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ROLE OF THE THROMBOSPONDIN - CD36 - HISTIDINE RICH 

GLYCOPROTEIN PATHWAY IN TUMOR GROWTH AND ANGIOGENESIS 

JAMES SCOTT HALE 

ABSTRACT 
 

Cancer is typically thought of as an uncommon disease, in which solid tumors 

require a blood supply in order to grow and metastasize.  Interestingly, upon autopsy a 

large portion of elderly individuals display numerous non-vascularized lesions 

throughout their bodies.  Thus, the angiogenic switch in the development of cancer 

presents an important therapeutic target.  Previous work by our laboratory has established 

an interaction between CD36, Histidine Rich Glycoprotein (HRGP) and Thrombospondin 

1 (TSP-1) in the modulation of angiogenesis.  Briefly,  endothelial cell receptor CD36  

interaction with soluble or cell bound TSP-1 leads to the induction of an apoptotic 

signaling cascade in vascular endothelial cells resulting in decreased proliferation, 

migration and tube formation, thereby inhibiting angiogenesis.  Presence of soluble 

HRGP leads to inhibition of the anti-angiogenic potential of the CD36-TSP-1 pathway 

through a decoy receptor function whereby TSP-1is bound and sequestered.  Previous 

studies have focused on this pathway with regards to wound healing.  However, 

pathologically relevant modulation of angiogenesis is also observed in tumors. In the 

current work we evaluate the role of the CD36-TSP-HRGP pathway in tumor growth and 

angiogenesis.  Further, we examine a possible processing mechanism by which TSP 

function may be modulated by a matrix metalloprotease, ADAMTS1. 

Chapters two through five will outline the role of the TSP-CD36 axis in tumor 

biology, namely angiogenesis and growth.  We will also address modulation of this 
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pathway via HRGP.  Further we will describe a matrix metalloprotease mechanism by 

which TSP function may be regulated. 
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CHAPTER I 

INTRODUCTION 

Cancer Overview 

Cancer as defined by the American Cancer Society is a group of diseases 

characterized by the uncontrolled growth of abnormal cells, which if not restricted may 

result in death
1
.  Extrinsic/environmental factors including UV radiation, tobacco use and 

chemical exposure and intrinsic factors such as immune function, genetic background and 

hormone levels may cause or hasten the induction of cancerous lesions
2,3,4,5,6,7

.  This 

group of diseases is now recognized as one in which multiple genetic “hits” or mutations 

are required for initiation. 

These mutations result in the induction of oncogenes or inhibition of tumor 

suppressor genes.  Proto-oncogenes are normal genes that may become oncogenes upon 

mutation or over-expression.  These genes encode proteins that regulate cell division and 

growth and include RAS, WNT, MYC and ERK
8,9

.  Tumor suppressor genes are native 

genes that regulate cell division, repair deoxyribonucleic acid (DNA) and control 

apoptosis (controlled cell death).  Upon mutation, these genes are inhibited resulting in 

decreased action and uncontrolled cell growth.  Common tumor suppressor genes include 

p53, BRCA1, APC and RB1
10

.  It is through a combination of oncogene activation an
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 tumor suppressor inhibition that cells may acquire the mutations necessary to take on a 

malignant phenotype and initiate cancer. 

These mutations result in a set of functional capabilities better known as the 

hallmarks of cancer, as proposed by Hanahan and Weinberg
11

.  This includes evasion of 

apoptosis, self sufficiency in growth signals, insensitivity to anti-growth signals, limitless 

replicative potential, sustained angiogenesis and tissue invasion and metastasis.  These 

functional capabilities allow cells to break free from the constraints of their 

microenvironment resulting in uninhibited growth and the formation of cancerous 

lesions.   

Disease Statistics and Treatments 

The American Cancer Society estimates that males in the United States have a 1 

in 2 chance of developing cancer over their lifetime, with females experiencing a lower 

rate of 1 in 3.  Cancer is the second leading cause of death in the United States, behind 

heart disease.  Further, for 2011 it is anticipated that 571,950 individuals will die as a 

result of cancer with an additional 1,596,670 new cases being diagnosed
1
.   

Currently, there are numerous therapeutic strategies for cancer as a whole.  Most 

often these strategies are used in concert rather than individually.  These include resection 

of the cancerous lesion (at this time the only effective strategy for melanomas)
12

, 

radiation therapy (more specifically ionizing radiation which dislodges electrons leading 

to cell death)
13

, chemotherapy (in which injected or ingested antimetabolites or inhibitors 

lead to cell death in rapidly dividing cells)
14

, immunotherapy (where the hosts immune 

system is activated by manufactured antibodies or vaccines, gardasil for example to 

prevent cervical cancers)
15

, photodynamic therapy (most often used with skin cancers 
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whereby light causes a photosensitizing agent to interact with oxygen and produce free 

radicals toxic to the cell)
16

, thermal therapies (in which heat or cold are used to destroy 

small areas of cells)
17,18

 and lastly anti-angiogenic therapies (which take two forms, 

destruction of existing vessels or prevention of the formation of new ones).   

Unfortunately, the majority of these therapies are relatively nonspecific, targeting 

both healthy host and tumor tissue.  As such, there is an urgent need for treatments based 

on molecular pathways or specific antigens, some of which are more prevalent in 

individual cancers; breast cancer 1 (BRACA1) in breast cancer and melanoma and 

adenomatous polyposis coli (APC) in colon cancer for example.  Significant strides have 

been made utilizing the genomic approach of cancer treatment; we will focus on several 

advancements in targeted cancer treatment with regards to angiogenic modulation.   

 In 1999, the National Cancer Institute marked the development of angiogenic 

inhibiting cancer therapies as an urgent priority.  Following, in 2004, Bevacizumab, a 

humanized monoclonal antibody against VEGF, better known as Avastin became the first 

anti-angiogenic compound approved by the FDA for the treatment of cancer
19

. As of 

March 2011, four anti-angiogenic drugs have been approved by the FDA, all of which 

target the vascular endothelial growth factor (VEGF) pathway
20

.  

 Currently, several angiogenesis inhibitors are in phase III clinical trials for varied 

human cancers including melanoma, breast and gastric cancer
21

.   Trial NCT00111007 is 

currently examining the use of Sorafenib in combination with chemotherapeutics 

Paclitaxel and Carboplatin in the treatment of Stage III and IV melanoma.  Sorafenib is a 

kinase inhibitor shown to inhibit angiogenesis through the induction of endothelial cell 

apoptosis
22

.  Trial NCT01303679 is currently evaluating the use of Avastin in 
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combination with chemotherapeutics Taxane and Exemestane in the treatment of 

metastatic breast cancer.  Avastin is currently under study in approximately one dozen 

additional phase III clinical trials.   Trial NCT01170663 is currently evaluating the use of 

Ramucirumab in combination with chemotherapeutic paclitaxe in the treatment of gastric 

carcinoma.  Ramucirumab is a human monoclonal VEGFR2 activating antibody.  It is 

one of two making use of Ramucirumab, with a third examining Avastin.  

 These trials use a combinatorial approach, targeting the vasculature along with the 

rapidly dividing tumor cell population.  Despite the promise these trials present, we 

should not “put all our eggs in one basket”. As such, additional avenues of angiogenic 

modulation should be examined.    

Angiogenesis and Cancer 

Angiogenesis is the physiologic process by which new vessels sprout from the 

existing vasculature.  In 1907 the association of the vasculature and solid tumors was first 

described
23

.  However, the field of angiogenic research did not begin until 1971 with the 

publication of work by Judah Folkman hypothesizing the growth of neoplastic lesions 

was dependent on angiogenesis
24

, which has since been validated in numerous tumor 

types including those originating in the brain, breast, prostate, skin and lung
25,26,27,28,29

.   

In the normal adult setting, the vasculature is maintained in a quiescent state 

through a balance of angiogenic inhibitors, such as Thrombospondin 1 (TSP), and 

inducers, such as VEGF. This balance between pro- and anti-angiogenic stimuli is 

important in homeostasis, in particular in such conditions as pregnancy and wound 

healing.  Loss of homeostatic balance resulting in excessive or insufficient angiogenesis 

has been implicated in numerous diseased states such as ulcerative colitis, diabetic 



 5 

retinopathy, obesity, psoriasis, rheumatoid arthritis, stroke, coronary artery disease and 

cancer
30,31,32,33,34,35,36

.   

Interestingly, most apparently healthy individuals display numerous small 

nonvascularized lesions throughout their bodies.  However, only approximately 1 in 600 

of these small, quiescent tumors will acquire an angiogenic phenotype resulting in a 

clinically detectable cancer
37

.  Supporting this observation, it is well established that solid 

tumors will grow to 1-2 mm by simple diffusion but require a blood supply in order to 

expand further and metastasize.  To this end tumors express pro-angiogenic substances 

such as basic fibroblast growth factor (bFGF) and VEGF which recruit blood vessels to 

the lesion through the induction of endothelial cell proliferation migration and tube 

formation (Figure 1).   

 
Figure 1.  Tumor vessel recruitment.  Tumors will grow to a limited volume through diffusion, 1-2 mm.  

In order to expand further they secrete angiogenic compounds, such as VEGF, allowing for the recruitment 

of blood vessels and subsequent growth and metastasis (Genentech). 

 

Cardiovascular Structure 

The cardiovascular system supplies our tissues with oxygen and nutrients as well 

as collecting and expelling carbon dioxide (CO2).  Most cells of the body are located 

within 200 µm of a blood vessel, the diffusible limit for oxygen
38

.  The heart is the engine 

that drives blood flow throughout the body.  Deoxygenated blood enters the right atrium 
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of the heart through the superior and inferior vena cava.  The blood then moves to the 

right ventricle where it is pumped into the pulmonary artery and capillary beds of the 

lungs.  Here, oxygen is exchanged for CO2 collected from the body tissues. The oxygen 

enriched blood then enters left atrium through the pulmonary vein.  The flow of blood 

continues into the left ventricle where it leaves the heart via the aorta and enters systemic 

circulation, supplying the tissues of our body with oxygen and absorbing carbon dioxide 

through a complex capillary network.  This network ends with the venous system which 

returns deoxygenated blood to the heart
39

.   

The vasculature consists of three types of vessels; arteries which carry oxygen 

rich blood from the heart, capillaries where gas, nutrient and waste exchange occurs and 

veins which return blood to the heart.  Arteries and veins are similar in structure 

consisting of three layers; tunica intima, tunica media and tunica adventitia.  The 

innermost tunica intima consists of an endothelium, a layer of simple squamous 

endothelial cells, with an associated basement membrane.  Surrounding this layer is the 

tunica media made up of smooth muscle cells and elastic connective tissue and is 

responsible for vasodilation and vasoconstriction.  The tunica adventitia encapsulates the 

tunica media in a layer of collagen, thereby acting as an anchor with the surrounding 

tissue
40

.   

The capillary network is structurally unique and allows for efficient exchange of 

materials.  These vessels are the smallest of the vascular system and consist of a single 

layer of endothelial cells surrounded by a basement membrane.  These vessels are the site 

at which angiogenesis typically occurs.   
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Steps of Angiogenesis 

As stated previously, the vasculature is normally maintained in a quiescent state.  

In instances where pro-angiogenic stimuli predominate angiogenesis occurs through the 

induction of micro-vascular endothelial cells.  In response to pro-angiogenic stimuli, such 

as VEGF, selective sprouting of endothelial cells from the existing vasculature is 

observed (Figure 2).  This involves the disruption of cell-cell junctions, a reversal of cell 

polarity and increased protease expression, allowing for extracellular matrix degradation.  

This is followed by sprout expansion and directional chemotaxis.  During this period, 

microvascular endothelial cells proliferate and migrate along pro- and inhibitory 

angiogenic gradients, achieving polarized extension of the sprout.  As the sprout extends, 

extracellular matrix is deposited and pericytes are recruited to stabilize the forming vessel 

which fuses with the existing vasculature.  Subsequent steps are poorly understood.  

Endothelial cell-cell interactions are maintained in the maturing vessel as vacuoles form 

and fuse first intracellularly and subsequently intercellularly, resulting in the formation of 

a primitive lumen.  Following lumen formation blood flow is established. (41)  

 

Figure 2. Angiogenic vessel sprouting.  In response to pro-angiogenic signaling endothelial cells reverse 

polarity, secrete matrix degrading enzymes and begin to migrate along the stimulus gradient.  As the newly 

formed vessel matures, basement membrane is layered down and associated cells such as vascular smooth 

muscle cells and fibroblast stabilize the growing structure (Genentech).     
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Thrombospondin - CD36 - Histidine Rich Glycoprotein Axis 

Thrombospondin -1  

Numerous reports have shown reduction or blockade of tumor growth by 

inhibition of angiogenesis.  Thrombospondin-1(TSP) (Figure 3), in 1978, was the first 

endogenous anti-angiogenic molecule to be identified (42-44).  The thrombospondin 

family consists of five extracellular calcium binding members (Thrombospondins 1-5) of 

which Thrombospondin-1 and 2 are most structurally similar (45, 46).  TSP, like 

Thrombospondin 2, is a 450 kDa trimeric multi-domain matricellular glycoprotein. 

  

 

 

 

 

Each monomer consists of, in order, an amino terminal heparin binding domain, 

procollagen homology domain, three properdin like type one repeats (TSRs), three 

epidermal growth factor like type 2 repeats, five calcium binding or type 3 repeats and a 

-Amino 

-Procollgen 

-Type I 

-Type II 

-Type III 

C Terminal 

Figure 3. Thrombospondin 1 structure.  Proposed crystal structure of Thrombospondin 1 trimer.  From left; 

amino terminal domain, procollagen domain, type I repeats, type II repeats, type III repeats and carboxy terminal 

domain.   (Mosher 2008) 
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lectin like carboxy terminal domain.  Monomers are connected via disulfide bonds 

between the amino terminal and heparin binding domains
47

.  TSP is expressed by several 

cell types including endothelial cells
48

, smooth muscle cells
49

, fibroblasts
50

 and 

monocytes/macrophages
51

 but contained primarily in platelet alpha granules, at a 

concentration of 82.6 ng/10
6
 platelets, allowing for deposition at sites of injury or 

inflammation
52

.  TSP may be soluble or cell bound, circulating in the plasma, at a 

concentration of 491 ng/ml
52

, and incorporated into the extracellular matrix through 

interaction with fibrinogen
53

, fibronectin
54

, collagen
55

, integrins
56

 and heparin sulfate
57

.   

TSP has been implicated in diverse cellular functions and processes including 

synaptogenesis, inflammation/immune function, thrombosis and angiogenesis.    The 

effects on synapse formation have been localized to the type 2 repeats of TSP, with null 

mice showing decreased synapse density
58,59

.  Modulation of immune function and 

inflammation by TSP is complex, involving multiple cell types with differential effects in 

each.  Activation of latent TGFβ by the RFK amino acid sequence of the TSRs of TSP, 

which Thrombospondin 2 lacks, is thought to influence monocyte/macrophage 

chemotaxis
60,61

.   The process by which TSP activates latent TGFβ is currently unknown.  

Interaction of the C-terminal domain of TSP with membrane receptor CD47 on dendritic 

cells suppresses cytokine production, decreasing T-cell activation
62,63

.  Additionally, 

direct interaction of TSP with T-cell integrin enhances adhesion and recruitment
64

.  With 

regards to thrombosis, TSP has been shown to act as a bridge between platelets, binding 

surface integrins, thereby promoting aggregation
65

.  Further, TSP has been shown to 

protect von Willebrand factor expressed by endothilal cells from matrix metalloprotease 
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cleavage at inflammatory sites thereby enhancing platelet recruitment
65

.  These effects 

highlight the importance of TSP in tissue modeling and wound healing.   

TSP is most well known as a vascular mediator.  The role of TSP in vascular 

function centers around two concepts; control of vascular tone and regulation of 

angiogenesis.  Control of vascular tone has been assessed by work by Isenberg and 

Roberts who have demonstrated nitric oxide (NO) modulation of vascular smooth muscle 

and endothelial cell function.  NO effectively dilates vessels allowing for increased fluid 

extravasation into the surrounding tissues.  Additionally, NO induces endothelial cell 

proliferation and migration.  Two receptors, CD47 and CD36 have been implicated in 

vascular NO modulation by TSP
66

.  CD47 was further shown to be necessary for TSP 

inhibition of NO signaling, with CD36 being only sufficient, therefore serving a possible 

supporting function
67

.  More rigorous study is required to further delineate the TSP 

related functions of CD47 and CD36.   

TSP is typically thought of as an angiogenic inhibitor, however groups have 

reported pro-angiogenic functions.  Work by Aharonov showed a pro-angiogenic effect 

of TSP through the activation and recruitment of granulocytes in the rabbit cornea
68

.  

Additionally, in vitro rat aortic ring models showed recruitment of myofibroblasts by 

TSP, which promote angiogenesis through the secretion of heparin binding proteins
69

.  

These data do not necessarily conflict with the reported anti-angiogenic effect of TSP 

centered on microvascular endothelial cells as they focus on additional cell types.   

The anti-angiogenic effects of TSP have been well characterized both in vitro and 

in vivo.  TSP inhibits microvascular endothelial cell proliferation, migration and tube 

formation in response to basic fibroblast growth factor (bFGF) through the induction of 
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apoptosis
70,71

.  Further, TSP inhibits vascularization in response to bFGF in corneal 

micropocket and subcutaneous matrigel assays
70,72

.  Overexpression of TSP in the skin of 

transgenic mice results in decreased vascularization in full thickness skin wound healing 

models
73

.  TSP overexpression in the skin has also been shown to inhibit angiogenesis 

and growth of squamous cell carcinoma tumors
74

.  Conversely, TSP null mice display 

lengthened vascularization times in wound healing models and increased volume and 

vessel size in spontaneous breast cancer tumors
75,76

.   

From these studies, it appears TSP may function to both block and induce 

angiogenesis, possibly allowing for fine tuned modulation of vessel formation.  Inhibition 

of angiogenesis in endothelial cells may be overcome by induction of pro-angiogenic 

stimuli by TSP in other cell types, i.e. granulocytes and myofibroblasts.  This interplay 

and the role of TSP in pro-angiogenic induction require further study.   

The anti-angiogenic effects of TSP have been localized to the TSRs.  Treatment 

of microvascular endothelial cells with recombinant TSR induces apoptosis
77

.  

Additionally, TSR treatment effectively inhibits xenograft tumor growth and 

vascularization
77,78

.   Each TSR assumes a unique 3 stranded anti-parallel barrel structure.  

The second and third strands form regular beta sheets, with the first strand possessing a 

novel “rippled” structure.  The strand side chains of alternating Cysteine - Arginine - 

Tryptophan layers intercalate with one another and form the center of the structure.  

Exposed side chains of the arginine and tryptophan residues result in an overall positive 

charge on the binding face of this domain, which is recognized by the negatively charged 

binding site on CD36
79

.  In addition to overall charge interaction between the TSRs and 

CD36, blocking antibodies and peptides have shown the amino acid sequence CSVTCG 
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of TSRs is vital to this interaction
80,81

.  Work is currently under way by our group to 

solve the crystal structure of the TSR-CD36 interaction.   

From the studies outlined for TSP we begin to appreciate its role in vascular 

functioning, i.e. inflammation, thrombosis, vessel dilation and angiogenesis.  With 

regards to angiogenesis, several areas require further clarification.  These include the 

angiogenic duality of TSP, role of CD36 in TSP function, both in normal and pathologic 

settings (i.e. tumor angiogenesis and formation), and evaluation of the overlapping roles 

of TSP receptors CD47 and CD36.   

CD36 

CD36, first described as glycoprotein IV, is a highly glycosylated 88 kDa class B 

scavenger receptor, referring to its 2 transmembrane domains,  expressed on numerous 

vascular cell types including platelets, macrophages and microvascular endothelial cells  

(Figure 4)
82,83

.  CD36 localizes to cholesterol-sphingolipid-rich rafts on the cellular 

membrane.  These domains are known to be sites of signal transduction in eukaryotic 

cells
84

.   

CD36 recognizes ligands in a cell type specific manner, possibly due to 

differential co-receptor expression; CD9, α6β1, TLR2 and VEGFR2 in endothelial cells 

(85, 86, 87).  Immunoprecipitation and immunofluorescent colocalization were utilized to 

show interaction.  These studies have demonstrated modulation of TLR2 and VEGR2 

signaling by CD36 and TSP. No evidence for modulation of the anti-angiogenic 

interaction of CD36 and TSP has been reported.  With regards to endothelial cell biology, 

co-receptor expression presents a mechanism by which the inherent anti-angiogenic 



 13 

potential of CD36 may be modulated.  Further study is required to evaluate the role of 

these coreceptors in CD36 – TSP angiogenic functioning.     

 

Figure 4.  Membrane receptor CD36 structure.  This receptor possesses two transmembrane domains, 

three disulfide linkages and multiple extracellular ligand binding domains.   It localizes to lipid rich rafts on 

the cellular membrane (shaded).  Modifications inc include intracellular palmitoylation and extracellular 

glycosylation (Silverstein 2009). 

On platelets, CD36 interaction with several ligands, including oxidized low 

density lipoprotein lowers threshold activation.   A recent study highlighted this effect 

showing correlation between human platelet CD36 expression and increased sensitivity to 

agonists, such as Adenosine diphosphate (ADP), resulting in increased aggregation and 

alpha granule release.  Further, these affects are absent in mice null for CD36.  As such, 

this study implicates CD36 in thrombosis and inflammation, serving as a potential marker 

for thrombotic risk
88

. 

On monocytes and macrophages, CD36 acts as a scavenger/ pattern recognition 

receptor mediating pathogen phagocytosis in which it recognizes lipid and lipoprotein 

moieties of bacterial origin
87

.  This recognition involves a co-receptor function with toll 
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like receptor 2/6 heterodimer (TRL2/6).  Additionally, CD36 binds and mediates the 

uptake of apoptotic cells and oxidized lipoproteins
89,90

.  The former interaction has been 

implicated in macrophage foam cell formation and the progression of atherosclerotic 

plaques in murine models
91

.   

With regard to vascular endothelial cells the CLESH (CD36, LIMPII, emp, SR-BI 

Homology sequence 1) domain of membrane receptor CD36 has been shown to interact 

with the type I repeats (TSRs) of several proteins including Thrombospondins-1 and -2 

and vasculostatin
81,92,93

.  This domain is prototypic of the CD36 gene family which 

includes mammalian CD36, lysosomal integral membrane protein II (LIMPII), scavenger 

receptor class B-I and Drosophila epithelial membrane protein (emp)
94

.  This family is 

defined by hydrophobicity, transmembrane domains with short cytoplasmic tails, an 

uncleaved N-terminal peptide sequence, a single extracellular domain and a C-terminal 

stop transfer domain
95

.  Glutathione-S-Transferase (GST) fusion proteins were used to 

identify the CLESH domain in CD36, specifically amino acids 93-120, and subsequently 

in other family members, i.e. LIMPII
81,94

.  Additional study is required to evaluate the 

physiologic importance of TSP interaction with all members of the CD36 gene family.   

Interaction of the CLESH domain of CD36 with the TSRs of TSP initiates an anti-

angiogenic signaling cascade in which CD36 interacts intracellularly with Src family 

tyrosine kinase P59
fyn

 with down-stream signaling to P38 mitogen-activated protein 

kinase (MAPK) with accompanying caspase 3 like protease activation leading to 

induction of apoptosis in microvascular endothelial cells, thereby inhibiting 

angiogenesis
70

.  This inhibition has been shown using in vitro and in vivo assays 

previously mentioned in this manuscript
70,72

.  Additionally, TSP signaling leads to the 
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upregulation of tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL-

R), Fas ligand and tumor necrosis factor receptor 1
77,96,97

.  Increases in TRAIL-R and Fas 

ligand were shown to be CD36 dependent.   

With regards to pathologic angiogenesis, little is known with regards to the role of 

CD36.   A recent study by Klenotic et.al. showed regulation of glioma tumor 

angiogenesis and growth by TSR containing protein vasculostatin in a CD36 dependent 

manner
25

.  Direct regulation on endothelial cell migration was shown in vitro.  Further, 

vasculostatin was shown to directly interact with the CLESH domain of CD36 through 

the use of GST fusion proteins.  No evidence currently exists directly showing in vivo 

regulation of tumor angiogenesis and growth by the TSR-CD36 signaling axis.   

From these studies, we gain a picture of a cell membrance receptor involved in  

numerous physiologic processes, primarily vascular in nature.  Additionally, we highlight 

areas requiring further study, including role of coreceptor expression in CD36-TSP 

function, role of TSP binding to other CD36 gene family members and characterization 

of the role of CD36-TSP interaction in pathologic angiogenesis, i.e. tumor angiogenesis 

and progression.   

HRGP 

Histidine-rich Glycoprotein (HRGP), first described in 1972, is a 75 kDa soluble 

plasma protein produced by the liver, which circulates at relatively high concentrations; 

100-150 ug/ml
98,99

 (Figure 5).  Additionally, HRGP is taken up by platelets and stored in 

the alpha granules
100

.  It has been shown to interact with numerous ligands, including 

zinc, fibrinogen, vasculostatin, heparin, IgG and thrombospondin-1
98,101,102,103,104,105

.  As 

such, HRGP has been implicated in diverse processes including immune function, 
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thrombosis and angiogenesis.   

 

Figure 5. HRGP structure.  HRGP consists of two N-terminal cystatin like domains, a histidine rich 

region flanked by two proline rich regions and a C-terminal domain.  Disulfide linkages a shown by black 

lines and glycosylation sites by bull’s-eyes (Parish 2005). 

During normal immune response, antibodies recognize and complex with soluble 

antigen forming immune complexes which are subsequently cleared from the body.  

Inability to clear these complexes results in tissue deposition and the progression of 

pathologic conditions such as rheumatoid arthritis.  In vitro data has shown that HRGP 

binds IgG and immune complexes, preventing insoluble immune complex formation, 

thereby implicating it in clearance and deposition
104,105,107

.  Further, intact HRGP and 

fragments from the histidine rich region have been shown to possess anti-microbial and 

fungal activities, Enterococcus faecalis and Escherichia coli, and Candida albicans 

respectively
108,109

.  This effect was mediated by HRGP binding of cell surface heparin 

with subsequent membrane destabilization
108

. In vivo modeling with HRGP null mice 

confirmed this effect
109

. Recent in vitro data has also implicated HRGP in the regulation 

of adhesion and spreading.  Conflicting results have been reported, in which HRGP 

promotes or inhibits T cell adhesion
110,111

.  Taken together these studies strongly support 

a role for HRGP in immune function.   
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HRGP has also been shown to be involved in thrombosis and fibrinolysis.  As 

mentioned above, HRGP is able to bind heparin. This binding has been shown to inhibit 

the anti-thrombotic properties of heparin
112

.  Further, HRGP binds fibrinogen, slowing 

the rate of degredation
102

.  In contrast, HRGP has been shown to enhance plasminogen 

activation thereby speeding clot resolution
113

.  Work utilizing HRGP null mice support 

the later role for HRGP with null mice forming and resoving clots more rapidly
114

. Thus, 

HRGP appears to promote clot formation and speeds its dissolution.   

Aside from the thrombotic vascular function of HRGP, this protein has also been 

shown to exert pro- and anti-angiogenic activities.  Two groups have reported anti-

angiogenic functions by HRGP
115,116

.  In vitro endothelial cell proliferation, migration 

and tube formation assays and in vivo chorioallantoic chick membrane and matrigel 

assays show inhibitory effects on angiogenesis.  These studies make use of recombinant 

peptides or artificially generated proteolytic fragments not shown to be generated in vivo.  

Further they show localization of the anti-angiogenic properties of HRGP to the histidine 

rich region. These effects require release of the histidine rich region by a yet unknown 

mechanism.  Plasmin presents as a possible candidate as it has previously been shown to 

cleave HRGP
117

.  In addition to the proposed anti-angiogenic effects of a portion of 

HRGP, full length HRGP has been described as a pro-angiogenic molecule. 

Work by our group has shown a pro-angiogenic role for HRGP mediated by a C-

terminal CLESH homology domain.  This domain, in similar fashion to the CLESH 

domain of CD36 binds the TSRs of several proteins including thrombospondin 1 and 2 

and vasculostatin
92,103,118

.  In vitro assays including endothelial cell proliferation, 

migration and tube formation show HRGP is able to inhibit the anti-angiogenic potential 
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of TSR containing proteins.  Similarly, in vivo matrigel, corneal micropocket and tumor 

assays demonstrate HRGP inhibition of TSR inhibiton of angiogenesis. Tumor assays 

relied on overexpression of HRGP in tumor cells.  No studies have assessed the role of 

ablation of HRGP in tumor angiogenesis and growth.   

From these studies, we can appreciate the numerous roles of HRGP, most 

vascular in nature.  We additionally gain a feel for areas requiring further study. HRGP 

appears to have a duality of angiogenic function whereby the intact molecule promotes 

angiogenesis, while cleaved fragments may inhibit.  Further study is required to show 

generation of anti-angiogenic fragments in vivo and better clarify this duality.  

Additionally, further work is required to assess the role of this protein in pathologic 

angiogenesis, tumor growth and vascularization for example.   
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Abstract 

The angiogenic switch in the development of cancer is an important therapeutic 

target.  Work by our laboratory has established modulation of the interaction between 

CD36 and Thrombospondin 1 (TSP-1) by Histidine Rich Glycoprotein (HRG) in the 

regulation of angiogenesis.  We have shown soluble HRG inhibits the anti-angiogenic 

potential of the CD36-TSP-1 pathway through a decoy receptor function whereby TSP-1 

is bound and sequestered.  The type I repeats (TSR) of TSP-1 were shown to mediate 

these interactions via a conserved domain in CD36 and HRG.  We hypothesize the TSP-

CD36-HRG axis regulates vascularization and growth in the tumor microenvironment.  

Lewis Lung Carcinoma (LL2) and B16F1 Melanoma tumor volumes were assessed in 

wild type (WT) and hrg or cd36 null mice. LL2 tumor volumes were greater in cd36 null 

mice and smaller in hrg null mice compared to WT.  Immunofluorescent staining showed 

increased vascularity in cd36 null vs. WT and WT vs. hrg null mice. No differences were 
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observed with B16F1.  Western analysis showed increased expression of TSP-1 by LL2 

vs B16F1 cells.  Exogenous TSR expression in B16F1 cells restored effects similar to 

those obtained with LL2. These data suggest TSR-CD36 interaction leads to inhibition of 

angiogenesis in the tumor microenvironment and HRG modulates this interaction.  

Further, they suggest a mechanism by with insensitivity to TSR containing proteins may 

be achieved.   

Introduction 

Angiogenesis is the physiologic process by which new vessels sprout from the 

existing vasculature.  In the normal adult setting, the vasculature is maintained in a 

quiescent state through a balance of angiogenic inhibitors, such as thrombospondin 

(TSP)-1, and inducers, such as vascular endothelial growth factor (VEGF). This balance 

between pro and anti- angiogenic stimuli is important in homeostasis, in particular in 

such conditions as pregnancy and wound healing.  Loss of homeostatic balance resulting 

in excessive or insufficient angiogenesis has been implicated in numerous diseased states 

such as ulcerative colitis, diabetic retinopathy, obesity, psoriasis, rheumatoid arthritis, 

stroke, coronary artery disease and cancer
1
.    

It is well established that solid tumors will grow to 1-2mm by simple diffusion but 

require a blood supply in order to expand further and metastasize
2
.  To this end tumors 

express pro-angiogenic substances such as basic fibroblast growth factor (bFGF) and 

VEGF which recruit blood vessels to the lesion through the induction of microvascular 

endothelial cell proliferation, migration and tube formation
3
.  Previous studies have 

shown ablation of pro-angiogenic phenotypes by endothelial cell membrane receptor 

CD36
4,5

.  CD36, an 88 kDa class B scavenger receptor, is expressed on numerous 
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vascular cell types including macrophages, platelets and microvascular endothelial cells.  

CD36 recognizes at least three classes of extracellular ligands – oxidized phospholipids, 

long chain fatty acids and proteins containing the so-called thrombospondin type I repeat 

(TSR)
6,7,8,9,10

.  These receptor-ligand interactions mediate effects in a cell type specific 

manner.  With regard to microvascular endothelial cells, a specific region of CD36 

known as the CLESH domain interacts with high affinity with TSR domains of at least 

three endogenous anti-angiogenic proteins - thrombospondins-1 and -2 and 

vasculostatin
8,9,10

.  These interactions initiate a complex intracellular signaling cascade 

involving the Src family tyrosine kinase P59
fyn

 and p38 mitogen-activated protein kinase 

(MAPK) resulting in direct activation of caspase 3 like protease leading to induction of 

apoptosis
11

.  Additionally, CD36 mediated cell death in microvascular endothelial cells 

has been reported to involve apoptotic receptors TNFR-1 and Fas
12,13

.  These pro-

apoptotic signals interrupt angiogenic responses induced by pro-angiogenic growth 

factors, such as bFGF and VEGF.   

 Despite abundant evidence in mouse models and human tumors that down-

regulation of TSR-protein expression by genetic or epigenetic pathways in cancer cells 

promotes angiogenesis and thereby promotes tumor growth and metastasis, little is 

known whether modulating TSR interactions with its receptor, CD36, can influence 

tumor behavior
14,15,16,17

.   In data described in this chapter we tested the hypothesis that 

genetic deletion of cd36 or of hrg, a gene encoding a circulating CD36 decoy protein, 

would modulate tumor angiogenesis and tumor growth in syngeneic mouse tumor 

implantation models.  

Histidine-Rich Glycoprotein (HRG) is a 75 kDa protein synthesized by 
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hepatocytes that circulates in plasma at relatively high concentrations (100-200 µg/ml)
18

.  

There are also abundant stores of HRG in the alpha granules of platelets (~371 ng/10
9
 

platelets) that can be released into specific microenvironments in response to platelet 

activation
19,20

.  HRG is a modular protein that binds to proteoglycans, matrix proteins, 

divalent cations, and coagulation proteins.  It possesses a domain analogous to the 

CLESH domain of CD36 that is able to bind TSRs of thrombospondin-1 and 2 and 

vasculostatin
8,9,10

.  It is through this domain that HRG acts as a soluble decoy receptor for 

TSR domains, thereby blocking their binding to CD36 and regulating anti-angiogenic 

signaling on microvascular cells.  As such, we hypothesized that tumors formed in mice 

lacking HRG will display increased CD36-TSP signaling resulting in decreased in 

vascularization and tumor growth.   

In the present chapter we show that genetic deletion of cd36 or hrgp in C57BL/6 

mice effected tumor growth and vascularity.  As predicted by our model, the effects were 

in opposite direction, with increased tumor growth in cd36 null mice and decreased 

growth in hrg null mice.  Also we show that these effects depended on tumor cell 

secretion of TSR-containing protein.    

Methods 

Materials   

Mouse anti-VEGF receptor 2 antibody was from Cell Signaling Technology.  

Rabbit anti- VE-Cadherin and TSP polyclonal antibodies were from Abcam.  Goat anti-

rabbit IgG Alexafluor 488 conjugate and DAPI Prolong Anti-fade mounting media were 

from Invitrogen.  Goat anti-rabbit horseradish peroxidase (HRP) was from Promega. 

Tissue Tek Optimal cutting temperature compound (OCT) was from Fisher Scientific.  
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Heparin, sucrose and paraformaldehyde were from Sigma.   

Tumor Cells   

Lewis Lung Carcinoma cells (LL/2) (CRL-1642) and B16F1 melanoma cells 

(CRL-6323) were obtained from the ATCC and maintained in Dulbecco's Modified Eagle 

Medium (Gibco) supplanted with 10% fetal bovine serum (Atlanta biologicals) and 0.5% 

penicillin/streptomycin (10,000U/ml, Gibco).  Cells were incubated at 37˚C, 95% 

humidity and 5% CO2, grown in 75 cm
2
 cell culture flasks (Corning) and passaged twice 

weekly.  Cultures past 15 passages were not utilized.   Stably transfected TSR-expressing 

B16F1 melanoma cell lines were generated by transfecting the cells with pSecTag2 

secretory plasmid (Invitrogen) into which a cDNA encoding the TSR domains of mouse 

TSP-1 (amino acids 375-551) was cloned.  Primers used for the cloning were 

ATATTGAAGCTTGCCCAGCGACTCTGCTGAC and   

ATATTGCTCGAGGTCCATCAATTGGGCAGTC.  Transfection was done using the 

Fugene 6 reagent (Promega) as per manufacturors directions.  Transfected clones were 

selected by antibiotic resistance using Zeocin (Invitrogen) at a concentration of 600 

µg/ml.  TSR expressing clones were identified by reverse transcription polymerase chain 

reaction and confirmed by western analysis of serum free cultured media.   

Animals    

All experiments and handling of mice were approved by the Institutional Animal 

Care and Use Committee (IACUC) of Cleveland Clinic.  Mice were housed in a facility 

fully accredited by AALAC and in accordance with all federal and local regulations.  All 

mouse strains used were of the same genetic background as the tumor cells - C57BL/6.  

Generation of cd36 null and hrg null mice has previously been described
21,22

. Mice null 



 35 

for hrg were initially of the 129/B6 background and were backcrossed 10 generations 

onto C57BL/6 background.   

TSP-1 and TSR Expression Analysis    

Secretion of TSP-1 or recombinant TSR peptide by mouse tumor cells was assessed after 

culture in serum free media for 48 hours.  Post culture media was collected and proteins 

precipitated with trichloroacetic acid.  Precipitated samples were washed twice with 

acetone, resuspended in laemmli sample buffer and then electrophoresed on SDS-PAGE 

(10%) gels under reducing conditions.  Proteins were transferred on to polyvinylidene 

fluoride (PVDF) at 250ma for 3 hours at 4C.  Membranes were blocked with 5% milk in 

0.1% triton tris buffered saline (TBS).  Primary anti-TSP and secondary anti-rabbit HRP 

antibodies were utilized at 1:1000 dilutions.  Blots were developed using the ECL Plus 

system (Fisher). Purified TSP 1 and HRGP were used as controls.   

Syngeneic Tumor Implantation Studies   

C57Bl/6, cd36 null or hrgp null mice were anesthetized with ketamine and 

xylazine (IP, 50 mg/kg ketamine, 5 mg/kg xylazine).   Lewis Lung Carcinoma (LL2), 

B16F1 Melanoma or TSR-transfected B16F1 Melanoma cells were injected 

subcutaneously onto the backs of eight week old male animals at a concentration of 

50,000 cells/50 µl.  Tumor volumes were assessed over 17 days using a standard formula 

(V = L x W
2
 x 0.52), which assumes a hemi elliptical shape.  Mice were anesthetized at 

each time point.  Following terminal measurement, mice were euthanized by CO2 and 

perfused with heparin (10 U/ml) and 4% paraformaldehyde.  Tumors were then resected, 

incubated overnight in 15% sucrose and embedded in OCT.  Samples were sectioned at a 

thickness of 10µm.  Overall cellularity and structure were evaluated by hematoxylin and 
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eosin (H&E) staining.  Blood vessel density was assessed by immunofluorescent staining 

using anti-VEGFR2 or VE-Cadherin antibodies.  Average vessel count/mm
2
 was 

calculated from 6 fields of view per tumor taken at 200x magnification using a Leica 

DM5500B automated upright microscope system.   

Statistics   

Power calculations were performed priori to determine group size using a 

standard formula, n=2[(ua + ub)s/d]
2
, assuming variance of 20%, confidence of 95%, beta 

error of 0.1 and standard error of 10%.  Optimal group size was calculated to be 7 

individuals.  Differences between groups were calculated by Student’s unpaired T-test.  

Outlying values were excluded using Grubb’s outlier test.   

Results 

Syngeneic Lewis Lung Tumors in Cd36 Null Mice Were Larger and More 

Vascular Than in Wildtype   

LL2 cells when injected into mice lacking cd36 produced tumors of greater size 

than those injected into age and sex matched wildtype mice (Figure 6).  

 

Figure 6.   Cd36 deletion in mice enhances syngeneic tumor growth.  Lewis Lung carcinoma cells (A) 

or B16F1 melanoma cells 
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These differences were statistically significant (P<0.05) at all time points at which 

tumor volumes were measurable.  Mean tumor volumes in cd36 null vs wildtype mice 

were 21.0 mm
3
 vs 15.8 mm

3
 at day 7, 100.4 mm

3
 vs 52.1 mm

3
 at day 10, 213.6 mm

3
 vs 

136.3 mm
3
 at day 14 and 316.2 mm

3
 vs 237.7 mm

3
 at day 17 respectively.  Tumors 

formed in cd36 null animals displayed increased areas of necrosis as evidenced by H&E 

staining (data not shown) and greater vascularization (Figure 7).  On average cd36 null 

tumors contained 17.0 vessels/mm
2
 vs 12.2 vessels/mm

2
 in wildtype (P<0.05).  These 

data are consistent with our hypothesis that CD36 mediates an anti-angiogenic phenotype 

resulting in decreased tumor vascularization and growth.  

 

 

 

 

Figure 7.  Cd36 deletion in mice enhances Lewis Lung tumor vascularity.  (A) Lewis Lung tumors as in 

Figures 6 were dissected, sectioned and examined by immunofluorescence microscopy using anti-VEGF 

receptor antibody (green) to detect blood vessels.  DAPI stained nuclei are blue.  Magnification bars  

represent 100µm.  IgG control is shown in bottom panel as negative control.  (B) Vessel densities measured 

as vessels per mm
2      
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Syngeneic Lewis Lung Tumors in hrg null mice were smaller and less 

vascular than in wildtype    

When injected into mice lacking hrg, LL/2 tumors were smaller and less vascular 

compared to those in wildtype mice (Figure 3A).  Average tumor volume in hrg null vs 

wildtype individuals were 10.4 mm
3
 vs 20.0 mm

3
 at day 7, 33.9 mm

3
 vs 49.1 mm

3
 at day 

10, 93.9 mm
3
 vs 126.7 mm

3
 at day 13 and 189.6 mm

3
 vs 316.1 mm

3
 at day 17 

respectively. Differences at all points day 7 and beyond were significant at P<0.05.  

Tumors in hrg null mice displayed less necrosis (data not shown) and were characterized 

by decreased vasculature compared with wildtype (Figure 4); on average hrg null tumors 

contained 7.1 vessels/mm
2
 vs 13.6 vessels/mm

2
 in wildtype (P<0.05). These data are 

consistent with our hypothesis that HRG modulates CD36-TSR anti-angiogenic 

signaling.  

Tumor cell TSR expression is required for regulation of syngeneic tumor 

growth and vascularity by genetic manipulation of cd36 or hrg  

In sharp contrast to the results seen with LL2 cells, implantation of B16F1 

melanoma cells resulted in tumors of similar size (Figure 8 and 9) and vascularity (not  

 

Figure 8. Cd36 deletion in mice enhances syngeneic tumor growth.  Lewis Lung carcinoma cells were 

injected in the backs of cd36 null or wild type C57BL/6 mice (50,000 cells/mouse).  Tumor volumes were 

assessed over 17 days following implantation.  *P<0.05. 
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shown) regardless of genetic background of the host.  We hypothesized that these 

differences may relate to differing levels of TSR protein expression and indeed 

immunoblot analysis of conditioned media from the tumor cell lines showed readily 

detectable TSP-1 in the postculture media from LL2 cells, but not from B16F1 cells 

(Figure 10A).  We therefore generated stably transfected B16F1 cell lines that expressed 

and secreted recombinant TSP-1 TSR domains.  As shown in Figure 10B, Clone 11 

expressed abundant TSR and was used for all further experiments.  TSR transfection 

restored responsiveness to the CD36/HRGP system.  TSR expressing B16F1 cells  

Figure 9. Hrg deletion in mice suppresses syngeneic tumor growth.  Lewis Lung carcinoma cells 

(A) or B16F1 melanoma cells (B) were injected in the backs of hrg null or wild type C57BL/6 mice 

(50,000 cells/mouse).  Tumor volumes were assessed over 18 days following implantation.  *P<0.05.   
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Figure 10.   Thrombospondin-1 secretion from cultured Lewis Lung and B16F1 melanoma cells.  (A) 

Lewis Lung (LL2) or B16F melanoma cells were cultured in serum free media for 24 hours (1d) at which 

point proteins in post culture media (CM) were precipitated by TCA, separated under reducing conditions 

by SDS/PAGE and analyzed by immunoblot using anti-TSP-1 antibody.  TSP-1 monomers were detected at 

170 kDa in the media conditioned by LL2 cells, but not B16F1 cells.  Purified human HRG and TSP were 

used as controls. (B) Conditioned media  was collected from 4 different antibiotic resistant clones of TSR 

transfected B16F melanoma cells and analyzed by immunoblot as in panel A.  Clone 11 expressed 

abundant anti-TSP reactive material at the appropriate molecular weight of  recombinant TSR and was 

utilized for subsequent tumor studies. 

produced larger and more vascular tumors in cd36 null mice (Figures 11A, 7A left and 

7B top) and smaller and less vascular tumors in hrgp null mice (Figures 11B, 7A right 

and 7B bottom) when compared to age and sex matched wildtype controls.  Average 

tumor volume in cd36 null vs wildtype individuals were 27.8 mm
3
 vs 17.5 mm

3
 at day 8 

(P=0.08); 67.7 mm
3
 vs 37.8 mm

3
 at day 11 (P<0.05); 170.5 mm

3
 vs 98.0 mm

3
 at day 14 

(P<0.05); and 685.1 mm
3
 vs 394.7 mm

3
 at day 18 (p=0.06).  On average cd36 null tumors 

contained 16.3 vessels/mm
2
 vs 9.1 vessels/mm

2
 in wildtype (P<0.05).  In the hrgp null  

mice the average tumor volumes compared to wildtype were 5.8 mm
3
 vs 53.2 mm

3
 at day 

11; 87.9 mm
3
 vs 255.3 mm

3
 at day 15; and 211.0 mm

3
 vs 651.7 mm

3
 at day 18.  All of 

these differences were significant at P<0.05.  The tumors formed in hrg null animals 

were more vascularized with on average 5.4 vessels/mm
2
 vs 10.1 vessels/mm

2
 in 

wildtype (P<0.05). These data further support our hypothesis that CD36-TSR interaction 

mediates an anti-angiogenic phenotype with modulation by HRG.   
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Figure 11.   TSR transfected B16F1 melanoma cells show enhanced tumor growth in cd36 null mice 

and suppressed tumor growth in hrgp null mice.  50,000 cells from a stably transfected B16f1 

melanoma cell line (Clone 11) were injected in the backs of cd36 null (A) or hrgp null (B) mice.  C57Bl/6 

mice were used as controls.  Tumor volumes were assessed at timed points as in Figures 1 and 3.  *P<0.05; 

**P=0.08; ***P=0.06. 
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Discussion 

 

 

CD36- TSR signaling inhibits microvascular endothelial cell migration, 

proliferation and tube formation in in vitro and in vivo models.  Our group has shown that 

this important endogenous anti-angiogenic system can be dampened by HRG, a protein 

Figure 12. TSR transfected B16F1 melanoma cells show enhanced tumor vascularity in cd36 null 

mice and suppressed tumor vascularity in hrgp null  mice.  (A) Tumors from TSR transfected B16F1 

melanoma cells as in Figure 6 were dissected, sectioned and examined by immunofluorescence microscopy 

using anti-VE-Cadherin antibody (green) to detect blood vessels.  DAPI stained nuclei are blue.  

Magnification bars represent 100µm.  IgG control is shown in bottom panels as negative control.  (B) Vessel 

densities measured as vessels per mm2. 
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with structural homology to CD36 that acts as a decoy for TSR.  In vitro assays of 

microvascular endothelial cell migration, proliferation, and tube formation; and in vivo 

assays of angiogenesis in mouse corneal micropockets and implanted matrigel showed 

that addition of exogenous HRG blocks TSP-1, TSP-2 and vasculostatin binding to CD36 

and thereby inhibits TSR-mediated vascular cell responses
9,10,23

. HRG circulates in high 

concentrations, can be released from activated platelets, and accumulates in perivascular 

matrix; thus it is “poised” to serve an important role in regulating microvascular CD36-

TSR signaling in vivo
24,25

.  This may have particular relevance to tumor angiogenesis 

since HRG has been shown localize in the stromal connective tissue of human tumors, 

including breast cancer and glioblastoma, and to mask the TSR domain of TSP
10,23

.  The 

potential importance of this system in carcinogenesis is supported by abundant data 

showing that TSP1 has potent tumor suppressor activity and that genetic or epigenetic 

down-regulation of TSP-1 expression is associated with progression of numerous human 

cancers and enhanced tumor angiogenesis.  We thus hypothesized that accumulation of 

HRG in the tumor microenvironment would promote tumor growth, similar to loss of 

tumor cell TSR expression, and that down-regulation of the receptor, CD36 would have 

an opposite effect. 

In the experiments described in this manuscript we used mouse genetic models to 

provide direct evidence in support of this hypothesis.  In the absence of CD36, 

transplanted syngeneic tumors were larger and displayed increased vascularity, while in 

the absence of HRG, tumors were smaller and displayed less vascularity.  Importantly, 

these host-mediated effects required production and secretion of TSR-containing protein 

by the transplanted tumor.  TSP-1 secreting Lewis Lung Cancer cells were sensitive to 
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loss of CD36 or HRG, while TSP-1 negative B16F1 melanoma cells were not sensitive 

unless they were stably transfected with a TSR-expressing plasmid.  Our data suggest that 

tumor cells could induce a state of functional TSR deficiency and hence promote 

angiogenesis and tumor growth) by remodeling their micro-environment to down-

regulate microvascular CD36 expression and/or increase accumulation of HRGP 

(discussed below).  In regard to the former, we recently found that lysophosphatidic acid 

(LPA) activates a protein kinase D-mediated signaling pathway in microvascular 

endothelial cells that transcriptionally silences cd36 and thereby promotes angiogenesis
26

. 

Since both tumor cells and inflammatory cells are potential sources of LPA, this could be 

highly relevant to tumor biology.   

HRG accumulation in tumor microenvironments would be expected to relate to at 

least two processes known to promote tumor growth and metastasis – VEGF expression 

and platelet activation
27,28

.  In addition to promoting angiogenesis, VEGF is a potent 

microvascular permeability factor that contributes to the “leaky” vasculature of tumor 

beds
29

. In this milieu, plasma proteins such as HRG escape from the confines of the 

vessel and permeate into the tumor bed.  Similarly, platelet-tumor cell interactions have 

been studied for many years and are known to promote both tumor growth and 

thrombosis
30

.  Platelet accumulation and activation in a tumor microenvironment would 

have many effects, including release of both TSP-1 and HRG.           

HRG was first characterized in 1978 as a molecule which bound heme and certain 

metal ions
31

.  Today, it is viewed as an adapter protein due to its multi-domain nature and 

multiple ligand binding capacity, and has been implicated in diverse functions including 

immunity, thrombosis, cell adhesion and angiogenesis
32-34

.  The potential to develop 
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HRG as a novel therapeutic target to regulate angiogenesis is complicated by reports 

from two groups showing in contrast to our work, that HRG has anti-angiogenic 

activity
35,36

.  The mechanism for this activity has not been defined, but it is mediated by 

the histidine-proline rich region of the protein.  Our genetic models and abundant in vitro 

and in vivo studies using intact, native HRG strongly support a pro-angiogenic role for 

HRG in the presence of TSR proteins and did not show any anti-angiogenic activity, even 

in the absence of TSR proteins.  The most likely explanation for this apparent 

controversy is that the anti-angiogenic activity requires proteolytic release of the 

histidine/proline-rich domain.   Whether there is an endogenous pathway to release the 

domain has not been demonstrated, but precedent exists for proteolytic peptide fragments 

having opposite biological activity than their “parent” protein
37

.   

In summary, we showed in these studies that modulating tumor cell expression of 

TSR proteins or expression in the non-transformed tumor microenvironment of CD36 or 

HRG had significant impact on tumor angiogenesis and tumor growth.   Numerous pro- 

and anti-angiogenic therapies are in clinical trials, among them ABT-510 and ABT-898, 

which are peptide mimetics of the TSR domain of TSP-1.  These compounds have shown 

potential for treatment of cancer suggesting that targeting CD36 or HRG could present 

effective alternative approaches to enhance or inhibit TSR action
38-40

.   
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CHAPTER III 
 

ROLE OF ZINC IN A DISINTEGRIN AND METALLOPROTEINASE WITH 

THROMBOSPONDIN MOTIFS 1 (ADAMTS1) PROCESSING OF 

THROMBOSPONDIN 1 

Hale, J. S.* and Silverstein, R. L.* 

*Department of Biological, Geological and Environmental Sciences, Cleveland State University and Department of 

Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation 

Abstract 

Thrombospodin 1 (TSP) is a well characterized vascular regulating protein.  The 

anti-angiogenic effects of TSP have been localized to the type I repeats (TSRs).  

Additionally, vasodilatory and dendritic cell mediated T cell modulatory effects have 

been localized to the C-terminal domain.  Previous work has demonstrated TSP cleavage 

by ADAMTS1, with release of anti-angiogenic peptides.  We propose zinc mediated 

modulation of TSP cleavage by ADAMTS1.  Upon addition of zinc to the system, an 

additional TSP cleavage site is generated, from those previously described.  This site is 

located in the C-terminal domain of TSP, thereby presenting a method of regulating 

CD47 interaction.  Regulation of this interaction may have implications in vasodilation, 

angiogenesis and immune function regulation. 
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Introduction 

Remodeling of the extracellular matrix by matrix metalloproteases is vital to 

numerous homeostatic processes including angiogenesis.  The ADAMTS (a disintegrin 

and metalloproteinase with thrombospondin motif) family of extracellular, zinc 

dependent proteases consists of 19 members, all of which contain the type I repeats 

(TSRs) of Thrombospondin I (TSP)
1
.  Theses enzymes are involved in collagen 

processing, cleavage of matrix proteoglycans, thrombosis and inhibition of angiogenesis
2
.   

With regard to inhibition of angiogenesis, ADAMTS 1 and 8 have been shown to 

inhibit vascular endothelial growth factor (VEGF) and basic fibroblast growth factor 

(bFGF) induced endothelial cell proliferation in vitro and angiogenesis in the in vivo 

corneal micropocket and chick chrioallantoic membrane assays
3
.  ADAMTS1 mediates 

these effects via binding bFGF and VEGF
4,5

.  Additionally, work by Dr. Arispe has 

demonstrated that ADAMTS1 may cleave thrombospondin 1 and 2 in such a manner that 

protein releases three monomers each containing the type one repeats
6
. The proteolytic 

cleavage of thrombospondin 1 and 2 is proposed as a mechanism by which the anti-

angiogenic potency of matrix bound thrombospondin may be modulated.  Here after we 

will focus on TSP, however it should be noted that many of the anti-angiogenic 

properties cited are shared with thrombospondin 2 as both proteins are structurally 

similar, containing the type I repeats.   

 TSP is a 450 kDa trimeric multidomain matricellular glycoprotein.  It was the first 

endogenous anti-angiogenic molecule identified.  TSP, in vitro, inhibits microvascular 

endothelial cell proliferation, migration and tube formation in response to basic fibroblast 

growth factor (bFGF) and vascular endothelial growth factor (VEGF), through the 
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induction of apoptosis
7,8

.  Further, TSP inhibits vascularization, in vivo, in response to 

pro-angiogenic stimulus as demonstrated by corneal micropocket and subcutaneous 

matrigel assays
7,9

.   

 The anti-angiogenic effects of TSP have been localized to the type I repeats 

(TSRs).  In vitro treatment of microvascular endothelial cells with recombinant TSR has 

been shown to induce apoptosis
10

.  Additionally, TSR treatment, in vivo, effectively 

inhibits tumor growth and vascularization
10,11

. 

 In addition to the anti-angiogenic role localized to the TSRs, TSP also mediates 

vascular biology via its C-terminal domain.  Interaction of the C-terminal domain of TSP 

with membrane receptor CD47 on dendritic cells suppresses cytokine production, 

decreasing T-cell activation
12,13

.  CD47 was further shown to be necessary for TSP 

inhibition of NO signaling, which mediates vessels dilation via vascular smooth muscle 

cells, allowing for increased fluid extravasation into the surrounding tissues
14

.   

 Previous study of the cleavage of TSP by ADAMTS1 has excluded an important 

heavy metal, zinc, in the regulation of protease function. We hypothesize zinc modulates 

ADAMTS processing of TSP.  To this end we utilized an in vitro physiologic system in 

the presence and absence of zinc to assess the role off this heavy metal.  We show that 

addition of zinc induces additional processing of TSP at the C-terminal domain.   

Materials 

Thrombospondin Isolation 

One unit, 250 cc, of outdated concentrated platelets was obtained from the 

Cleveland Clinic Blood Bank.  Samples were spun at 200 g to remove contaminating red 

blood cells.   Platelets were then pelleted at 900 g and resuspended in Broekmanns buffer, 
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repeated 3 times to wash.  Pellets were combined and resuspended in a final volume of 

15ml 20mM Tris 150mM NaCl pH 7.6 buffer and Calcium added to a final concentration 

of 2mM.  Platelets were stimulated with 3 U/ml thrombin, followed by hirudin (6 U/ml) 

inhibition.  Samples were then spun at 20,000 g and supernatant applied to a 1 ml heparin 

column.  TSP was eluted at 0.45M NaCl.  Elution fractions were run on denaturing gels 

and positive fractions combined and diluted 1:3 in 20mM Tris, pH 7.4.  Sample was then 

applied to a 1 ml mono Q anion exchange column and TSP was eluted over 0-0.8M NaCl 

gradient (~0.6M).  Elution fractions were run on denaturing gels and positive fractions 

quantified for protein concentration.   

ADAMTS1 digestion of Thrombospondin 

Standard digestions were carried out under physiologic conditions in pH 7.4 

buffer containing 20mM Tris, 150 mM NaCl, 10mM CaCl and 15 µM ZnCl.  Following 

optimization, 2µg purified TSP was digested with 400ng recombinant ADAMTS1 (R&D 

Systems) overnight at 37C, a 1:5 ratio.  Calcium and Zinc were chelated from digestion 

buffers with EGTA and Zincon respectively.  Following digestion, samples were run on 

10% reducing gels and coomassie stained.  

 Sequence Analysis 

Sequence analysis was carried out by the Mass Spectroscopy Core of the 

Cleveland Clinic Foundation.  Proteins were excised from reducing poly-acrylamide gels 

and destained in 50% ethanol, 5% acetic acid.  Excised bands were the reduced with 

dithiothreitol, iodoacetamide alkylated and trypsin digested overnight.  Resulting 

peptides were extracted and dried to less than 30 µl.  Liquid chromatography-mass 

spectroscopy was performed using the Thermofisher LTQ ion trap mass spectrometer 
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with a 8cm x 75 µm id Phenomenex Jupiter C18 reverse phase capillary chromatography 

column.  Peptide samples were inected using an Eksigent nanoflow liquid 

chromatography system and eluted with an acetonitrile-0.05M acetic acid gradient.  

Generated collisionally induced dissociation (CID) spectra were used to perform Mascot 

NCBI database searches.   

Results 

ADAMTS1, under physiologic conditions cleaves TSP N-terminally, with 

decreases in detectable peptides prior to amino acid 313 (Figure 13, 14-5).  This site is 

located in the disulfide linker region (Figure 15).  Addition of zinc to digestion buffers 

resulted in more efficient N-terminal cleavage and the generation of an additional 

 

Figure 13.  ADAMTS1 generates multiple fragments of Thrombospondin 1.  ADAMTS1 alone (lane 

1), Thrombospondin 1 alone (lane 2), Thrombospondin cleavage by ADAMTS1 (lane 3).  In physiologic 

buffer conditions ADAMTS1 processing of Thrombospondin 1 yields 2 fragments (1 & 2, lane 3).  

Fragment 1 corresponds to a N-terminally truncated form of Thrombospondin 1, prior to amino acid 313.  

Fragment 2 corresponds to a C-terminally truncated form of Thrombospondin 1, after amino acid 1054.   
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Figure 14. ADAMTS1 utilizes calcium and zinc in Thrombospondin 1 cleavage. ADAMTS1 

requires zinc and to a lesser extent calcium in the generation TSP fragments.  Requirement for metal 

ions, to agreater degree zinc, is greater for C-terminal cleavage of TSP.  EGTA and Zincon were used 

to chelate calcium and zinc respectively from the digestion buffers.  Lane 1 TSP with EGTA alone, 

Lane 2 TSP with Zincon alone, Lane 3 TSP with EGTA and Zincon, Lane 4 ADAMTS1 alone, Lane 5 

TSP alone, Lane 6 TSP digestion by ADAMTS1 at 1:5 ratio, Lane 7 TSP digestion with EGTA, Lane 

8 TSP digestion with Zincon, Lane 9 TSP digestion with EGTA and Zincon. 

 

 

 

fragment (Figure 13, 14).  This fragment corresponds to a C-terminal cleavage after 

amino acid 1054, as identified by decrease peptide detection (Figure 16, 17).  This site is 

located within the globular C-terminal domain of TSP (Figure 15).  Chelation of calcium 

reduced N-terminal and C-terminal cleavage of TSP by ADAMTS1.  Chelation of zinc 

reduced N-terminal cleavage and abolished C-terminal cleavage of TSP by ADAMTS1 

(Figure 14).   

Figure 15. ADAMTS1 generated fragments of Thrombospondin 1. The ADAMTS1 cleavage 

sites, indicated by blue arrows, on an intact monomer of Thrombospondin 1.  Cleavage site 1 is 

located in the disulfide linker region.  Cleavage site 2 is located in the globular C-terminal domain. 
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Figure 16.   ADAMTS1 produces N and C terminal cleavage of Thrombospondin 1.  Molecular 

weight ([M+H]+), peptide sequence and amino acid positions are given from left to right.  Mass spec 

analysis identified multiple peptide matches to Thrombospondin 1 in the full length protein, 11 shown 

above (column full).  ADAMTS1 cleavage of TSP in the presence of calcium (Band 1) resulted in N-

terminal cleavage with complete absence of a small N-terminal peptide (amino acids 21-41).  

ADAMTS1 cleavage of TSP in the presence of calcium and zinc  (Band 2) resulted in more efficient N-

terminal cleavage with absence of N-terminal peptides up to amino acid 313.  Additionally, addition of 

zinc to the digestion buffer induced C-terminal cleavage of TSP with peptides missing after amino acid 

1054. 

Figure 17. ADAMTS1 N and C terminally cleaves Thrombospondin 1.  More sensitive 

quantification of identified peptides are shown normalized to full length TSP (H(truncated)/H(full)).  All 

peptides were detected in each digestion sample, possibly owing to carry over contamination as the same 

column was used.  ADAMTS1 cleavage of TSP in the presence of calcium (Band 1) resulted in 

reduction of N-terminal peptides prior to amino acid 313 as compared to abundance in full length TSP.  

ADAMTS1 cleavage of TSP in the presence of calcium and zinc (Band 2) resulted in increased 

reduction of N-terminal peptides prior to amino acid 313 and after amino acid 1054 as compared to full 

length TSP. 
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Discussion 

ADAMTS1 has previously been shown to inhibit angiogenesis in vitro and in 

vivo
3,4

.  Work by Iruela-Arispe has previously shown that this effect may be related to 

ADAMTS1 processing of thrombospondins 1&2
6
.  It was shown that cleavage of TSP 

occured between amino acids 311 and 312, similar to our current findings with regards to 

N-terminal cleavage.  Further, TSP cleavage by ADAMTS1 was observed in vivo using 

wound healing models and purified proteolytically released monomers were shown to 

inhibit endothelial cell proliferation in vitro.  Thus, it was hypothesized that this may 

present as a mechanism to release the anti-angiogenic poteintial of matrix bound TSP in 

the inflammatory setting or serve as an amplification strategy by releasing the individual 

monomers from the intact TSP trimer.  

The ADAMTSs belong to the adamalysin subfamily of the metzincins, or zinc 

dependent proteases
15

.  As such, the current work presented here builds on that 

previously described, assessing the role of zinc in ADAMTS1 processing of TSP.   We 

show that the addition of physiologic concentrations of zinc
16

 lead to additional cleavage 

of TSP by ADAMTS1.  Zinc addition results in cleavage in the C-terminal domain of 

TSP, with inhibition upon chelation.  Therefore these results appear to be specific to zinc.  

This novel processing of TSP highlights the importance of zinc in ADAMTS1 function 

and presents a mechanism by which the interaction of the C-terminal domain of TSP with 

membrane receptor CD47 may be regulated.  Additional, more stringent sequencing is 

needed to specifically identify the C-terminal cleavage site.   

The vascular effects of TSP have previously been shown to involve CD36 and 

CD47
14,17

.  TSP inhibition of nitric oxide mediated blood vessel dilation requires CD47 
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interaction with its C-terminal domain.  Alternatively, CD36-TSP interaction has been 

shown to inhibit growth bFGF and VEGF induced angiogenesis.  This interaction is 

localized to the TSRs of TSP.  Thus, zinc mediated C-terminal cleavage of TSP by 

ADAMTS1 presents a mechanism by which CD47-TSP interaction may be inhibited 

allowing for CD36-TSP signaling to predominate, thus shifting focus from vascular tone 

to angiogenesis.  It is also possible that C-terminal cleavage of matrix bound TSP is 

required for release from the cell surface, with subsequent N-terminal cleavage allowing 

for a 2 stage amplification of cell bound anti-angiogenic stores.  Additional study is 

required to address these hypotheses.   

Alternatively, we hypothesize C-terminal cleavage of TSP by ADAMTS1 may 

occur at sites of inflammation, where matrix metalloprotease levels are known to be 

elevated.  C terminal cleavage may reduce inhibition of vessel dilation by CD47-TSP 

interaction.  This may present a mechanism by which the inflammatory setting may be 

modulated, allowing for increased edema and immune cell extravasation from vessels.  

Further work is required to address this hypothesis.   
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CHAPTER IV 

DISCUSSION 

  The studies presented in this manuscript examine the importance of the 

angiogenic switch in the progression of cancer and more specifically the role of TSR-

CLESH interaction and processing of TSP by ADAMTS1.  The following section 

highlights the importance of the findings presented and discusses avenues of research 

which warrant additional inquiry.   

 The field of anti-angiogenesis has expanded from concept to patient treatment in 

the forty years since Judah Folkman was told “anti-angiogenic molecules existed only in 

his mind”.  Numerous angiogenic inhibitors have been identified and are now under 

clinical investigation for the treatment of cancer.  These include naturally occurring 

compounds, such as those found in green tea and occurring naturally in the body as well 

as synthetically manufactured molecules.  Additionally, drugs currently on the market 

have been rediscovered as anti-angiogenic therapies.   

 As discussed previously in this manuscript, the anti-angiogenic effects of TSP 

have been localized to the TSRs.  Based on these studies three mimetic peptides from this 

region have been designed and are currently under investigation for the treatment of 

cancer; ABT-510, ABT-898 and ABT-526
1,2

.  ABT-526 is the original TSR mimetic
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peptide, off of which ABT-510 and ABT-898 were designed.  These compounds have 

shown increased solubility, potency and slowed clearance compared with ABT-526 

(ABT-898 > ABT-510 > ABT-526).  Of these, ABT-510 has progressed through phase II 

clinical trials, showing limited efficacy
3
.  Unfortunately, tolerance and conflicting reports 

with regards to efficacy of these compounds in cancer treatment have been obtained.  As 

such, better characterization of the mechanisms underlying their action is required.   

 Interaction of the TSRs of TSR containing proteins with the CLESH domain of 

membrane receptor CD36 initiates an anti-angiogenic cascade resulting in the apoptosis 

of vascular endothelial cells thereby inhibiting angiogenesis. In previous studies, TSR 

binding to the CLESH domain of CD36 has been shown to inhibit angiogenesis
4,5,6,7

.  We 

for the first time show direct regulation of tumor angiogenesis and growth by the TSR-

CD36 pathway.  Past studies have also shown the ability of HRGP, a soluble CLESH 

homology domain containing protein, to sequester TSR containing proteins, preventing 

the initiation of the anti-angiogenic CD36 signaling cascade.  We verify this effect in the 

tumor microenvironment showing direct regulation of tumor growth and angiogenesis.   

 The CLESH domain may therefore serve as an important therapeutic target in the 

inhibition of cancer angiogenesis. Additional studies utilizing soluble CLESH peptides as 

well as CLESH binding antibodies and small molecule activators in the regulation of 

angiogenesis are required.  Activation of CD36 signaling or inhibition of HRGP-TSR 

binding by these compounds may allow for potent inhibition of angiogenesis.   

  As discussed earlier, ADAMTS1, a TSR containing, protein has been shown to 

process TSP, releasing anti-angiogenic monomers from the intact trimer.  Work by Dr. 

Iruela-Arispe further showed processing in vivo during wound healing, with ADAMTS1 
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null mice displaying increased vessel density
8
.  Work presented here built on these 

studies, showing additional C-terminal processing of TSP by ADAMTS1 with the 

addition of zinc to digestion reactions.  Further, we hypothesize that C-terminal 

processing may be required for the release of cell matrix bound TSP.   

 Thus, it is possible that ADMATS1 processing of TSP allows for a 2 step 

amplification of its anti-angiogenic potential; first releasing the TSP trimer from the 

extracellular matrix and second amplifying its inhibitory potential by cleaving the trimer 

into monomers.  This proposed mechanism for increased anti-angiogenic potential by 

TSP may allow for the modulation of cancer angiogenesis.  Treatment with exogenous 

ADAMTS1 may mediate increased TSR release from endogenous TSP, allowing for 

increased anti-angiogenic potential.  Further investigation is required to evaluate the 

potential of this strategy.   

 The studies presented in this manuscript meet the need to better characterize the 

processes promoting the anti-angiogenic effects of TSR containing molecules, of which 

41 have been identified in humans
9
.  We should however not overlook the “flip-side” of 

the coin, instances in which induction of angiogenesis may be beneficial.  One of the 

early studies utilizing pro-angiogenic therapy was in the treatment of coronary heart 

disease
10

.  Following coronary artery bypass surgery patients were locally injected with 

bFGF.  Those injected with bFGF showed increased neovascularization of grafted tissue.  

Pro-angiogenic therapy has now been employed in the treatment of several pathologic 

conditions including wound healing, atherosclerosis and cardiovascular ischemia.  Thus, 

inhibition of TSR release and ligation with CD36 may allow for the development of 

novel pro-angiogenic induction.  To this end, exogenous CLESH domain or intact HRGP 
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administered systemically may allow for the promotion of angiogenesis.  Additional 

study is needed to explore this exciting new possibility.   

 In conclusion, TSR mediated anti-angiogenesis holds great promise in the 

angiogenic treatment of cancer.  Further insight into the relationship between this domain 

and the CLESH domain of interacting partners such as CD36 and HRGP will allow us to 

increase the effectiveness of TSR focused compounds.  Additionally, a better 

understanding of the physiologic processing of intact TSP may provide the opportunity to 

increase or inhibi  the anti-angiogenic capacity of endogenous stores of TSP.  Thus, the 

field of angiogenic inhibition by the TSRs of TSP still has many new and intriguing 

insights to provide.    
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