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FABRICATION OF NANOSTRUCTURED METALS AND THEIR HYDROGEN 

STORAGE PROPERTIES 

 

 

ASLI ERTAN 

 

 

ABSTRACT 

 

Searching for new energy sources is highly desirable for the next generations 

when rapidly changing factors are considered such as population, increasing pollution 

and exhaustion of fossil fuels. Hence, there is a need for clean, safe and efficient energy 

carriers or forms of energy that can be transported to the end user. One of these energy 

carriers is electricity which has been used widely and can be produced from various 

sources. However, its production from fossil fuels contributes to pollution. On the other 

hand hydrogen, due to its abundance, light weight, low mass density, high energy density 

and non-polluting nature attract many researchers’ attention to be used as an energy 

carrier so that the dependence on fossil fuels would be minimized which are responsible 

for global warming due to harmful emissions to the atmosphere. In addition, hydrogen 

can be converted to other forms of energy more efficiently through catalytic combustion, 

electrochemical conversion, etc. However, hydrogen must be handled extremely carefully 

due to its physico-chemical properties. Its on-board storage is a major challenge because 

 v



of its high explosiveness and the high cost of the storage process. There are many factors 

that need to be considered when deciding upon the storage method and the most 

important ones are safety, gravimetric and volumetric capacities, cost, environmental 

friendliness, reversibility and release rate. 

This work is dedicated to study the hydrogen uptake behavior of nanostructured 

palladium constructed through template-assisted electrochemical deposition process. 

Hydrogen sorption experiments were conducted using a custom-made volumetric system. 

Nickel was used as the test metal to tune the electrochemical deposition process before 

conducting the experiments with palladium. Growth mechanism of the nanostructured 

metals in various substrates was investigated. Conditions for growing nano-scaled 

palladium were optimized and the hydrogen sorption experiments were conducted at 

various temperatures. The pressure-composition (P-C) isotherms revealed the 

nanostructuring effect on the hydrogen uptake behavior of palladium nanowires with 

100-200 nm pore diameters.  

 

 

 

 

 

 

 

 

 

 vi



 

TABLE OF CONTENTS 

        

ABSTRACT………………………………………………………………………......v 

TABLE OF CONTENTS…………………………………………………………....vii 

LIST OF TABLES…………………………………………………………………....x 

LIST OF FIGURES……………………………………………………………….... xi 

CHAPTER 

I. INTRODUCTION………………………………………………….... 1  

1.1 Specific aims of the study……………………………………….... 3   

1.2 Thesis organization……………………………………………….. 4   

II. BACKGROUND…………………………………………………….. 5   

                        2.1 Hydrogen technology……………………………………………...5  

   2.1.1 Metal hydrides………………………………………….. 8   

    2.1.1.1 Palladium hydride…………………………….12 

  2.2 Nanotechnology…………………………………………………. 15 

   2.2.1 Methods to make nano-scaled metal hydrides………....16 

   2.2.2 Electrodeposition in porous materials………………….17 

   2.2.3 Various templates as porous materials…………………19 

  2.3 Other applications of nanowires/nanotubes………………………21 

  2.4 Theory about electrochemical cells………………………………22 

  2.4.1 Determination of the amount of metal deposited…….. .28 

III.  EXPERIMENTAL…………………………………………………. 31 

 vii



  3.1 Materials…………………………………………………………. 31 

  3.2 Apparatus and experimental procedure for electrodeposition..…..37 

   3.2.1 Electrochemical deposition apparatus …………………38 

   3.2.2 Nickel electrodeposition  experiments…..……………..41 

   3.2.3 Palladium electrodeposition experiments………….......43 

  3.3 Volumetric System……………………………………………….45 

3.3.1 Experimental procedure to conduct equilibrium 

 hydrogen sorption experiments…………………………….. 47 

3.4 Characterization…………………………………………………..50 

IV.  RESULTS and DISCUSSION……………………………………...51 

4.1 Electrodeposition of nickel nanowires and nanotubes using 

 various templates……………………………………………..……...51 

  4.1.1 Track-etched polycarbonate membranes……………….52 

4.1.2 Anodized alumina membranes………………………....62 

4.2 Electrodeposition of palladium nanowires using commercial  

Alumina membrane…………………………………………………..65 

  4.3 Hydrogen sorption in nanostructured palladium…………………71 

   4.3.1 Hydrogen sorption studies with bulk palladium………..72 

   4.3.2 Hydrogen sorption studies with Pd nanowires………... 74 

4.3.2.1 Energy of sorption for bulk and  

nanostructured palladium……………………………..80 

 V. CONCLUSIONS and FUTURE WORK…………………………..84 

BIBLIOGRAPHY…………………………………………………………...87 

 viii



APPENDIX…………………………………………………………………..94 

A. Helium expansion measurements………………………94 

B. Gas sorption measurements…………………………….95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ix



 

LIST OF TABLES 

 

Table 1 Electrochemical series of some elements……………………………26 

Table 2 Physical properties of the templates used in the experiments………..32 

Table 3 Physical properties of the gases used in volumetric system  

experiments……..................................................................................45 

Table 4 Measured volumes of various parts of the volumetric system……….48 

Table 5 (a) Representative EDX results of the nickel hollow nanotubes and  

(b) EDX analysis conditions………………………………………….53 

Table 6 (a) Representative EDX results of the nickel overgrowth and  

(b) EDX analysis conditions………………………………………….56 

Table 7 Pore characteristics of the templates used in this study and other  

studies………………………………………………………...............59 

Table 8 The conditions applied for growing palladium nanowires…………...65 

 

 

 

 

 

 

 

 

 x



 

LIST OF FIGURES 

 

Figure 1 Potential energy curve for the Lennard Jones potential 

 exhibiting hydrogen binding to the metal: (a) physisorption 

 (b) dissociation and chemisorption on sublayer sites   

 (c) diffusion……………………………………………………...........9 

Figure 2 Hydrogen absorption-desorption process…………………………….10 

Figure 3 Representative pressure-composition (P-C) sorption isotherm……….11 

Figure 4 Palladium unit cell showing (a) (1 1 1) (b) (1 0 0) and (c) (1 1 0)  

Planes…………………………………………………………………13 

Figure 5 Unit cell of palladium metal showing octahedral sites that  

would be occupied by hydrogen, large spheres are palladium and  

small spheres are hydrogen………………………………………….. 14   

Figure 6 Schematic diagram showing nanowire growth……………………….18 

Figure 7 Characteristic deposition curve for potentiostatic experiments………19 

Figure 8 Galvanic cell………………………………………………………….23 

Figure 9 Electrolytic cell……………………………………………………….25 

Figure 10 Representative SEM micrograph of commercial anodized alumina 

   Surface……………………………………………………………......32  

Figure 11 Other side of the commercial alumina membrane……………………33 

Figure 12 Cross-section of commercial anodized alumina……………………...33 

Figure 13 Lab-made anodized alumina surface……………………………........34 

 xi



Figure 14 Cross-section of lab-made anodized alumina…………………...........35 

Figure 15 Polycarbonate track etched membrane with 15 nm diameter………...36 

Figure 16 Polycarbonate track etched membrane with 100 nm diameter……….36 

Figure 17 Polycarbonate track etched membrane with 1,000 nm diameter……..37 

Figure 18 Electrochemical cell used in the present study……………………….38 

Figure 19 Electrochemical set-up used in the present study…………………….40 

Figure 20 Nanowire growth starting at the pore bottom and continuing in 

   the pore direction in a bottom-up fashion…………………………….40 

Figure 21 Schematic diagram of the procedure used to fabricate nickel  

nanowires……………………………………………………………..42 

Figure 22 Schematic diagram of the cathode for palladium  

electrodeposition experiments………………………………………..43 

Figure 23 Palladium electrodeposited commercial membrane ready for SEM 

analysis………………………………………………………………..45 

Figure 24 Volumetric system used to conduct hydrogen  

sorption experiments…………………………………........................46 

Figure 25 SEM micrographs showing nickel nanotubes deposited in 1,000 nm 

polycarbonate membrane partially  dissolved  with  

dichloromethane………………………………………………………52 

Figure 26 EDX spectrum of the nickel nanotubes……………………………… 53 

Figure 27 SEM micrographs showing nickel nanorods deposited in 

 1,000 nm polycarbonate membrane dissolved with dichloromethane 

 at a longer time……………………………………………………… 55 

 xii



 

Figure 28 SEM micrographs showing nickel overgrowth on 1,000 nm  

polycarbonate membrane……………………………………………..56 

Figure 29 EDX spectrum of the nickel overgrowth film on polycarbonate  

membrane…………………………………………………………….56 

Figure 30 Potential versus time graph for the formation of nickel  

(a) hollow nanotubes (b) nanowires and (c) continuous  

overgrowth on 1,000 nm track-etched polycarbonate  

membranes……………………………………………………………57 

Figure 31 Charge versus time graph for the formation of hollow nanotubes, 

 solid nanowires and continuous overgrowth film……………………58 

Figure 32 SEM micrographs showing nickel solid rods deposited in  

100 nm polycarbonate membranes partially dissolved with 

 dichloromethane……………………………………………………..60 

Figure 33 SEM micrographs showing nickel solid rods deposited in  

15 nm polycarbonate membranes partially dissolved with 

 dichloromethane……………………………………………………. 61 

Figure 34 SEM micrographs showing nickel solid rods deposited in  

commercial alumina membranes dissolved with 6M NaOH  

solution……………………………………………………………….63 

Figure 35 SEM micrographs showing nickel solid rods deposited on  

lab-made alumina membrane dissolved with NaOH solution.  

Overgrowth caps are visible on the upper left image………………..64 

 xiii



 

Figure 36  SEM micrographs of membranes with brushing-up  

morphology at an applied potential of 0.5 V with 0.5 mM  

electrolyte concentration……………………………………………66 

Figure 37 SEM micrographs of the membranes where the palladium was  

loosely attached on the surface and empty pores  through the  

cross section  at an applied potential of 1.5V  with 2 mM  

(left figure) and dense overgrowth on the surface at an  

applied potential of 2V with 4 mM  (right figure )  

electrolyte concentration…………………………………………….67 

Figure 38 SEM micrographs showing palladium nanowires deposited in 

 commercial alumina membranes (first two rows) and 

 nanowires after the membranes partially dissolved with  

6M NaOH solution (last row)………………….……………………68  

Figure 39 The corresponding energy dispersive spectrometry of the 

 palladium nanowires………………………………………………..69 

Figure 40 Potential versus time graph for the formation of palladium nanowires  

with galvanostatic experiments…………………………………….  70 

Figure 41 Hydrogen pressure-composition isotherms of bulk Pd at 135 oC  

and 185 oC……………………………………………………………72 

Figure 42 Comparison of the P-C isotherms of bulk palladium of this study 

 at 135 oC and the study performed by Yamauchi et al.,  

2008 at 120 oC………………………………………………………...74 

 xiv



Figure 43 Hydrogen pressure-composition isotherms of Pd nanowires  

(before and after the membranes were dissolved) and bulk Pd 

 at 135 oC……………………………………………………………..75 

Figure 44 Hydrogen pressure-composition isotherms of Pd nanowires  

(before and after the membranes were dissolved) and bulk Pd  

at 185 oC………………………………………………………...........78 

 

Figure 45 P-C isotherm of hydrogen treated and untreated bulk palladium 

  sample at 185 oC……………………………….……………………...79 

Figure 46 P-C isotherms of dissolved Pd nanowires and bulk Pd at two 

 different temperatures………………………………………………...81 

Figure 47 Energy of sorption values corresponding to different H/Pd  

compositions for fibers (nanowires) and bulk Pd……………………..82 

 

 

 

 

 

 

 

 

 

 

 xv



 xvi

 

LIST OF ABBREVIATIONS 

 

SEM Scanning electron microscopy 

EDX Energy dispersive X-ray spectrometry 

P-C Pressure-composition isotherm 

OCP Open circuit potential 

WE Working electrode 

CE Counter electrode 

FC Flow controller 

 
 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER I 

 

         INTRODUCTION 

 

 It has become crucial to develop an alternative energy source due to global 

warming and rapid depletion of the available oil reserves in the near future. Hence, there 

is a need for clean, safe and efficient energy carriers or forms of energy that can be 

transported to the end user. One of these energy carriers is electricity which has been 

used widely and can be produced from various sources. However, its production from 

fossil fuels contributes to pollution. Hydrogen on the other hand is considered to be the 

ideal energy carrier due to its superior properties such as abundance, light weight, 

environmental friendliness and easy synthesis. Also, it can be converted to other forms of 

energy more efficiently than any other fuel through catalytic combustion, electrochemical 

conversion, etc. The storage of hydrogen in an economical and safe way is the major 

challenge in developing the hydrogen economy. The conventional methods such as high 

pressure gas, cryogenic liquid suffer from different limitations such as safety, efficiency 

or high cost [1-9]. Therefore, sufficient storage of hydrogen in a safe and economical way 
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while meeting all consumer necessities is a major issue to be solved to improve hydrogen 

power systems. 

 Metal hydrides have the clear advantages over conventional methods because of 

their high gravimetric and volumetric densities, safe operating conditions, easy 

formation, etc. However, one disadvantage with these systems is their slow kinetics. 

Nanotechnology helps to improve the kinetic behavior of metal hydrides. Nanostructured 

materials which make up the metal hydrides significantly improve the reaction rates due 

to their large surface area.  They provide dilated lattices which result in larger interstitial 

volumes for hydrogen storage. It has been well known that along the grain boundaries of 

nanocrystalline materials, hydrogen diffusion is much faster which improves the kinetics 

for hydrogen adsorption and desorption when compared to their bulk counterpart.  

Hydrogen ion diffusion length is reduced with nanoparticles due to smaller particle size 

which results in faster dynamics for hydrogen sorption. Another issue is the reversibility. 

Nanocrystalline materials have open and flexible structures that are resistant to 

decrepitation due to morphological changes during hydrogen adsorption/desorption 

processes. Due to these reasons, recently, the possibility of storing larger amounts of 

hydrogen on high surface area of nanomaterials attracted great interest leading to detailed 

investigation of hydrogen sorption capacities of these materials [10]. The ultimate goal of 

these studies is determined by the immediate need of storing hydrogen in the most 

efficient way so that it can be commercialized and hence reduce our dependence on fossil 

fuels. One of the main purposes of our research is to produce nanostructured materials 

and understand the hydrogen uptake behavior of these unique materials. We believe that 

investigating the fundamental hydrogen sorption properties of nanostructured metal-
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hydride systems opens the doors for using this system as the future hydrogen storage 

method. 

In this study, palladium hydride was selected as the model system to determine 

the nanostructuring effect since its bulk properties are well-known. Nickel was used as 

the test metal before fabricating the palladium nanowires due to their high cost. 

Electrochemical deposition was used to produce the nanostructured materials. A better 

control over the dimensions of the fabricated materials can be exercised by 

electrochemical deposition process.  After obtaining the nanostructured materials, 

hydrogen sorption properties of these materials were investigated by a lab-made 

volumetric uptake system. The examination of the hydrogen uptake of the nanostructured 

materials which have been produced by electrochemical deposition is unique since the 

hydrogen sorption studies performed to date are usually applied to the nanostructured 

materials obtained by ball-milling. However, it is well known that the nano-scaled 

materials produced through high energy ball-milling aggregate to reduce their surface 

energy. In addition, imprecise milling charge may lead to erratic variations in the 

measurements which is not desired [11-12].  

 

1.1 Specific aims of the study 

Hydrogen sorption properties of palladium hydride system were examined with 

nanostructured palladium fabricated through template-assisted electrochemical deposition 

using a custom-built volumetric system. In order to achieve our goal, we have practiced 

the below stated tasks.  
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1. Conducting electrodeposition experiments to tune electrodeposition process by 

using nickel as the test material. 

2. Fabricating palladium nanowires using a single-step electrochemical deposition 

method without using any additives to prevent the addition of different growth 

parameters to the system. 

3. Modifying a custom-built volumetric system to conduct hydrogen sorption 

experiments. 

4. Constructing palladium-hydride system phase diagram by conducting equilibrium 

hydrogen sorption experiments. 

5. Determining the hydrogen uptake properties of these materials and investigating 

the nanostructuring effect. 

 

1.2 Thesis organization 

 In chapter II, a detailed background about hydrogen technology is presented. 

Different hydrogen storage methods are described but more emphasis is given to metal 

hydride systems since the proposed research is based on the superior properties of metal 

hydrides. Afterwards, information on nanotechnology is provided and the advantages of 

producing nanostructured metal hydride systems are described. 

Afterwards, methodology of how to construct metal hydrides and the methods to 

conduct hydrogen sorption experiments are given in chapter III, in the experimental 

section. Chapter IV presents the results and discussion of both electrodeposition and 

hydrogen sorption studies. Finally, in Chapter V, conclusions of the study are presented. 
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CHAPTER II 

 

BACKGROUND 

 

2.1 Hydrogen Technology 

Searching for new energy sources is highly desirable for the next generations when 

rapidly changing factors are considered such as population, increasing pollution and 

exhaustion of fossil fuels. Hence, there is a need for clean, safe and efficient energy carriers 

or forms of energy that can be transported to the end user. Hydrogen with its unique 

properties such as abundance, light weight, low mass density, high energy density and non-

polluting nature attract many researchers’ attention as an ideal carrier and minimize the use 

of fossil fuels which are responsible for global warming due to carbon dioxide emissions to 

the atmosphere. The possible consequences of global warming threaten the safety of many 

organisms in mild climate countries and cause various natural disasters such as hurricanes, 

floods, ice storms, forest fires, etc. [1-9] .  

Another promising factor for the employment of hydrogen as the alternative energy 

carrier is its easy synthesis from various renewable sources such as biomass, hydro, wind, 

geothermal and solar energy as well as fossil fuels and nuclear energy without the emission 
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of pollutants or greenhouse gases [2,4,6,9,13]. Hydrogen can also be converted to other 

forms of energy more efficiently than any other fuel through different processes such as 

catalytic conversion, electrochemical conversion and hydriding [14].  

   However, hydrogen must be handled extremely carefully due to its physico-chemical 

properties. Its on-board storage is a major challenge because of its high explosiveness and the 

high cost of the storage process. Therefore, hydrogen storage has been the subject of 

extensive research for many years. It is one of the key technologies particularly for the 

development of both mobile and stationary applications and to have cleaner, more efficient 

and less costly energy systems [2,5,9,13-14]. Thus, advancement of hydrogen storage is 

crucial to make hydrogen an important element of the world’s energy economy. 

Hydrogen can be stored in several different ways such as pressurized gas, cryogenic 

liquid, in the form of chemical compounds, etc [3,4-5]. There are many factors that need to 

be considered when deciding upon the storage method and the most important ones are 

safety, gravimetric and volumetric capacities, cost, environmental friendliness, reversibility 

and release rate [5,8,13,15-16].  

The traditional methods available have one or more of these limitations. For example, 

high pressure compressed gas tanks suffer from safety, high cost of the storage process and 

not fulfilling the capacity target of hydrogen storage for the future. Major drawback with this 

method is its limitation in terms of size and shape. More effort and time needs to be spent to 

optimize all of these factors.  

Liquid hydrogen tanks normally can store hydrogen more than high pressure gas tanks 

since the volumetric capacity of liquid hydrogen is more than that of the pressurized gas. 

However, storing hydrogen in cryogenic liquid form requires a refrigeration unit which 
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increases the weight and energy cost. Another key issue with this method is that hydrogen 

boils-off which in turn results in as much as 40% loss in energy content. Other than cost and 

energy, boiling-off hydrogen creates problems in terms of refueling frequency and safety 

especially for vehicles parked in closed places [2,5].  

One other means to store hydrogen is using carbon adsorbents. Normally, gas adsorption 

on solid materials is safe and the large surface area of these porous materials could be 

utilized for hydrogen storage purposes. However, activated carbons are not effective in 

storing hydrogen because these materials have narrow pore size distribution and hence, only 

a small section of the pores are small enough to interact strongly with the hydrogen 

molecules at moderate temperatures and pressures. Therefore, good storage capacity can be 

achieved only at cryogenic temperatures. Because of these reasons, activated carbons are also 

not very efficient to store hydrogen [5].  

Chemical hydrogen storage is another option that has the advantage of offering high 

energy densities. One of the examples of these chemical storage options is the hydrolysis 

reactions that engage the chemical reaction of hydrides with water to produce hydrogen. 

However, most of these reactions are irreversible meaning that the material used to store 

hydrogen needs to be regenerated off-board the vehicle which makes it quite impractical. 

[2,10,13].   

One other option to store hydrogen is metal hydride systems where the hydrogen can be 

stored as solid-state at moderate temperatures and pressures. The proposed research is based 

on metal hydrides, therefore, this class of storage is explained in further detail in the 

following section. 
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2.1.1. Metal Hydrides 

Hydrogen forms metal hydrides; a class of solids formed when certain metals are exposed 

to hydrogen gas. Metal-hydride systems involve solid-state storage of hydrogen at moderate 

temperature and pressure which give them the advantage of operating at safe conditions [2]. 

Metal hydrides are composed of metal atoms which make-up the host lattice for the hydrogen 

atoms. In general, when hydrogen molecule interacts with the metal surface, it splits into 

hydrogen atoms and then enters the metallic lattice. The atoms diffuse through the metal and 

move in between the interstitial sites of the metal lattice which is the hydride phase [3, 6].  

Hydriding mechanism can be investigated in more detail at a molecular scale. The 

interaction of the hydrogen molecule with the metal surface corresponds to the minima in the 

potential curve which indicates that molecular adsorption, atomic adsorption and bulk 

absorption are taking place in the system [1]. Physisorption of the hydrogen molecule on the 

metal surface is the first step which means that the molecule sticks on the surface physically 

usually by either Van der Waals or electrostatic attraction without forming any chemical 

bonds. Physisorption is a reversible process which depends on the temperature and pressure. 

If the temperature and the pressure are high enough, the physisorbed hydrogen is dissociated 

into its atoms and becomes chemisorbed. Chemisorption is defined as the combination of 

hydrogen with the metal to form a new compound and both parties change chemically as a 

result of this process. During this process, electron transfer between the hydrogen and the 

metal takes place and this may involve the thermal or catalytic activation due to the 

dissociation energy barrier. Hydrogen atoms “penetrate” the surface during chemisorption. 

After that, the hydrogen atoms diffuse to the metal sublayers and hydride formation at the 

metal/hydride interface takes place (Figure 1) [17]. 
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Figure 1. Potential energy curve for the Lennard Jones potential exhibiting hydrogen 

binding to the metal: (a) physisorption (b) dissociation (c) chemisorption on sublayer 

sites (c) and (d) diffusion [1] 

 

 An ideal solid for hydrogen storage would be a structure having nanopores to 

increase the surface area. Having high hydrogen storage capacity per unit mass and unit 

volume, low dissociation temperature, moderate dissociation pressure, low heat of 

formation necessary to reduce the energy when releasing hydrogen, reversibility 

constitute some of the most important reasons for metal hydrides being so popular 

recently for hydrogen storage applications [1-3,9].  

Sorption of hydrogen by the metal structure is an exothermic process. When metal 

hydrides absorb hydrogen heat is released. In contrast, heat is required to release 

hydrogen atoms from the metal lattice. The schematic diagram of the process is shown in 

Figure 2. The upper part of the diagram shows the absorption process where hydrogen 
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molecules are attached to the metal surface and break down to hydrogen atoms. Metal 

hydrides are formed when the hydrogen atoms penetrate into the metal structure. The 

lower part of the diagram shows the desorption process where hydrogen atoms leave the 

metal structure and combine to form hydrogen molecules.  

 

 

Figure2. Hydrogen sorption process 

 

The changes in pressure and concentration of the metal-hydride system at 

constant temperature and closed system can be followed experimentally. The results of 

the experimental measurements can be used to construct the pressure-composition (P-C) 

isotherm of metal-hydride systems that relate the equilibrium pressure of hydrogen to the 

hydrogen content of the metal (Figure 3) [18-19].  

 

Heat is released 

expansion of the metal lattice 

Absorption 

Heat provided 

desorption 

contraction of the metal lattice release of hydrogen atoms 



 

 

 

 

 

 

Figure 3. Representative pressure-composition (P-C) sorption isotherm [19] 

 

The P-C isotherm of metal-hydride systems has three distinct parts. The initial 

steep step of the isotherm from A to B represents the hydrogen dissolving in the metal to 

form the solid solution phase. It is also called the α phase. At point B, saturation limit of 

solution phase is reached, hydride phase begins to appear and a second phase begins to 

form which is called as the ß phase. From point B to C, pressure remains constant in most 

metal hydrides while concentration of hydrogen increases with the rapid conversion of α 

into ß phase. The process of conversion is completed at point C where only ß phase 

remains which is the metal hydride. When the transition is completed, system regains a 

degree of freedom which results in an increase of pressure with the further addition of 

hydrogen. The constant segment of this isotherm indicates the pressure of hydrogen in 

equilibrium with the metal-metal hydride (α+ß) phases. This pressure is also called the 

dissociation pressure of the metal hydride at the specific temperature, or the plateau 

pressure [18-19]. 

Hysteresis effects can be observed in most of the metal-hydride systems for the α 

to ß conversion and the reverse ß to α process. Hysteresis is indicated by the absorption 
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and desorption branches not following each other. Usually, the absorption plateau is 

higher than desorption plateau. The reaction of hydrogen with a metal can be expressed 

as a reversible reaction:  

 

xMHHxM ⇔+ 22
            [1] 

Recently, metal hydrides have been the focus of intensive research for hydrogen 

storage purposes because of the superior properties stated in this section. Metal hydrides 

are the promising candidates for the future due to their high volumetric hydrogen storage 

capacity and safety advantage. Thus, recently, rigorous research has been conducted on 

metal hydrides to improve their hydrogen adsorption/desorption properties such as 

kinetics, toxicity, thermal properties, hydrogen storage capacity, etc. [2]. 

 

2.1.1.1 Palladium Hydride 

The bulk properties and several physical parameters of hydrogen-palladium 

system have been extensively studied for many years dating back to the 19th century and 

is considered as the classic metal-hydride system in literature [10, 20-22]. The reason for 

this is mainly due to the availability of the pure bulk samples so that no surface 

treatments are needed. This study concentrates on the effect of nanostructuring, thus the 

well-known bulk palladium hydride system properties is an advantage.  

Palladium is in the second transition metal series with 10 electrons in the 4d 

electron shell. It has high hydrogen sorption capacity at room temperature. Palladium has 

a face centered cubic (fcc) structure [10]. Many computational studies have been made on 
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different planes of palladium surfaces to better understand the palladium-hydride 

systems. Among all the surfaces palladium have, most of the studies have been focused 

on (1 1 1) plane which has the highest packing density (Figure 4).  

 

 

 

 

(a)    (b)    (c) 

 (a)    (b)    (c) 

Figure 4.  Palladium unit cell showing (a) (1 1 1) (b) (1 0 0) and (c) (1 1 0) planes [20] 

There are four different adsorption sites for hydrogen atoms located on the (1 1 1) 

plane:  A bridge site between two palladium atoms, on top of a palladium atom, in a 

hollow between three palladium atoms and finally in fcc site in a hole in the layer directly 

beneath the surface layer. As a result of computational studies, it was shown that fcc is 

the most stable site for the hydrogen molecules. There are three possible sites for 

adsorption for (1 0 0) plane: a hollow between four palladium atoms, a bridge between 

two surface atoms and finally, on top of a palladium atom. Among these, it was shown 

that hollow site is the most favorable one for hydrogen atoms. For the hydrogen 
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adsorption on (1 1 0) plane the favorable sites could not be obtained clearly since the 

requirements for the computational studies are highly complicated [20].  

As hydrogen dissolves in palladium metal the hydrogen atoms occupy the 

octahedral interstitial sites of the fcc metal sublattice. This process results in moving 

apart the nearest neighbor atoms further so that more room becomes available for the 

hydrogen atoms entering the metal lattice (Figure 5). 

 

 

 

 

 

Figure 5. Unit cell of palladium metal showing octahedral sites that would be occupied 

by hydrogen, large spheres are palladium and small spheres are hydrogen [20] 

It is well known that hydrogen rapidly dissociates on palladium surfaces and 

when the hydrogen gas splits into atoms on the palladium surface, they diffuse through 

the sublayers of the metal and form the palladium-hydride. Equilibrium is attained 

between the gas phase hydrogen molecules and the adsorbed surface atoms [22-25]. The 

lattice constants of the system vary depending on if the hydride is in α or β phase. The α 

phase is the solution phase and at this stage, the lattice constants are close to palladium 
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metal. The H to Pd ratio for this phase is 0.03. As more hydrogen is introduced to the 

system, more hydrogen dissolves which results in an increase in the lattice constants with 

pressure. It was found that for pure palladium the lattice of α-PdHx increases slightly 

from 3.889 Å to 3.893 Å due to hydrogen sorption. The composition in the β phase is 

around 0.6 at room temperature. At this stage where the structure is fcc, the lattice 

constant increases up to 4.04 Å [20].  

2.2 Nanotechnology 

One disadvantage with metal hydride systems is the slow dynamics of hydrogen 

uptake and release [6]. This limitation can be overcome by producing large surface area 

materials which in turn increases the overall hydrogen dissociation reaction rate and 

decreases the diffusion time constants. Therefore, physical and chemical properties of 

metal hydrides can be tailored drastically by reducing the size of metal hydride particles 

in nanometer scales [1, 8].  

Nanotechnology is a general term for various technologies focusing on designing, 

modifying and controlling the physical and chemical properties of materials. Nanoscaled 

metals with large surface area and porosity are expected to be excellent materials for 

hydrogen storage [21].  One of the reasons for that is they provide dilated lattices which 

result in larger interstitial volumes for hydrogen storage. It has been well known that 

along the grain boundaries of nanocrystalline materials hydrogen diffusion is much faster 

which improves the kinetics for hydrogen adsorption and desorption when compared to 

their bulk counterpart. Also, with nanoparticles hydrogen ion diffusion length is reduced 

due to smaller particle size which results in faster hydrogen sorption. One last issue is the 

reversibility. Nanocrystalline materials have open and flexible structures that are resistant 
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to decrepitation due to morphological changes during hydrogen adsorption/desorption 

processes [1,10]. Due to these reasons, recently, the possibility of storing larger amounts 

of hydrogen on high surface area of nanomaterials attracted great interest leading to 

detailed investigation of hydrogen sorption capacities of these materials [26].  

 

2.2.1. Methods to make nano-scaled metals  

 Nanostructured materials can be formed in various ways. Laser ablation, vapor 

condensation, sputtering, ball milling of the metal are some of the techniques to produce 

nanostructured materials. Among these, ball milling is one of the most commonly used 

methods due to its scalability and convenience. In this process, metal is placed in a 

rotating cylinder with grinding media such as ceramic balls. Due to high energy collisions 

between the metal and the grinding media, smaller particles are formed. The particle size 

range of the resulting material is around 10-50 nm which aggregate into larger particles, 

300-2000 nm. The major disadvantage with ball-milling is that it is not efficient due to 

high energy cost of the process [1,27]. Ball-milling generally results in irregular, non-

structured materials. Another important drawback with ball milling process is that small 

particles aggregate over time to reduce their surface energy and this is not a desired 

situation to study hydrogen uptake since agglomerated particles may obscure the 

nanostructuring effect [1].  

 Another form of nanostructured materials is metal nanowires, nanotubes, 

nanobelts which consist of an important aspect of effort in nanotechnology. Due to long 

range regularity of the structure, these unique materials have numerous potential 

applications other than hydrogen storage such as optical and magnetic media, sensors, 
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electronic devices, catalysis, etc. [28-35]. Many techniques have been developed to 

produce these nanostructured metal materials such as electrochemical deposition, 

electroless deposition, chemical vapor deposition, electron beam lithiography, etc. [35]. 

Among these, template assisted electrochemical deposition also known as 

electrodeposition is the most commonly used because it is an inexpensive yet elegant 

approach for the fabrication of the free-standing nanowires or nanorods or nanotubes 

[30,34]. Furthermore, it does not require the employment of complex instrumentation and 

one can obtain high growth rates. Crystal morphology as well as the size and shape of the 

material can be controlled easily and accurately. One other advantage is that extremely 

high aspect ratios approaching thousands can be obtained with this technique [36-39]. 

The structure of metal formed by electrochemical deposition from a solution containing 

metal ion can be controlled by the nature of the template used, electrodeposition 

conditions and electrolyte concentration [40].  

 

2.2.2 Electrodeposition in porous materials 

  In template electrodeposition, metal is electrochemically reduced in natural or 

artificial pores of a membrane on a conducting substrate and then the template is removed 

[39]. The nanofibers are grown in the pores of the membrane systematically. In the first 

stage metal is electrodeposited into the pores of the membrane until they are filled up to 

the top surface of the membrane. Secondly, metal grows out the pores and forms 

hemispherical caps on the membrane surface which result in a large increase in current. 

Finally, caps coalescence into a continuous film as a result of the overgrowth. The 

corresponding schematic diagram showing nanowire growth is presented in Figure 6.  
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Figure 6. Schematic diagram showing nanowire growth 

 

Electrochemical deposition experiments can be conducted both galvanostatically 

and potentiostatically. In potentiostatic experiments, a constant potential is applied, 

changes in the current with time are followed. In contrast, with galvanostatic 

experiments, current is kept constant while the changes in potential with time are 

followed. Figure 7 shows a characteristic deposition curve where the experiments are 

conducted at a constant potential. There is a sharp decrease in current as soon as a 

potential difference is applied to the system due to charging of electric double layer. The 

sharp decrease is due to the formation of ion diffusion barrier. Then, the current remains 

constant where the pores are being filled up. The following sharp increase in current is an 

indication of the overgrowth on the surface of the template.  

 

porous membrane gold sputter the back 
side for conductivity 

electrodeposition of 
metal 

metal overgrowth forms 
hemispherical caps 

single standing nanowires 
after etching the membrane 



 

 

Figure 7. Characteristic deposition curve for potentiostatic experiments 

 

2.2.3 Various templates as porous materials 

Various templates have been used during template electrodeposition. The most 

common ones are anodized alumina and track-etch polycarbonate membranes. Other 

membranes used to grow nanostructured materials are: nanochannel array on glass, 

radiation track-etched mica, mesoporous materials, porous silicon from electrochemical 

etching of silicon wafer, carbon nanotubes, zeolites, etc. [27].  

In this study, commercial as well as lab-made anodized alumina membranes and 

track-etched polycarbonate membranes were used to fabricate nanostructured materials. 

The lab-made alumina templates were produced by anodization process using solutions 

of sulfuric, oxalic and phosphoric acids and have hexagonal pore arrangement. It is well 

known that changing the anodizing conditions can control the structural parameters of 

alumina [41]. Through anodization process alumina with superior characteristics 

including uniform pore dimensions, good mechanical strength, thermal stability and large 
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surface area can be obtained [42]. One disadvantage with alumina templates is their 

handling. Complete removal after nanowire growth is a tedious procedure with wet-

chemical etching.  

Track-etched polycarbonate membranes have a uniform and controlled pore 

structure which can produce homogenenous, continuous and uniform nanowires, but their 

pore density is significantly lower than anodized alumina. They are available 

commercially in various sizes. Their handling and template removal are also easier. 

However, the flexibility of these membranes may cause distortion due to heating [43]. 

One important criterion when conducting electrodeposition experiments is that 

template materials need to be compatible with the processing conditions. The pore size, 

porosity, morphology, chemical and thermal inertness are some of the properties of the 

templates that need to be considered. Another important issue is depositing material or 

the electrolyte solution must wet the internal pore walls for electrodeposition to take 

place. Otherwise, electrolyte solution will not penetrate the small pores and 

electrodeposition cannot be performed. Finally, growth mechanism of the fibers should 

be examined carefully to be able to have a control on the morphology of the product. For 

example, in order to synthesize nanowires/nanorods, the deposition must start from the 

bottom of the template along the pore opening whereas for nanotubes, the deposition 

should start from the pore walls and proceed radially inward [27].  
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2.3 Other applications of nanowires/nanotubes 

 Great progress has been made in different scientific areas with recent advances in 

nanotechnology with nanowires/nanotubes fabricated through different methods. These 

nanostructured materials with their unique physical and chemical properties have 

potential applications in industrial areas other than hydrogen storage such as cancer 

therapies, biosensors, hydrogen sensors, batteries, etc [44]. For example, it is well known 

that there are strong adverse effects with today’s cancer therapies because healthy tissues 

in the vicinity of a tumor can be damaged during the treatment. Recently, it has been tried 

to use functionalized and biocompatible nanotubes by transferring these materials non-

invasively to the deep layers of tissue in the human body. If materials with ferromagnetic 

properties are used, they can be placed precisely in the desired location by applying 

external magnetic field so that treatment can be done through these nanotubes by slow 

drug release or with some other methods [45].  

 Another exciting area is where the nanowires have been used is in MEMS based 

electrochemical biosensors. These biosensors have enormous importance in clinical 

investigations and may be used to determine cholesterol levels in blood. In a recent study, 

Au nanowires have been used in biosensors for estimation of total cholesterol in blood 

serum. The reason for using Au nanowires is to enhance the electron transfer between the 

enzymes and electrodes and hence increase the electrical conductivity and decrease the 

diffusion time due to large surface to volume ratio of these materials [46].   

 Large surface area of nanowires makes them efficient materials also for hydrogen 

sensors. It has been shown that hydrogen sensors utilizing palladium nanowires show 

better performance in detecting hydrogen concentration when compared to macroscopic 
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palladium sensors. Due to hydrogen incorporation, palladium nanowires swell and come 

closer which in turn reduces the electrical resistance. Therefore, palladium nanowire 

hydrogen sensors show faster response time due to reduced resistance which can be 

attributed to the large surface area of these materials [47].     

 

2.4 Theory about electrochemical cells 

An electrochemical cell is used to create voltage and current from chemical 

reactions. When a chemical reaction is caused by an external voltage it is called an 

electrochemical reaction. The transfer of electrons between atoms in chemical reactions 

leads to oxidation/reduction reactions, or broadly redox reactions. The loss of electrons 

from an atom is called oxidation while the gain of electrons by the atom is called 

reduction. Generally, redox reactions occur in a simultaneous manner such that one 

species is oxidized while the other one is reduced. However, in an electrochemical cell, 

the two reactions are spatially separated and electrons flow through an external circuit. 

Electrochemical cells have two electrodes namely, cathode and anode to facilitate 

electron transfer to and from the solution. Oxidation reaction takes place on the anode 

electrode while reduction reaction occurs on the cathode side. There are two types of 

electrochemical cells, galvanic and electrolytic [48-50].  

The galvanic type electrochemical cell makes use of two dissimilar metal 

electrodes each immersed in the electrolyte solution. Redox reaction in a galvanic cell 

occurs spontaneously. The anode of a galvanic cell is negatively charged while the 

cathode is positively charged. The source of the cell’s negative ions is the anode where 
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spontaneous oxidation occurs. Galvanic cell reactions supply energy which is used to do 

work such as with batteries and fuel cells.  

The affinity of the electrode metals to oxidize or reduce in a specific electrolyte 

solution depends on the electrochemical potential which in turn varies with temperature, 

concentration of the electrolyte solution and pressure. Depending on the sum of 

electrochemical potential differences, anode electrode will undergo oxidation reaction 

while the cathode electrode will undergo reduction reaction. As a result of this, potential 

difference between two electrodes is produced in the cell. In order to have a complete 

circuit, there has to be a conduction bridge between the anode and cathode electrodes 

which can be provided by a porous membrane. This membrane prevents rapid mixing of 

the two electrolyte solutions but allows ions to diffuse through. A typical galvanic cell is 

shown in Figure 8. 

 

 

 

 

 

 

 

Figure 8. Galvanic Cell [51] 

 

The half reactions taking place in a galvanic cell are; 

 (oxidation reaction taking place in anode)     [2] zeMM z +→ +
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NzeN z →++   (reduction reaction taking place in cathode)   [3] 

and the overall reaction can be expressed as, 

        [4] 

The reactions can be started or stopped by connecting or disconnecting the 

external circuit. By the aid of an ammeter placed in the external circuit, the amount of 

electric charge that passes through the electrodes can be measured.  

In contrast, non-spontaneous reactions occur in electrolytic cells. The anode of the 

electrolytic cells is positive because anode attracts ions from the solution. In both 

galvanic and electrolytic cells the flow of cations is from the anode to the cathode 

electrode. The reaction kinetics can be controlled externally by applying a potential 

difference between the electrodes in electrolytic cells. In this case, an external power 

supply helps to drive the electrode reactions. Electrolytic cells are composed of a vessel 

to do electrolysis containing electrolyte solution, anode and a cathode. The major 

difference of electrolytic cells from galvanic cells is that galvanic cells make use of two 

dissimilar metals separated from each other whereas electrolytic cells may use the same 

metal. Thus, electrolytic cells are driven by an external electrical charge with 

galvanostatic cells drive an external charge (electron) transfer. The schematic of a 

common electrolytic cell is shown in Figure 9. 

 

 

 

 

 

NMNM zz +→+ ++
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Figure 9.  Electrolytic Cell [51] 

 

In electrochemical cells, current is measured in amperes (A), and the potential 

across the two electrodes is measured in volts (V). Potential has units of J/C which can be 

explained as the energy (J) per amount of electric charge (C). This indicates that the cell 

potential is a measure of the energy of the reaction (oxidation/reduction) taking place in 

the cell. Cell potential also known as electromotive force (emf) can be considered as the 

sum of the half potentials resulting from oxidation and reduction reactions. Thus, cell 

potential can be written as: 

 

     [5] 

Oxidation potential of a half reaction is the negative of the reduction potential for the 

reverse of that reaction. Therefore, tabulating either of the half-cell potentials of the 

available electrodes gives information on the overall cell potential. A list of standard 

reduction potentials of some of the elements including palladium at 25 oC and at a 

pressure of 1 atm is given in Table 1 [51-52]. 

potentialreductionpotentialoxidationEcell +=

 25



 26

Table1. Electrochemical series of some elements [52] 

 

Reaction     Eo/V 

 

 

 

Each half cell potential is measured against a standard hydrogen electrode (SHE). 

The SHE is the universal reference for determining half cell potentials which is assigned 

to have zero potential. The potential of all other electrodes is reported relative to the 

standard hydrogen electrode. Because the true or absolute potentials cannot be measured, 

reduction potentials are defined according to the standard hydrogen electrode.                                            

Standard reduction potential (Eo) is measured under standard conditions which is 

at 25oC, a 1 M concentration for each ion participating in the reaction, a partial pressure 

of 1 atm for each gas that is part of the reaction, and metals in their pure state [48, 52]. 

However, conditions for real cells usually deviate significantly from the standard or 

equilibrium condition. In this case, Nernst equation relates the real cell potential to the 

standard potential by the expression: 
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Here, E is the cell potential at the given condition, Eo is the standard reduction 

potential, T is the temperature (25 oC), R is the universal gas constant, F is one faraday 

which is the amount of charge carried by one mole of electrons (96,487 coulombs/mole 

electron), z is the number of electrons used in the reaction, is the activity of the ion at 

the electrode surface and that of the bulk solution [48]. 

When there is no current flow, the forward and reverse electrode reactions occur 

at the same rate resulting in no net reaction. A cell at this condition which is at 

equilibrium and it is said to be at open circuit potential (OCP). When this equilibrium is 

disrupted by making the electrode as a part of an electrochemical cell through which 

current is flowing, either the forward or reverse reaction is occurring faster and there will 

be a difference between the new potential and the original one. This difference in 

potentials is called the overpotential.      

 

ca

oa

OCPnew EE −=η          [7] 

 In equation 7,  is the open cell potential which is the potential in the absence of 

current,  is the potential of the same electrode as a result of current flowing and 

hence 

OCPE

newE

η is the difference between these potentials which is the overpotential [48-50].  

The over-potential is used to overcome the barriers developed within the 

electrochemical set-up due to the double layer and drives the electrode reactions. The 

over-potential also helps the diffusion of the metal ions at the solution metal interface and 

in the bulk of the solution. The double layer effect is usually significant at the anode to 
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push the ions into the solution while the reaction at the cathode is usually controlled by 

diffusion [48].  

 

2.4.1 Determination of the amount of metal deposited at the cathode 

Due to Faraday’s law, the amount that is produced as a result of electrochemical 

reaction at the electrode is proportional to the quantity of charge passed through the 

electrochemical cell.  Therefore, Faraday’s law states that: 

 

          [8] 

where, w is the weight of the product, Z is the proportionality constant which is the 

electrochemical equivalent and Q is the amount of charge passed during the process. Q is 

the product of the current in amperes and t is the time in seconds, 

 

           [9] 

 hence, weight can be expressed as: 

 

          [10] 

According to Faraday’s law, a cell requires 96,487 coulombs of charges in order to 

produce one gram equivalent of a product at the electrode. One coulomb is the quantity of 

electric charge transported by the flow of one ampere for one second and 96, 487 is 

called the Faraday’s constant.  

 

 

ZQw =

ItQ =

ZItw =
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Faraday constant can be calculated from: 

 

          [11] 

where,  is the Avagadro’s number and is the charge of a single electron.  

One equivalent is the fraction of an atomic unit of reaction that corresponds to the 

transfer of one electron. In general, it is expressed as: 

 

eNF A=

AN e

n
A

w wt
eq =           [12]  

where, is the atomic weight of the metal deposited at the cathode and n is the number 

of electrons involved in the electrodeposition reaction.  

As was stated previously, 96,487 coulombs are required to deposit an equivalent of a 

metal so from equation 6,   

 

          [13] 

and therefore, 

 

wtA

Zweq 487,96=

F
w

Z eq=           [14] 

when equations 10 and 12 are combined, Z can be expressed as: 

 

nF
A

Z wt=           [15] 
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and from equations 6 and 13, the amount of metal deposited at the cathode,w can be 

expressed as [48]: 
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CHAPTER III 

 

EXPERIMENTAL 

 

In this chapter, a detailed description of the materials and apparatus used in the 

experiments are presented. Also, experimental procedure and information on the 

characterization techniques are provided.   

 

3.1 Materials 

In the first part of the experiments, nanostructured metal nanowires and nanotubes 

were produced by electrochemical deposition process. In order to fabricate the metal 

fibers, three different types of templates were used: commercial anodized alumina 

membranes, lab-made anodized alumina membranes and commercial track-etched 

polycarbonate membranes in various sizes. The physical properties of the membranes are 

presented in Table 2.    
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Table 2. Physical properties of the templates used in the experiments 

 

 

Commercial alumina and track-etched polycarbonate membranes used in this 

tion. Commercial alumina membranes have 

μm. The porosity is within the 

range of 25 ercial alumina membrane is 

 

 

 

 

 

 

 

Figure 10. Representative SEM picture of commercial anodized alumina surface 

Membranes Pore size 
(nm) 

Pore density 
(cm-2) 

Thickness 
(μm) 

Aspect ratio 
(-) 

Surface 
porosity 

(%) 

study were purchased from Whatman Corpora

varying pore sizes from 100 to 200 nm and thickness of 60 

-50%. The surface morphology of the comm

presented in Figure 10.   

 

 

1,000 2x107 11 ~11 ~15.7 
100 3x108 6 ~60 ~2.4 Polycarbonate 

membrane 
15 6x108 6 ~400 ~0.11 

Commercial 
alumina 80-200 1x109 60 ~300 ~25-50 

Lab-made 
alumina 60 3x1010 80 ~1300 ~30 
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Figure 11. Other side of commercial alumina membrane 

 

As was examined by SEM (scanning electron microscopy) commercial alumina 

membranes do not have uniform pore channels. There is branching of the pores 

throughout the thickness of the membrane (Figures 11 and 12). 

 

                                                                                                                                                                        

 

 

 

 

 

 

 

Figure 12. Cross-section of commercial anodized alumina 
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On the other hand, lab-made anodized alumina membranes have uniform pore 

size of 60 nm throughout the thickness of about 80 μm. Lab-made anodized alumina 

membrane was prepared by a co-worker, Pradeep Kodumuri. Briefly, 1 mm thick discs 

were cut from aluminum metal and polished mechanically to obtain a smooth surface 

using emery paper. After cleaning ultrasonically with soap, acetone and ethanol, the discs 

were electropolished for about 20 seconds. Then the electropolished metal was anodized 

at 40 V in 0.3 M oxalic acid for 24 hours. The remaining metal was dissolved away using 

CuCl2 solution; 10% HCl and 0.3 M CuCl2. Finally, the pore caps (oxide barrier layer) 

that form at the bottom of the pores were opened with 5wt % of phosphoric acid. The 

SEM picture of the lab-made anodized alumina is shown in Figure 13.  

 

 

 

 

 

 

 

 

 

Figure 13. Lab-made anodized alumina surface 

 

 

 



 

 

 

 

 

 

 

 

Figure 14. Cross-section of lab-made anodized alumina 

 

SEM characterization technique showed that lab-made alumina has uniform straight 

pores (Figure 14).  

The last class of template used in growing metal nanofibers is commercial track-

etched polycarbonate membranes with three different pore sizes of 1,000 nm, 100 nm and 

15 nm. The corresponding thicknesses are 6 μm for membranes with 100 and 15 nm pore 

diameters while it is 11 μm for 1,000 nm pore diameter membranes. Representative SEM 

pictures for the polycarbonate membranes are shown in Figures 15, 16 and 17. 
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Figure 15. Polycarbonate track etched membrane with 15 nm diameter 

 

 

 

 

 

 

 

 

Figure 16. Polycarbonate track etched membrane with 100 nm diameter 

 

 

 

 

 

 

 

 



 37

 

 

 

 

 

 

Figure 17. Polycarbonate track etched membrane with 1,000 nm diameter   

 

 Surface porosity of the polycarbonate membranes is the highest with 1,000 nm 

pore size membranes while lowest for the 15 nm membranes. Their pore densities are 

2x107, 3x108 and 6x108 cm-2 for 1,000, 100 and 15 nm pore size polycarbonate 

membranes, respectively. Furthermore, as can be seen from the SEM pictures the 

porosity of the polycarbonate membranes is significantly lower than the anodized 

alumina membranes. The porosity of the anodized alumina membranes varies from 25 to 

50% and their pore densities are 1x109 and 3x1010/cm2 for commercial and lab-made 

anodized alumina membranes, respectively (Table 1).  

  

3.2 Apparatus and experimental procedure for electrodepostion 

Electrochemical deposition experiments were conducted to grow palladium 

nanofibers for later determination of their hydrogen sorption capacities by conducting 

equilibrium sorption experiments. In order to determine the optimum conditions and tune 

the electrodeposition process, nickel was used as the test metal before expensive 

palladium experiments. 



3.2.1 Electrochemical deposition apparatus 

Electrochemical cell used in our study is illustrated in Figure 18. This set-up used 

for electrodeposition consists of two electrodes, electrolyte solution and an external 

power supply.  

 

 

 

 

 

Figure 18. Electrochemical cell used in the present study 

 

During the process of electrodeposition, electric current was applied across an 

electrolyte solution in which a substance was deposited at one of the electrodes. 

Electrolyte in this system helps to carry the current by means of ions. Positively charged 

ions are attracted to the negatively charged cathode while the negatively charged ions 

travel toward the positively charged anode. The charges of the ions are then neutralized 

by the charges on the electrodes and the products appear at the electrodes. The cathode is 

the target for electrochemical deposition and it is where metal deposits are produced. The 

electrode connected with the negative pole of the direct current source is the cathode. The 
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electrode connected with the positive terminal of the direct current source is the anode, 

the source of metal cations where the negatively charged ions, the anions, migrate. Direct 

current (DC) was applied between the terminals and the conditions of the experiment 

were adjusted according to the type of the application whether it is potentiostatic or 

galvanostatic electrodeposition.  

A Solartron 1280B electrochemical test system was used as the power source and 

data acquisition system for conducting the electrodeposition experiments. The device can 

be adjusted to run both potentiostatic and galvanostatic experiments. The working 

electrode (WE) is connected to the anode and counter electrode (CE) is connected to the 

cathode. The current through the cell is measured between WE and CE.  

Figure 19 shows the schematic diagram of the cell set-up connected to the power 

supply.  It shows the anode (either nickel or palladium sheet depending on the type of 

fiber required to produce), the cathode which is the porous membrane supported by a 

metal sheet and electrolyte solution. The power supply is connected to a computer to 

monitor the data and control the experiment.  
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Figure 19. Electrochemical set-up used in the present study 

 

In order to have a closer look at the cathode side of the system, Figure 20 is 

presented where the diffusing metal cations start forming the nanowires at the pore 

bottom through the pore opening.  

 

 

 

 

 

 

 

 

 

Figure 20. Nanowire growth starting at the pore bottom and continuing in the pore 

direction in a bottom-up fashion 
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3.2.2 Nickel Electrodeposition Experiments 

 Nickel nanostructured materials were grown in various porous membranes. 

Initially, the experiments were conducted with track-etched polycarbonate membranes 

with various pore sizes. The process begins with sputtering one side of the membrane 

with gold of 30 nm in a SPITM sputter. Then the gold coated side of the membrane is 

placed on a copper sheet which constitutes the cathode of the set-up. The copper sheet is 

flattened with the aid of a cylindrical object to provide better conductance with the 

polycarbonate substrate. A few drops of water were added on the membrane to promote 

its adhesion to the copper sheet and care was exercised to prevent trapped air bubbles.  

The anode was composed of a nickel sheet of 5 cm x 5 cm dimensions with a 

thickness of 0.5 mm and purity of 99.98 %. It was purchased from Sigma-Aldrich. The 

electrolyte solution used was composed of 53.6 g/L of NiSO4.6H2O and 30 g/L of H3BO3 

as stabilizer so that the pH of the solution was between 3 and 4. The distance between the 

anode and the cathode was kept at 2 cm at all times. Deionized water with 18 MΩ.cm  

resistivity was used to prepare the solution. Galvanostatic electrodeposition was 

performed with a constant current density of 10 mA/cm2 corresponding to ≈ 2-3 V 

potential at varying deposition times. Experiments were also conducted at higher current 

densities of 50, 100 and 200 mA/cm2 to determine the effect of current density. All 

experiments were conducted at room temperature. After deposition, the sample was 

washed thoroughly with deionized water. Dissolution of the polycarbonate support using 

dichloromethane (Cl2CH2) revealed the morphology of the nanostructure growth in 

membrane protruding from the surface for easy imaging. Finally, the morphology of 
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nickel nanostructures was characterized using optical microscope, SEM (scanning 

electron microscopy) and EDX (energy dispersive X-ray analysis).  

The above described procedure was also used to grow nickel nanostructures in 

commercial and lab-made anodized alumina membranes, except for using gallium-indium 

coating to achieve conductance at the cathode instead of gold sputtering. Back side of the 

membrane was similarly sputtered in a SPITM sputterer with gold of 30 nm thickness to 

maintain the electrical connection between the power supply and the membrane. All 

experiments were conducted at room temperature and in the same electrolyte solution 

which was replaced frequently. The distance between the anode and the cathode was kept 

at 2 cm at all times. The applied current density was 10 mA/cm2 for the alumina 

membranes. After deposition, the alumina membranes were dissolved in 6 M NaOH 

solution. Figure 21 represents a schematic of the metal nanowires grown in a nanoporous 

membrane. 

   

 

Figure 21. Schematic diagram of the procedure used to fabricate nickel nanowires 
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3.2.3 Palladium Electrodeposition Experiments 

Palladium nanowires have been synthesized in 2 mM PdCl2, 0.1 M HCl solution. 

Experiments were conducted at room temperature. Additives were not used to prepare the 

electrolyte solution to eliminate the presence of any other growth parameters. The back 

side of the membrane was gold sputtered to provide conductance of 30 nm thickness in a 

SPITM sputter. Also silver paint instead of gallium-indium mixture was applied to this side 

to enhance the conductance. The membrane was placed on a copper sheet and used as the 

cathode (Figure 22).  

 

 

 

 

 

 

 

Figure 22. Schematic diagram of the cathode for palladium electrodeposition 

experiments 

 

The anode was high purity palladium sheet of thickness 0.25 mm and purity > 99 

%, with 5cm * 5cm dimensions purchased from Sigma-Aldrich. It was cleaned and 

degreased sequentially with soap, acetone and alcohol in an ultrasonic cleaner. Polishing 

and cleaning procedure was repeated at regular intervals as corrosion on anode was 

apparent. Deionised water with resistivity of 18 MΩ.cm was used to prepare the solutions 
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and also for cleaning the glassware used in the experiments. The deposition was carried 

out both potentiostatically and galvanostatically. In the experiments where potentiostatic 

deposition was carried out, a constant potential of 0.5 V was applied between the two 

electrodes. On the other hand, in galvanostatic experiments, the applied constant current 

density was 0.2 mA /cm2 which yielded a corresponding steady-state potential of about 

0.5-0.8 V. The amount of palladium deposited was controlled by the charge passed 

during deposition. 

After deposition the sample was thoroughly washed with deionised water and 

dried in vacuum oven. Alumina membrane was dissolved in 6 M NaOH solution to get 

the free standing palladium nanowires. During the dissolving step membranes were also 

washed continuously to get rid of NaOH residuals from the membranes. After drying in 

vacuum oven, palladium nanowires were analyzed using optical microscope, SEM 

(scanning electron microscopy), EDX (energy dispersive x-ray analysis), optical 

microscopy.   

Figure 23 shows a membrane after dissolved with NaOH solution mounted on a 

pedestal to perform the characterization studies with the previously cited devices. 
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Figure 23. Palladium electrodeposited commercial membrane ready for SEM/EDX 

analysis 

 

3.3 Volumetric System  

In the second part of the experiments hydrogen sorption capacity of the produced 

nanowires was determined using a custom-made volumetric system. The physical 

properties of the gases used in volumetric experiments are shown in Table 3. 

 

Table 3.  Physical properties of the gases used in volumetric system experiments 

 

 

 

 

 

The schematic diagram of the volumetric set-up is shown in Figure 24. 

Afterwards, the detailed description of the experimental procedure and the protocol of 

how to conduct the hydrogen sorption experiments are presented in the following section. 

Gas Grade % Purity Supplier

Hydrogen 5 99.995 VNG 

Helium 4.7 99.995 VNG 
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Figure 24. Volumetric system used to conduct hydrogen sorption experiments 

 

About 55 mg of sample composed of membranes full of palladium nanowires was 

used in the experiments. A two-stage mechanical pump was used to remove impurities 

and moisture. The temperature of the sample chamber was controlled by the temperature 

controller. The volumetric set-up mainly consisted of an adsorption column, mass flow 

controller (FC), temperature controllers and high and low range pressure transducers. 

Helium gas was used to flush the system as well as to conduct the helium expansion 

measurements to determine the dead space in the system.  

All lines used were stainless steel and ¼ inches outer diameter (O.D.), except 

sampling lines and pressure gauge lines which were 1/8 inches O.D. The sample was 
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introduced to the system with a 3-way flow control type valve. Pressure gauge valves 

(P1, P2, P3, P4) were H type compact rugged bellow valves. They were purchased from 

Nupro Company. The rest were all B type bellows valves, SS-4BK. Mass flow controller 

with model number FMA-2-DPV 1083 was purchased from Omega. Low pressure gauge 

with a pressure range of 0-15 psia with model number TGE/713-26 and high pressure 

gauge with a pressure range of 0-100 psia with model number TGE/713-10 were used in 

the experiments. Model number of the temperature controllers was CN 2011-J. Both 

pressure and temperature controllers were also purchased from Omega. All of the fittings 

used to construct the system were purchased from Swagelok.  

 

3.3.1 Experimental procedure to conduct equilibrium hydrogen sorption 

experiments 

Since hydrogen sorption experiments were conducted in a closed system, it is 

critical and important to know the system volume. Helium expansion method was 

employed in order to determine the volume of the system which has given quite accurate 

measurements. The principle is to expand helium gas from the unknown-volume section 

to the known-volume section or vice-versa. By using equation of state and material 

balances, the unknown volume can be calculated from the known volume. Another 

assumption considered in the calculations was that the helium gas was not adsorbed on 

solid walls of the system or on the metal samples. Determination of the known volume 

was crucial since it is the basis for hydrogen uptake of metal fibers. The material balances 

that were employed in volume determination of the system are shown in the appendix 

section in more detail.  
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The volume values of different sections in the system measured with helium 

expansion method are summarized in Table 3. The schematic diagram of the volumetric 

system is given in Figure 24 tagged with letters V describing the volumes in Table 4.  

 

Table 4. Measured volumes of various parts of the volumetric system  

 

 

 

 

 

The procedure for hydrogen sorption experiments is standard and consists of three 

steps: sample activation, adsorbate dosing and equilibration.  

The sample was first activated by flowing hydrogen gas through the system at 200 

oC for about 6 hours to get rid of any oxide formation from the surface of the material. 

After vacuuming the sample, temperature was increased to 300 oC and this time system 

was flushed with helium gas by the aid of a heating mantle around the sample chamber 

and under vacuum for overnight to get rid of the moisture and impurities from the system. 

At this time, A1 (inlet valve), A0 & A7 (FC valves), A3 and A4 (column valves to let the 

gas flow through the sample) and A5 (exit valve) were open, A6 & A8 (bypass valves) 

were closed. The mass flow controller was adjusted to approximately 11 cc/min. After 

activation process was completed, by using the mechanical pump, the system was 

evacuated. Then, the column was isolated from the rest of the system by closing valves 

Section Description Volume, cc Method 
INLET V1 19.9662 

BYPASS V2 9.9611 
EXIT V3 14.4835 

LOW P V7 8.139 
HIGH P V8 6.8815 

COLUMN V9 20.917 

Helium expansion 
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A3 and A4. A0, A7 and A5 were also closed and bypass valves, A6 and A8 were opened. 

The system was dosed with hydrogen gas by following the below stated protocol: 

• Bring the 3-way valve to hydrogen position 

• Open A1 (inlet) to let hydrogen gas in the system to the desired pressure. 

At this time, valves A6, A8 and P1low, P2high are open to detect the 

pressure. When the dosed pressure is higher than atmospheric pressure, 

P1low is closed not to damage the low pressure gauge at high pressures. 

The rest of the valves are closed at this time. 

• Close valves A1, A6 and A8 so the hydrogen gas is now trapped in V2 

(bypass), V3 (exit volume), V7 and V8.  

• After recording the column, ambient and jacket temperatures and the 

pressure, open valve A4 to let the hydrogen gas into the column.  

• Wait until the thermal and pressure equilibrium is attained. Record all the 

measurements one more time. 

• Close valve A4 and vacuum the system by opening valves A6, A8 and 

A5. 

• Repeat the dosing and equilibrium steps until the desired pressure is 

reached. 

• Mechanical pump (placed inside the fume hood) should run at all times to 

vacuum the system in between the dosing steps.  

• When the experiment is over, vacuum the whole system and turn-off the 

pump and stop the temperature controller. 
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• Prepare the system for the next experiment by flowing He gas overnight 

with the previously mentioned method  

 

3.4 Characterization 

Optical microscope (Olympus BH2-UMA) and scanning electron microscopy 

(Amray 1820) devices were employed to determine the overall surface characteristics of 

the membranes before and after dissolving. Representative samples were cut from the 

samples and gold sputtered to provide conductance when imaging with SEM. Both sides 

of the membranes were examined in SEM at different magnifications.  

Also, the chemical composition of the prepared samples was analyzed by energy-

dispersive X-ray (EDX) spectrometry.  
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CHAPTER IV 

 

RESULTS and DISCUSSION 

 

4.1 Electrodeposition of nickel nanowires and nanotubes using various templates 

 
In order to successfully grow palladium nanowires in the pores of the templates, 

electrochemical deposition experiments were first conducted with nickel as the model 

material for optimizing the conditions in fiber growth. Hence, several experiments were 

carried out with varying parameters to examine the growth mechanism of nanowires as 

well as nanotubes by the electrochemical deposition method.  

Nickel nanotubes and nanowires were grown by galvanostatic electrodeposition in 

the pores of 1000, 100 and 15 nm polycarbonate as well as in commercial and lab-made 

anodized alumina membranes at a current density of 10 mA/cm2. The effects of pore size, 

porosity, electrodeposition time, effective current density and pore aspect ratio were 

investigated.  
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4.1.1 Track-etched polycarbonate membranes 

First part of the experiments was performed using track-etched polycarbonate 

membranes. Nickel hollow tubes were grown in 1,000 nm pore size track-etched 

polycarbonate membranes. These samples were composed of well-defined nickel hollow 

nanotubes that are about 4 μm long and have 1,000 nm outer diameter and 200 nm inner 

diameter (Figure 25). The membrane support (polycarbonate) was partially dissolved 

before SEM imaging to expose the tips of the nanotubes while holding the assembly 

together.  

 

 

Figure 25. SEM micrographs showing nickel nanotubes deposited in 1,000 nm 

polycarbonate membrane partially dissolved with dichloromethane 
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Detailed examination of samples showed that deposition of nickel starts at the 

gold layer at the bottom circumference of the pores, and the nickel tubes grow along the 

pore wall to the top of the membrane. Preferred deposition along the pore wall surface 

may be due to the large surface area available providing energetically favorable sites for 

the adsorption of the metal ions before being reduced [53]. 

 

Table 5.  (a) Representative EDX results of the nickel hollow nanotubes and (b) EDX 

analysis conditions 

 

 
 
 
 
 

 
 

(a)       (b) 
 

 

Figure 26. EDX spectrum of the nickel nanotubes  

 

Elt. Line 
Intensity 

(c/s) 
Atomic 

% 
Conc. wt 

% 

 

kV 20.0 
Takeoff angle 35.0o Ni Ka 462.5 95.066 94.680 

Elapsed 
Livetime 100.00 Cu Ka 20.65 4.934 5.320 

Total   100.000 100.000 



Table 5 represents the EDX analysis of the nickel nanotubes and it shows that 

approximately 95% of the composition is nickel while 5% is copper which comes from 

the copper metal sheet which was used as the support material for the membrane at the 

cathode. Figure 26 is the corresponding EDX spectrum of the nickel nanotubes. As can 

be seen, the major peak belongs to nickel making up the nanotubes.  

These nanotubes were formed at early stages of the electrodeposition (Figure 25), 

corresponding to about 25 min of deposition time. Approximately, 15 C charge needs to 

pass to obtain the nanotubes at 10 mA/cm2 current. At longer electrodeposition times, 

when the amount of charge increased to about 18 C, the nanotubes turned into nanorods 

(Figure 27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 54



 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 27. SEM micrographs showing nickel nanorods deposited in 1,000 nm 

polycarbonate membrane dissolved with dichloromethane at a longer time 

 
Figure 27 also show that the metal deposition in the membranes are nearly 

perpendicular to the membrane surface, i.e. the heights of the fibers are constant 

indicating a uniform nickel growth in each pore of the membrane. Once the pores are 

completely filled with nickel, further electrodeposition produces hemispherical caps on 

the membrane surface, which subsequently merge together and result in a continuous 

overgrowth film (Figure 28).  
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Figure 28. SEM micrographs showing nickel overgrowth on 1,000 nm polycarbonate 

membrane 

Table 6. (a) Representative EDX results of the nickel overgrowth and (b) EDX analysis 

conditions 

Intensity Atomic Conc. 
wt % 
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Elt. Line (c/s) % 
Ni Ka 252.47 100.000 100.000

Total   100.000 100.000
 
(a)     (b) 

 on the membrane is 100% nickel 

appropriate nickel peaks (Figure 29).   

kV 20.0 
Takeoff angle 35.0o 

Elapsed Livetime 100.00 

 

Table 6 indicates that the continuous overgrowth film

and its corresponding spectrum also shows the 

 

 

  

 

 

 

Figure 29. EDX spectrum of the nickel overgrowth film on polycarbonate membrane 



 57

The potential versus time graph of 1,000 nm polycarbonate membranes is 

presented in Figure 30 when a constant current density of 10 mA/cm2 was applied. It can 

be seen that in all the three cases, corresponding potential was about 2.3 V as another 

indication of the reproducibility of the results.  

 

 

 

 

 

 

 

 

 

 

Figure 30. Potential versus time graph for the formation of nickel (a) hollow nanotubes 

(b) nanowires and (c) continuous overgrowth on 1,000 nm track-etched polycarbonate 

membranes 

 

Figure 31 represents the graph of charge versus time for the same membrane. The 

charge is a straight line since the current was held constant during the experiments. 

Approximately, 15, 18, 32 C charge needs to pass in order to obtain the morphology of 

hollow nanotube, nanowire and continuous overgrowth, respectively. 

 

(a) 
(b) (c) 
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Figure 31. Charge versus time graph for the formation of hollow nanotubes, solid 

nanowires and continuous overgrowth film 

 

Nickel fiber synthesis conditions for other studies are presented in Table 6 for 

comparison purposes. The effective current densities were calculated and listed based on 

pore density and pore diameter in order to eliminate the effect of non-conducting, non-

porous membrane area on current density. It is interesting to note that Xue et al., 2006 

were only able to obtain nanotubes in polycarbonate membranes by using pore-wall-

modifying agents and increasing the voltage, and not by decreasing the deposition time. 

They obtained nickel nanowires when 12 mA/cm2 effective current density was applied. 

The effective current density as high as 800 mA/cm2 and wall-modifying agent were 

necessary to promote nucleation sites on the walls of the pores in order to produce 

nanotubes. It was also shown by other groups that nickel nanotubes can be produced at 

very low current densities as long as wall-modifying agents are being used [28, 30] 



(Table 7).  However, chemical modification of the inner walls of the template introduces 

impurities to the system as well as complicating the process [53].  Here, nanotubes were 

synthesized with one-step electrochemical deposition without the need of modifying the 

inner walls of the templates which is a much simpler and straightforward approach.  

 

Table 7. Pore characteristics of the templates used in this study and other studies 

 

Membranes 
Pore 
size 

(nm) 

Effective 
current 
density 

(mA/cm2) 

Pore 
density 
(cm-2) 

Thickness 
(μm) 

Aspect 
ratio 

Surface 
porosity 

(%) 

1,000 63.7 
(hollow) 2x107 11 ~11 ~15.7 

100 417 (solid) 3x108 6 ~60 ~2.4 

Polycarbonate 
membrane 
(this study) 15 9091(solid) 6x108 6 ~400 ~0.11 

Commercial alumina 
(this study) 80-200 26.7 (solid) 1x109 60 ~300 ~25-50 

Lab-made alumina 
(this study) 60 6.7 (solid) 3x1010 80 ~1300 ~30 

Polycarbonate (from 
reference 28) 400 

12  (solid), 
800 (hollow) 
with agent 

1x108 6 to 10 ~20 ~12.5 

Commercial alumina 
(from reference 30) 80-200 0.8  (hollow) 

with agent 1x109 60 ~300 ~25-50 

Commercial alumina 
(from reference 54) 80-200 

0.35(hollow) 
with triblock 
copolymer 

1x109 60 ~300 ~25-50 

Commercial alumina 
(from reference 55) 80-200 26.7 (solid) 1x109 60 ~300 ~25-50 

    

Current density of 10 mA/cm2 was also applied to smaller pore size polycarbonate 

membranes to see the effect of pore size, porosity and hence effective current density. 

Normally hollow nanotubes have a tendency to grow in higher current densities. Slow 

growth with low current density yield to solid nanorods [28, 32, 53]. 

As can be seen in Table 7, the effective current density increases with decreasing pore 

size which should normally result in nanotubes, not in nanorods. However instead of 
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nanotubes, we obtained solid rods for 100 and 15 nm polycarbonate membranes 

regardless of the high effective current densities (Figures 32 and Figure 33). 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 32. SEM micrographs showing nickel solid rods deposited in 100 nm 

polycarbonate membranes partially dissolved with dichloromethane 
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Figure 33. SEM micrographs showing nickel solid rods deposited in 15 nm 

polycarbonate membranes partially dissolved with dichloromethane 

 

Based on this observation, we believe that the pore size has a dominant effect over 

effective current density in controlling the structure of the nanometals below a certain 

size.  

Last parameter that has an effect on the structures of the templated nanostructures 

is the aspect ratio which is defined as the length over diameter ratio. It has been reported 

in literature that high aspect ratio membranes favor the formation of nanowires [56-57]. 

In our study, we obtained nanowires/nanorods for templates with aspect ratios of 60 and 

higher whereas hollow nanotubes were formed at much lower aspect ratios, around 11. 

Although preferential growth mechanism depends on effective current density, we 

believe that under a critical pore size solid rods will be formed if high aspect ratio 

templates are used. Deep and narrow pores promote layer by layer growth of nanorods. In 

contrast, in larger pore sizes, the metal can grow on the inner wall of the pores and form 

nanotubes. Thus, the resulting structure is determined by an intricate interplay between 

pore size (through effective current density) and aspect ratio. 
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 Higher current densities such as 50, 100 and 200 mA/cm2 were also applied to 

polycarbonate membranes to examine the effect. Solid rods were obtained instead of 

nanotubes in all cases. As was previously stated, the only condition that allows the 

formation of hollow fibers is with 1,000 nm polycarbonate membranes which eventually 

turn into solid rods with time. For the rest of the pore sizes, no matter what the current 

density was, nanowires were obtained.  

 

4.1.2 Anodized alumina membranes 

The second group of templates used was anodized alumina. A fixed current density of 

10 mA/cm2 was applied to anodized alumina membranes. For both commercial and lab-

made alumina membranes only solid nanowires were obtained (Figures 34 and 35) 

supporting the previously stated discussions about aspect ratio and pore size. 

As can be seen from Figure 34, the nanorods were grown to same height and were 

uniformly produced in each pore of the membrane. The diameter of the nanorods 

obtained in commercial alumina is around 200 nm which can be seen at high magnified 

SEM pictures, whereas much finer nickel fibers with 60 nm diameter were obtained for 

lab-made alumina (Figure 35), both determined by the pore size of the membranes. The 

density of these structures is orders of magnitude higher than polycarbonate grown 

nanorods in accordance with the much higher pore density of anodized alumina 

membranes. The high pore density of alumina membranes is in the range of 109-1010/cm2, 

therefore, the metal array stays together even after the alumina template is completely 

dissolved.  
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Figure 34. SEM micrographs showing nickel solid rods deposited in commercial alumina 

membranes dissolved with 6M NaOH solution 
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Figure 35. SEM micrographs showing nickel solid rods deposited on lab-made alumina 

membrane dissolved with NaOH solution. Overgrowth caps are visible on the upper left 

image 

 

It is not expected to grow nanotubes with anodized alumina membranes which have 

high aspect ratio and high pore density resulting in lower effective current densities 

(Table 7). Both factors promote the growth of nanorods rather than nanotubes. 
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4.2 Electrodeposition of palladium nanowires using commercial alumina membrane 

 
Palladium nanowires were synthesized using both potentiostatic and galvanostatic 

electrodeposition techniques in the  pores of commercial anodized alumina membrane. 

Continuous, dense nanowire formation has been achieved with both techniques without 

any side treatment or further need of modification of the substrate being used.   

Experiments were first conducted by using potentiostatic electrodeposition. In 

potentiostatic experiments, the applied potential range was varied from 0.5V to 3.5V 

while the electrolyte concentration was varied between 0.5 to 4 mM.  

 

Table 8. The conditions applied for growing palladium nanowires 

 

 

 

 

 

 

 

 

The parameters that have been tried for potentiostatic experiments at varying 

times can be seen in Table 8. When the electrolyte concentration was 0.5 mM with an 

applied potential of 0.5 V, the walls of the alumina membrane were brushed up which 

prevent the growth of nanowires inside the pores (Figure 36).  

 

electrolyte 
concentration(mM) 

applied 
potential (V) 

appearance 

0.5 0.5 brushing up of membrane 
walls                                       X 

0.5 nice, long fibers                      

0.8 overgrowth on the surface 
empty pores                           X 

1.5 loosely attached overgrowth  X 
2 

3.5 overgrowth on the surface 
empty pores                           X 

0.5 overgrowth on the surface 
empty pores                           X 4 

2 overgrowth on the surface 
empty pores                          X 
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Figure 36. SEM micrographs of membranes with brushing-up morphology at an applied 

potential of 0.5 V with 0.5 mM electrolyte concentration 

 

Increasing the electrolyte concentration to 2 and 4 mM at varying potentials 

resulted in obtaining overgrowth of palladium on the surface of the membrane. Detailed 

examination of the cross section of the membranes revealed that the pores of the 

membrane could not be filled completely (Figure 37). Same occurred with 2 mM 

electrolyte concentration at high potential differences. 
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Figure 37. SEM micrographs of the membranes where the palladium was loosely 

attached on the surface and empty pores through the cross section  at an applied potential 

of 1.5V with 2 mM (left figure) and dense overgrowth on the surface at an applied 

potential of 2V with 4 mM  (right figure ) electrolyte concentration 

 

Palladium nanowires could only be obtained when 2 mM electrolyte 

concentration with an applied potential of 0.5V used in the experiments. As can be seen 

from the SEM images, there is dense and continuous nanowire growth along the 

membrane (Figure 38). 
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Figure 38. SEM micrographs showing palladium nanowires deposited in commercial 

alumina membranes (first two rows) and nanowires after the membranes partially 

dissolved with 6M NaOH solution (last row)  

  

The deposition time at these conditions also was important to adjust. After 

conducting several experiments, the optimum time to grow palladium nanowires without 
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overgrowth on the membrane surface was about 2.5 hours. If electrodeposition was 

applied for extended times, continuous overgrowth film was observed on the membranes 

which is not desired for hydrogen sorption experiments because aggregated particles of 

palladium would obscure the nanostructuring effect in hydrogen sorption experiments. 

The energy dispersive spectrometry of the palladium nanowires show that the 

major peaks belong to palladium. The minor peak which indicates the presence of gold 

originates from the gold sputtering process necessary for conductance in electrochemical 

deposition process. Finally, trace amount of aluminum comes from the remaining part of 

the membrane after etching (Figure 39).    

 

  

  

Figure 39. The corresponding energy dispersive spectrometry of the palladium 

nanowires 

 

In order to confirm the reproducibility of results, the experiments were repeated 

by applying galvanostatic electrodeposition. Since the continuous and dense fibers were 

obtained at a potential of 0.5V with a corresponding current density of 0.2 mA/cm2 in 2 
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mM electrolyte solution, galvanostatic experiments were conducted with a constant 

current density of 0.2 mA with the same solution concentration. As a result, continuous 

and dense nanowires were obtained with a corresponding steady-state potential within the 

range of 0.5-0.8 V. These results showed that, continuous palladium nanowires can be 

achieved by applying both potentiostatic and galvanostatic electrodeposition techniques 

with the indicated conditions. The potential versus time graph is presented in Figure 40 

for palladium nanowires with galvanostatic electrodeposition experiments. 

 

 

Figure 40.  Potential versus time graph for the formation of palladium nanowires with 

galvanostatic experiments 
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4.3 Hydrogen sorption in nanostructured palladium 

After obtaining palladium nanowires in the nanostructured pores of the 

membranes, hydrogen sorption experiments were conducted to determine the 

nanostructuring effect with these materials. This section summarizes the hydrogen 

sorption behavior of the self standing palladium nanowires as well as their behavior 

inside the membranes.  

Palladium-hydrogen is a good model system to study the differences in hydrogen 

sorption behaviors between the bulk and the nanostructured materials since physical 

properties of bulk palladium are well characterized [20-22].  The experiments were first 

started with bulk palladium. This was necessary to test the custom-built apparatus and to 

compare the results with literature. The hydrogen sorption behavior of bulk palladium 

was investigated by the measurement of pressure-composition (P-C) isotherms using the 

custom-built volumetric system. Before hydrogen sorption measurements, it is crucial to 

pre-treat the system with hydrogen. Hydrogen treatment helps to remove any oxide 

formation from the surface of the samples due to easy decomposition of palladium oxide. 

For pre-treatment, the samples in the column were exposed to hydrogen at high 

temperature (200 oC) for about 6 hours. This allows larger hydrogen solubility due to 

activation of the surface sites by removing the oxide layer. The next treatment before 

starting the sorption experiments is to flow helium through the system at 300 oC to desorp 

the sample completely and remove any pre-adsorbed moisture or impurities from the 

sample. Hence, experiments can be conducted with a clean palladium surface. The last 

step is to evacuate the system before starting the experiments.  
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4.3.1 Hydrogen sorption studies with bulk palladium 

The experiments were conducted at 135 and 185 oC volumetrically to investigate 

the hydrogen uptake behavior of bulk palladium. Volumetric technique measures the 

amount of hydrogen absorbed by the metal at a fixed known volume by monitoring the 

pressure drop due to sorption [58]. 

 Pressure-composition isotherms for the sorption of hydrogen by bulk palladium 

at two temperatures are given in Figure 41. The hydrogen solubility is given by molar 

concentrations of hydrogen per Pd atom for an equilibrium hydrogen pressure.  

 

Figure 41. Hydrogen pressure-composition isotherms of bulk Pd at 135 oC and 185 oC 
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The figure shows that the P-C isotherm of the bulk material has three distinct 

parts. The initial steep slope at the low pressure range belongs to α phase where 

hydrogen dissolves and goes into solid solution. The solubility limit of this phase is 

around 0.15 H/Pd at both temperatures. The flat plateau which is also known as the 

miscibility gap that is present at both temperatures refers to the existence of two phases, 

α and β where the hydride phase starts to form. Upon the appearance of the hydride or 

the β-phase, the equilibrium pressure stays nearly constant as more hydrogen is added to 

the system. In this section, there is a rapid conversion of α phase into β phase as 

concentration of hydrogen increases. The flat plateau corresponds to about 60 kPa at 135 

oC while it approximately corresponds to 150 kPa at 185 oC for H/Pd ratio of 0.4. As 

more hydrogen is added to the system second dissolution of hydrogen in the β-phase 

begins and the pressure rises again as a function of the hydrogen content. 

Figure 42 presents the bulk palladium P-C isotherms obtained from this study and 

the study performed by Yamauchi et al., 2008 for comparison [21]. The two isotherms 

reveal similar plateau pressures.  The flat plateau corresponds to about 62 kPa and 70 kPa 

for H/Pd ratio of 0.1 in this study and Yamauchi’s study, respectively. The slight 

difference between the plateau pressures of the isotherms are due to the differences in 

temperatures at which the experiments are conducted. Hence, the isotherms from both 

studies confirm that our results are consistent with literature. 
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Figure 42. Comparison of the P-C isotherms of bulk palladium of this study (135 oC) and 

the study performed by Yamauchi et al., 2008 (120 oC) 

 

4.3.2 Hydrogen sorption studies with palladium nanowires 

The sorption behavior of the nanowires inside the membranes and the single 

standing nanowires after dissolving the membranes was investigated at both 

temperatures. After the membranes were dissolved with 6M NaOH solution, they were 

washed with distilled water to get rid of the residuals of NaOH and were dried after 

placed in the sorption column by gradually increasing the temperature up to 200 oC to 

remove the moisture. Then the routine procedure of pre-treatments similar to bulk 

palladium was also applied to palladium nanowires. In order to examine the effect of 

nanostructuring, the P-C isotherms of the nanowires before and after dissolving the 

membranes and the bulk palladium at 135 oC are plotted together for comparison (Figure 

43).  
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Figure 43. Hydrogen pressure-composition isotherms of Pd nanowires (before and after 

the membranes were dissolved) and bulk Pd at 135 oC 

 

P-C isotherms in Figure 43 show that nanowires have isotherm shapes somewhat 

different than bulk palladium pressure-composition isotherm. The plateau is not well 

defined with nanowires, it slopes upward. Nevertheless, a “plateau-like” region is 

identifiable by the change in the slopes of the isotherms. This sloped plateau was 

observed approximately within the 0.15-0.4 range of H/Pd ratio for both dissolved and 

undissolved samples. The existence of the plateau-like region in both nanowires indicates 

that α and ß phases coexist as in the bulk phase and there is phase transformation. This 

phase transition occurs at different pressure levels unlike bulk palladium where the 

transition is at a fixed pressure. The width of this region was narrowed for both dissolved 

and undissolved samples when compared to bulk palladium. 

 

 

 

 

 

 
10

100

1000

0 0.2 0.4 0.6 0.8 1
H/Pd

Pr
es

su
re

 (k
Pa

)

dissolved (run 1)

dissolved (run 2)

undissolved (run 1)

undissolved (run 2)

bulk

 



In the low concentration region, up to α-phase with H/Pd ratio of about 0.15, 

nanowires show clearly higher sorption capacity than the bulk palladium. As the particle 

size is reduced, more adsorption sites for the hydrogen atoms are available due to the 

increase in the fraction of atoms occupying the surface and subsurface sites. Neutron 

scattering studies have also shown that nanostructured materials contain edges, corner 

sites, in other words, grain boundaries which create additional subsurface sites for 

hydrogen sorption [10]. Since monolayer hydrogen coverage already takes place on the 

surface, hydrogen atoms occupy the additional subsurface sites created by the grain 

boundaries and enhance the solubility of hydrogen in the α-phase (low concentration 

region) for nanostructured palladium. Therefore, there is an enhanced hydrogen uptake at 

low concentration region for both dissolved and undissolved samples. On the other hand, 

bulk material hydrogen dissolution is limited due to much lower number of subsurface 

sites [24,26].  

There exists a reduced hydrogen uptake capacity for the nanowires when 

compared to bulk palladium, at high concentration region. The major reason for having 

lower hydrogen sorption is that the significant portion of the grain boundaries or 

subsurface sites may not have been transformed to the hydride phase [10]. Hence, these 

sites do not participate in hydride formation examined by neutron scattering studies 

which in turn decreases the sorption capacity at higher pressures [10,22]. Another 

reasonable explanation for the reduced capacity at higher pressures is attributed to the 

stress nanocrystals are exposed to at high pressure upon hydrogen loading as well as to 

the distribution in binding energies in different planes of the palladium [1]. It was 

determined that Pd nanograins revealed 1.3 and 2.4 % strain in the (111) and (100) 
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planes, respectively which will deform the lattice and reduce the effective volume for 

certain octahedron sites and hence, making the Pd nanograins less favorable for hydrogen 

atoms [59]. Therefore, strain hinders diffusion in the α-β boundaries and reduces the 

maximum hydrogen uptake capacity at higher pressures [1].  

Dissolved and undissolved samples show similar trend in their hydrogen uptake 

behavior. The reason for dissolving away the membranes was to prevent the trapping of 

nanowires within the pores of the membrane, so to obtain single standing nanowires. 

When this barrier was removed more of the grain boundaries or defects of bare nanowires 

are exposed to hydrogen and therefore, contributes to slight enhancement of the storage 

capacity. Therefore, hydrogen sorption with dissolved samples is found to be slightly 

higher than the undissolved sample.  

The storage capacities of the nanowires produced in these experiments reveal a 

storage capacity of about 0.7 wt% and generally fall within the range of the previously 

reported studies where they have used different methods for obtaining nanostructured 

palladium. For example, Kuji et al. have reported hydrogen storage capacities 

approximately 0.4 wt% for temperatures and pressures up to 398 K and 100 kPa, 

respectively [59]. Similarly, within the same temperature and pressure range, Yamauchi 

et al. have reported storage capacities as much as 0.5 wt% with the polymer coated 

nanostructured palladium synthesized by ethanol reduction of H2PdCl4 [60]. Furthermore, 

palladium nanoparticles produced by surfactant mediated single phase reduction 

synthesis have been reported to possess higher hydrogen adsorption capacities around 1 

wt% but at a temperature of 298 K and at pressures an order of magnitude greater than 

that of the present study [8].  
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The hydrogen sorption experiments were also conducted at 185 oC for the bulk 

palladium and palladium nanowires. The hydrogen P-C isotherms of both nanowires and 

bulk sample at 185 oC are shown in Figure 44. 

 

Figure 44. Hydrogen pressure-composition isotherms of Pd nanowires (before and after 

the membranes were dissolved) and bulk Pd at 185 oC 

 

When the P-C isotherms of the three samples are investigated at 185 oC, the three 

distinct parts of the bulk palladium cannot be seen clearly with the palladium nanowires. 

Figure 44 shows that as the temperature increases, the plateau for the nanostructured 

materials starts to diminish and seems like only a single phase exists. This unique phase 

behavior that the nanostructured materials exhibit at high temperatures can be explained 

thermodynamically. As the temperature approaches to the critical temperature which is 
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about 160 oC for nanostructured [59] palladium, there is a significantly reduced phase 

transformation from α into β phase and eventually only single phase (α-phase) exists at 

and above the critical temperature.   

Palladium nanowires show enhanced hydrogen uptake capacity in the α-phase 

also at this temperature and a reduced capacity at higher pressures. Furthermore, 

dissolved samples show similar hydrogen uptake capacity when compared to undissolved 

samples.  

 As was stated previously, hydrogen pre-treatment of the samples is important in 

order to remove any oxide formation on the surface of the samples. Figure 45 represents 

the isotherms of the hydrogen treated and untreated of the bulk palladium at 185 oC.  

 

 

 

 

 

 

 

 

 

Figure 45. P-C isotherm of hydrogen treated and untreated bulk palladium sample at 185 

oC 
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Figure 45 indicates that the hydrogen sorption capacity of bulk palladium sample 

is about 30% more than untreated sample. Hence, this shows that oxide formation on the 

surface of the samples needs to be removed with a pre-treatment method with hydrogen 

at high temperatures to improve the hydrogen sorption capacity.  

 

4.3.2.1 Energy of sorption for bulk and nanostructured palladium 

The energy of sorption value for bulk palladium was determined using the 

classical Clausius-Clapeyron equation [61] by considering the equilibrium points (plateau 

region) of the palladium hydride system. 

 

2

ln
RT

H
dT

Pd Δ
=          [17] 

 

It is assumed that the energy of sorption does not change with the temperature in equation 

17.  vs 
T
1Pln  graph is constructed to determine the energy of sorption value from the 

slope of the straight line by making use of the equilibrium pressure versus hydrogen 

composition data at two different temperatures (Figure 46). 
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Figure 46. P-C isotherms of dissolved Pd nanowires and bulk Pd at two different 

temperatures 

 

In our study, we have determined the energy of sorption value from the plateau of 

the metal hydride isotherm for bulk palladium approximately as 28 kj/mol using two 

different temperatures. This value is within the range of the previously reported results in 

different studies [20, 62-64].  

Furthermore, it has been shown that energy of sorption was greatly reduced when 

using Pd nanowires as compared to bulk Pd. It is of great interest to reduce the energy of 

sorption because of the economical point of view where reducing the energy of sorption 

will in turn reduce the release temperature and it is the key factor to increase the energy 

efficiency of the whole system. Energy of sorption values were calculated for the whole 
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composition range for both bulk Pd and Pd nanowires. In Figure 47, it is seen that 

nanowires yield a lower energy of sorption value of approximately 7 kj/mol at the plateau 

pressures.  

 

 

 

 

 

 

 

 

 

Figure 47. Energy of sorption values corresponding to different H/Pd compositions for 

fibers (nanowires) and bulk Pd 

 

 Since energy of sorption corresponds to the bond strength between hydrogen and 

palladium, these results indicate that decreasing size of the particles weakens the bond 

strength between them and lowers the release temperature of the hydrogen by using the 
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As a result of the volumetric experiments, the effect of nanostructuring behavior 
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been examined. The results that we have obtained revealed the sorption capacity of the 

materials having uniform and homogeneous particle size.  

The materials at this particle size range clearly show better sorption uptake 

capacity in the α-phase region. In order to increase the sorption capacity of these 

materials also in the β-phase, alloys using palladium and some other metals (such as 

magnesium) with a higher hydrogen uptake capacity can be prepared. 

In order to commercialize metal hydrides and use them as efficient hydrogen 

storage media, other important properties of these unique systems need to be optimized 

other than storage capacity such as kinetics, cyclability, cost, etc.  
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CHAPTER V 

    CONCLUSIONS AND FUTURE WORK 

 

Metal hydrides are considered to be good candidates for hydrogen storage due to 

their high volumetric and gravimetric hydrogen densities and safe operating conditions. 

In this study, the major focus was to determine the effect of nanostructuring on the 

hydrogen uptake behavior of palladium nanowires fabricated using commercial anodized 

alumina membrane.  

Electrodeposition experiments were started with nickel as the test metal and 

nanostructured nickel was produced in various porous membranes. The effects of 

deposition time, pore size, porosity, current density and aspect ratio on the fabrication of 

nickel nanostructures were examined. Nickel nanotubes were obtained with 1,000 nm 

pore size polycarbonate membranes without any chemical treatment of pore walls. As the 

deposition time increases, nanotubes turn into solid rods. As the porosity of the 

membrane increases, the effective current density decreases due to the larger exposed 

area. Lower porosity and hence higher current density favors the production of hollow 

nanostructures as was shown by 1,000 nm polycarbonate membranes. However, hollow 

fibers could not be obtained with smaller size polycarbonate membranes and with 
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anodized alumina templates even at high current density. We think that below a critical 

pore size, solid rods are formed through layer by layer mechanism regardless of current 

density due to the smaller surface area of the pore bottom compared to pore walls. One 

last parameter that is considered was the aspect ratio. Nanowires were obtained with 

aspect ratios of 60 and higher while nanotubes were formed at a much lower aspect ratio 

which is 11. Thus, it is concluded that the morphology of nanostructures is a result of an 

intricate play between current density, pore size and aspect ratio. 

The conditions were also optimized to obtain palladium nanowires using 

commercial anodized alumina membranes. Palladium nanowires could be obtained when 

2 mM electrolyte concentration with an applied potential of 0.5 V used in the 

experiments. The palladium nanowires could also be obtained by conducting 

galvanostatic experiments.  

The P-C isotherms of the palladium nanowires revealed the major hydrogen 

uptake behavior of the nanostructured palladium. Enhanced hydrogen capacity at low 

pressure range, a reduced capacity at higher pressures, a positive slope in the miscibility 

region and narrowing of the plateau region were observed. The hydrogen uptake capacity 

of the nanostructured palladium hydride system at 135 oC up to 100 kPa was found as 0.7 

wt%.  

The energy of sorption for the bulk palladium was determined from the plateau 

pressure approximately as 28 kj/mol. Furthermore, it has been shown that energy of 

sorption was reduced to about 7 kj/mol with nanostructured Pd nanowires. It is of great 

interest to reduce the energy of sorption because of the economical point of view where 
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reducing the energy of sorption will in turn reduce the release temperature and it is the 

key factor to increase the energy efficiency of the system.  

In order to commercialize metal hydrides and use them as efficient hydrogen 

storage media, other important properties of these unique systems need to be optimized 

other than storage capacity such as kinetics, cyclability, cost etc. Therefore, more 

fundamental research needs to continue to improve the key factors of metal hydride 

systems.  
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APPENDIX 
 
 

A. Helium expansion measurements 

The volume of the custom-built system was determined by helium expansion 

measurements. In these measurements, helium gas was expanded from the unknown 

volume to known volume or vice versa (Figure A1). We made use of material balances 

and ideal gas equation of state in the calculations. The equations are shown below. In 

these equations, “R” denotes the reference side whereas “S” denotes the sample side. 

During the charging of the gas and in the expansion steps, the pressures and temperatures 

of both sides before and after gas expansion were measured through pressure and 

temperature transducers. Therefore, by using these data and the known volume, the 

unknown volume can be determined easily. 

 

 

Figure A1. General volumetric system to show the principle of helium expansion 

measurement 

vacuum 
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B. Gas sorption measurements 
 

In determination of the amount of gas adsorbed, similarly, material balances and 

equation of states were used. The principle is the same as in helium expansion 

measurements. P-V-T data before and after gas expansions are used to determine the 

amount absorbed at every step by using the below stated material balances. 
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Figure A2. General volumetric system to show the principle of gas sorption measurement 

when there is sample in the sample cell 
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