on these major concerns.

2.1 Analysis of Performance Efficiency and Computational Speed

BBO mimics nature and can be considered an evolutionary process. Even though

BBO evolution is much faster than that in nature, it still involves many individuals and

needs to perform crossover and mutation for the population. Compared with the

16

traditional ways we solve problems, it is a slower path to the solution. Is there a way to

speed up heuristic algorithms?

First, we need to analyze the reasons that heuristic algorithms are computationally

intensive. A typical heuristic algorithm consists of four components:

1. Initial population construction

2. Cost calculation

3. Recombination

4. Mutation

Any of these four steps may be the source of significant computational time.

Since cost calculation is problem dependent, we only analyze the remaining three

components.

2.1.1 Initial Population Construction

A heuristic algorithm needs an initial population of candidate solutions, but this

population construction only happens in the first generation. In the following generations,

the population is updated by recombination and mutation, and this updated population is

used in the next generation.

Most algorithms randomly create an initial population. This method can simplify

the optimization algorithm, especially for problems with complex structure and many

tuning parameters. Although population initialization is only performed once in the

algorithm, it still can cause inefficiency.

17

First, random initialization is not an efficient method to create a population. As

always, a good starting point is half the way to success. For most problems, no matter

how complex they are, we usually have at least some problem specific background

knowledge.

For example, suppose we try to find the optimal five features for some problem.

The basic setup of BBO for this problem might be as follows: population size is 2;

number of features in each individual is 5; crossover probability is 0.5; mutation

probability is 0.01; and the size of the feature pool (search space) is 30.

Assume the optimal features are feature 1, feature 2, feature 3, feature 4 and

feature 5. Suppose the order of features in the individual does not affect the overall

performance. The optimal solution and the two individuals in the initial population might

be created as shown in Figure 4. This example will be continued in the following section.

Figure&4:&Optimal&solution,&individual&1,&and&individual&2&

&

18

2.1.2 Mutation

Suppose mutation is the only method in the previous example to create

individuals for the next generation. Assuming that we have an individual k, the

probability of obtaining the optimal individual is calculated as follows.

 poptimal = 1− pmutation + pmutation
1

nfeature

⎛

⎝⎜
⎞

⎠⎟
pmutation

1
nfeature

⎛

⎝⎜
⎞

⎠⎟

nnot−in−common

 (2.1)

nfeature: Number of features in the feature pool.

nin-common : Number of features common to individual k and the optimal individual.

nnot-in-common: nnot-in-common = nfeature – nin-common.

pmutation: Mutation probability.

Applying Equation (2.1) to our example in Figure 4, the probability that

individual 1 mutates to the optimal individual is 3.33×10−4. The probability that

individual 2 mutates to the optimal individual is 1.22 × 10−14.

Thus individual 1 has a much better chance to be mutated to the optimal solution.

Also, it is easy to see that the similarity level between individual 1 and the optimal

solution is much higher than the similarity level between individual 2 and the optimal

solution. This example shows how better population initialization achieves better

efficiency.

19

The role of mutation is to introduce new information to the population. As the

population evolves, all the individuals tend to cluster near locally optimal solutions and

so the population as a whole lacks diversity. Since the probability of mutation is low, its

role at the beginning of the heuristic algorithm is not critical. But closer to the end of the

simulation, it becomes the only way to introduce new features required to achieve the

globally optimal solution.

Can we improve the efficiency of mutation? Here, we use the same example as in

Figure 4 to calculate the probability of mutating individual 1 to the optimal solution after

one generation. The result is shown in Figure 5.

Figure&5:&The&probability&of&obtaining&the&optimal&solution&with&different&mutation&

rates&after&one&generation&

20

The best probability we obtain is 2.80 × 10−3 when pmutation is 0.21. It is 8.48 times

better than when the mutation rate is 0.05. When we have a better understanding of the

problem, it is easy to maximize the efficiency of a heuristic algorithm by tuning

parameters in different phases. Even for mutation, different setups result in dramatic

differences.

2.1.3 Recombination

The previous section only analyzed mutation. But for most heuristic algorithms,

recombination is a more efficient way to create new individuals. So in this section, we

analyze the probability of achieving the optimal solution based solely on crossover for

different population initialization methods.

The recombination procedure is as follows:

1. Determine if individual k1 will participate in recombination based on the calculated

recombination probability. If yes, go to step 2; otherwise, check the next individual.

2. Probabilistically choose an individual to share its features based on roulette wheel

selection. This individual is called individual k2.

3. Randomly choose some features from individual k2 to replace features in individual

k1.

Now, we create two populations for comparison purposes. The first one is randomly

created, and the second one is created based on our knowledge of the problem, which is

similar to creating the population in a TSP problem with the nearest neighbor strategy

21

(NNA) [44]. There is no guarantee that the individuals that are specially created will be

closer to the optimal solution. But there should be a better chance.

Suppose we have the same optimal solution as in the previous example in Figure

4. In this example, we compare two different populations to analyze the importance of the

initial population for recombination. Figure 6 shows the optimal solution, along with two

possible populations, each population containing two individuals.

Figure&6:&Optimal&solution,&population&1,&and&population&2&

&

Population 1 is randomly initialized, and it only contains three features from the

optimal solution in the population. Population 2 is initialized by manual intervention, or

expert knowledge, based on problem specific knowledge. Although no optimal individual

exists in either population, population 2 contains all the necessary features to obtain the

optimal solution.

22

After one recombination, what is the probability of obtaining at least one optimal

individual? Assume we have m individuals, and each individual contains n features. Each

individual has the same probability to be selected for recombination.

! pc: The probability of recombination.

! num(i, j): Number of occurrences of feature j in individual i.

! po: The probability that at least one individual becomes the optimal solution after

one recombination.

An algorithm that calculates the probability that individual i becomes the optimal

individual after one recombination is shown as follows:

1. Set po,k =1, l=1, k=1

2. Determine if the l-th feature in individual i is contained in the optimal solution. We

call the l-th feature in individual i feature b. If yes, go to step 3; else, go to step 4.

3. po,k = po,k 1− pc + pc
num(i,b)

i=1

m∑
m × n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. Go to step 5.

4. po,k = po,k pc
num(i,b)

i=1

m∑
m × n

. Go to step 5.

5. If l < n, then l = l + 1, and go to step 2. Else if k < m, then k = k + 1 and l = 1, and go

to step 2; otherwise, terminate.

The probability of obtaining at least one optimal individual in the population after

performing recombination once on each individual is

23

 po = 1− (1− po,k)
k=1

m

∏ (2.2)

As we show in Figure 6, population 1 is randomly initialized, and population 2 is

constructed using problem specific knowledge. All individuals in population 2 are close

to the optimal solution. When we set pc = 0.5, the probability of obtaining at least one

optimal individual after one recombination for population 1 is 0; but for population 2, it is

0.59%.

For the example in Figure 6, the population only consists of two individuals. For

real world applications, the population size is much larger, usually over 50. In the

following example in Figure 7, we increase the population size to 100. But based on

problem specific background knowledge, we can narrow the feature pool size to 7 instead

of 30. For population 1, its feature pool contains feature 1 to feature 7. But for population

2, its feature pool contains feature 1 to feature 30.

24

Figure&7:&Optimal&solution,&features&of&population&1,&and&features&of&population&2&

Let pc = 0.5 as before. Then we calculate the probability of obtaining at least one

optimal individual in the population after performing recombination once on each

individual. For population 1, the probability is 54.85%. But for population 2, it is only

0.97%. Thus, it is more likely that a heuristic algorithm starting with population 1 will

outperform the same algorithm starting with population 2 when all else is equal. It also

means that population initialization can play a significant role in increasing the efficiency

of a heuristic algorithm.

25

2.1.4 Information Sharing in TSPs

Information sharing is a key technique in heuristic algorithms. In most heuristic

algorithms, we call it recombination, or crossover. Usually, there are two ways to create

new individuals: one is by combining information from multiple individuals to create a

new individual (crossover), and the other is to mutate an individual to obtain a new one

(mutation). Mutation rates are fairly low, because high mutation rates may cause damage

to the performance of the population. Statistically speaking, most of the new information

it introduces is not useful. The best time for mutation is when the population converges to

local optima, and new information is needed in the population. So mutation is not a rapid

way to improve the overall quality of the population, and that is why crossover usually

plays the key role in heuristic algorithms.

Heuristic algorithms are generally time consuming. In order to build a faster

heuristic algorithm, we need to improve its efficiency in all aspects. If we make crossover

more efficient, it may increase efficiency, especially for large problems. Is there room to

improve the efficiency of crossover? The answer is YES, but we still need problem

specific background knowledge. The flexibility of heuristic algorithms is beneficial, but

we may see severe efficiency issues if we do not use using background knowledge for the

algorithm design.

In the following example, we construct a closed 6-city traveling salesman

problem (TSP) which involves Las Vegas, San Diego, Phoenix, Chicago, Cincinnati, and

Atlanta. The locations of the cities are shown in Figure 8.

26

Figure&8:&6RCity&Problem&in&TSP&

Figure 9 and Figure 10 show the worst and best scenario for this 6-city TSP. The

worst scenario of the trip is Chicago to Las Vegas to Atlanta to Phoenix to Cincinnati to

San Diego to Chicago. The best scenario of the trip is Chicago to Cincinnati to Atlanta to

Phoenix to San Diego to Las Vegas to Chicago.

27

Figure&9:&Worst&Scenario&in&TSP&

Figure&10:&Best&Scenario&in&TSP&

Assume we have a population that contains two individuals, which are the best

and worst scenario. The two individuals are shown in Figure 11.

28

Figure&11:&Population&containing&both&best&and&worst&scenario&

The simple crossover method which is used in the previous example is not a good

fit for TSPs. As we know, a TSP is a typical combinatorial problem. Each feature by

itself does not contain any information, but it is rather the sequence of features in an

individual that determines its performance. In this case, the simple crossover method

mentioned earlier in this chapter will cause two problems. First, it may result in an

invalid tour. For example, we should not go to the same city twice in the same trip. Also,

we have to travel to all the cities during a single trip without missing any of them,

otherwise the tour is invalid. Second, simple crossover is designed for exchanging the

features in an individual but not the sequence information contained in an individual. Our

goal is to obtain the sequence information from good individuals, then share it with other

individuals. Sharing individual features will not help. Because all the individuals contain

the same features, the only difference is the sequence of the features.

Sequence information based crossover can solve these issues. In 1991, order-

based crossover (OX2) was introduced [45]. This crossover method is designed for

scheduling problems and is also suitable for TSPs. Since OX2 is designed for scheduling

29

problems, the information exchange is based on the sequence information, so there are no

invalid individuals generated during crossover.

The procedure of OX2 crossover is as follows.

1. Randomly select several positions in Individual 2. Record the cities in these

positions and the sequence of the selected cities.

2. In Individual 1, find the cities recorded in step 1, and record their positions. Replace

the cities in these positions in Individual 1 with the same group of cities but in the

sequence recorded in step 1.

Here is an example to illustrate how OX2 works. Assume we have two individuals,

Individual 1 and Individual 2, which are shown in Figure 12.

Figure&12:&Population&containing&both&best&and&worst&Scenario&

An example of OX2 crossover is given as follows.

1. Randomly select positions 2, 4, and 6 in Individual 2.

2. The cities in those positions are city 6, 4, and 5.

3. Find the locations of city 6, 4, and 5 in Individual 1.

4. Replace the cities in these locations in Individual 1 in the order 6, 4, 5.

30

After OX2, the new individual is shown in Figure 13. OX2 crossover created a

valid child. This child inherits sequence information from both parents.

Figure&13:&OX2&crossover&of&two&individuals&

The creation of a good crossover strategy is based on a good understanding of the

problem. The flexibility of heuristic algorithms is its advantage. Standard crossover may

still be used in a problem if it does not result in invalid candidate solutions. But we also

need to deal with efficiency issues. Consider the diversity of modern science, where each

field requires years of learning and training. We cannot provide a simple algorithm to

solve all problems in all research areas. A heuristic algorithm can be considered as a tool,

or a framework. We need to define details to guarantee correct functioning and

satisfactory efficiency. For example, the PID controller is widely used in industry.

Assume there is a system containing thousands of PID controllers. How should we tune

all the parameters when a system has a complicated structure with a huge number of

components? Heuristic algorithms can be an effective approach.

Efficiency is not a strong point for heuristic algorithms, since heuristic algorithms

mimic nature and nature is notoriously inefficient. If there is a traditional solution method

that can obtain results by solving equations, it should be much faster than most heuristic

31

algorithms. But if there is a problem with a complex structure and many intractable

components, then heuristic algorithms are more efficient. But a single heuristic algorithm

is not a panacea for all problems. A good design based on problem specific background

knowledge can dramatically improve the efficiency of a heuristic algorithm.

2.2 Analysis of Convergence

Unlike traditional optimization methods, BBO uses evolution to generate new

individuals for each generation, which eventually leads to the optimal solution. The

ultimate goal for any optimization algorithm is to achieve the global optimum. In contrast

to traditional methods, most heuristic algorithms, such as GA and BBO, are considered

global optimization methods. The following example illustrates the difference between a

global optimization method, and a traditional optimization method which can easily get

stuck in local optima − for example, gradient descent with small step size [46]. In the

following equation, x is the input (independent variable), and y is the output (cost value).

We are looking for the global minimum of y.

y =
x − 2.5()2

+ 20, 0 ≤ x < 4

x − 6()2
+18.25, 4 ≤ x ≤10

⎧

⎨
⎪

⎩
⎪

 (2.3)

32

Figure&14:&Plot&of&Equation&(2.3)&with&local&and&global&minimums&

Figure 14 shows that the cost contains two minimum values – one is a local

minimum and the other is the global minimum. When we apply gradient descent to this

problem and search for the minimum value, we may encounter one of the scenarios

depicted in Figure 15 or Figure 16.

33

Figure&15:&First&scenario&of&gradient&descent&with&different&starting&points&

Figure&16:&Second&scenario&of&gradient&descent&with&different&starting&points&

Figure 15 and Figure 16 illustrate two common scenarios. If the initial guess point

is close to a local minimum and we use a small step size, the algorithm will find a local

34

minimum instead of the global minimum. In the other scenario the step size is small, but

the initial guess is close to the global minimum, so the algorithm can reach it without

getting stuck in the local minimum.

Although gradient descent may reach the global minimum, it is still a local

optimization method. The same situation applies to most other numerical optimization

methods. In contrast to these traditional methods, heuristic algorithms are considered as

global optimizers, which are a major advantage compared with traditional optimization

algorithms. But there is still a question needed to be answered – will BBO always

converge to the global optimal solution?

Markov models are traditional but effective ways to prove the convergence of an

algorithm. In [7], a Markov model is derived for BBO. In the following part of this

section, we will use the Markov model to perform a convergence analysis of BBO.

In BBO, there are two operations available to create new islands: migration and

mutation. We can model these operations to derive the probability that island u becomes

to island v after one generation. We make the assumption that each feature type in an

island has its own search domain, so migration between islands only happens between the

same types of features.

The probability that the s-th feature in island u becomes the s-th feature in island v

due solely to migration is

Pr(u(s) = v(s)) = 1− pi()10 u(s)− v(s)() + pi

µ jj∈J (s)∑
µ jj=1

n∑ (2.4)

35

where pi is migration probability. J(s) is the set of islands which contain the same feature

as the s-th feature in island v. µj is the emigration rate of island j. n is the search space

size. We can then calculate the probability that individual v becomes individual u due

solely to migration.

Pr(u = v) = Pr(usi) Pr(u(s) = v(s))
s=1

k

∏

 = Pr(usi) 1− pi()10 u(s)− v(s)() + pi

µ jj∈J (s)∑
µ jj=1

n∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟s=1

k

∏
 (2.5)

where Pr(usi) is the probability that u is selected for immigration, and k is the total

number of features in each island (that is, the problem dimension).

According to Equation (2.5), we cannot guarantee that island u can become island

v because there is a probability that J(s) is null, and at the same time, the s-th feature in u

is not equal to the s-th feature in v. In that case we obtain Pr(u=v) = 0. Since migration

can exchange only features that are present in the population between islands, we will not

obtain the optimal solution unless all the optimal features are already contained in the

feature pool of the population. But this is highly unlikely, especially when a problem is

continuous with an infinite number of possible features.

Mutation is another operation that can create new islands. Unlike migration,

mutation can create new features which do not exist in the feature pool of the population.

The probability that the s-th feature in island u becomes the s-th feature in island v due

solely to mutation is

36

Pr(u(s) = v(s)) = 1− pm()10 u(s)− v(s)() + pm

1
nf

 (2.6)

where pm is the mutation rate and nf is the total number of candidate features in the s-th

position. For continuous problems, nf is infinite in theory. But in practice, there is always

a certain problem dependent precision for any numerical method, which means that the

total number of possible features will not be infinite, even for a continuous problem. So nf

might be a large number, but it will not be infinite. Then the probability that individual u

becomes individual v after one generation can be calculated as

Pr(u = v) = Pr(u(s) = v(s))
s=1

k

∏
 (2.7)

Unlike migration, we obtain 0 < Pr(u = v) <1 . As long as we include mutation in

our algorithm, it is guaranteed that 0 < Pr(u = v) <1 whether we use migration or not. If

we use elitism in our algorithm, which means always retain the best island from one

generation to another. Then we run BBO for t generations, the probability that we will

obtain the optimal solution v is

Pr(u = v) = 1− 1− Prg (u = v)()
g=1

t

∏

lim
t→∞

Pr(u = v) = lim
t→∞

1− 1− Prg (u = v)()
g=1

t

∏⎛
⎝⎜

⎞
⎠⎟
= 1

 (2.8)

where, Prg(u=v) is the probability that individual u becomes individual v in the g-th

generation. From Equation (2.8), when we run BBO for a large number of generations,

37

the probability of obtaining optimal island v is close to 1. Since we use elitism in this

algorithm, the optimal solution will be retained in the population after we obtain it.

According to this convergence analysis of BBO, as long as we include mutation and

elitism in BBO, we guarantee convergence to the optimal solution. This shows that BBO,

like other EAs, is a global optimization algorithm which provides a significant

improvement compared to traditional numerical methods. This proof is true for all

heuristic algorithms which contain mutation and elitism.

38

CHAPTER III

BBO FOR COMBINATORIAL PROBLEMS

3.1 Combinatorial Problems

Combinatorial problems have a finite set of candidate solutions. Usually,

exhaustive search is not suitable because of the large size of the problem. The TSP is a

classic example of a combinatorial problem. The definition of a TSP is that a salesman

has to travel to c different cities, so he needs to plan a c-city trip and find the shortest, or

most time efficient route. In this case, each candidate solution is a combination of cities

in some specific order. This is a typical example of a combinatorial problem.

For combinatorial problems, the only guaranteed way to find the optimal solution

is by searching through all possible combinations, which is called exhaustive search. But

in most cases, the size of the search space is too large for exhaustive search. For example,

in a 100-city TSP problem, the number of possible solutions is 100! = 9.33 × 10157. That

is the reason that we turn to heuristic algorithms as the solution method.

39

Nature obeys the rule of survival of the fittest. Weak and unhealthy creatures are

usually abandoned by nature. Strong and smart creatures can usually obtain more

resources and have a better chance of survival. Nature is always dominated by the fittest

creatures. Evolution is a process to eliminate weaker species and promote stronger

species. Heuristic algorithms like GA, ACO, BBO, and others, are all nature-based

algorithms. They all obey the same rule – survival of the fittest. Two things need to be

determined in a nature-based algorithm. First, how do we measure the fitness of each

individual? Second, how do we improve those individuals?

Fitness is usually easy to determine; for most algorithms, we use an objective

function to measure the fitness or performance of an individual. Note that cost and fitness

are opposite ways of measuring the same thing. As performance improves, cost decreases,

and fitness increases. The second challenge is how to improve the individuals in our

algorithm. When translating this into a heuristic algorithm, it means obtaining an efficient

population modification method.

The two most common methods to modify a population are recombination (or

crossover) and mutation. Crossover is an evolutionary method that involves more than

one individual by mixing features from different individuals – it is called migration in

BBO. Mutation is a way to modify individuals by introducing randomly selected features.

In this chapter, TSP is considered as a representative combinatorial problem. TSPs will

be used as benchmark problems to test crossover and mutation methods specially created

for combinatorial problems.

40

3.2 Migration in the Traveling Salesman Problem

BBO migration is the method for combining or modifying features based on

parent individuals to create offspring, or new individuals. It is also the most important

component in BBO. Combinatorial problems are coded differently than other types of

problems. Each element in the individual contains no information by itself, but when we

put the elements together in one individual, the order of elements determines the

goodness of an individual. To use TSP as an example, an element in an individual is a

city. Just knowing that a city is in a tour will not help us determine the distance (or cost)

of the entire trip. In order to determine the distance, we need to know the order of all the

cities in the tour. Since the original BBO algorithm is not designed for combinatorial

problems, we need to modify the original migration methods. Three types of migration

methods are introduced: matrix crossover, cycle crossover, and inver-over crossover.

These methods have been used in other EAs in past research, but are integrated with BBO

here for the first time.

3.2.1 Matrix Crossover

Matrix crossover is introduced by Fox and McMahon in [47]. The advantage of

matrix crossover is that it is straightforward and easy to operate. With matrix crossover,

an offspring can inherit partial information from both parents, but it will also contain

unique information belonging only to itself. The drawback of matrix crossover is that all

sequence information is represented by matrices, which requires for a high computational

41

effort when transforming between tour information in an array expression and tour

information in a matrix expression.

The detailed procedure of matrix crossover is as follows. First, for a c-city

problem, we need to convert the sequence information of each individual to a c × c

matrix. Each row in the matrix expression provides us the position information of a city

in the trip. For example, the k-th row represents the position information of city k. In this

expression, each column in a particular row represents a certain city. The number in each

column represents the ordering relationship between the column city and row city. For

example, if city g is before city k, the number in the g-th row in the k-th column is 1. If

city g is after city k, the number in the g-th row in the k-th column is 0. Based on this

method, we convert all the individuals in the population to a matrix expression.

Second, based on roulette wheel selection, we select individuals to perform

migration. Once the parents are selected, we perform AND logic operation on two parent

matrices to obtain the child matrix.

Third, since the child matrix will be incomplete after the previous two steps, we

randomly fill in necessary information to create a valid child.

In the last step, we transform the child from its matrix expression to a sequential

representation. Figure 17 gives an example of how to apply matrix crossover.

42

Figure&17:&Example&of&matrix&crossover&with&a&5Rcity&TSP&

3.2.2 Cycle Crossover

Cycle crossover has been tested in [48], and resulted in superior performance

against competitors. It also achieved satisfying results in [26]. In this section, it is used as

the default migration method in BBO. The application of cycle crossover is fairly easy. In

contrast to matrix crossover, no tour format transformation is needed, and cycle crossover

guarantees that every child is valid and complete. For these reasons, cycle crossover has

been widely used in EAs for combinatorial problems.

43

The basic procedure of cycle crossover is as follows.

1. We randomly select a city as the starting point in parent 1 and record its position.

2. In parent 2, we find the city in the position recorded in parent 1, and then record this

city. We go back to parent 1, search for the city we found in parent 2, and then

record its position in parent 1.

3. We repeat step 2 until we obtain a closed cycle, which means that we have returned

to the starting city. Then we copy the cities from the closed cycle in parent 2, and

the cities that are not in the closed cycle in parent 1, to obtain child 1. Similarly, we

copy the cities from the closed cycle in parent 1, and the cities that are not in the

closed cycle in parent 2, to obtain child 2.

We provide an example in Figure 18 to illustrate the application of cycle crossover.

In this figure, city 2 in parent 1 is randomly selected as the starting point city. Following

the basic procedure of cycle crossover, the closed cycle we find is city 2 - city 1 - city 4 -

city 8 - city 3 - city 2.

44

Figure&18:&Example&of&cycle&crossover&with&9Rcity&TSP&

3.2.3 Inver-over Crossover

The third migration method is called inver-over crossover, originally invented in

[49]. Like cycle crossover, all the children generated by inver-over crossover are

guaranteed to be valid and complete. Inver-over crossover does not require any

expression transformation. The basic procedure of inver-over crossover is as follows.

1. Randomly select a city in parent 1 as the starting point, which is called city s.

2. Find city s in parent 2 and choose the city that follows it as the ending point, city e.

Then find city e in parent 1.

3. Reverse the cities between the city following city s, and city e, in parent 1. An

example is provided in Figure 19.

45

Figure&19:&Example&of&inverRover&crossover&with&5Rcity&TSP&

3.3 Local Search Optimization

Combinatorial problems make good benchmarks because of their special

characteristics. For example, most benchmarks are composed of variables, and each

variable has its own search domain. In that case, heuristic algorithms need to search each

variable in its own domain for the optimal solution. But combinatorial problems are

different. Again, we use TSP as an example, in which the coordinates of each city are

fixed. The task of heuristic algorithms is to rearrange the order of the cities and search for

the optimal solution. In other words, each individual in the population has enough

information to create an optimal solution.

Local search optimization can find the optimal solutions only by modifying an

individual candidate solution. For TSP, all the necessary cities to create an optimal

solution are contained in each individual. Since the combination of techniques can be

more powerful than a single technique [13], in the BBO modification in this section, we

46

will introduce local search as a complement to migration. In the next part of this section,

we introduce three local optimization methods which have been successfully

implemented in TSPs: 2-opt, 3-opt, and k-opt. These methods are applied after migration

as a complement to our migration strategy.

3.3.1 2-opt and 3-opt

2-opt is a simple but effective local research method invented in 1958 [50].

Although this method is easy to operate, it shows good performance with TSPs. The

operation of 2-opt is as follows.

1. Find a random individual in the population.

2. Break two links in this individual.

3. Randomly connect the cities which only have one link connected, with the constraint

that the resulting path includes all cities.

In Figure 20, we apply 2-opt to an 8-city TSP.

Figure&20:&Example&of&2Ropt&with&8Rcity&TSP&

47

3-opt is an updated technique based on 2-opt [50]. Instead of replacing two links

in the individual, 3-opt will break three links then randomly reconnect the cities. Even

though 2-opt and 3-opt have good performance in sequence-based problems, their

disadvantage is obvious: the number of the links to break and reconnect is predefined,

and does not adapt to the problem.

3.3.2 k-opt

In order to address the disadvantage of 2-opt and 3-opt, k-opt was introduced and

discussed in [50]. k-opt is a method for adaptively choosing the number of links to break

and reconnect. According to experimental results, when the number of replaced links

increases, the performance of k-opt increases. But the computational burden also

increases. We need to find a balance between the expected performance and the

computational burden. For the first few optimization generations, the population is still

diverse and there is a lot of information for migration to exploit. In this case, we do not

need k-opt to act aggressively, so k should be a small number. But as the optimization

algorithm progresses, the algorithm begins to converge. In this situation, we need to

increase the effectiveness of k-opt to increase the rate of population improvement, so we

should use a bigger k value. We conclude that k should increase as the generation count

increases. One way of doing this is shown as follows.

 k = gcc
2gm

⎢

⎣
⎢

⎥

⎦
⎥

(3.1)

c: number of cities.

48

gm: maximum generation number.

gc: current generation number

3.4 Population Initialization and Greedy Method

Migration, mutation, and local search optimization are the three main components

in most BBO implementations. Their roles are to improve the performance of the entire

population. We can also increase the rate of population improvement by applying new

techniques in the heuristic algorithm. In this section, we will focus on using a modified

population initialization algorithm, and using greedy methods, to increase the rate of

population improvement.

3.4.1 Population Initialization

Population initialization is usually the first step for heuristic algorithms. Most of

the systems we apply heuristic algorithms to have complex structures. We do not have a

good understanding of the effect of each independent variable in those systems. That

means we do not know how to create an initial population based on our expertise, so

instead we randomly create it. This is no doubt the simplest method for population

initialization. However, it is also the most inefficient way to create an initial population.

Fortunately, random population initialization is not the only method for population

initialization; for certain problems like the TSP, there are certain ways of creating an

initial population which can provide a great benefit to EA performance.

49

For TSPs, the most commonly used technique is NNA [44]. The detailed

procedure is as follows.

1. Randomly select a city as the end point of the trip (it is also the starting point).

2. Calculate the distance between the end point city and the cities which are not

included in the trip. The first time through this loop, this will include all cities

except for the starting/end point city.

3. Based on the distances calculated in step 2, find the nearest city to the end point city.

Link these two cities, and name the most recently added city as the end point city.

4. If all the cities are included in the trip, terminate; otherwise, go to step 2.

The procedure is fairly easy to operate, and is clearly not time consuming even for

large-scale problems. The most time consuming part is the calculation of the Euclidean

distances between cities. For a TSP with c cities, the total number of calculations of

Euclidean distance is

 number of calculations = c(c −1)
2

(3.2)

For a 1000-city problem, the total number of calculations is 499,500, which is an

acceptable number when considering the problem size.

3.4.2 Greedy Methods

Greedy methods have a long history as effective techniques in heuristic

algorithms, and many algorithms use it as a basic component. The definition of greedy

methods is implied by its name: always choose the short-term benefit, and refuse to

50

accept any short-term losses [51]. Being greedy at every step may not be the best choice

for all situations. But in some problems, like the TSP, greedy methods can be a helpful

complement to optimization algorithms.

In BBO, we can use greedy methods in three places – migration, local

optimization, and mutation. As we know, migration is a function for an individual to

share information with other individuals to generate offspring. Although the individuals

with better performance have higher probabilities to share features, and the individuals

with worse performance have high probabilities to import features, there is no guarantee

that the child will outperform its parents. In this way, local optimization methods are

similar to migration; we cannot guarantee that offspring perform better than their parents.

Mutation introduces random information to the population. New individuals have

unpredictable performance in this case. Should we need to keep the offspring with

worsened performance? If the diversity of the population is low, even though the

offspring has worse performance than either of the parents, we may still want to keep it.

But if we want the performance of the entire population to improve in the short term, then

we should use greedy methods to abandon offspring with worse performance.

3.5 TSP Simulation

In this section, the techniques mentioned in the previous sections are tested on

four TSP benchmarks. All the benchmarks are selected from the standard TSP benchmark

library TSPLib [43]: ulysses16, st70, rat575, and u2152. In order to obtain a broad

51

comparison between techniques, benchmark sizes vary from small to extra large

problems. ulysses16 is a 16-city TSP; st70 is a 70-city TSP; rat575 is a 575-city TSP; and

u2152 is a 2152-city TSP.

In this dissertation, the aim is not only to find the best modification of BBO, but

also to compare BBO with other popular optimization algorithms. Four popular

competitors are selected: GA [52], NNA [44], ACO [53], and simulated annealing (SA)

[54]. In order to guarantee fairness in our comparisons, we set two common termination

criteria for each algorithm. The algorithm will terminate when either of them is met.

! Number of evaluations of cost function: 10,000

! CPU time: 300 sec

Also, since the performance of heuristic algorithms varies from simulation to

simulation due to their stochastic nature, a single simulation may not reflect the true

performance of an algorithm. To guarantee a fair comparison, Monte Carlo simulations

are performed. We conduct each simulation d times, and take the average performance as

the overall performance metric. Here, we use d = 20.

In order to compare the performance of different techniques, we use the default

BBO setup for each of the BBO modifications for all the components that are unmodified.

The default BBO setup is as follows.

! Population size: 100

! Number of elite individuals per generation: 1

! Population initialization: Random

! Migration: Cycle crossover

52

! Mutation rate: 0.01

! Local optimization method: None

! Greedy Methods: None

3.5.1 Population Initialization

First we test the performance of different population initialization methods. We

designed six population initialization methods: no NNA; NNA for 1 individual; NNA for

5 individuals; NNA for 50 individuals; NNA for 75 individuals; and NNA for 100

individuals (the entire population). The simulation results are shown in Table i.

 Best distance and CPU time per simulation (sec)
 No NNA 1 NNA 5 NNA 50 NNA 75 NNA 100 NNA

ulysses16 Distance
SD

75.68
0.40

74.72
0.68

74.23
0.55

74.65
0.32

74.66
0.56

74.62
0.25

CPU Time 3.11 3.13 3.13 3.21 3.24 3.25
st70 Distance

SD
1432
29.07

728
22.51

729
32.99

727
33.57

726
27.27

725
31.20

CPU Time 4.23 4.55 4.56 4.61 4.62 4.65
rat575 Distance

SD
128090
2608.86

54487
1235.90

54483
1370.21

54481
1312.16

54485
1249.56

54482
1458.13

CPU Time 19.23 19.31 19.34 19.37 19.56 19.58
u2152 Distance

SD
241745
2162.19

74355
790.00

74322
838.27

74323
809.13

74333
952.63

74325
746.03

CPU Time 40.23 41.92 42.35 42.58 42.62 42.66

Table&i:&Performance&of&NNA&in&BBO,&the&best&results&averaged&over&20&Monte&Carlo&

simulations,&and&the&standard&deviations&of&the&best&distances.&The&best&results&in&

each&row&are&shown&in&bold&font.&

53

When compared on the basis of computation time, No NNA is the quickest. But

the performance difference between no NNA and 1 NNA is large, especially for larger

scale problems. When we apply NNA to the BBO algorithm, the performance between

different setups is very similar. The standard deviations show that BBO performs

significantly better with NNA than without NNA. Based on the simulation results, the

best overall setup is 1 NNA, which means NNA is only used on one individual.

3.5.2 Crossover Methods

Next we test different crossover methods. Three crossover methods were

discussed earlier: matrix crossover, cycle crossover and inver-over crossover. Their

performances are shown in Table ii.

 Best distance and CPU time per simulation (sec)
 Matrix Cycle Inver-Over

ulysses16 Distance
SD

74.22
0.55

75.68
0.40

74.21
0.32

CPU Time 0.64 3.11 0.97
st70 Distance

SD
2725
86.09

1432
29.07

820
17.34

CPU Time 2.22 4.23 1.05
rat575 Distance

SD
102763
3006.57

128090
2608.86

78765
1657.42

CPU Time 300.00 19.23 2.93
u2152 Distance

SD
434209
5620.58

241745
2162.19

237372
2012.46

CPU Time 300.00 40.23 10.23

Table&ii:&Performance&of&matrix&crossover,&cycle&crossover&and&inverRover&crossover,&

the&best&results&averaged&over&20&Monte&Carlo&simulations,&and&the&standard&

deviations&of&the&best&distances.&The&best&results&in&each&row&are&shown&in&bold&font.&

54

The simulation results show that inver-over crossover dominates the other

methods on all the benchmarks, both in terms of performance and computation time. It

also has smaller standard deviations for all benchmark problems. Also, the computation

time of matrix crossover becomes very long when the problem size increases, so it is not

a good choice for large-scale problems.

3.5.3 Local Optimization

Next we evaluate local optimization methods. Three methods were proposed: 2-

opt, 3-opt, and k-opt. When using local optimization, we apply the local optimization to

each individual in the population at the end of each generation. The performances of the

different local optimization methods are shown in Table iii.

The setup with the best computation time is BBO without local optimization

methods. Despite the small increases in simulation time, improvement in performance is

obvious when using local optimization. For a small size problem, 2-opt and 3-opt

outperform k-opt, but with large-scale problems, k-opt is the best choice.

55

TSP Best distance and CPU time per simulation (sec)
 No-opt 2-opt 3-opt k-opt

ulysses16 Distance
SD

75.68
0.40

74.67
0.37

74.65
0.47

80.59
0.41

CPU Time 3.11 3.18 3.23 3.57
st70 Distance

SD
1432
29.07

1180
28.23

1695
31.87

1773
29.76

CPU Time 4.23 5.67 6.72 7.55
rat575 Distance

SD
128090
2608.86

100069
2235.98

97759
1781.32

94763
1341.92

CPU Time 19.23 25.45 27.56 30.01
u2152 Distance

SD
241745
2162.19

240001
1943.12

235987
1903.74

235876
1788.56

CPU Time 40.23 54.34 58.31 153.99

Table&iii:&Performance&of&NoRopt,&2Ropt,&3Ropt&and&kRopt,&the&best&results&averaged&

over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&the&best&distances.&

The&best&results&in&each&row&are&shown&in&bold&font.&

3.5.4 Greedy Methods

Now we test different greedy method setups. Three setups are introduced: first, no

greedy method; second, half of the population uses a greedy method (the individuals that

use greedy methods in this approach are randomly selected); third, the entire population

uses a greedy method. In all three of the setups, we apply the greedy method to migration,

local optimization, and mutation. The performances of different greedy method setups are

shown in Table iv.

56

TSP Best distance and CPU time per simulation (sec)
 No Greedy Half Greedy All Greedy

ulysses16 Distance
SD

75.68
0.40

79.41
0.35

88.51
0.32

CPU Time 3.11 3.12 3.15
st70 Distance

SD
1432
29.07

1770
34.34

2795
52.86

CPU Time 4.23 4.62 4.73
rat575 Distance

SD
128090
2608.86

10360
1863.21

10456
1897.96

CPU Time 19.23 19.35 19.47
u2152 Distance

SD
241745
2162.19

242356
2129.75

23632
1736.12

CPU Time 40.23 42.44 43.12

Table&iv:&Performance&of&different&greedy&method&setups,&the&best&results&averaged&

over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&the&best&distances.&

The&best&results&in&each&row&are&shown&in&bold&font.&

These simulation results tell us that greedy methods slow down the optimization

process in general. For small TSP sizes, greedy methods reduce performance; however,

for larger TSP sizes, greedy methods improve performance.

3.5.5 Comparison with Other Algorithms

Based on the previous simulation results, the best overall setup for BBO is the

following: 1 NNA for population initialization; inver-over crossover; k-opt for local

optimization; and all greedy for the greedy method setup. Here, we compare the results

between BBO, GA, NNA, ACO, SA, and Modified BBO for TSPs (BBO/TSP). The

setups of these algorithms are as follows.

57

! GA: Population size is 100; Crossover is a combination of flip crossover, swap

crossover and slide crossover; Crossover rate is 0.5; Mutation rate is 0.01.

! NNA: It is not a heuristic algorithm, so no tuning parameters are needed.

! ACO: Population size is 20 ants; Initial pheromone value is 10−6; Pheromone update

constant is 20; Exploration constant is 1; Global pheromone decay rate is 0.9; Local

pheromone is decay rate 0.1; Pheromone sensitivity is 1; Visibility sensitivity is 1.

! SA: Initial temperature is 2000; Maximum trails at a temperature is 10 times the

population size.

! BBO/TSP: Population size is 100; Number of elite individuals per generation is 1;

Population initialization is 1 NNA; Migration method is inver-over crossover; Local

optimization method is k-opt; Greedy method is all greedy.

58

TSP Best distance and CPU time per simulation (sec)
 GA NNA ACO SA Default BBO BBO/TSP

ulysses16 Distance
SD

74.63
0.49

104.43
0.16

74.62
0.61

74.77
0.45

75.68
0.40

74.21
0.34

CPU Time 3.41 0.18 0.38 1.01 3.11 5.12
st70 Distance

SD
1509
37.95

3208
120.50

1359
48.12

741
24.16

1432
29.07

802
23.64

CPU Time 6.22 0.19 4.47 3.98 4.23 5.21
rat575 Distance

SD
12493
244.32

12952
352.39

68311
1861.99

12399
255.10

128090
2608.86

76321
1131.00

CPU Time 11.12 0.24 300.00 8.18 19.23 24.32
u2152 Distance

SD
82205

1301.57
82209

1590.31
150341
3117.80

709209
8188.67

241745
2162.19

77828
786.49

CPU Time 18.45 0.67 300.00 23.16 40.23 6.04

Table&v:&Performance&of&GA,&NNA,&ACO,&SA,&default&BBO&and&BBO/TSP,&the&best&

results&averaged&over&20&Monte&Carlo&simulations,&and&the&standard&deviations&of&

the&best&distances.&The&best&results&in&each&row&are&shown&in&bold&font.&

Based on the simulation results in Table&v, in ulysses16, BBO/TSP achieved the

best overall solutions. Although the computation time is slightly longer than the others, it

is still tolerable. In st70, SA has the best performance, and BBO/TSP has the second best,

which is close to the results from SA, and far better than others. In rat575, SA is the best

choice as far as the solution quality, but it is more time consuming compared to NNA,

and BBO/TSP only has fair performance on this benchmark. With the largest benchmark,

u2152, BBO/TSP achieved the best performance and fastest convergence speed among

all of the heuristic algorithms. According to these results, BBO/TSP has the best overall

performance.

59

3.6 BBO GUI for TSP

According to the results from the previous section, hybrid BBO can be much

more effective than its predecessors. Hybridization has become the trend for algorithm

design. The key to designing a hybrid algorithm is that each component in the algorithm

should be fairly independent from the others. In other words, the algorithm is a well-

designed framework with a modular design pattern. So each component is an independent

module. Components like population initialization, crossover, greedy methods, and local

optimization, are considered as modules in the algorithm. With a standard input/output

(I/O) interface, each module can be easily replaced with alternative, newly designed

modules.

Algorithm modulation can benefit researchers when attempting new techniques. It

requires minimal modification to implement different algorithmic techniques with a well-

designed I/O interface. Because of the popularity of BBO, numerous hybrid algorithms

have been developed [13] [14] [15]. But there is no consistent format for BBO algorithms,

so the effort to implement new techniques into BBO can be significant. In this section,

we will introduce a GUI for BBO as applied to TSPs. Also, we will introduce a

modularized format for BBO.

3.6.1 Module Categories in BBO

Before designing an algorithm, there is a question we need to address – what is

the structure of the algorithm? Since we need to design a modularized BBO algorithm,

60

the answer to this question should be divided into two parts: how to design modules, and

how to connect modules.

There are five module categories in BBO for TSP:

1. BBO framework

2. Population initialization

3. Recombination

4. Local optimization

5. Greedy methods

The BBO framework is the most important module category. This category only

includes one module, which is called the BBO framework module, and it cannot be

replaced by an alternative module. This module contains the fundamental BBO

algorithms and defines the interface with the other modules. All the other modules need

to be connected to the BBO framework module in order to function correctly.

Since the BBO framework module serves as the interface for the entire algorithm,

it needs to provide standard connections to other modules. We prefer a plug-and-play

system, so every module is independent from each other, and the communication between

modules are solely based on the I/O interfaces in the BBO framework modules. The I/O

format for each module besides the BBO framework module is shown as follows.

! Population initialization

Inputs: 1) Coordinates of all cities; 2) Number of SIVs per individual (i.e., number of

TSP cities); 3) Randomly generated city order for each individual.

61

Output: 1) city order for each individual after applying a population initialization

technique.

! Recombination

Inputs: 1) coordinates of all cities; 2) tour distance of each individual; 3) number of

individuals in the population; 4) number of SIVs per individual (i.e., number of TSP

cities); 5) city order for each individual.

Outputs: 1) city order for each individual after applying a recombination method; 2) tour

distance of each individual after applying the recombination method.

! Local optimization

Inputs: 1) coordinates of all cities; 2) city order for each individual; 3) Current generation

number.

Outputs: 1) city order for each individual after applying the local optimization method; 2)

tour distance of each individual after applying the local optimization method.

! Greedy method

Inputs: 1) the city order for each individual; 2) the tour distance of each individual; 3) the

city order of each individual; 4) the tour distance of each individual.

Outputs: 1) the city order for each individual after applying the greedy method; 2) the

tour distance of each individual after applying the greedy method.

62

3.6.2 Default Modules

Population initialization is the second module category. The purpose of this

module category is to preprocess the population before applying the BBO algorithm.

There are many traditional methods which can significantly increase the quality of the

entire population without much computational effort. Although we cannot obtain the

optimal solution or even be close to the optimal solution, our goal here is only to provide

a better start for BBO. Based on the simulation results from the previous section, NNA

can provide a high quality initial population for BBO, and lead to better final results. In

this category, researchers can also design their own preprocessing algorithms following

the I/O format described above. In the BBO GUI for the TSP, we provide five default

modules for population initialization: NNA0, NNA1, NNA5, NNA10, NNA100. The

numbers in the module names represent how many individuals will be initialized with

NNA. For example, NNA1 means that we only perform NNA on one individual.

Recombination (or crossover) is the most critical component in BBO. The same

algorithm with different crossover methods can have very different performances on the

same benchmark problem. In this case, a crossover upgrade might be the main focus for

an algorithmic modification. For most algorithms, crossover methods are deeply

embedded in the algorithms. So in order to test different crossover methods, algorithms

need to be rewritten most of the time. The goal of our GUI design is to provide a platform

so researchers can switch between different techniques with minimal effort. As long as

the crossover modules follow the I/O format described above, nothing else needs to be

changed after plugging them into the BBO framework module. The default crossover

63

modules include: matrix crossover module, cycle crossover module, and inver-over

crossover module.

Local optimization is a complementary technique for crossover. The focus of

local optimization is local search rather than global search. The default modules of local

optimization include: opt2 module (perform 2-opt), opt3 module (perform 3-opt), optk

module (perform k-opt).

Greedy methods are very effective in some cases, so we also include it as a

module category. Researchers can develop different greedy strategies to achieve the best

results. There are four default greedy modules provided in this GUI: greedy0 module,

greedy1 module, greedyhalf module and greedyall module. The greedy0 module does not

implement any greedy method. The greedy1 module implements a greedy method on one

individual. The greedyhalf module implements a greedy method on half of the population.

The greedyall module implements a greedy method on all the individuals.

3.6.3 TSP GUI based on BBO

The BBO GUI is built with the modules mentioned in the previous subsections.

Since the entire GUI interface is too large to display on a single figure, we discuss the

interface one piece at a time in this section. The first part of the GUI is the TSP

benchmark selection, which is shown in Figure 21.

64

Figure&21:&The&BBO&benchmark&selection&

In this GUI, there are a total of 100 TSP benchmark problems, and users can

choose any of them from the menu shown in Figure 21.

The second part of the GUI is the BBO setup, which contains two user-defined

parameters - population size and generation limit. Those two parameters are problem

dependent, and users can choose appropriate values based on their experience. The BBO

setup window is shown in Figure 22.

Figure&22:&The&BBO&setup&selection&

The third part of the GUI is the BBO technique module, which includes

population initialization, migration, local optimization, and greedy method. Each module

65

contains several options. Any user-created module will automatically be displayed as an

option in the corresponding module category.

Figure&23:&The&BBO&technique&selection&&

The fourth part of the GUI is the control panel, and it includes the plot selection

menu, the run button, and the clear button. This GUI contains four plot locations. The

user can choose any of them for their cost vs. generation plot. The reason we decide to

provide four plots in the GUI is because we encourage users to draw plots at different

locations with different selected techniques. Side by side comparison is the most intuitive

way to visualize the performance comparison of different techniques. The run button is

used to begin the BBO algorithm. The clear button is used to clear the selected plots from

the GUI.

66

Figure&24:&GUI&control&panel&

The fifth part of the GUI is the plot section, which includes four plots. Users can

select any of those locations to draw the output plots from a given BBO simulation.

Figure&25:&Plots&in&GUI&

The sixth part of the GUI is the function panel. You can save figures, save data

from figures, and access the help file from this panel.

67

Figure&26:&Function&panel&of&GUI&

The last part of the GUI is the TSP map. Plotting a TSP map to display the best

solution at each generation is an intuitive way to visualize the improvement of the best

BBO solution from one generation to the next.

Figure 27: TSP map of GUI

&

With this GUI, users can easily implement different techniques on the 100

benchmark problems that have been provided, and can also add their own TSPs. Also,

68

based on the standardized I/O interface, new techniques can be implemented with

minimal effort.

69

Figure 28: BBO GUI for TSPs

70

CHAPTER IV

COMPLEX SYSTEM OPTIMIZATION

The material in this chapter is based on [28], which is one of the dissertation

author’s publications. It is used here with permission. Optimization problems with

complex structures are hard to solve. For a nonlinear problem with multi-objectives and

multi-constraints, a heuristic algorithm is a good option because of its flexibility and ease

of implementation. For real world engineering applications, we find that few systems are

simple. Most consist of several interacting subsystems, each of which has multi-

objectives and multi-constraints. The optimization of a complex system is a challenge

because we cannot treat each subsystem separately. The selected optimization methods

need to consider the entire system. Since the subsystems are not totally independent from

each other, it is ideal if we can combine their optimization by synchronizing the local and

global optimization procedures.

71

4.1 Structure of Complex Systems

In modern industry, system structures are complex. It is hard to find a system with

only one input, one output, one objective, and no constraints. Instead, multi-inputs, multi-

outputs, multi-objectives, and multi-constraints are common. Modularity has also become

common in industrial design for several reasons. First, the maintenance of modularized

systems is relative easy. Problem diagnosis can be localized in each component. Second,

updating such systems will not affect the entire system. We also find that adding more

components, or replacing components in a modularized system, can be easily

accomplished. A complex system is usually a modularized system, with a structure that

consists of multi-modules. The only connection between each module is the parameter

inputs and outputs. In other words, a complex system consists of relatively independent

subsystems. Each subsystem has its own inputs, outputs, objectives, and constraints.

We use automobile assembly processing as an example of a complex system. A

manufacturing plant is usually configured to assemble more than one model of vehicle.

Each model built in the plant can be considered a subsystem. Each subsystem is different.

For this reason, each subsystem can be treated as an independent system. But these

subsystems still belong to the same system, and usually they have some aspects in

common. For example, they may share similar objectives, like compatibility of parts,

total cost of each vehicle, or assembly costs. This same situation also applies to the

constraints. For example, the material cost and labor cost are common constraints in the

assembly process. In this case, it is not necessary to optimize each subsystem individually.

Although the subsystems are not identical to each other, they still share similar objectives

72

and costs. So information exchange between subsystems is mutually beneficial to every

subsystem. Without individually optimizing for each subsystem, we treat all subsystems

as one integrated system. We can now study the global optimization of all subsystems,

which is referred to as the optimization of a complex system.

4.2 Algorithms for complex system optimization

Some problems, such as TSPs, truck routing, or sensor selection, are

combinatorial, or cannot be characterized by equations. Optimization methods such as

Newton’s method or gradient descent are not suitable in this case. Other than using brute-

force search, a heuristic algorithm is the best possibility that remains.

In a complex system, each subsystem has its own objectives and constraints.

When compared with simple systems, the complex system has three extensions: from

single objective to multiple objectives, from no constraints to multiple constraints, and

from optimizing only one system to optimizing multiple subsystems. With a problem

involving multi-objectives and multi-constraints, two types of techniques are used to deal

separately with each objective and constraint. The final results are then calculated based

on the combination of these techniques. When we are confronted with the problem of

optimizing multi-systems, we enter new territory relative to traditional optimization

theories. It is not only a theoretical achievement to solve these types of problems, but also

a significant contribution to the industry. Multi-objectives and multi-constraints represent

most of the problems faced by industry today. If we can optimize similar problems all at

73

once, rather than one at a time, we can significantly increase the efficiency of the

optimization process.

Based on its performance on benchmarks [1], we decide to implement BBO for

complex systems. Since complex systems are much different than simple systems, due to

having multi-systems, multi-objectives, and multi-constraints, we need to change the

structure of BBO so that it is suitable for complex systems [55]. The major change is in

migration. First, the ranking strategy is different because we need to assign ranks to

individuals based on the performance of all objectives. Also, migration becomes more

complex, because we need to migrate both within single subsystems, and also between

subsystems. In addition to the change in migration, other parts of BBO are also changed.

One such change is with regard to the population setup. Since we have more than one

subsystem, there is more than one subpopulation contained within the population. The

modification of BBO for complex system optimization will be discussed in detail in the

following sections of this chapter.

4.3 BBO for Complex Systems

In this section, we focus on the modification of BBO for complex systems. The

following features of complex systems must be considered: the multi-subsystems

structure, the multi-objectives of each subsystem, and the multi-constraints of each

subsystem.

74

The original BBO algorithm was designed for a single objective, no constraints,

and single-system problems. But since then, BBO has been extended to multi-objective

problems [56] and multi-constraint problems [57]. As we recall from Chapter 1, the main

feature of complex systems is its multi-subsystem structure. Therefore, our major goal is

to extend BBO to systems with multi-subsystems, where each subsystem contains multi-

objectives and multi-constraints. Our new algorithm is called BBO/Complex.

Our first BBO extension involves its environment, or its population structure. The

original BBO environment is an archipelago that consists of islands. The islands

represent possible solutions to the problem. This BBO environment is based on the

premise that BBO is a single system optimization algorithm. Complex systems contain

more than one subsystem, each of which is partially independent from the others.

Therefore, the environment of BBO/Complex includes n archipelagos, where n is the

number of subsystems. The second difference between BBO and BBO/Complex

involves objectives and constraints. The original BBO algorithm only includes one

objective and no constraints, but BBO/Complex includes multi-objectives and multi-

constraints. The new environment of BBO/Complex is as follows [55].

1. P = {A1, A2, A3, ...} is a population that is comprised of archipelagos. Each

archipelago corresponds to one subsystem.

2. Ah = {Ih1, Ih2, Ih3, ...; Oh1, Oh2, Oh3, ...; Ch1, Ch2, Ch3, ...} is an archipelago that is

comprised of islands Ihi, objectives Ohi, and constraints Chi.

3. Ihi = {Shi1, Shi2, Shi3, ...} is an island that is comprised of SIVs, also called candidate

solution features, independent variables, or design variables.

75

As previously discussed, each archipelago corresponds to a subsystem. So each

archipelago contains three groups of components. The first group of components is a

group of islands, and each island is a possible solution to the subsystem optimization

problem. The second group of components is a group of objectives for the subsystem.

The last group of components is the set of constraints for the subsystem. The combination

of all three groups of components in the subsystem is called an archipelago.

Mutation in BBO/Complex is identical to that in standard BBO. But migration in

BBO/Complex needs to be modified due to the fact that the environment of

BBO/Complex contains more than one subsystem. In the following subsections we

consider two types of migration: within-subsystem migration and cross-subsystem

migration.

4.3.1 Within-subsystem migration

In standard BBO, the fitness of an island is linearly related to the objective

function because the system consists of only one objective function and no constraints.

So the only performance measurement comes from the objective function. But in a

complex system, the performance of an island is not reflected by only one objective

function. That is the only difference between migration in BBO, and within-subsystem

migration in BBO/Complex, but it is a major difference. Due to the fact that each

subsystem contains multi-objectives and multi-constraints, we need to combine all of this

information to determine the fitness of each island and its resulting migration rate.

76

We note here that Pareto-optimal solutions are often used in multi-objective

algorithms [58]. But Pareto approaches require decision makers to select a single solution

from a set of Pareto-optimal solutions, all of which are considered to be equally optimal.

The Pareto approach has the advantage of providing multiple candidates to the decision

maker as potential solutions, but has the drawback of requiring the decision maker to

select from a potentially large set of such candidate solutions. Our approach avoids the

need for a human decision maker, which may be desirable for certain problems.

In BBO/Complex, a modified version of the non-dominated ranking system

(NDRS) [9] is used as the ranking system for islands. NDRS was initially designed for

single systems with multi-objectives [59]. NDRS eliminates the weighting factors used in

weighted ranking algorithms. NDRS can be easily deployed in almost any single-system,

multi-objective optimization algorithm without major modification [60]. An updated

version of NDRS was introduced in [61] as the ranking system in the multi-objective

genetic algorithm (MOGA). That version uses non-consecutive integers as ranks to

reflect the relative performance of each individual in a population. We are inspired here

by both NDRS and the MOGA ranking system. But neither NDRS nor MOGA deals with

constraint violation, which is a major concern in our work, as well as in most real-world

optimization problems. So our modified NDRS considers constraint violations. We

consider two factors that determine the relative performance of a candidate solution:

fitness values and constraint violations. In our modified NDRS, the constraints have a

higher priority than the fitness values. Violations of constraints significantly degrade the

relative rank of individuals. Assume that we have a subsystem with the following

characteristics: the population size is n; the number of objectives is m; the number of

77

constraints is k; Ri is the rank of the i-th island (to be determined below); and Vi is the

number of constraint violations of the i-th island. Algorithm 1 outlines the modified

NDRS procedure.

Algorithm*1:*Modified*non2dominated*ranking*system*(NDRS).*Vi*is*the*number*of*

constraint*violations*of*the*i2th*island,*and*Ri*is*the*relative*rank*of*the*i2th*island,*

where*a*lower*rank*is*better.*m*is*the*number*of*optimization*objectives.*

After performing the above version of NDRS, we have the rank of each island in

the subsystem. A smaller rank means better performance. For example, suppose have 4

R1 = R2 =… = Rn = 0;
V1 = V2 =… = Vn = 0;
for i = 1 to n do

for c = 1 to k do
 if constraint c of island i is violated then
 Vi = Vi + 1
 end if
end for

end for
for i1 = 1 to n do

for i2 = i1 to n do
 if Vi1 > Vi2

Ri1 = Ri1 + m
else if Vi1 < Vi2

Ri2 = Ri2 + m
else if Vi1 = Vi2

for o1 = 1 to m do
if objective o1 of island i1 is better than o1 of i2 then

Ri2 = Ri2 + 1
else if objective o1 of island t2 is better than o1 of t1

then
Ri1 = Ri1 + 1

end if
end for

end if
end for

end for

78

islands and each of the islands has 3 objectives and 3 constraints. The objective and

constraint violation information might be given in Table vi. Based on those data, the rank

of each island is calculated according to the modified NDRS method in the last column of

Table vi.

 Objective 1 Objective 2 Objective 3 Constraint Violation Rank
Island 1 1 2 3 0 0
Island 2 2 4 2 1 4
Island 3 3 1 4 1 5
Island 4 1 1 1 2 9
Table*vi:*Rank*calculation*example*with*the*modified*NDRS.*A*lower*objective*

means*better*performance,*and*lower*ranks*are*better*than*higher*ranks.*

The ranks obtained from the modified NDRS are shown in Table vi, but one thing

that needs to be mentioned is that the ranks assigned to the islands are 0, 4, 5, and 9.

Ranks are not necessarily consecutive integers. The reason is that NDRS reflects the

performance of an island by including the number of partial domination counts in a rank

rather than simply ordering the islands. This gives more granularity for rank values,

which is important when probabilistically choosing migrating islands in BBO.

4.3.2 Cross-subsystem migration

Standard BBO only contains one type of migration: within-subsystem migration,

which has been modified for BBO/Complex as shown above. But BBO/Complex also

includes cross-subsystem migration. Cross-subsystem migration is different because each

subsystem has its own ranking system. The comparison of ranks across subsystems is

79

meaningless, because ranks assigned to each island in a subsystem only represents the

relative goodness of the island in that specific subsystem. If we consider two islands in

two different subsystems, we cannot determine which island is better by simply

comparing their ranks, because ranks from different subsystems are calculated differently

based on the different subsystem objectives and constraints. Instead, cross-subsystem

migration is based on three factors – distance between islands, the similarity level of

objectives, and the similarity level of constraints.

4.3.2.1 Distance between islands

The first factor to consider in cross-subsystem migration is the distance between

islands. As we know, heuristic algorithms require population diversity [2]. BBO

migration is based on sharing SIVs among islands. If the population has a low diversity,

most of the islands are similar to each other, and the probability that an island improves

after migration is low. In this case, migration may not effectively contribute to

improvement in the population.

Mutation is the technique that introduces new SIVs to the population, and

mutation does not depend on the diversity of the population. But the mutation rate is

usually a small number, for example, 1%, because large mutation rates negate the

effectiveness of migration and reduce the evolutionary algorithm to a random search. The

new information introduced to the population through mutation sometimes includes

useful SIVs. But most of the time, those SIVs are useless and can even degrade the

population. In general, mutation is not a rapid or efficient technique for evolution.

80

Usually we use Euclidean distance to calculate the distance between islands. This

calculation is straightforward for islands with the same structure. The Euclidean distance

between island a and b in archipelago h, both of which have c SIVs, is

Dhab = Shak − Shbk()2

k=1

c

∑ (4.1)

This calculation is valid if and only if both islands share the same structure, which

means they have the same SIV type at the same location in the vector that defines the

candidate solution. But in a complex system, subsystems usually have different island

structures. That is, the independent variables in subsystems are not commensurate. For

example, the SIV types in island 1 may be labeled type 1, 2 and 3; but the SIV types in

island 2 may be labeled 2, 3, and 4. Equation (4.1) is not appropriate to calculate the

distance between islands 1 and 2 in this case, because we cannot find the corresponding

SIVs on both islands for the type 1 SIV and the type 4 SIV.

For BBO/Complex, we need a new technique to calculate the distance between

islands with different structures. The partial distance strategy (PDS) is widely used in

statistics to calculate Euclidean distances with missing data [62]. This is similar to our

situation. Instead of missing data, we have missing SIV types. In order to implement PDS,

we need to modify the data structure of the islands. First, we define each island to include

all the SIV types on all islands, and this definition provides a unified format for islands. If

an island did not originally include a specific SIV type, we assign an N/A value to the

SIV and treat it as missing data. Assuming that there are a total of t types of SIVs, the

unified format is given as follows:

 []1 2SIV ,SIV ,N/A,...,SIVtx = (4.2)

81

The implementation of PDS in BBO/Complex is given as follows.

Dghab =
t

Kghab

Sgak − Shbk()2
Kghabk

k=1

t

∑ , if Kghab > 0

0, if Kghab = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (4.3)

Kghabk =
0, if Sgak =N / A or Shbk = N / A

1, if Sgak ≠ N / A and Shbk ≠ N / A

⎧
⎨
⎪

⎩⎪

Kghab = Kghabk
k=1

t

∑
 (4.4)

Dghab is the partial distance between island a in archipelago g and island b in

archipelago h; and t is the total number of SIV types. As an example, suppose we have 2

islands: island 1 = [0 1 2 3, N/A, 4], and island 2 = [1, 3, N/A, N/A, 5, 5]. Island 1 has 5

SIVs, and island 2 has 4 SIVs, and the two islands have 3 SIVs in common. Then the

distance is calculated based on Equation (4.3) and (4.4) as 4.90.

4.3.2.2 Similarities between objectives and constraints

 The second and third factors in the island distance calculation are the similarity

level of the objectives and the similarity level of the constraints. Subsystems with similar

objectives and constraints are more likely to benefit each other through migration than

subsystems that are not closely related. Our calculation of similarity level is based on the

fast similarity level calculation (FSLC) [55]. Suppose there are two islands, each of

which has a vector of independent variables: U = [u1, u2, u3, …] and V = [v1, v2, v3, …]

(either objectives or constraints). The similarity level (SL) of these vectors is calculated

by FSLC in Algorithm 2.

82

Algorithm 2: Similarity level calculation. U and V are the sets of objectives or constraints

of two islands (candidate solutions).

4.3.2.3 Summary of cross-subsystem migration

Now that we have discussed the three factors for cross-subsystem migration, we

summarize cross-subsystem migration as follows. First, calculate the migration

probability between islands based on the similarity level between subsystems.

Pmigration =

1
2

OS
OSmax

+ CS
CSmax

⎛

⎝⎜
⎞

⎠⎟
, if OSmax > 0 and CSmax > 0

1
2

OS
OSmax

, if OSmax > 0 and CSmax = 0

1
2

CS
CSmax

, if OSmax = 0 and CSmax > 0

0, if OSmax = 0 and CSmax = 0

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (4.5)

OS is the objective similarity level between two islands; OSmax is the maximum

inter-archipelago objective similarity level in the population; CS is the constraint

similarity level between two islands; CSmax is the maximum inter-archipelago constraint

similarity level in the population.

SL = 0
for each u ∈"U

for each v ∈ V
if u and v are the same type then

SL = SL + 1
end if

end for
end for

83

The probability for a pair of subsystems to perform cross-subsystem migration is

linearly related to the above migration probability. After calculating the above probability,

we need to choose emigrating islands for each immigrating island. We use roulette wheel

selection [3] to select the emigrating island. Islands with better partial distances will have

a better chance to be selected as the emigrating island. Figure 29 shows an example of

emigrating island selection across subsystems.

Figure*29:*An*example*of*emigrating*island*selection*for*immigration*to*island*1*in*

subsystem*1.*First,*calculate*the*partial*distances*between*island*1*in*subsystem*1,*

and*each*island*in*subsystem*2.*Then*create*a*roulette*wheel*based*on*the*partial*

distances.*Finally,*probabilistically*select*the*emigrating*island*based*on*roulette*

wheel*selection.*

84

4.3.3 Summary of BBO/Complex

BBO/Complex is summarized as follows.

1. Define the control parameters: population size, stopping criteria, mutation

probability, and elitism parameter. A typical setup for BBO is that population size is

100, stopping criteria is 100,000 cost function calls, mutation probability is 0.05,

and elitism parameter is 1.

2. Initialize the population. This is usually done with randomly-generated individuals.

3. Calculate the constraint and objective similarity levels between all pairs of

subsystems.

4. Calculate the rank of islands in each subsystem.

5. Within-subsystem migration: Probabilistically choose the immigrating islands based

on the island ranks. Use roulette wheel selection based on the emigration rates to

select the emigrating islands. Emigration rates are linearly related to the island ranks.

After each immigrating island selects its corresponding emigrating island, we

perform within-subsystem migration. Each SIV in an immigrating island will have a

chance to be replaced by an SIV from an emigrating island. This process is the same

as migration in standard BBO.

6. Cross-subsystem migration: Find suitable pairs of subsystems based on similarity

levels. Calculate distances between each pair of islands across all different

subsystems. Use roulette wheel selection based on partial distances to select the

emigrating islands. Then begin cross-subsystem migration. Each SIV in an

85

immigrating island will have a chance to be replaced by an SIV from an emigrating

island, and this probability is PSIVmigration which can be predefined by users.

7. Probabilistically perform mutation on each island based on mutation probability.

8. In each subsystem, save the islands with the best performances as elite islands.

Replace the worst islands in the population with the previous generation’s elite

islands.

9. If the termination criterion is not met, go to step 4; otherwise, terminate.

The structure of BBO/Complex is conceptually different than MDF, IDF, and CO.

As we see from Figure 1, Figure 2, and Figure 3, MDF, IDF, and CO provide different

strategies to optimize systems. But they are just frameworks, and we can choose any

optimization method, like gradient descent or a GA, as the optimizer within the

framework. But BBO/Complex is in a different category, because it includes both the

framework and the optimization algorithm, as shown in Figure 30. It provides an efficient

way to communicate between subsystems during the optimization process, and it

provides a unique migration strategy to share information both within and across

subsystems. Comparing MDF, IDF, CO, and BBO/Complex, we see that cross-subsystem

migration in BBO/Complex is an innovation that can significantly enrich information

sharing among subsystems.

86

Figure*30:*BBO/Complex*formulation*

4.4 Simulation

In this section, we compare the performance of BBO/Complex on real world

benchmark problems with other well-known MDO algorithms: MDF, IDF, and CO. As

we mentioned before, these three MDO algorithms are frameworks which require an

additional optimization method as a complementary but essential component. The

optimization algorithm we use in all three of these MDO algorithms is BBO without

cross-subsystem migration. The benchmark problems are obtained from [62], and include

the speed reducer problem, the propane combustion problem, the heart dipole problem,

and the power converter problem. Each benchmark includes several subsystems, and each

subsystem includes multi-objectives and multi-constraints. Detailed information about

each benchmark can be found in the appendix.

87

The reason we choose these benchmarks is that they can be formulated as

complex systems with inter-connected subsystems. There are two decomposition

strategies: one is based on the physical system and one is based on the system

requirements. In this section, we decompose the systems based on system requirements.

Based on [64] and [65], traditional MDO algorithms usually lack the capability of dealing

with multi-objectives, so their decomposition is based on the principle that each

subsystem has one objective and multi-constraints. This type of decomposition is suitable

for traditional optimization methods because it avoids the need to consider all objectives

at once. Due to the fact that BBO is a heuristic algorithm, and with supporting results

from [66] and [67], BBO/Complex is expected to perform well on multi-objective

problems. It has more flexible decomposition options than traditional MDO algorithms.

Our decomposition option for BBO/Complex is that each subsystem has multi-

objectives and multi-constraints. But in order to provide a fair comparison between other

MDO algorithms and BBO/Complex, we also introduce a BBO/Complex version that

uses the same decomposition strategy as the other MDO algorithms. So we have two

versions of BBO/Complex in this section: the first one uses the same decomposition

method as CO, MDF, and IDF, and is called BBO/Complex/Single; the other one uses

multi-objectives in each subsystem, and is called BBO/Complex/Multi.

* For* each* benchmark* test,* we* compare* the* performance* of* each* algorithm*

using*both*constraint*violation*and*cost.*We*perform*100*Monte*Carlo*simulations*

for* each* algorithm* and* each* benchmark* problem* to* accurately* measure*

performance.* The* termination* criterion* is* 100,000* cost* function* evaluations.* The*

constraint*violation*index*is*calculated*for*each*generation*as*the*average*number*of*

88

constraint* violations* among* all* Monte* Carlo* simulations.* They* are* all* normalized*

between*0*and*1.*The*constraint*violation*index*is*0*if*there*are*no*violations.*The*

second*performance*metric* is* based*on* the* cost* function* values.*We* calculate* the*

rank* for*each*algorithm*using*modified*NDRS* in*each*Monte*Carlo*simulation,*and*

then* obtain* the* averge* rank* over* 100*Monte* Carlo* simulations.* The* optimization*

goal*of*each*benchmark*is*to* find*the*minimum*value*of*the*cost*without*violating*

any* constraints.* Since* each* benchmark* contains*multi2objectives,*we*use*NDRS* to*

calculate* the* rank* of* each* algorithm* based* on* its* cost.* But* we* have* two* priority*

levels:*the*first*goal*is*to*find*feasible*solutions,*and*the*second*goal*is*to*reduce*cost.*

Priority*level*one*overrides*priority*level*two.*

4.4.1 The Speed Reducer Problem

The first benchmark we test is the speed reducer problem. It contains 3 objectives,

11 constraints, and 7 design variables, as detailed in the appendix. The performance of all

algorithms on the first benchmark is shown in Table vii, which shows that

BBO/Complex/Single has the best performance on the speed reducer benchmark,

including the best cost rank and the minimum constraint violation. MDF, CO, and

BBO/Complex/Multi are slightly worse than BBO/Complex/Single. IDF has the worst

performance in terms of both cost rank and constraint violation.

89

 NDRS Cost Rank SD Violation
BBOComplex/Single 2.41 2.06 0.04

MDF 2.62 2.11 0.05
CO 5.17 2.10 0.08

BBOComplex/Multi 7.80 1.59 0.14
IDF 12.00 0 0.27

Table*vii:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*speed*reducer*problem*after*100,000*function*calls.*For*each*metric,*a*smaller*

number*means*better*performance.**

4.4.2 The Power Converter Problem

The second benchmark is the power converter problem. It has 6 design variables,

8 state variables, 2 objectives, and 4 constraints, as detailed in the appendix. Table viii

shows the performance of the algorithms on the power converter problem. The

performances of all algorithms are fairly close to each other. We have good results on this

problem because all algorithms achieve a 0 constraint violation. CO is the best algorithm

in terms of cost, and BBO/Complex/Multi has the second best performance.

 NDRS Cost Rank SD Violation
CO 3.51 0.56 0

BBOComplex/Multi 3.73 0.47 0
MDF 3.76 0.57 0

BBOComplex/Single 3.77 0.57 0
IDF 5.23 1.35 0

Table*viii:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*

for*the*power*converter*problem*after*100,000*function*calls.*For*each*metric,*a*

smaller*number*means*better*performance.**

90

4.4.3 The Heart Dipole Problem

The third benchmark is the heart dipole problem. It has 6 design variables, 2

objectives, and 5 constraints, as detailed in the appendix. Table ix shows that

BBO/Complex/Single, BBO/Complex/Multi and MDF achieve a 0 constraint violation,

which means that the best individuals for each Monte Carlo run are feasible. When we

combine cost rank and constraint violation, BBO/Complex/Single has the best

performance on this benchmark, and BBO/Complex/Multi is the second best.

 NDRS Cost Rank SD Violation
BBOComplex/Single 1.35 1.30 0
BBOComplex/Multi 1.36 1.16 0

MDF 3.29 1.17 0
IDF 6 0 0.20
CO 8 0 0.40

Table*ix:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*heart*dipole*problem*after*100,000*function*calls.*For*each*metric,*a*smaller*

number*means*better*performance.**

4.4.4 The Propane Combustion Problem

The fourth benchmark is the propane combustion problem. It has 1 design variable, 3

objectives, and 4 constraints, as detailed in the appendix. According to Table x,

BBO/Complex/Multi is the best algorithm for this benchmark because it is the only

algorithm that achieves a 0 constraint violation. BBO/Complex/Single achieves the

second best performance with a constraint violation slightly greater than 0.

91

 NDRS Cost Rank SD Violation
BBOComplex/Multi 1.71 1.58 0
BBOComplex/Single 2.99 2.06 0.02

CO 4.75 1.99 0.04
MDF 9.76 0.46 0.25
IDF 10.79 0.49 0.25

Table*x:*NDRS*cost*ranks,*standard*deviation*of*ranks,*and*constraint*violations*for*

the*propane*combustion*problem*after*100,000*function*calls.*For*each*metric,*a*

smaller*number*means*better*performance.**

4.5 Summary of Benchmark Tests

The benchmark results show that BBO/Complex/Multi is the only algorithm that

obtains feasible solutions on three of the benchmarks. For the speed reducer benchmark,

none of the algorithms finds a feasible solution, but BBO/Complex/Single comes the

closest. Among all four benchmarks, BBO/Complex/Multi achieves the best performance

once and the second best performance twice, and BBO/Complex/Single achieves the best

performance twice and the second best performance once. Among the non-

BBO/Complex algorithms, CO is the best, achieving the best performance once.

92

4.6 Markov model of BBO/Complex

As typified by BBO algorithm described earlier, most heuristic algorithms have a

similar evolution process in their search for an optimal solution. In contrast with more

traditional and analytic optimization algorithms, there is no guarantee that we can obtain

the optimal solution with heuristic algorithms.

Markov models are general tools that are used to describe the probability of

transitioning from one state to another. If we can develop a Markov model for a system,

the probability of the appearance of each state can be calculated mathematically. If we

treat a Markov state as a distribution of individuals in a heuristic algorithm, then we can

use the Markov model to calculate the probability of the appearance of any given

population distribution, which means that we can calculate the probability that the

optimal solution will be found by the heuristic algorithm. In this way, Markov models

can be used to mathematically analyze the performance of heuristic algorithms for given

optimization problems. Markov models have been successfully applied to various

heuristic algorithms, such as simple genetic algorithms [68], simulated annealing [69],

the genitor algorithm, and the CHC algorithm [70]. In 2010, a Markov model was

developed for BBO, and that was the first time that the performance of BBO was

analyzed mathematically and theoretically [7]. The following sections extend the BBO

Markov model to the BBO/Complex algorithm.

93

4.6.1 Development of a Markov model of BBO/Complex

Markov models describe the probability that a system transitions from one state to

another. They are discrete-time random processes on a finite state space. Assume that

there are T possible states in some system. Then a T×T transition matrix can be defined to

describe the probability of transitioning between each pair of states. We call this

transition matrix P. The probability that state Si transits to state Sj is given by Pij, which is

also called the transition probability. If a Markov model can transition from any state to

any other state, then P does not include any zero entries, and the transition matrix P of

the Markov chain is called regular. If P is regular, we can obtain the steady state

transition matrix Pss as follows [7], [71]:

 lim
n→∞

Pn = Pss (4.6)

Equation (4.6) gives the transition matrix after an infinite number of transitions.

Each row in Pss is the same as every other row, and the i-th element in each row is the

limiting probability of the occurrence of state i as the number of transitions approaches

infinity.

If BBO/Complex is implemented on a system with discrete independent variables,

then it has a finite number of population distributions, and we can derive a Markov model

for it. Each population distribution represents a state in the Markov model. As shown in

Equation (4.6), Pss is independent from the initial state. In BBO, this means that the final

population distribution is independent of the initial population. This result is of great

importance in building a Markov model for BBO/Complex. We only need the transition

matrix to predict the final population distribution (in the limit as the generation count

94

approaches infinity), and this limiting distribution is independent from the initial

population. For the simulations that will be used to verify the Markov model later, we do

not need to be particular about the initial population − all initial populations will

eventually lead to the same final population distribution.

The environment of BBO/Complex is comprised of M subsystems. We assume

here that the independent variables of the optimization problem are binary, although we

note that any discrete space can easily be mapped into a binary space. The number of bits

in each island (candidate solution) in subsystem i is denoted as bi. The population size of

BBO for subsystem i is denoted as ni. The total number of possible solutions in

subsystem i is denoted as Ni, and the total number of possible solutions in the entire

system is denoted as N. Ni and N are calculated as follows:

Ni = 2bi

N = Ni
i=1

M

∏
 (4.7)

The j-th island (candidate solution) in the population of subsystem i is denoted as

yij. The j-th point in the search space of the subsystem i is denoted as xij. We use vij to

denote the total number of xij islands in subsystem i. So the combined BBO/Complex

population can be generally represented as follows:

95

Population = y11,…, y1N1
⎡⎣ ⎤⎦, y21,…, y2N2

⎡⎣ ⎤⎦,…, yM1,…, yMNM
⎡⎣ ⎤⎦{ }

 = x11,…, x11

v11

! "# $# , x12,…, x12

v12

! "# $# ,…, x1N1
,…, x1N1

v1N1

! "# $#

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪
,

 x21,…, x21

v21

! "# $# , x22,…, x22

v22

! "# $# ,…, x2N2
,…, x2N2

v2N2

! "# $#

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

 %

 xM1,…, xM1

vM 1

! "# $# , xM 2,…, xM 2

vM 2

! "# $# ,…, xMNM
,…, xMNM

vMNM

! "## $##

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫
⎬
⎪

⎭⎪

 (4.8)

For convenience in notation, we have ordered the yij islands in the same order as

the xij search space points. Based on Equation (4.8), the population in subsystem i can be

written in a more compact format as follows:

yik =

xi1, when k = 1,...,vi1
xi2, when k = vi1 +1,...,vi1 + vi2

!

 xiNi , when k = vil
l=1

Ni−1

∑ +1,..., vil
l=1

Ni

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (4.9)

for i = 1, …, M. In Equation (4.9), yik denotes the k-th island in the population of

subsystem i. We use yik(s) to represent the s-th bit in the k-th island in the population of

subsystem i. Equation (4.9) can be written as follows:

yik = xiz(k)

z(k) = min r, such that vil > k
l=1

r

∑ (4.10)

Based on the definition of BBO/Complex, islands in different subsystems have

different structures and contain different types of SIVs. For ease of notation, we use a

96

unified format to represent each island in the BBO/Complex population, as shown in

Equation (4.2).

A Markov model describes the transitions between states. Each state in

BBO/Complex is a specific population distribution. Each generation of BBO/Complex

updates its population with migration and mutation. A transition between states

corresponds to the evolution of the population in one generation of BBO/Complex. So in

order to build a transition matrix, we need to model migration and mutation in

BBO/Complex. In the following subsections, we study the migration and mutation

processes, and use them to build the transition matrix for the Markov model of

BBO/Complex.

4.6.1.1 Migration

Migration is the main technique that BBO uses to share information among

islands. In the original BBO algorithm, the basic procedure of migration is to

probabilistically select an immigrating island (an island that imports SIVs) and an

emigrating island (an island that exports SIVs). Then we probabilistically choose some

SIVs from the emigrating island, and use them to replace the SIVs in the immigrating

island. Figure 31 illustrates a simple migration process.

97

Figure*31:*An*example*of*migration*between*two*islands.*

In BBO/Complex, the migration process is more complicated. Rather than having

just one population, it contains multiple populations, one for each subsystem. Each

subsystem is relatively independent from the others, which means the construction of the

population of each subsystem is relatively independent from the others. Also, there are

two types of migration in BBO/Complex, within-subsystem migration and cross-

subsystem migration, which introduces further complexity to the Markov model

development.

There are four assumptions we make in this section to develop the Markov model.

They are similar (but expanded) versions of the assumptions used to develop the Markov

model for the original BBO algorithm [7].

First, a BBO solution will not be replaced until the end of the generation. In other

words, BBO is generational rather than steady-state [2]. This assumption guarantees that

the migration probabilities remain the same throughout each generation.

Second, an island can emigrate to itself. The immigrating and emigrating islands

are probabilistically chosen from the entire population. So there is a chance that the

98

immigrating and emigrating islands are the same. This is similar to a chromosome

crossing over with itself in a GA.

Third, migration only happens between SIVs with the same type. The

environment of BBO/Complex is a group of archipelagos. Each archipelago has a unique

population structure, depending on the subsystem with which it is associated. So islands

from different archipelagos might not contain the same SIV types. SIVs represent

features, and each feature has a unique domain. That is the reason that migration is only

valid between the same SIV types. For example, suppose some island consists of five

SIVs, where SIV1 is the proportional gain of a PID controller, SIV2 is the integral gain of

a PID controller, and SIV3 is the derivative gain of a PID controller. Each SIV has a

unique type, definition, and parameter domain. For example, the domain of SIV1 might

be from 0.5 to 1, while the domain of SIV2 might be from 0.1 to 0.4. Migration between

SIV1 and SIV2 would not make sense because SIV1 represents a proportional gain wile

SIV2 represents an integral gain, which is a completely different parameter with a

completely different function.

Fourth, we use predetermined migration rates for each island rank rather than

calculating the migration rates each generation. All the ranks are calculated each

generation based on the non-dominated sorting method [9]. The emigration rate µ and

immigration rate λ of each island are calculated based on the rank of the island, which is

similar to the original BBO algorithm, except here we use ranks based on multi-

objectives and multi-constraints, instead of ranks based on scalar cost values.

99

Within-Subsystem Migration

BBO/Complex contains two types of migration: within-subsystem migration and

cross-subsystem migration. Within-subsystem migration is similar to the original

migration method in BBO, and it is used for migration between islands within the same

subsystem. This migration process has two possible situations. First, since migration is

selected probabilistically, it might not be performed, which means the features in the

potential immigrating island will not be changed from one generation to the next. This

situation is represented for the k-th individual in the i-th subsystem as follows:

 yik (s)t+1 = yik (s)t = xiz(k)(s) (4.11)

The second situation is that a feature is selected to migrate to the immigrating

island. The probability of obtaining a certain bit at a certain locus in a given island is

proportional to two factors: the total number of occurrences of that bit in the entire

subsystem population; and the emigration rates of the islands that contain those bits. This

probability is calculated for the k-th individual in the i-th subsystem as follows:

Pr(yik (s)t+1 = xil (s) | immigration) =
vijµijj∈Jil (s)∑
vijµijj=1

ni∑

(4.12)

where Jil(s) is the set of islands in subsystem i that contain the same bit in position s as

island xil:

 Jil (s) = j : xij (s) = xil (s){ } (4.13)

100

Considering both situations described above and combining them into one

equation, we obtain the probability of obtaining a given bit from within-subsystem

migration:

1

1

1

()
() 0 () ()

1

Pr (() ())
Pr(no immigration)(() () | no immigration)

 Pr(immigration)(() () | immigration)

(1)1 (() ()) il

i

im within sub ik t il

ik t il

ik t il

ij ijj J s
iz k iz k il iz k n

ij ijj

y s x s
y s x s
y s x s

v
x s x s

v

µ
λ λ

µ

− − +

+

+

∈

=

=
= =
+ =

= − − +
∑
∑

 (4.14)

Assume we have q bits in our unified island format, as given in Equation (4.2).

The probability that the k-th individual in the i-th subsystem is equal to a given island xil

can be calculated based on Equation (4.14), which shows the probability of obtaining a

single bit. We use Pikl
(1)(v) to denote this probability, which is a function of the current

population vector v at the t-th generation. (The term population vector will be defined

later, but for now we simply need to know that it represents the current population in the

BBO algorithm.) This probability is given as follows:

Pikl
(1)(v) = Pr(yik ,t+1 = xil)

 = (1− λiz(k))10 (xiz(k)(s)− xil (s))+ λiz(k)

vijµijj∈Jil (s)∑
vijµijj=1

ni∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥s=1

q

∏
 (4.15)

Cross-Subsystem Migration

The second type of migration is called cross-subsystem migration, which is the

migration process between subsystems. Cross-subsystem migration is more complicated

101

than within-subsystem migration for two reasons: (1) the island structure varies from

subsystem to subsystem; (2) ranking cannot be used to compare the performance cost of

islands across subsystems, because rank information is useless when islands do not share

identical cost and constraint functions. Issue one can be addressed with our unified island

structure, which is shown in Equation (4.2). For issue two, we need to introduce a new

strategy for island selection that is specifically geared toward the optimization of multiple

related subsystems, and this strategy will be introduced later in this section.

For cross-subsystem migration, when considering the possibility of immigration

to a given individual, we have the same two possibilities as we do for within-subsystem

migration: (1) migration is not performed (recall that the migration decision is made

probabilistically); (2) migration is performed. The first scenario is exactly like the

corresponding scenario in within-subsystem migration. The only thing we need to

reconsider here is the second possibility, and how to compute the probability of

occurrence of each island after migration, since ranks within a subsystem do not indicate

their cost values relative to islands in other subsystems. BBO/Complex introduces the

concept of distances between islands for the selection of islands in cross-subsystem

migration [62], [28]. The motivation of this method is based on the concept of diversity: a

larger diversity in a population provides more opportunities to find an optimal solution.

The probability that we obtain a given bit xil(s) at a given position s in the k-th individual

yik in the i-th subsystem is calculated as follows:

102

Prim−cross−sub(yik (s)t+1 = xil (s) | immigration from subsystem m)

= Pr(no immigration)(yik (s)t+1 = xil (s) | no immigration)

 + Pr(immigration)(yik (s)t+1 = xil (s) | immigration)

= (1− λiz(k))10(xiz(k) (s)− xil (s))+ λiz(k)

vmjσ ilmjj∈Jil (s)∑
vmjσ ilmjj=1

nm∑

 (4.16)

σilmj: distance between island l in subsystem i and island j in subsystem m.

The probability that yik,t+1=xil after cross-subsystem migration can be calculated

based on Equation (4.16), and is denoted as Pikl(2)(v).

Pikl
(2)(v) = Pr(yik ,t+1 = xil)

 = (1− λiz(k))10 (xiz(k)(s)− xil (s))+ λiz(k)

vmjσ ilmjj∈Jil (s)∑
vmjσ ilmjj=1

nm∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥s=1

q

∏
 (4.17)

Combined Within-Subsystem Migration and Cross-Subsystem Migration

Recall that the beginning of this chapter provides the detailed BBO/Complex

procedure. According to this procedure, there are three steps in modifying a population,

with the sequence given as follows: within-subsystem migration, cross-subsystem

migration, and mutation. To find the total probability of obtaining a given island, we need

to combine the probabilities of those three processes. Based on our derivations up to this

point, we combine the probabilities of the two types of migration, and we use Pikl(3)(v) to

denote this probability.

 Pikl
(3)(v) = Pikj

(1)(v)Pijl
(2)(v)

j=1

ni

∑ (4.18)

103

This is the probability that yik is equal to xil after both within-subsystem and cross-

subsystem migration have been considered.

4.6.1.2 Mutation

Mutation is another way to alter islands in BBO/Complex. In order to calculate

the probability of obtaining a certain island after two migrations and one mutation, we

need to follow two steps. First, we obtain the probability of transforming a given island to

another given island due to mutation, and then we combine this probability with Equation

(4.18) to obtain the total probability.

Assuming that the mutation rate is predefined and constant, we can easily create a

mutation matrix for each subsystem. When we denote the mutation matrix as Ui for

subsystem i, the mutation probability that island xir mutates to island xil is represented by

Uirl which is the l-th element in the r-th row in the mutation matrix Ui. So the size of Ui is

ni × ni. We next combine Ui with Equation (4.18) to obtain the probability that yik,t+1=xil

after within-subsystem migration, cross-subsystem migration, and mutation have all been

considered:

 (4) (1) (2)

1 1
() () ()

i in n

ikl ikj ijr irl
r j

P v P v P v U
= =

=∑∑ (4.19)

Now we will extend the probability from the island level to the population level.

Before we do that, there is a term that needs to be introduced – population vector. In

BBO/Complex, the population distribution is represented by a population vector. This is

104

best illustrated by example. Assume we have two subsystems with four possible islands

in subsystem 1, and four possible islands in subsystem 2. Then the population vector

contains eight elements as illustrated in Figure 32.

Population vector

Island-11
Count

Island-12
Count

Island-13
Count

Island-14
Count

Island-21
Count

Island-22
Count

Island-23
Count

Island-24
Count

Figure*32:*Population*vector*for*a*system*that*is*comprised*of*two*subsystems,*

where*each*subsystem*has*a*search*space*cardinality*of*four.*The*population*vector*

has*eight*elements.*Island2ik*represents*the*number*of*xik*individuals*in*subsystem*k.*

As an example based on Figure 32, a population vector [0 0 2 2 3 1 0 0] indicates

that subsystem 1 contains two island-3 individuals, and 2 island-4 individuals; and

subsystem 2 has three island-1 individuals and one island-2 individual.

We follow the method from [7], [72], and use the generalized multinomial

theorem to find the probability that population vector v transitions to population vector u

in subsystem i after one generation, and we use Pri(u|v) to denote this probability:

()(4)

1 1

1 1

Pr (|) ()

: {0,1}, 1 for all , for all

i i
ikl

i

i i
i i

N n J

i ikl
J Y k l

n N
N n

i i ikl ikl ikl il
l k

u v P v

Y J R J J k J u l

∈ = =

×

= =

=

⎧ ⎫
= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑∏∏

∑ ∑
(4.20)

Based on Equation (4.20), we obtain the transition matrix Pi for subsystem i. Each

element in Pi represents the probability of transitioning from one possible population

105

vector to another. Pi is a Ti×Ti matrix, where Ti is the total number of possible population

vectors in subsystem i. Ti can be calculated as follows [7]:

 Ti =
ni + Ni −1

Ni

⎛

⎝
⎜

⎞

⎠
⎟ (4.21)

Note that there are Ti×Ti combinations of u and v vectors in Equation (4.20).

These Ti×Ti different probabilities comprise the entries of the Pi transition matrix. After

obtaining the transition matrices of each subsystem, we combine the matrices to form the

transition matrix P for the entire system. The size of P is T×T, where T is the total

number of possible population vectors for the entire system:

 T = Ti
i=1

M

∏ (4.22)

where M is the number of subsystems in the entire complex system. The P matrix can be

calculated in pseudo-code as shown in Algorithm 3.

106

Algorithm*3:*Pseudo2code*to*construct*P*matrix*

After calculating transition matrix P, the probability of each possible population,

in the limit as the generation count approaches infinity, can be calculated based on

Equation (4.6).

4.6.3 Simulation

In the first part of this chapter, we introduced a method to calculate the limiting

probability of each possible population, which exactly predicts the steady state

probability of each population vector during BBO/Complex. Now, we use a sample

problem to confirm the newly derived Markov model.

FOR (z1= 0; z1++; z1<t) {
SET Count = 0;

FOR (z2=0; z2++; z2<t1) {
FOR (z3=0; z3++; z3<t2) {

 !

FOR (zM+1=0; zM+1++; zM+1<tM) {
P(Count, z1) = P1(z2,z1)P2(z3,z1)...Py(zM+1,z1);

Count++;
}

}
}

}
M: number of subsystems

t: number of possible population distributions for entire system
ti: number of possible population distributions for subsystem i
Pi(i,j): element in i-th row and j-th column of the transition matrix of
subsystem i

107

The sample problem is a complex system which has two subsystems. Each

subsystem contains two bits. Subsystem 1 contains type-1 and type-2 bits; subsystem 2

contains type-1 and type-3 bits. The subsystems share type-1 bits in common. The

possible islands of subsystem 1 and subsystem 2 in a unified format are shown in Table

xi and Table xii.

 Type-1 bit Type-2 bit Type-3 bit

Possible island 1 0 0 N/A

Possible island 2 0 1 N/A

Possible island 3 1 0 N/A

Possible island 4 1 1 N/A

Table*xi:*Possible*islands*of*subsystem*1*

 Type-1 bit Type-2 bit Type-3 bit

Possible island 1 0 N/A 0

Possible island 2 0 N/A 1

Possible island 3 1 N/A 0

Possible island 4 1 N/A 1

Table*xii:*Possible*islands*of*subsystem*2*

Each subsystem includes two cost functions. A smaller cost means better

performance. The cost functions for subsystem 1 are given as follows:

y11 = 2x11 + x12 +1

y12 =
y11

x11 + x12 +1
+1

 (4.23)

108

! y11: first cost value of an island in subsystem 1

! y12: second cost value of an island in subsystem 1

! x11: first bit of an island in subsystem 1

! x12: second bit of an island in subsystem 1

The cost functions for subsystem 2 are given as follows:

y21 = 2x21 + x23 +1

y22 =
x21 + x23 +1
y21 +1

+1
 (4.24)

! y21: first cost value of an island in subsystem 2

! y22: second cost value of an island in subsystem 2

! x21: first bit of an island in subsystem 2

! x22: second bit of an island in subsystem 2

In order to verify the BBO/Complex Markov model derived in the previous

section, we have two requirements for the simulation setup. First, we need to perform

Monte Carlo simulations of BBO/Complex to obtain average performance. Second, the

generation limit of each BBO/Complex Monte Carlo simulation should be large enough

that the simulation results converge to steady state values. These number of Monte Carlo

simulations, and the number of generations of each simulation, are determined

empirically. The simulation setup is shown as follows.

! Monte Carlo simulations: 100

! BBO/Complex generations for each Monte Carlo simulation: 5000

109

! Number of subsystems: 2

! Number of islands per subsystem (population size): 4

! Number of bits per island: 3

We optimize this sample problem with three different mutation rates in

BBO/Complex: 0.001, 0.01, and 0.1.

Mutation Rate Population Vector Probability

Markov Simulation
0.001 4 0 0 0 4 0 0 0 0.9489 0.9590

3 1 0 0 4 0 0 0 0.0287 0.0194

4 0 0 0 3 1 0 0 0.0105 0.0074

4 0 0 0 3 0 1 0 0.0060 0.0070
3 0 1 0 4 0 0 0 0.0044 0.0058

0.01 4 0 0 0 4 0 0 0 0.6051 0.5901

3 1 0 0 4 0 0 0 0.1655 0.1770
4 0 0 0 3 1 0 0 0.0647 0.0631

4 0 0 0 3 0 1 0 0.0385 0.0425

3 0 1 0 4 0 0 0 0.0284 0.0294

0.1 3 1 0 0 4 0 0 0 0.0425 0.0348
3 1 0 0 3 1 0 0 0.0371 0.0268

2 2 0 0 4 0 0 0 0.0329 0.0274

2 2 0 0 3 1 0 0 0.0287 0.0218
3 1 0 0 3 0 1 0 0.0278 0.0258

Table*xiii:*The*five*most*likely*populations*for*three*mutation*rates.*

Based on the cost functions for each subsystem and the non-dominated ranking

system, the optimal population vector is [4 0 0 0 4 0 0 0]. According to the results shown

in Table xiii, when the mutation rate is 0.001, the probability of obtaining the optimal

110

population vector calculated by the Markov model is 0.9489, and the probability

calculated by the simulation is 0.9590. This confirms that the optimal population vector

dominates other populations, and we have a high probability of obtaining it. Also, the

simulation results match the theoretical results well.

When the mutation rate is 0.01, the most probable population vector is still the

optimal one, but the probability of the optimal population vector falls to around 60%.

Although performance is degraded, the probabilities calculated by the Markov model and

by the simulation are still close.

When the mutation rate is 0.1, the most probable population vector is [3 1 0 0 4 0

0 0], which is not the optimal population vector. The optimal population vector [4 0 0 0 4

0 0 0] is only the 7th most likely according to the Markov model, and the 5th most likely

according to the simulation (not shown in Table xiii). Since the probability values are

relatively small for the top five population vectors, the differences between the Markov

model results and the simulation results are larger compared to when the mutation rate is

lower, but the differences between theory and simulation are still small. The theoretical

Markov model results are exactly correction, but the simulation results are only

approximate due to the stochastic nature of the BBO/Complex algorithm.

Based on Table xiii, the Markov model is verified by the simulation results.

Finally, note that the calculation time for the Markov model probabilities was 492

seconds, but the average calculation time of each set of Monte Carlo simulations was

1166 seconds. In this case, the Markov model not only obtained more accurate steady-

state results than the simulation, but also did so with less computational time.

111

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In Chapter 2, the focus was on an efficiency test and convergence analysis for

heuristic algorithms. Heuristic algorithms are often implemented on large systems with

complex structures. Analytical optimization of these systems is hard to achieve. In

addition, optimization based on heuristic algorithms is time consuming, and the quality of

the final result is not guaranteed. Flexibility is one of the main benefits of heuristic

algorithms, but heuristic algorithms have drawbacks. Flexibility allows us to implement

heuristic algorithms without knowing the details of the problem, but it also results in slow

convergence. In Chapter 2, we tested two aspects of BBO: the initial population

construction and the information sharing process. In both aspects, use of problem specific

characteristics can have a large effect. Specially modified algorithms clearly outperform

algorithms without any modification. Also, we conducted a convergence analysis based

112

on BBO, and it showed that the mutation technique can guarantee that BBO will

eventually find the optimal solution, which makes BBO a true global optimization

method.

In Chapter 3, we introduced BBO for combinatorial problems. Since TSP is a

representative example of combinatorial problems, all the simulation examples in

Chapter 3 were TSPs. First, based on the results from Chapter 2, we saw that a good

population initialization method can result in significant differences in performance. We

introduced a population initialization method, NNA, into BBO. Based on the simulation

results, we saw that it provided a big improvement compared to standard BBO. Second,

crossover methods specially designed for TSP were introduced to BBO. When combining

BBO with other crossover techniques like matrix crossover, cycle crossover and inver-

over crossover, BBO becomes compatible with combinatorial problems. Third, local

optimization methods were introduced into BBO. As we know, the information sharing

strategies of most heuristic algorithms are designed for global optimization. The

advantage of this type of design is that heuristic algorithms can search for the globally

optimal solution, and not get easily stuck in locally optimal solutions. In contrast, local

optimization methods are designed for seeking locally optimal solutions. Since the

domain of the local search area is fairly small, the search process is much faster than a

global search. For combinatorial problems, each possible solution contains all the

necessary information to construct an optimal solution. When combining the power of

both global optimization and local optimization, we improved the performance of BBO.

The simulation results also confirmed this. The last technique we introduced into BBO

was greedy methods, and it showed its potential on large problems. In the end, a modified

113

BBO was created which benefits from the previous studies by combining the techniques

with the best performance: 1 NNA for population initialization; inver-over crossover; k-

opt for local optimization; and all greedy for the greedy method. The modified BBO

obtained promising simulation results when compared with other well-known algorithms.

At the end of Chapter 3, a TSP GUI was built based on BBO. This GUI contains all the

compatible TSPs from TSPLib, and provides a user-friendly interface to let users

intuitively explore the different techniques in Chapter 3. This GUI is not only a test

platform, but also a modularized BBO implementation with a well-designed interface

between the main BBO algorithm and the other modules, including population

initialization, migration, mutation, etc. Users can easily build their only BBO algorithms

with other techniques of their choice with this GUI. This GUI can be a useful tool for

both teaching and researching.

In Chapter 4, a new topic was addressed: BBO for complex systems. Systems

built in recent years are more complicated than ever, and complex systems have become

quite common these days. The aim of traditional heuristic algorithms is usually to

optimize one system. Complex systems have three major challenges: multi-objectives,

multi-constraints, and multi-subsystems. The last challenge, multi-subsystems, has not

been widely addressed before now in evolutionary optimization research. In Chapter 4, a

newly designed BBO algorithm called BBO/complex was introduced. Based on the new

immigration probability calculation method and the ranking method, we successfully

created a BBO algorithm for complex systems. BBO/Complex uses the original

framework of standard BBO, but extends it to a multi-archipelago environment to suit the

structure of complex systems. BBO/Complex has one significant difference from its

114

predecessors – it combines the optimization framework and the low-level optimization

approach into a single algorithm. This is quite different from MDF, IDF, and CO, all of

which are only frameworks for complex system optimizers, and which need a low-level

optimization method as an additional tuning parameter. The low-level optimization

approaches incorporated in MDF, IDF, and CO are typically traditional algorithms like

gradient descent, Newton’s method, etc. But those algorithms can easily get stuck in a

local optimum. Based on [7] and [73], standard BBO can guarantee convergence to the

optimal solution given enough generations. Besides the traditional advantages of BBO,

the BBO/Complex algorithm also introduces new features, like a ranking system that

evaluates candidate solutions based on both performance and constraints, the use of PDS

to maintain the diversity of the population, within-subsystem migration for information

sharing within subpopulations, and cross-subsystem migration for information sharing

between subpopulations. The simulation results indicated that BBO/Complex is a

competitive multidisciplinary optimization algorithm.

In the second part of Chapter 4, a Markov model was derived for BBO/Complex,

and it was confirmed by a bi-subsystem sample problem. When the mutation was low –

0.001 or 0.01 − the optimal vector dominated the population with a probability of around

95% and 60% respectively. But with a high mutation rate of 0.1, the probability of

obtaining the optimal population vector was only around 2.7%. Although the population

probabilities were different with different mutation rates, the theoretical results calculated

by the Markov model matched the simulations well, thus confirming the Markov model.

According to our results, the computational requirements of the Markov model can be

much less than those of simulations for small problems. Markov models are useful for

115

predicting the performance of heuristic algorithms, and quantifying the performance of

different components in a heuristic algorithm without relying on long simulation times.

Markov models can thus be helpful for algorithm design and parameter tuning. But

Markov models also have a disadvantage. The computational effort can be very high for

large problems. For a complex system with M subsystems, the total number of possible

populations is

 T =
ni + Ni −1

Ni

⎛

⎝
⎜

⎞

⎠
⎟

i=1

M

∏ (5.1)

ni : cardinality of search space in subsystem i
Ni : population size of subsystem i

Based on this equation, the total number of possible populations in our small

sample system was 1,225. When we have a larger population size or a non-binary

problem, this number will increase to an extremely large number that will result in a large

transition matrix that cannot be handled with current computational resources.

5.2 Future Work

In this dissertation, we introduced three topics: efficiency tests and convergence

analyses of heuristic algorithms, BBO for combinatorial problems, and BBO for complex

systems. In the next step of our research, we will continue in these three directions.

First, we discussed the efficiency tests and convergence analyses for heuristic

algorithms in this dissertation. But our conclusions were based on the probability

116

calculation after one generation. In the next step of our research, we can derive the

percentage of the occurrence of optimal results based on a Markov model of the

algorithm or a dynamic system model for each of the modified versions of BBO. We can

use these models to analyze the performance of new variations of BBO.

Second, combinatorial problems are challenging benchmarks for heuristic

algorithms. In order to improve the performance of BBO, we introduced new migration

methods, local optimization methods, population initialization methods, and greedy

methods. In future research, new techniques will be introduced to create hybrid BBOs

dedicated to combinatorial problems. We also want to extend our research to real world

applications, such as vehicle routing problems. We also want to use other popular

solution methods like GA and ACO to solve the same problem for comparison.

Third, future work for BBO/Complex can be extended in four directions:

convergence speed, adaptation, computational efficiency, and advanced testing.

Convergence speed is one of the primary concerns for heuristic algorithms. Parallel

computation can be used to decrease convergence time by dividing a task into multiple

subtasks and solving them in parallel. One of the classic parallel computation models is

the master-slave model. The master is in charge of job assignment and global calculations.

The slaves perform subtasks that are assigned by the master, and return the results to the

master. This structure can be adapted to BBO/Complex by viewing the master as the

system optimizer and each slave as a subsystem optimizer. Computation time can be

decreased dramatically with this structure, especially for problems with a large number of

subsystems.

117

The second direction for future research in BBO/Complex is adaptation. In

BBO/Complex, we find a solution to a complex system with a combination of within-

subsystem migration and cross-subsystem migration. But other types of migration could

also be implemented. A proper migration method can significantly increase performance

for different types of problems. So we can design a series of migration methods, like

migration for complex systems with tight subsystem coupling, migration for complex

systems with loose subsystem coupling, migration for complex systems with many design

variables, etc. Then we can classify the migration methods according to their

performances on various types of problems and create a BBO/Complex algorithm that

adaptively chooses the most efficient migration methods according to the selected

problem.

The third direction for future research involves the computational effort of

Markov modeling. Because of the heavy computational burden mentioned above, Markov

models are limited to problems with small population sizes and binary island structures,

which do not capture the structure of real world problems. This limitation might be able

to partially addressed by combining similar Markov model states into a single state [74].

The last direction for future research in the area of BBO/Complex is further

testing. As mentioned in Chapter IV, complex systems typically contain multiple

subsystems, multiple objectives, and multiple constraints. In this dissertation, a Markov

model was developed for complex systems with multiple subsystems and multiple

objectives. In future research, a Markov model can be developed for complex systems

that also include multiple constraints.

118

REFERENCES

[1] D. Simon, “Biogeography-based optimization," IEEE Transactions on Evolutionary

Computation, vol. 12, no. 6, pp. 702–713, 2008.

[2] D. Simon, Evolutionary Optimization Algorithms, John Wiley & Sons, 2013.

[3] P. Austin, Cracking the Roulette Wheel: The System & Story of the CPA Who

Cracked the Roulette Wheel, CreateSpace Independent Publishing Platform, 2010.

[4] R. Rarick, D. Simon, F. Villaseca, and B. Vyakaranam, “Biogeography-based

optimization and the solution of the power flow problem,” IEEE Conference on

Systems, Man, and Cybernetics, San Antonio, Texas, pp. 1029–1034, 2009.

[5] P. Lozovyy, G. Thomas, and D. Simon, “Biogeography-based optimization for robot

controller tuning,” in: Computational Modeling and Simulation of Intellect: Current

State and Future Perspectives (B. Igelnik, editor), IGI Global, pp. 162–181, 2011.

[6] D. Du and D. Simon, “Biogeography-Based Optimization for Large Scale

Combinatorial Problems,” in: Efficiency and Scalability Methods for Computational

Intellect (B.Igelnik and J. Zurada, editors), Chapter 10, pp. 197–217, IGI Global,

2013.

[7] D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov models for biogeography-

based optimization," IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, vol. 41, no. 1, pp. 299–306, 2011.

119

[8] D. Simon, “A Dynamic System Model of Biogeography-Based

Optimization,” Applied Soft Computing, vol. 11, no. 8, pp. 5652–5661, 2011.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi- objective

genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol.

6, no. 2, pp. 182–197, 2002.

[10] T. Yamada and R. Nakano, "A genetic algorithm with multi-step crossover for job-

shop scheduling problems," IEE/IEEE International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications, pp. 146–151,

1995.

[11] A. Nemirovskii, "Several NP-hard problems arising in robust stability analysis."

Mathematics of Control, Signals and Systems, vol. 6, no. 2, pp. 99–105, 1993.

[12] W. Guo, C. Huang, L. Wang, and Q. Wu, “Hybrid BBO and GA algorithms based

on elite operation," Journal of Information & Computational Science, vol. 9, no. 11,

pp. 2987–2995, 2012.

[13] D. Du, D. Simon, and M. Ergezer, “Biogeography-based optimization combined

with evolutionary strategy and immigration refusal," IEEE Conference on Systems,

Man, and Cybernetics, San Antonio, TX, pp. 1023–1028, October 2009.

[14] G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, and M. Shao, “Path planning for

uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm,"

Advanced Science, Engineering and Medicine, vol. 4, no. 6, pp. 550–564, 2012.

120

[15] M. Sood and M. Kaur, “Shortest path finding in country using hybrid approach of

BBO and BCO," International Journal of Computer Applications, vol. 40, no. 6, pp.

9–13, 2012.

[16] L. Goel, D. Gupta, and V. Panchal, “Hybrid bio-inspired techniques for land cover

feature extraction: A remote sensing perspective," Applied Soft Computing, vol. 12,

no. 2, pp. 832–849, 2012.

[17] G. Dantzig and J. Ramser, “The truck dispatching problem," Management Science,

vol. 6, pp. 81–91, 1959.

[18] R. Bowerman, B. Hall, and P. Calamai. "A multi-objective optimization approach to

urban school bus routing: Formulation and solution method," Transportation

Research Part A: Policy and Practice, vol. 29, no. 2, pp. 107–123, 1995.

[19] L. Dong and C. Xiang. "Ant colony optimization for VRP and mail delivery

problems," IEEE International Conference on Industrial Informatics, Singapore, pp.

1143–1148, 2006.

[20] G. Mathews, “On the partition of numbers," London Mathematical Society, vol. 28,

pp. 486–490, 1897.

[21] R. Nauss, "The 0-1 knapsack problem with multiple choice constraints." European

Journal of Operational Research, vol. 2, no. 2, pp. 125–131, 1978.

[22] M. Mitchell, An introduction to genetic algorithms, MIT Press, 1998.

[23] P. Boilot, “Electronic noses inter-comparison, data fusion and sensor selection in

discrimination of standard fruit solutions," Sensors and Actuators B: Chemical, vol.

88, no. 1, pp. 80–88, 2003.

121

[24] M. Desrochers, “A classification scheme for vehicle routing and scheduling

problems," European Journal of Operational Research, vol. 46, no. 3, pp. 322–332,

1990.

[25] A. Jaszkiewicz, “Genetic local search for multi-objective combinatorial

optimization," European Journal of Operational Research, vol. 137, no. 1, pp. 50–

71, 2002.

[26] H. Mo and L. Xu, “Biogeography migration algorithm for traveling salesman

problem," in: Advances in Swarm Intelligence (Y. Tan, Y. Shi, and K. Tan editors),

Springer, pp. 405–414, 2010.

[27] M. Ergezer and D. Simon, “Oppositional biogeography-based optimization for

combinatorial problems," IEEE Congress On Evolutionary Computation, New

Orleans, LA, pp. 1496–1503, 2011.

[28] D. Du and D. Simon, “Complex System Optimization Using Biogeography-Based

Optimization,” Mathematical Problems in Engineering, vol. 2013, Article ID

456232, 17 pages, 2013.

[29] P. Cilliers, Complexity and postmodernism: understanding complex systems,

Routledge, 1998.

[30] J. Allison, Complex system optimization: A review of analytical target cascading,

collaborative optimization, and other formulations, M.S. Thesis, Mechanical

Engineering Department, University of Michigan, Ann Arbor, MI, 2004.

[31] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical Programming, Addison

Wesley, 1977.

122

[32] L. Vicente and P. Calamai, “Bilevel and multilevel programming: A bibliography

review," Journal of Global Optimization, vol. 5, no. 3, pp. 291–306, 1994.

[33] M. Masmoudi and D. Auroux, “The state of the art in collaborative design," in:

Recent Trends in Aerospace Design and Optimization (B. Uthup, S. Koruthu, R.

Sharma, and P. Priyadarshi, editors), Tata McGraw Hill, pp. 411–425, 2005.

[34] L. Leblanc and D. Boyee, “A bilevel programming algorithm for exact solution of

the network design problem with user-optimal flows," Transportation Research, vol.

20, vol. B, pp. 259–265, 1986.

[35] J. Bard, “Coordination of a multidivisional organization through two levels of

management," OMEGA, vol. 11, pp. 457–468, 1983.

[36] B. Hobbs and S. Nelson, “A nonlinear bilevel model for analysis of electric utility

demand-side planning issues," Annals of Operations Research, vol. 34, pp. 255–274,

1992.

[37] W. Walker, "A heuristic adjacent extreme point algorithm for the fixed charge

problem," Management Science, vol. 22, no. 5, pp. 587–596, 1976.

[38] R. Braun, P. Gage, and I. Kroo, “Implementation and performance issues in

collaborative optimization,” AIAA/NASA/ISSMO, Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, Washington, 1996.

[39] J. Martins and A. Lambe, “Multidisciplinary design optimization: A Survey of

architectures,” AIAA Journal, vol. 59, no. 9, pp. 2049–2075, 2013.

123

[40] E. Cramer, J. Dennis, P. Frank, R. Lewis, and G. Shubin, “Problem formulation for

multidisciplinary optimization,” SIAM Journal of Optimization, vol. 4, no. 4, pp.

754–776, 1994.

[41] S. Kodiyalam and J. Sobieszczanski-Sobieski, “Multidisciplinary design

optimization - some formal methods, framework requirements, and application to

vehicle design,” International Journal for Vehicle Design, vol. 25, no. 1 and 2, pp.

3–22, 2000.

[42] T. Zang and L. Green, “Multidisciplinary design optimization techniques:

Implications and opportunities for fluid dynamics research,” 30th AIAA Fluid

Dynamics Conference, Norfolk, Virginia, 1999.

[43] G. Reinelt, “TSPLib - A traveling salesman problem library," ORSA Journal On

Computing, vol. 3, pp. 376–384, 1991.

[44] T. CoverHart, “Nearest neighbor pattern classification," IEEE Transactions on

Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[45] G. Syswerda, “Schedule optimization using genetic algorithms," in: Handbook of

Genetic Algorithms (L. Davis editor), Van Nostrand Reinhold, pp. 332–349, 2011.

[46] H. Lee, A. Battle, R. Raina, and A. Y. Ng. "Efficient sparse coding

algorithms," Advances in neural information processing systems, vol. 19, pp. 801–

808, 2007.

[47] B. Fox and M. McMahon, “Genetic operators for sequencing problems," in:

Foundations of Genetic Algorithms 1 (G. Rawlins editor), Morgan Kaufmann, pp.

284–300, 1991.

124

[48] I. Oliver, D. Smith, and J. Holland, “A study of permutation crossover operators on

the traveling salesman problem," Second International Conference on Genetic

Algorithm and Their Application, Hillsdale, NJ, pp. 224– 230, 1987.

[49] G. Tao and Z. Michalewicz, “Inver-over operator for the TSP," Parallel Problem

Solving From Nature V, pp. 803–812, 1998.

[50] D. Johnson and L. McGeoch, “The traveling salesman problem: A case study in

local optimization," in: Local Search in Combinatorial Optimization (E. Aarts, J.

Lenstra editors), John Wiley Sons, pp. 215–310, 1997.

[51] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP," Discrete Applied

Mathematics, vol. 117, pp. 81–86, 2002.

[52] P. Poon and J. Carter, “Genetic algorithm crossover operators for ordering

applications," Computers Operations Research, vol. 22, no. 1, pp. 135–147, 1995.

[53] M. Dorigo and L. Gambardella, “Ant colonies for the traveling salesman problem,"

Biosystems, vol. 43, no. 2, pp. 73–81, 1997.

[54] E. Aarts, “Simulated annealing: An introduction," Statistica Neerlandica, vol. 43,

no. 1, pp. 31–52, 1989.

[55] J. Abell and D. Du, “A framework for multiobjective, biogeography-based

optimization of complex system families," AIAA/ISSMO Multidisciplinary Analysis

Optimization Conference, Fort Worth, TX, September 2010.

125

[56] A. Bhattacharya and P. Chattopadhyay, “Application of biogeography-based

optimization for solving multi-objective economic emission load dispatch problems,”

Electric Power Components and Systems, vol. 38, no. 3, pp. 340–365, 2010.

[57] P. Roy, S. Ghoshal, and S. Thakur, “Biogeography based optimization technique

applied to multi-constraints economic load dispatch problems,” Transmission and

Distribution Conference and Exposition: Asia and Pacific, Seoul, South Korea,

2009.

[58] J. Lin, "Multiple-objective problems: Pareto-optimal solutions by method of proper

equality constraints." IEEE Transactions on Automatic Control, vol. 21, no. 5, pp.

641–650, 1976.

[59] D. Goldberg, Genetic algorithm in search, optimization, and machine learning,

Addison-Wesley, 1989.

[60] N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated Sorting

in Genetic Algorithms,” IEEE Transactions on Evolutionary Computation, vol. 2, no.

3, pp. 221–248, 1994.

[61] M. Fonseca and P. Fleming, "Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization." International Conference on Genetic

Algorithms, Urbana-Champaign, IL, pp. 416–423, 1993.

[62] R. Hathaway and J. Bezdek, “Fuzzy c-means clustering of incomplete data,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 31, no. 5, pp. 735–744, 2001.

126

[63] S. Kodiyalam, Evaluation of methods for multidisciplinary design optimization

(MDO), Phase I, National Aeronautics and Space Administration, NASA CR-1998-

208716, Langley Research Center, 1998.

[64] X. Chen, B. Li, and Y. Lin, “Multidisciplinary design optimization with a new

effective method,” Chinese Journal Of Mechanical Engineering, vol. 23, no. 4, 2010.

[65] M. Xiao, L. Gao, H. Qiu , X. Shao, and X. Chu, “An Approach Based on Enhanced

Collaborative Optimization and Kriging Approximation in Multidisciplinary Design

Optimization,” Advanced Materials Research, vol. 118, pp. 399–403, 2010.

[66] K. Jamuna and K. Swarup, “Multi-objective biogeography based optimization for

optimal PMU placement,” Applied Soft Computing, vol. 12, no. 5, pp. 1503–1510,

2012.

[67] P. Roy and D. Mandal, “Quasi-oppositional biogeography-based optimization for

multi-objective optimal power flow,” Electric Power Components and Systems, vol.

40, no. 2, pp. 236–256, 2011.

[68] J. Suzuki, “A Markov chain analysis on simple genetic algorithms,” IEEE

Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 25, no. 4,

pp. 655–659, 1995.

[69] J. Suzuki, “A further result on the Markov chain model of genetic algorithms and its

application to a simulated annealing-like strategy,” IEEE Transactions on Systems,

Man, and Cybernetics - Part B: Cybernetics, vol. 28, no. 1, pp. 95–102, 1998.

[70] A. Wright and Y. Zhao, “Markov chain models of genetic algorithms,” Genetic and

Evolutionary Computation Conference, vol. 1, pp. 734-741, 1999.

127

[71] C. Grinstead and J. Snell, Introduction to probability. Providence, RI: American

Mathematical Soc., 1998.

[72] N. Beaulieu, “On the generalized multinomial distribution, optimal multinomial

detectors, and generalized weighted partial decision detectors,” IEEE Transactions

on Communications, vol. 39, no. 2, pp. 193–194, 1991.

[73] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE

Transactions on Neural Networks, vol. 5, no. 1, pp. 96–101, 1994.

[74] C. Reeves and J. Rowe, Genetic Algorithms: Principles and Perspectives, Springer,

2002.

[75] L. Padula, N. Alexandrov, and L. Green, “MDO test suite at NASA Langley

research center,” AIAA/NASA/ISSMO, Symposium on Multidisciplinary Analysis and

Optimization, Bellevue, Washington, 1996.

[76] A. Morgan, A. Sommese, and L. Watson, “Mathematical reduction of a heart dipole

model,” Journal of Computational and Applied Mathematics, vol. 27, no. 3, pp.

407–410, 1989.

[77] N. Tedford, J. Martins, “Benchmarking multidisciplinary design optimization

algorithms,” Optimization and Engineering, vol. 11, no. 1, pp. 159–183, 2010.

128

APPENDICES

APPENDIX A: DAWEI DU’S PUBLICATIONS

[1] D. Du, D. Simon, and M. Ergezer, “Biogeography-based optimization combined with

evolutionary strategy and immigration refusal," IEEE Conference on Systems, Man, and

Cybernetics, San Antonio, TX, pp. 1023–1028, 2009.

[2] M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-based optimization,"

IEEE Conference on Systems, Man, and Cybernetics, San Antonio, Texas, pp. 1035–1040,

October 2009.

[3] D. Simon, M. Ergezer, and D. Du, “Population distributions in biogeography- based

optimization algorithms with elitism," IEEE Conference on Systems, Man, and

Cybernetics, San Antonio, Texas, pp. 1017–1022, 2009.

[4] J. Abell and D. Du, “A framework for multiobjective, biogeography-based op-

timization of complex system families," AIAA/ISSMO Multidisciplinary Analysis

Optimization Conference, Fort Worth, Texas, 2010.

[5] D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov models for biogeography-

based optimization," IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, vol. 41, no. 1, pp. 299–306, 2011.

129

[6] D. Simon, R. Rarick, M. Ergezer, and D. Du, “Analytical and numerical comparisons

of biogeography-based optimization and genetic algorithms," Information Sciences, vol.

181, no. 7, pp. 1224–1248, 2011.

[7] D. Du and D. Simon, “Biogeography-Based Optimization for Large Scale

Combinatorial Problems," in: Efficiency and Scalability Methods for Computational

Intellect (B. Igelnik, J. Zurada editors), IGI Global, Chapter 10, pp. 197–217, IGI Global,

2013.

[8] D. Du and D. Simon, “Complex System Optimization Using Biogeography-Based

Optimization,” Mathematical Problems in Engineering, vol. 2013, Article ID 456232, 17

pages, 2013.

130

APPENDIX B: BENCHMARK PROBLEMS FOR BBO/COMPLEX

This appendix gives details about the benchmark problems used in this dissertation.

Speed Reducer

The speed reducer problem is a gear box design problem [62], [64], [75]. The

objective is to minimize the gear box weight, and the von Mises stresses for shaft 1 and 2.

This problem contains 3 objectives, 11 constraints, and 7 design variables. This problem

is defined as follows.

min F1 = 0.7854x1x2
2(3.3333x3

2 +14.9334x3 − 43.0934)−1.5079x1(x6
2 + x7

2)+

 7.477(x6
3 + x7

3)+ 0.7854(x4x6
2 + x5x7

2)

min F2 =

745x4

x2x3

⎛

⎝⎜
⎞

⎠⎟

2

+1.69×107

min F3 =

745x5

x2x3

⎛

⎝⎜
⎞

⎠⎟

2

+1.575×108

 such that

g1 =

27
x1x2

2x3

−1≤ 0

g2 =

397.5
x1x2

2x3
2 −1≤ 0

g3 =

1.93x4
3

x2x3x6
4 −1≤ 0

131

g4 =

1.93x5
3

x2x3x7
4 −1≤ 0

g5 =

745x4

x2x3

⎛
⎝⎜

⎞
⎠⎟
+1.69×107

0.1x6
3 −1100 ≤ 0

g6 =

745x5

x2x3

⎛
⎝⎜

⎞
⎠⎟
+1.575×108

0.1x6
3 −850 ≤ 0

 g7 = x2x3 − 40 ≤ 0

g8 =

x1

x2

−12 ≤ 0

g9 =

−x1

x2

+ 4 ≤ 0

g10 =

1.5x6 +1.9
x4

−1≤ 0

g11 =

1.1x7 +1.9
x5

−1≤ 0

The objectives, decision variables, and constraints are defined as follows.

F1 : overall weight of gearbox
F2 : von Mises stress for shaft 1
F3 : von Mises stress for shaft 2

132

x1 : gear face width
x2 : tooth module
x3 : number of teeth of pinion
x4 : distance between bearing 1
x5 : distance between bearing 2
x6 : diameter of shaft 1
x7 : diameter of shaft 2

g1 : bending stress of gear tooth
g2 : contact stress of gear tooth
g3 : transverse deflection of shaft 1
g4 : transverse deflection of shaft 2
g5 : stress in shaft 1
g6 : stress in shaft 2
g7 − g11 : dimension requirement for shafts

Power Converter

The power converter problem [62], [75] consists of two subsystems – the

electrical subsystem and the loss subsystem. It has 6 design variables, 8 state variables, 2

objectives, and 4 constraints. The system is described as follows.

min F1 = 0.78×104 x1

2 6x6 +
π x1

2
⎛
⎝⎜

⎞
⎠⎟
+ 6.747 ×104 x1x2x3

min F2 = 25x5 +

5×102(1− y2)
88y2

 such that

g1 =

2x2(x2 − 2×10−3 − x2x3)
0.4

≥ 0

133

g2 =

5×102 −
5.65(1− y3)

105 x4

0.3×10−4

x5

5
≥ 0

g3 = 0.3−

x4 100+
5.65(1− y4)0.5

105 x4

⎛

⎝⎜
⎞

⎠⎟

x2 y6

≥ 0

g4 = x4 −

28.25(1− y4)
107 ≥ 0

 State variables:

y1 = 0.78×104 x1

2 6x6 +
π x1

2
⎛
⎝⎜

⎞
⎠⎟
+ 6.747 ×104 x1x2x3 + 25x5 +

5×102(1− y2)
88y2

y2 =
500

y3

3.25×102

32

y3 =
500

y2

3.25×102

32

y4 =
500

y2

4.25×102

32

y5 =

7.6x1x21.724×10−8

x3

 y6 = x1
2

y7 =

π x1

2

134

y8 =

5.65(1+ y3)
y6x2105

The objectives, decision variables, states, and constraints are defined as follows.

F1 : weight of primary winding
F2 : weight of secondary winding

x1 : core center leg width
x2 : turns
x3 : copper size
x4 : inductance
x5 : capacitance
x6 : core window width

y1 : component weight
y2 : circuit efficiency
y3 : duty cycle
y4 : minimum duty cycle
y5 : inductor resistance
y6 : core cross-sectional area
y7 : magnetic path length
y8 : inductor value

g1 : fill window constraint
g2 : ripple specification
g3 : core saturation
g4 : minimum inductor size

Heart Dipole

The heart dipole problem [62], [75], [76] is based on the electrolytic

determination of the dipole moment in the heart. This problem contains 2 objectives, 5

135

constraints, and 6 design variables. This problem was modified from its original

formulation in order to be testable with MDO algorithms. Therefore, although the

problem is a common MDO benchmark, the objectives do not have any physical meaning.

The problem is defined as follows.

min F1 = x1((1− x2)2 − x3
2)− 2x1(1− x2)x3 + (1− x1)(x2

2 − x4
2)− 2(1− x1)x2x4 −1+

 x1((1− x2)2 − x3
2)+ 2x1(1− x2)x3 + (1− x1)(x2

2 − x4
2)+ 2(1− x1)x2x4 −1

min F2 = x1(1− x2)((1− x2)2 − 3x3
2)+ x1x3(x3

2 − 3(1− x2
2))+ (1− x1)x2(x2

2 − 3x4
2)+

 (1− x1)x4(x4
2 − 3x2

2)−1+ x1(1− x2)((1− x2)2 − 3x3
2)− x1x3(x3

2 − 3(1− x2)2)+

 (1− x1)x2(x2
2 − 3x4

2)− (1− x1)x4(x4
2 − x2

2)−1

 such that

 g1 = x3x1 + x4(1− x1)− x5(1− x2)− x6x2 −1 < 0.1

 g2 = x5x1 + x6(1− x1)+ x3(1− x2)+ x4x2 −1 < 0.1

 g3 = x1((1− x2)2 − x3
2)− 2x1(1− x2)x3 + (1− x1)(x2

2 − x4
2)− 2(1− x1)x2x4 −1> 0

 g4 = x1((1− x2)2 − x3
2)+ 2x1(1− x2)x3 + (1− x1)(x2

2 − x4
2)+ 2(1− x1)x2x4 −1> 0

g5 = x1(1− x2)((1− x2)2 − 3x3
2)+ x1x3(x3

2 − 3(1− x2)2)+ (1− x1)x2(x2
2 − 3x4

2)+

 (1− x1)x4(x4
2 − 3x2

2)−1> 0

g6 = x1(1− x2)((1− x2)2 − 3x3
2)− x1x3(x3

2 − 3(1− x2)2)+ (1− x1)x2(x2
2 − 3x4

2)−

 (1− x1)x4(x4
2 − 3x2

2)−1> 0

The objectives, decision variables, and constraints are defined as follows.

136

F1 : sum of g3 and g4

F2 : sum of g5 and g6

x1 : magnitude of dipole 1 on x-axis
x2 : magnitude of dipole 2 on x-axis
x3 : magnitude of dipole 1 on y-axis
x4 : magnitude of dipole 2 on y-axis
x5 : coordinate of dipole 1 on x-axis
x6 : coordinate of dipole 2 on x-axis
x7 : coordinate of dipole 1 on y-axis
x8 : coordinate of dipole 2 on y-axis

g1 − g6 : predefined constraints to determine the magnitude,
 directions, and locations of two dipoles.

Propane Combustion

The propane combustion problem is a chemical equilibrium problem [62], [75],

[77]. This problem contains 3 objectives, 4 constraints, and 11 design variables. This

problem is described as follows.

 min F1 = 2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 −10

min F2 = x2x4 − x6

40x1

x11

, x11 = xi
i=1

i=10

∑

min F3 = x1x2 − x7

40x4

x11

+ x1 x3 − x4x9

40
x11

 such that

 g1 = 2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 −10 > 0

137

g2 = x2x4 − x6

40x1

x11

> 0

g3 = x1x2 − x7

40x4

x11

> 0

g4 = x1 x3 − x4x9

40
x11

> 0

The objectives, decision variables, and constraints are defined as follows.

F1 : first product of combustion
F2 : second product of combustion
F3 : sum of third and fourth product of combustion

x1 − x10 : number of moles of each product formed
 for each mole of propane burned
x11 : sum of x1 to x10

g1 : first product of combustion
g2 : second product of combustion
g3 : third product of combustion
g4 : fourth product of combustion

	Cleveland State University
	EngagedScholarship@CSU
	2014

	Biogeography-Based Optimization for Combinatorial Problems and Complex Systems
	Dawei Du
	Recommended Citation

	Dissertation(Dawei Du)_Final_Submission

