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DEVELOPMENT OF HIGH SENSITIVE PROBE ENRICH 

MUTATION/METHYLATION-HIGH RESOLUTION 

MELTING ANALYSIS METHOD FOR COLORECTAL 

CANCER SCREENING 

 

WEI MENG 

ABSTRACT 

Cancer is a result of unregulated cell growth. For all types of cancer currently studied, 

the transition from a healthy cell to a malignant tumor cell is a step-by-step process which 

requires mutation in at least several oncogenes and tumor suppressor genes together. Another 

cancer early event is DNA methylation. Cancer-related DNA methylation focuses on 

promoter hypermethylation of the certain genes. The DNA mutation and methylation profile 

can serve as biomarkers for diagnosing early stage of cancer. 

Colorectal cancer is the third most common cancer type in the United States and has 

been well studied. The essential mechanism of cancer development is becomeing clear, so 

there are more approaches to diagnose early stage cancer and improve cancer treatment, 

which benefits colorectal cancer screening in recent years. 

The current mutation/methylation detection techniques generally have two major 

categories which rely on the 1) physical property of double strand DNA or 2) enzyme 
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selectivity to survey the target sequence. Chapters I and III summarize the major methods 

used in the present DNA mutation and methylation analysis.  

High Resolution Melting (HRM) is a simple, PCR-based method for detecting DNA 

sequence variation by measuring the melting temperature of a DNA duplex. In Chapter II, a 

robust and lower cost HRM assay for screening P53 and Kras mutations is discussed. In 

Chapter IV we developed Probe Enrichment Mutation/Methylation-High Resolution Melting 

(PEMM-HRM) assay. PEMM-HRM analysis is a simple and high sensitive post PCR 

technique which can be used for high throughput mutation scanning, genotyping and 

methylation analysis. PEMM-HRM analysis with enhanced sensitivity and specificity can 

have broad applications in clinical research. 

In chapter V, We studied adenylosuccinate lyase deficiency, which is a defect of 

purine metabolism. We developed a method combining ESI-MS with solid-phase extraction 

to detect succinyladenosine (SA) and succinylamino-imidazolecarboxamide riboside 

(SAICAr) of patients with adenylosuccinate lyase (ADSL) deficiency urine samples. For the 

first time, we demonstrated that both SAICAr and SA biomarkers can be detected by 

Electrospray Ionization Mass Spectrometry.  
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CHAPTER I 

CURRENT DNA MUTATION ANALYSIS METHODOLOGY 

 

 

 

1.1 Introduction 

The origins of genome started with Frederick Sanger, a Noble prize winner, who 

developed an in vitro method to synthesize a ladder of DNA fragments differing by single 

nucleotides (Sanger and Brownlee 1970). Then the largest biological program, the Human 

Genome Project, provides an unprecedented opportunity to look into the information of the 

basis of disease, genes function, forensic purpose and evolutionary studies (Venter, Adams 

et al. 2001). 

It was proposed that DNA sequences which show variations among individuals
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could serve as reference points (DNA markers) to determine specific diseases. It shows 

increasingly significant importance for identifying and genotyping a large number of 

genetic polymorphisms in general populations. 

1.1.1 Progression of Colorectal Cancer 

Cancer arises from the accumulation of mutations in oncogenes and 

tumor-suppressing genes which can potentially lead to the unregulated cell growth. By far 

for all types of cancer studied, the transition from a healthy cell to a malignant tumor cell is 

a step-by-step process which requires mutation in at least several oncogenes and tumor 

suppressors together. An example is that tumors rarely develop among children but have 

higher frequency among older people. Because cells have a protective mechanism to kill 

the mutation-occurred cell, it is very rare for several mutations existing in the same cell to 

generate a cancer cell. The graph below shows colon cancer rates in the United States as a 

function of age (National Cancer Institute website). 
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Figure 1 Colorectal cancer incidence rate increases with age. Before age of 40, the 
incidence of colorectal cancer is very low. After age of 50, men have a higher rate to 
develop colorectal cancer than women. 
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Colorectal cancer is the third most frequent cancer in the world in both sexes and 

also the third most frequent cause of cancer related deaths. Until age 50, men and women 

exhibit the same incidence, but after age of 50 men are more venerable to colorectal cancer. 

Colorectal adenocarcinomas are the most common type of colon cancer, but other types 

include melanoma, lymphoma, and carcinoids. Adenocarcinomas accounts for about 90-95 

percent of all colorectal cancers.  

1.2 Types of Mutations 

The production of protein is based on reading the sequence information on mRNA, 

while the mRNA is synthesized from DNA via the process called transcription. As a result, 

any changes in DNA sequences will lead to alternations of the mRNA and then further may 

lead to the production of protein without its proper function. Even a single nucleotide 

change in a gene can lead to conformation change in protein which can’t perform its 

function. There are several types of DNA alternation. 

1.2.1 Point mutation 

This is the most common type of DNA alternation. One or a few nucleotides along 

DNA strand are mutated which causes changes of the three-letter codons read by the 

ribosomes. If the changed codon causes the truncated and non-functional protein, this is 

called a nonsense mutation. If the changed codon causes a wrong amino acid to be 

incorporated into the protein, this is called a missense mutation.  
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1.2.2 Frame-shift mutation 

In a frame shift mutation, one or several bases are inserted or deleted. Because the 

transcriptase read DNA sequence by each codon, adding or removing one or more bases 

can make the DNA information meaningless and often produce a protein without biological 

function. 

Deletion and insertion also belong to frame-shift mutation. Mutations that result in 

missing one base are called deletions. Deletion affects a large number of genes on the 

chromosome. Mutations that result in the addition of extra base are called insertions. 

Insertions can also cause frame shift and generally result in a nonfunctional protein. 

1.2.3 Neutral mutation 

In a neutral mutation, one DNA codon is replaced by different codon, but this alternation 

doesn’t change the amino acid which is introduced by ribosome. Neutral mutation has no 

biological advantage or disadvantage.  

1.3 Resource of Mutation 

It is well known that cancer cells result from normal cells with an accumulation of 

mutations. Generally, there are four types of mechanisms which induce the genetic changes. 

The first type is called Spontaneous Mutation which results from random molecular events 

during DNA replication. The second type is called Induced Mutation. Environmental 

factors such as radiation, chemicals, or oxygen radicals can alter the sequence of a DNA 
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strand. The third type results from the abnormal cell division which creates aneuploid cells. 

Because the aneoploid cells lose a great number of genes which may include tumor 

suppress genes, a higher possibility of cancer may occur during the unregulated cell 

division. The fourth type of mutation resource is the virus. The virus can damage, insert or 

alter DNA sequences of host cells which can activate potential oncogenes in host cells 

during development of certain cancers. 

Colon cancer and rectal cancer are collectively known as colorectal cancer. In 2009, 

the American Cancer Society estimates that there would be approximately 146,970 new 

cases diagnosed and 49,920 deaths due to colorectal cancer in the United States. More than 

95% of colorectal cancers are adenocarcinomas, which start from gland cells that make 

mucus to lubricate the inside of the colon and rectum. For most cases, colorectal cancer 

develops slowly within a period of several years. During a pre-cancerous stage, 

non-cancerous and benign polyps grow on the inner lining of the colon or rectum. Some of 

these polyps can develop into colorectal cancer. Although it is a life-long period for 

development of mutations that lead to cancer (usually more 50 years old), in most cases the 

first mutation starts from the APC gene. Inactivation of APC gene leads to uncontrolled 

cell proliferation and formation of polyps which accelerate further mutations of genes such 

as K-ras, p53 and Braf. These changes can lead the cells to grow and spread uncontrollably. 

Extraction of DNA from stool is a feasible technology now. Several research groups 

have shown the feasibility of detecting colorectal cancer diagnosis using a panel of DNA 

markers like K-ras, APC, p53 and BAT26. The result shows high specificity and a 
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significant improvement over fecal occult blood tests. In addition, BAT26, a microsatellite 

instability marker, is useful for diagnosing sporadic colorectal cancer (Atkin 2003). 

1.4 Current mutation detection method 

There are two categories of mutation detection techniques, specific mutation 

detection and scanning mutation detection. Specific mutation detection techniques, 

including primer extension (Syvanen, Aalto-Setala et al. 1990)., allele-specific 

amplification (Ruano and Kidd 1989), and oligonucleotide ligation assay  (Khanna, Cao 

et al. 1999), are used to identify characterized sequence changes in a known DNA 

sequence. These techniques are useful for examining common pathogenic mutated genes. 

Scanning mutation detection techniques are used to detect gene alterations in long stretches 

of unknown DNA sequencing. Scanning techniques include denaturing high performance 

liquid chromatography (DHPLC) (Underhill, Jin et al. 1997), denaturing gradient gel 

electrophoresis (DGGE) (Kuehn, Meyer et al. 1980), chemical cleavage of mismatches 

(CCM) (Cotton, Rodrigues et al. 1988), protein truncation test (PTT) (Roest, Roberts et al. 

1993), single-stranded conformational polymorphism (SSCP) (Orita, Iwahana et al. 1989) 

and heteroduplex analysis (HA) (Prior, Papp et al. 1993). 

1.4.1 Scanning mutation detection techniques 

Chemical Cleavage of Mismatch (CCM) 

The hemical cleavage of Mismatch method was introduced by Cotton et al and has 
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been widely used in diagnosis of genetic diseases (Cotton, Rodrigues et al. 1988). In CCM 

analysis, two commonly available reagents are used for detecting and modifying 

mismatched pyrimidine bases. Hydroxylamine (NH2OH) modifies mismatched cytosine 

bases and potassium permanganate (KMnO4) modifies mismatched thymine bases. 

Piperidine cleavage reaction is used to cleave the modified mismatched bases which 

produces separation of DNA fragments by gel-electrophoresis. The main advantage of 

CCM is that each mutation has at least two chances to be detected, which is a key for 

detecting single base substitution mutation. 

Several modifications of the current CCM protocol provide a simpler and higher 

sensitivity approach than the original one. A toxic chemical, osmium tetroxide (OsO4) can 

be replaced by potassium permanganate and give greater sensitivity (Roberts, Deeble et al. 

1997). In addition, multiple fluorescent dye labeled DNA fragments improves the 

throughput of CCM method (Rowley, Saad et al. 1995). 

Although the original report of CCM utilizes clone DNA for formation of DNA 

heteroduplexes, some modifications evolved over years. The invention of PCR technology 

provides a faster method than the traditional cloning genomic DNA method. The sample 

preparation time is significantly reduced which mades screening for mutations in large 

numbers of samples possible. Solid phase CCM uses biotinylated primers to generate PCR 

fragments, while avoiding time consuming ethanol precipitation steps, then 

streptavidin-coated magnetic beads and a magnet capture the PCR fragments (Hansen, 

Justesen et al. 1996). 
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CCM combined with fluorescence-based technology provides a simple and low cost 

method for screening the location and nature of sequence variations in a long range of 

DNA. Recent developments to chemical cleavage analysis ensured that CCM is still one of 

the most reliable methods of mutation detection. 

 

Enzyme Mismatch Cleavage (EMC) 

Some enzymes are more reactive with specific secondary structure of duplex DNA, 

such as bubbles and bends on mismatched duplex DNA. Heteroduplexes can be generated 

by heat denaturation of PCR products containing wild-type and mutant alleles. At first, 

researchers attempted to study potential power of the post replicative mismatch repair 

enzymes (Lu and Hsu 1992; Lahaska, Ostrander et al. 1994). MutS can recognize the 

mismatched sequences, but the specificity is not high enough for mutation screening 

(Lishanski, Ostrander et al. 1994; Parsons and Heflich 1997). 

The use of phage T4 endonuclease 7 was one of the first methods which were used as 

a scanning method before complete sequencing. Phage T4 endonuclease 7 belongs to 

resolvase family which resolves a range of complex substrates like cruciform “Holliday 

Junctions” or single base pair mismatches. T4 endonuclease cleaves within 3 to 5 base 

pairs on the 5’ side of mismatch. The study showed that cleavage of at least one strand of 

the pairs of heteroduplexes occurred in 17 of the 18 known single-base-pair mutations 

tested but an A.A/T.T set could not be cleaved in any mismatched strand(Youil, Kemper et 

al. 1995). The problem of this method is that normal duplex DNA could be also cleaved by 
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T4 endonuclease.. 

CEL1 is also used in the EMC reaction. CEL1 is a mismatch cleaving enzyme from 

celery (Qiu, Shandilya et al. 2004). Members of the CEL family are homologs of S1 

nuclease which prefers double-stranded mismatched DNA substrate and are not affected by 

high G/C content (Oleykowski, Bronson Mullins et al. 1998; Kulinski, Besack et al. 2000; 

Yang, Wen et al. 2000). The high specificity of CEL 1 nuclease is due to cutting the 3’ 

phosphodiester bond immediately next to the mismatched base. 

 

Single-strand conformation polymorphism (SSCP) 

Single-strand conformation polymorphism (SSCP) is apparently the most frequently 

used procedure for point mutation analysis. This is due to its simplicity and relatively high 

specificity for the detection of sequence variation. Coupled to polymerase chain reaction 

(PCR), the sequence containing mutation sites can be analyzed. 

SSCP was introduced by Orita and Colleagues (1989) as a simple and reliable 

method for the detection of sequencing alternation in genomic loci (Orita, Iwahana et al. 

1989). Under the solution condition, single-stranded DNA fragments will form a special 

secondary structure. The secondary structure depends on the nucleic acid sequence.  The 

principle of SSCP relied on the facts that single-stranded DNA fragments can migrate in a 

non-denaturing gel not only as a function of their size but also of their sequence. In other 

words, a single nucleotide substitution of the nucleic acid sequence may alter the secondary 

structure which cause differences in electrophoretic mobility. But there is no theoretical 
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calculation method established so far that could be used for predict the exact 

electrophoretic mobility of a given single strand DNA sequence. So SSCP should not be 

considered as the method of choice for the analysis of unknown sequences. 

The first step of SSCP is selecting the range of PCR amplification. Preferably, the 

size of PCR amplification should be between 150 and 350 bps (Hayashi 1991; Hayashi and 

Yandell 1993). If the PCR product is too long, the point mutation may not generate 

detectable mobility difference. Kukita demonstrated that the sensitivity of SSCP can be 

greatly improved even for a PCR product as long as 800 bp if the electrophoresis is 

performed in low pH buffer systems and at a fixed temperature (Kukita, Tahira et al. 1997). 

The concentration of glycerol and the constancy of temperature play an important role in 

the sensitivity of SSCP assay. 

In order to reduce radioactive isotope labeling, there is a variation of SSCP called 

fluorescent capillary electrophoresis SSCP (F-SSCP). F-SSCP has a higher specificity and 

sensitivity (~95%) (Yap and McGee 1992; Yap and McGee 1992). 

 

Denaturing high-performance liquid chromatography (DHPLC) 

Denaturing high-performance liquid chromatography, also called 

temperature-modulated heteroduplex analysis, provides a rapid method for scanning 

known or unknown mutations. The principle of denaturing high-performance liquid 

chromatography is similar to that of TGGE, but the UV detector is used to detect eluted 

fragments. DHPLC also needs heteroduplex formation and optimization of running 
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conditions (Underhill, Jin et al. 1997). DHPLC separates heteroduplex from homoduplex 

DNA fragments by means of ion-pair reverse phase HPLC. 

The DHPLC is able to discover unknown genetic variants without sequencing at a 

lower cost. DHPLC can find low abundance mutations in heterogeneous samples which 

usually can’t be found in sequencing method. DHPLC has been shown to detect mutations 

with a sensitivity ranging from 94% to 100%. (Oefner, Stoppa-Lyonnet et al. 1999; Wagner, 

Stoppa-Lyonnet et al. 1999; Harvey, Haynes et al. 2000). Cancer related mutation such as 

EGFR, CD14, p53 and BRCA1 genes were readily recognized by the DHPLC approach 

with high sensitivity (Mason, Ricks-Santi et al.; Oefner, Stoppa-Lyonnet et al. 1999; 

Harvey, Haynes et al. 2000). 

1.4.2 Specific mutation detection techniques 

Single base extension 

Single base extension is the most widely used method for detecting SNP genotyping 

and point mutations (Syvanen, Aalto-Setala et al. 1990). In single base primer extension 

reaction, the primer anneals immediately next to the polymorphic site and is extended with 

a single nucleotide, using terminating dideoxynucleotides (ddNTPs) and a DNA 

polymerase. Various detection methods were coupled with the single base extension 

method such as florescence (Nikolausz, Chatzinotas et al. 2009), DHPLC, capillary 

electrophoresis, MALDI-TOF (Tost and Gut 2005) and tag array (Shoemaker, Lashkari et 

al. 1996). 
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Nucleoside triphosphates labeled with 32P or 3H were first used to detect the 

extension event (Kuppuswamy, Hoffmann et al. 1991). Multiplex single base extension 

was explored by Krook too (Krook, Stratton et al. 1992). The labeled primers were 

separated from the templates by gel electrophoresis, and visualized by autoradiography 

method. Later on, single base extension was utilized on a solid surface. Biotin is 

chemically linked to one of the primers used for SBE reaction, and streptavidin modified 

microtiter plate wells or magnetic beads were used to immobilize the extension template. 

With the development of automated DNA sequencers, multiplex detection becomes 

possible when ddNTPs can be labeled with different fluorescent dye. The use of different 

target-specific primers with different lengths allows the analysis of more than one mutation 

in one reaction. Combined with the higher resolution power of capillary electrophoresis 

and laser-induced fluorescence, up to 8-12 extended products can be screened in one 

capillary (Nikolausz, Chatzinotas et al. 2009). A variation of multiplex SNuPE assay uses 

MALDI–TOF MS (matrix-assisted laser-desorption ionization–time-of flight MS) to 

detect extended products (Haff and Smirnov 1997). 

DNA chip-based microarray is the latest development in the genotyping arena. 

Single-base extensions with a microarray format can generate highly multiplexed and 

parallel analysis of mutation. Cyclic single base extension reactions with fluorescently 

labeled dideoxynucleotides (ddNTPs) are performed in solution using multiplex PCR 

product as template and detection primers, designed to anneal immediately adjacent and 

upstream of the mutation space. The unique tag-sequences are attached to the 5’ end of 
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detection primers and oligonucleotides complementary to the unique tag-sequence (cTag) 

are printed on a microarray plate. The extension product can then be sorted by hybridizing 

the ‘tags’ to complementary ‘cTags’ attached to an array surface. Fluorescent scanning 

instruments can be used for subsequent analysis. 

 

Ligase based method 

The DNA ligase discovered in 1967 by the Gellert, Lehman, Richardson, and 

Hurwitz laboratories was a watershed event in molecular biology (Lehman 1974). The 

ligase can join 3’-OH and 5’-PO4 termini to form a phosphodiester which is an essential 

step in DNA replication and repair such as nucleotide excision repair, base excision repair 

and single-strand break repair (Tomkinson, Vijayakumar et al. 2006). Because of its high 

specificity, DNA ligase plays an important role in genomic integrity. Two types of ligases 

were discovered: ATP-dependent and NAD+ dependent ligase. All known eukaryal 

cellular DNA ligases are ATP-dependent (Ellenberger and Tomkinson 2008). 

ATP-dependent ligases are also found in archaea, consistent with a common ancestry for 

the archaeal/eukaryal DNA replication machinery (Shuman 2009). NAD+-dependent 

ligases contain a unique domain which is responsible for binding NAD+ and required for 

the reaction with NAD+ to form the ligase-AMP intermediate (Gajiwala and Pinko 2004; 

Shuman 2009). 

The high fidelity of ligation detection reaction (LDR) can distinguish matched target 

in the presence of a 102 to 103-fold excess of mismatched target. The presence of a 100-fold 
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excess of mismatched template depressed ligation of matched template only 2-fold 

Thermostable ligase has evolved to search and seal damaged DNA which has been nicked 

and corrected, while rejecting nicked DNA containing mismatches at the junction (Khanna, 

Cao et al. 1999). 

Ligation assays have several features that make them ideally suited for typing point 

mutations. The specificity of the ligation between two oligonucleotide primers is 

determined by three factors: (i) the specificity of hybridization of the oligonucleotide 

primers to their complementary sequences on the template, (ii) the need for these primers 

to hybridize in a head-to-tail orientation on the template, and (iii) the fact that the 

oligonucleotides must have perfect base pairing with the target at their junction. 

 

Sequencing Technology 

Although conformation-based mutation screening methods are a cost-effective way 

to detect an unknown mutation site, once the potential regions have been confirmed to 

contain a putative mutation, these regions should be sequenced to confirm it. Due to the 

development of sequencing technology, direct sequencing methods has been divided into 

three fields, traditional Sanger sequencing, pyrosequencing, and next generation 

sequencing methods. 

 

Sanger Sequencing 

Electrophoresis-based, Sanger sequencing technology is the most commonly used 
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technology for sequencing and was the mainstay of the Human Genome Project. With the 

improvement of computer analysis capacity and florescence detection systems, traditional 

Sanger sequencing has become a fully automatic DNA sequencing process. Over the past 

10 years, significant improvements in Sanger technology have cut the cost of sequencing 

from ~$10/kb to ~$1/kb. Over the same period of time, the throughput for a state of the art 

instrument has increased from <10 kb/h to ~100 kb/h. 

The Sanger sequencing is a mixed-mode process using 2 ′-deoxynucleotides (dNTPs) 

to extend the complementary primer and using 2′,3′ -dideoxynucleotides (ddNTPs) as the 

terminator by DNA polymerase synthesis (Sanger, Nicklen et al. 1977). There are several 

important breakthroughs which promote the fully automatic DNA sequencing technique. 

Prober and Smith applied a novel set of four chain-terminating dideoxynucleotides with 

each dideoxynucleotides carrying a different dye distinguished by its fluorescent emission 

(Smith, Sanders et al. 1986; Prober, Trainor et al. 1987). The DNA fragments can be 

resolved by polyacrylamide gel electrophoresis in one sequencing lane rather than 4 lanes 

in none fluorescent system. The separation matrix, linear polyacrylamide (LPA), also 

greatly elevated the resolution of CE system. Replaceable LPA solution has been used to 

read more than 1000 bases with a run time of 80 min (Carrilho, Ruiz-Martinez et al. 1996; 

Madabhushi 1998). The capillary array electrophoresis (CAE) increased the throughput of 

Sanger sequencing method (Kheterpal, Scherer et al. 1996). 

 

 



   17 

 

Pyrosequencing 

Pyrosequencing is a real-time sequencing method that detects light signal during 

DNA synthesis. During DNA synthesis single-stranded primer complementary to the DNA 

template will be added a deoxynucleotide triphosphates and generate one inorganic 

pyrophosphate (Ronaghi, Uhlen et al. 1998). Then inorganic pyrophosphate is converted to 

adenosine triphosphate which is the catalyst of luciferin oxidation reaction. The luciferin 

can be oxidized by luciferase and emits visible light. The visible light signal is proportional 

to the number of nucleotide incorporated into the extending primer. 

Pyrosequencing technology is important for its high sensitivity, the flexibility of 

assay design, the capability for high throughput analysis and the quantitative data that 

makes analysis more accurate. Pyrosequencing can be also applied to screen mutations or 

SNP. The sensitivity for mutation sites is around 5% (Dufort, Richard et al. 2009). 

 

Next Generation Sequencing 

The high demand for low-cost sequencing has driven the development of 

high-throughput sequencing technologies that parallelize the sequencing process, 

producing thousands or millions of sequences at once. Roche, illumina and ABI all 

developed their unique way to perform sequencing-by-synthesis. The Genome Sequencer 

FLX by 454 Life Sciences and Roche depends on an emulsion PCR followed by parallel 

and individual pyrosequencing of the clonally amplified beads in a Picotiter Plate 

(Ellegren 2008). Emulsion PCR is a clonal amplification performed in an oil-aqueous 



   18 

 

emulsion. By the addition of general adaptor sequences to the fragments, only one primer 

pair is required for emulsion amplification. In emulsion PCR, a sequence specific primer 

attached to a bead, a general primer and PCR component are isolated in a water 

micro-reactor. Once the emulsion is broken the amplified and enriched beads are then 

distributed on the Picotiter Plate, of the 1.6 million wells on the Picotiter Plate, not all will 

contain a bead and not all of those that do will give a useful sequence. The Illumina 

Genome Analyzer is relying on clonal bridge amplification on a solid surface. The sample 

DNA fragments ligated with an adapter can be attached to the solid support.  The DNA 

fragments on the solid support are amplified because the dense adaptor primers and the 

primers complementary sequences on the surface, which will form colony like local 

clusters, each containing approximately 1000 copies and with a diameter of about 1 µm. 

Then sequencing is then carried out with fluorescently labeled nucleotides on solid surface. 

Although Illumina gives shorter read lengths than the 454 system, the throughput is much 

higher. By combining Roche and Illumina technology, Applied Biosystems developed a 

different SOLiD system (Sequencing by Oligonucleotide Ligation and Detection). The 

clonal amplicons on 1 µm beads are generated by an emulsion PCR. The beads are attached 

on a glass surface forming a very high-density random array. The amplicons on beads are 

sequenced by adding a florescence labeled di-deoxynucleotide at each step. The two-base 

encoding system greatly increases the accuracy of sequencing result. 

Although next generation sequencing technologies is quite expensive now, once the 

technology is widely available, enormous impact on research fields will take place in a 
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short time frame 

1.5 Summary 

Current knowledge demonstrates the genetic changes are closely related to cancer 

development. The chapter I briefly reviewed the molecular genetic change in colon cancer 

and current method for mutation screening. In the review, two groups of mutation detection 

methodology are described: scanning mutation detection and specific mutation detection. 

With the development of those existing and under development diagnostic platform, 

especially the high throughput sequencing and microarray technology, the relationship 

between mutation and cancer will be revealed in a more deep and comprehensive view. 
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CHAPTER II 

HIGH RESOLUTION MELTING ANALYSIS BASED 

MUTATION SCANNING MEHTOD 

 

 

 

2.1 Introduction 

HRM is a simple, PCR-based method for detecting DNA sequence variation by 

measuring changes in the melting of a DNA duplex. The annealing and melting properties 

of double-stranded DNA have enabled the development of several genetic assays. The 

fluorescence dye labeled DNA probe targeting mutation or SNP sequence is widely used in 

Taqman Real time PCR, FISH and microarray analysis. Recent advances in thermal cycler 

temperature control, fluorescent DNA intercalating dye and data acquisition method make 
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more accurate assessment of sequence variations based on melting curve analysis. First 

Idaho technology, then ABI, Roche and Bio Rad, developed the commercial high 

resolution melting platform based on their real-time PCR instruments. 

The principle of HRM analysis is based on measuring a signal change of the 

fluorescent dye which indicates the annealing status of double-stranded DNA fragment. 

After PCR HRM is carried out in the presence of a suitable dye, the HRM method uses 

high data-density acquisition, and detects small sequence differences in PCR fragments 

while the product is heated. As the temperature rises and the duplex passes through its 

melting temperature, dye is released and fluorescence intensity is reduced (Figure 2). 

2.1.1 Melting Curve Analysis 

Usually a homozygous sequence will have a defined melting temperature (Tm). If 

there is a base change on this sequence (G:C to T:A), the Tm will decrease approximately 

0.8-1.2ºC (Liew, Pryor et al. 2004). A heterozygous sample contains four types of duplex 

species: A:T, G:C, C:A, T:G. The observed melting curve (dashed line) is a composite of 

the four individual melting curves (Figure 3). The down shift of composite melting curve is 

the contribution from the relatively unstable heteroduplexes. Overall changes in 

fluorescence intensity are small and need specifically designed instrument for High 

Resolution Melting analysis to ensure the maximum sensitivity and specificity.  
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Figure 2 Fluorescence signal monitors the transition from double-stranded DNA to 
single-stranded DNA. As the temperature rises, fluorescence dye is released and 
fluorescence signal intensity is reduced (http://hrm.gene-quantification.info/). 

 

 

 

 

 

 

 

 

 

 

 

 



   23 

 

 
Figure 3 Composition of an observed melting curve. A heterozygous sample combining 
fluorescence signals of two heteroduplexes and two homoduplexes (www.bio-rad.com). 
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For the mutation screening, a different plot should be chosen to distinguish the 

homozygous and heterozygous sequences (Gundry, Vandersteen et al. 2003). The 3 steps of 

HRM analysis are displayed in Figure 4. During the first steps, a pre-melting and 

post-melting zone are selected which normalizes the starting and ending fluorescent signal 

level. The second step applies a temperature shift to each normalized the melting curve. 

This step is optional. It is easier to distinguish heterozygous samples from the now 

superimposed wild type homozygous samples. The third step magnifies curve differences 

by subtracting each curve from the most abundant type (usually wild type sample). This 

helps cluster samples automatically into groups that have similar melting curves. 

2.1.2 Dye selection 

“Saturation” dyes are less toxic to PCR amplification. These dyes show differential 

fluorescence emission dependent on their association with double-stranded or 

single-stranded DNA. SYBR Green I is a first generation dye for HRM. It fluoresces when 

intercalated into dsDNA and not ssDNA. Because it may inhibit PCR at high 

concentrations, it is used at sub-saturating concentrations. Recently, some researchers 

have discouraged the use of SYBR Green I for HRM (Gudnason, Dufva et al. 2007). 

LCGreen was the first saturating dye available (Wittwer et al., 2003) ; LCGreen dyes 

are specifically designed for high-resolution melting curve analysis to detect DNA 

sequence variants. The addition of LCGreen dyes increases the melting temperature of 

DNA by 1-3 °C (Idaho Technology).  
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Figure 4 the workflow of HRM analysis. In step one, a pre-melting and post-melting 
zone are selected and all melting curves are normalized. In step two, a temperature shift is 
performed to each normalized melting curve. In step three, curve differences are displayed 
by subtracting each curve from the wild type sample (www.bio-rad.com) 
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Now there are many more new dyes, including SYTO9 (Invitrogen, Carlsbad, CA), 

EvaGreens (Biotum) and LightCycler 480 ResoLight Dye (Roche, Indianapolis, IN). 

SYTO 9 green fluorescent nucleic acid stain has been used to stain Gram-positive and 

Gram-negative bacteria. SYTO dye has some other special characteristics as well. SYTO 

dye can penetrate all mammalian and bacteria cells. The fluorescence signal of SYTO dye 

significantly enhance when SYTO dye binds to the nucleic acids.  

EvaGreen dye is extremely stable both thermally and hydrolytically. This dye has no 

fluorescent signal by itself, but shows strong fluorescent signal upon binding to double 

strand DNA. EvaGreen dye is completely impermeable to cell membranes and has no 

mutagenic effect.  

 

Relocation effect 

As with any dye used in melting experiments, the HRM dye fluoresces strongly only 

when bound to dsDNA. This change of fluorescence during an experiment can be used 

both to measure the increase in DNA concentration during PCR amplification and, 

subsequently, to measure temperature-induced DNA dissociation during High Resolution 

Melting. 

The “dye jumping” effect (Figure 5) may reduce accuracy during HRM analysis, 

which means dye from a melted duplex may get reincorporated into regions of dsDNA 

which had not yet melted (Reed, Kent et al. 2007). 
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Figure 5 Non-saturating dye and saturating dye. Non-saturating dsDNA binding dye 
“jumps” when dsDNA melts. Saturating dsDNA dye doesn’t redistribute in DNA duplex 
and generate accurate fluorescent signal. 
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A new generation of saturation dyes, specifically developed for high-resolution 

melting can avoid this situation. These new dyes like LCGreen, EVA Green and SYTO9 

are fully compatible with PCR with a wide range of concentration and sensitive enough for 

single-base variants and small insertions or deletions. 

2.1.3 HRM Instrumentation 

For many years, researchers have examined the utility of high resolution DNA 

dissociation analysis. Idaho Technology was first to market an instrument made 

specifically to perform an HRM analysis which helps researchers understand the potential 

of HRM by acquisition of an individual melt curve. But as the first generation of HRM 

platform, the HR-1 is not capable of thermal cycling and can only analyze a single sample 

from within a glass capillary per run making data analysis time consuming.  

Multi-well instruments were introduced into the market soon after the HR-1. 

Although Corbertt Life Science and Idaho Technology use the same fundamental principle, 

different techniques are applied to realize HRM analysis. Rotor-Gene 6000 (Corbertt Life 

Science) was the first multi-well instruments capable of both thermal cycling and HRM. 

The main design advantage of the Rotor-Gene 6000 is that all samples are arranged on a 

round rotor and fluorescent signals can be recorded by a common optical detector. This 

design can minimize the thermal and optical variation between wells which is critical to 

HRM.  

Recently the LightCycler 480 (Roche), 7000 serial (ABI) and CFX system (Bio Rad) 
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were designed for both HRM and thermal cycling. Roche, ABI and Bio Rad all adopted the 

block design. 

2.1.4 Primer design  

Successful amplicon design is an important consideration for successful HRM. 

Well-optimized PCR is needed for maximum sensitivity and specificity. If designed 

primers produce the nonspecific PCR product or primer dimmer, it will significantly 

reduce the sensitivity of the HRM method. The length of the resulting DNA amplicon may 

also impact the sensitivity and specificity of subsequent HRM analysis. Generally speaking, 

HRM primers with anneal temperatures of 60°C and generating 100–250 bp products 

should be adopted. The short amplicons generate a greater change of fluorescence intensity 

than long amplicons which may benefit the sensitivity of HRM. However, care should be 

taken to not make an amplicon too short. Relativly short amplicons tends to bind less dye 

because fewer double-stranded products are amplified. However using products above 250 

bp can reduce sensitivity due to the increased potential for multiple melt domains with 

complicated melt curves. 

2.2 Materials and Methods 

2.2.1 HRM Machine specifications  

ABI 7300 fast 

The Applied Biosystems 7000 instrument is a block-based 96-well thermal cycler. 
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The 7300 system has a tungsten-halogen lamp for excitation of fluorescent dye. The dye 

which can be detected include FAM, SYBR Green I, VIC, JOE and TAMRA. The Passive 

Reference Dye, ROX, is used to normalize real-time PCR reactions. A Charge-Coupled 

Device (CCD) camera is used for signal detection. 

 

Lightcycler II 480 

The LightCycler 480 Real-Time PCR System is a high throughput gene 

quantification or genotyping real-time PCR platform with exchangable blocks for 96 and 

384 samples in multi-well plates. LightCycler II 480 showed high specificity and yield 

because the innovative silver thermal block design rapidly and accurately arrives at and 

maintains reaction temperatures. The LighCycler is a rapid cycler which pumps air through 

a chamber to heat and cool the silver thermal block. Usually the LightCycler 480 System 

enables completion of a PCR run within 40 minutes without Sacrifice of well-to-well 

homogeneity.  

The LightCycler 480 Real-Time PCR System employs a high-intensity Xenon lamp 

that emits light over a broad wavelength range (430–630 nm). The five excitation and six 

emission filters of the system can be used in any combination. 

 

Bio-rad CFX 96 

The CFX 96 system is a 96-well block system. Six independently controlled thermal 

electric modules control the heating and cooling elements of the thermal cycler to maintain 
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tight temperature uniformity. CFX 96 uses the Bio-rad 1000-series cycler which exhibits 

high average ramp rates, rapid settling time and tight thermal uniformity. 

The optics design of CFX 96 adopts a shuttle system and the optics scanner 

reproducibly centered above each well without affection of light path. CFX system can 

detect multiple dyes at the same time and include the FAM, SYBR Green, HEX, Texas Red, 

Cy5 and Quasar 705. Further details can be obtained from the respective company 

websites:   

Roche: www.roche.com/ 

Applied Biosystems: www.AppliedBiosystems.com  

Bio-rad Laboratory: www.bio-rad.com/ 

2.2.2 DNA sample  

Colorectal tissue and cell line samples were prepared at the Cleveland Clinic by 

standard methods. Genomic DNA was extracted using a QIAamp Tissue Extraction kit 

(Qiagen, Hilden, Germany). Mutation in primary tumors and cell line were determined 

using sanger sequencing method. Wild type human genomic DNA samples were purchased 

from Promega (Madison, Wisconsin, USA). The samples containing low-abundance 

mutated DNA were created by diluting the mutated cell line DNA samples (copy numbers 

were measured by Real time-PCR) with wild type DNA.  
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2.2.3 HRM Primer 

HRM primers contain 20-42 nucleotides in length; a reverse oligonucleotide primer 

was designed starting 90-200 bp downstream on the target site. The sequences of 

oligonucleotide primers for mutation scanning are provided. We studied Kras and P53 

mutations. Kras gene primers were designed to span codon 12 and 13. Kras primers were 

designed with 3 different lengths for the best sensitivity. The T3 and T7 tails are introduced 

for further Sanger sequencing. This significantly reduces the number of pipetting steps in 

the DNA sequencing because all of the samples can be sequenced using T3 and T7 

sequencing primers and don’t require specific primers for each amplicon. The influence of 

T3 and T7 universal tails on HRM Primer result was also studied. 
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Table I Sequences of primer pairs used in HRM analysis 
Name The size of amplicon Primer Sequence ( 5’ to 3’) 
P53 175F with tail 108 bp GTAATACGACTCACTATAGG TACAGCACATGACGGAGGTTG 

P53 179R with tail CCCTTTAGTGAGGGTTAATT GCTCACCATCGCTATCTGAG 

P53 196F with tail 164 bp GTAATACGACTCACTATAGG ACTGATTGCTCTTAGGTCTGG 

P53 213R with tail CCCTTTAGTGAGGGTTAATT GGCGGCTCATAGGGCACCACC 

P53 245F with tail 114 bp GTAATACGACTCACTATAGG CAACTACATGTGTAACAGTTCC 

P53 248R with tail CCCTTTAGTGAGGGTTAATT CTTCCAGTGTGATGATGGTG 

P53 273F with tail 150 bp GTAATACGACTCACTATAGG CCTATCCTGAGTAGTGGTAATC 

P53 282R with tail CCCTTTAGTGAGGGTTAATT CCTTTCTTGCGGAGATTCTC 

P53 175F  68 bp TACAGCACATGACGGAGGTTG 

P53 179R  GCTCACCATCGCTATCTGAG 

P53 196F  124 bp ACTGATTGCTCTTAGGTCTGG 

P53 213R  GGCGGCTCATAGGGCACCACC 

P53 245F  74 bp CAACTACATGTGTAACAGTTCC 

P53 248R  CTTCCAGTGTGATGATGGTG 

P53 273F  110 bp CCTATCCTGAGTAGTGGTAATC 

P53 282R  CCTTTCTTGCGGAGATTCTC 

Kras 80F 80 bp AGGCCTGCTGAAAATGACTG 

Kras 80R GCTGTATCGTCAAGGCACTC 

Kras 92F 92 bp TTATAAGGCCTGCTGAAAATGACTGAA 

Kras 92R TGAATTAGCTGTATCGTCAAGGCACT 

Kras 189F 189 bp TCATTATTTTTATTATAAGGCCTGCTGAA 

Kras 189R CAAAGACTGGTCCTGCACCAGTA 

Kras F with tail 120 bp GTAATACGACTCACTATAGG AGGCCTGCTGAAAATGACTG 

Kras R with tail CCCTTTAGTGAGGGTTAATT GCTGTATCGTCAAGGCACTC 
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2.2.4 Fluorescent Dye Comparison 

The HRM kits from Applied Biosystem and Qiagen were chosen for comparison. 

The HRM kit from ABI contains SYTO 9 dye and the kit from Qiagen contains EvaGreen. 

The characteristic melting curves of two types of non-saturate dyes are analyzed on the 

Roche LightCycler 480 instruments. 

2.2.5 Real-time PCR and Fluorescent Melting Curves 

The HRM assay was performed in the LightCycler 480 (Roche Diagnostics; 

Switzerland). The same primers that amplify the genomic DNA were used for the HRM 

assay. PCR reactions were performed in triplicate in 10 μl final volume using Type-it® 

HRM PCR kit (Qiagen, Maryland/USA). 0.7 μM primer and 1 μl probe enriched PCR 

template were added into each HRM reaction. The thermocycling consisted of an initial 

incubation at 95ºC for 5 min followed by 50 cycles of 95ºC for 10 s, 55ºC for 30 s and 72ºC 

for 10 s and a final extension step of 10 min at 72ºC.  

High resolution melting analysis was performed after PCR process with a 

florescence acquisition setting of 95ºC for 30s, then 60ºC for1min, florescence change was 

recorded during temperature ramping from 65-95ºC, rising by 0.1ºC/s. All the reactions 

were performed in triplicate.  
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Figure 6 Well-to-well difference between regular and HRM real-time PCR system. 
The new generation real-time PCR system Roche LightCycler 480 display the accurately 
controlled temperature comparing to regular Bio-rad Opticon 2 real-time PCR system. 

 

 

 

 



   36 

 

2.3 Results 

2.3.1Performance of HRM instrument 

For comparison purposes, two standard real-time PCR instruments were compared 

(Figure 6). The reproducibility of real time PCR instrument is a significant factor which 

determines the reliability of the HRM method.  The well-to-well difference should be 

minimized in order to get a compact curve group. Two 48 replicates which contain one 

mutation sample and one normal sample was added into the 96 well plate. The melting 

curves of a 108 bp P53 175-2 G>A mutation amplicon were normalized by Bio-rad 

Precision Melt Analysis software. 

In Figure 7, the mutation sample (red) can be clearly distinguished from normal 

sample (green) on CFX96 system. The CFX 96, LightCycler™ 480, and ABI 7300 fast are 

real-time PCR machines which have HRM capability. We tested the reproducibility and 

PCR variation of LightCycler 480, ABI 7300 fast and CFX 96 systems. The LightCycler 

480 show more uniformity of the PCR reaction and melting curve. Also, the HRM software 

has better performance for mutation calling. 

The reproducibility and well-to-well difference have a significant impact on the 

reliability of data. The standard deviation of the Tm shows the distribution of well-to-well 

difference among different real-time PCR systems, including the 7300 fast, Opticon 2, 

HRM instrument CFX 96  and LightCycler 480  by analyzing 10 to 96-well wild-type 

samples. Genomic DNA was amplified by Kras 189 primer. The ABI 7300 fast had the  
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Figure 7 the reproducibility of Bio-rad CFX 96 real time PCR instrument. P53 175-2 
G>A mutation sample and wild type samples are analyzed in 48 parallel experiment on a 96 
well plate. The result shows that P53 mutation sample (red) can be distinguished from wild 
type sample (green) on CFX96 system. 
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Table II Well-to-well difference of Real-time PCR systems 

 

ABI 

7300 Fast 

10 well 

Bio-rad  

Opticon 2 

96 well 

Bio-rad  

CFX 96  

48 well 

Roche 

LightCycler480  

96 well 

Range 0.17ºC 1.1 ºC 0.4 ºC 0.49ºC 

Standard deviation 0.09 0.241 0.139 0.059 

 

 

 

 

 

 

 

 

 

 

 

 



   39 

 

smallest Tm range at 0.40 °C across the plate (due to the smallest sample number). The 

standard deviation of LightCycler 480 is the smallest (0.058) which shows the higher 

reproducible and smaller well-to-well difference. 

The Table II provides the range and standard deviation of the 3 different instruments. 

Because of the highly controlled temperature of well-to-well difference, the Roche 

LightCycler 480 was chosen for the rest of study. 

2.3.2 Performance of intercalating dye  

There are several commercial available HRM kits containing highly specific and 

non-saturated fluorescent dyes. The new double strand DNA binding dyes avoid “dye 

jumping” effect during DNA melting. The LCGreen, EvaGreen and SYTO dye are newly 

developed for high sensitivity and specificity of mutation detection. 

The Melt-DoctorTM HRM kit from Applied Biosystem and Type-it TM HRM kit 

from Qiagen were compared side-by-side on LightCycler 480 system.   

2.3.3 Primer design in HRM mutaton analysis 

The primer design of HRM mutation analysis follows the general rule of PCR 

amplification. The Primer 3 software was used to minimize the internal secondary structure 

and primer dimers. The melting temperatures of primers are around 60 oC and melting 

temperature differences between forward and reverse primers are less than 2 oC. Amplicon 

size and GC content are also critical parameters for successful HRM analysis. Small 
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amplicons with low GC content (80-200 bp) are adopted in the assay for two reasons. 1) 

Short amplicons with low GC content shows more melting temperature difference between 

homozygote samples. 2) Because of degradation of genomic DNA in stool samples, short 

amplicons have higher chance to be amplified (Olson, Whitney et al. 2005; Colotte, 

Couallier et al. 2009). A wild type DNA template is always included in the HRM analysis 

to evaluate the amplification results of tissue or stool DNA samples. The specificity of PCR 

is confirmed by comparing the single melting peaking plots. For each sample, 3 technical 

replicates are prepared. 

The effect of universal tail  

Because the original primers which flank the p53 and Kras mutations are not 

designed for HRM analysis, although the 5 primer pairs perform excellent mutation 

screening, the assessment of primer without attached T3 and T7 tails was carried out on  

the LightCycler 480 system (Figure 8). 

Colon cancer tissue samples 2151 and 2181 which contain the p53 273 codon CGT> 

TGT mutation confirmed by sequencing method were amplified by primer 273F and 282R.  
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Figure 8 the effect of universal tail in HRM analysis. Universal tail will produce a 
longer PCR amplicon. The difference curves shows that without T3 and T7 universal tail 
P53 primer pair didn’t lost its discrimination capability. 
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The data are shown for the same target amplified using PCR primers with and without T3 

and T7 universal DNA tail appended to the 5' ends. The melt profiles of homozygous 

wild type and heterozygous mutant can be distinguished from each other, but since the 

amplicons have different sequences, the curves are slightly different. 

 

The influence of amplicon length 

Kras primers giving 80, 92 and 189 bp PCR amplicons were designed to test the 

effect of amplicon size on the sensitivity of detecting mutant sequence in a background of 

normal DNA. The sensitivity of HRM assay is the key to successfully identifying certain 

mutations.  

Generally smaller amplicons gave better discrimination between mutation and wild 

type amplicons. But in our study, the result shows that this rule doesn’t always apply. Two 

Kras mutation samples 1186 which contains 35G>T mutation and 34G>T mutation 

individually were screened by three pairs of Kras primers. The longest 189 bp amplicons 

with 37% G+C content gaves the best resolution. The 80 bp amplicons with 49% G+C 

content can discriminate the mutant from wild type at a low resolution. The 92 bp with 

43 % G+C content amplicons showed no melting curve difference between wild types and 

mutants.  The sensitivity of mutation detection using the 80, 92 and 189 bp PCR 

amplicons shows that the length of the PCR amplicon is not the only factor determining the 

HRM sensitivity, the GC content and secondary structure of DNA duplex also have 

significant influence.   
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Figure 9 the effect of amplicon length in HRM analysis. The 80 bp amplicons show 
slightly difference between mutation and wild type sample. The 92 bp amplicons show no 
difference. The 189 bp amplicons have best discrimination ability to identify the mutation 
samples. 
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2.3.4 Assay validation 

Cancer tissue samples with known p53 mutations were first used to test the HRM 

assay. The mutation types are listed in the Table III. Four pairs of p53 HRM primer were 

able to discriminate between wild-type DNA and different mutations. Both these colon 

cancer tissue samples showed typical heteroduplex melting patterns and were readily 

distinguishable from wild-type samples. 
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Table III List of eight P53 mutation samples 

Tissue sample  Type Mutation 

B1 colon carcinoma p53 codon175 CGC>CAC 

B2 colon carcinoma p53 codon213 CGA>TGA 

B3 colon carcinoma p53 codon273 CGT>TGT 

B4 colon carcinoma p53 codon273 CGT>TGT 

B5 colon carcinoma p53 codon196 CGA>TGA 

B6 colon carcinoma p53 codon213 CGA>TGA 

B7 colon carcinoma p53 codon248 CGG>CAG 

B8 colon carcinoma p53 codon196 CGA>TGA 
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Figure 10 HRM analysis results of eight p53 mutation samples. From top to bottom, 
HRM curves showed one P53 mutation from codon 175 to179, two P53 mutations from 
codon 273 to 282, four mutations from codon 196 to 213 and one mutation from codon 245 
to 248.  
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2.3.5 High resolution melting analytical sensitivity testing 

The cancer tissue DNA containing mutation in p53 273-1 codon was mixed with 

wild-type DNA in dilution of 100%, 50%, 20%, and 10%. The dilutions were tested by 

using 150 bp amplicons. Figure 11 shows the difference plots for both PCR amplicons with 

the cell line dilutions. Using the 150 bp amplicon, we were able to detect 20% mutation in 

wild-type DNA. 

2.3.6 Kras and p53 mutation detection in colorectal cancer tissue and cell line DNA 

samples 

Table IV shows a table for cell line control, wild-type control, and a selection of 

patient tissue sample with Kras, p53 mutations. The Kras and p53 primers were used for 

screening mutation in DNA of 20 colorectal tissue sample and 11 cell lines. We detected 

the presence of 19 variant curves in the 32 samples. Sixteen mutations were identified by 

HRM using p53 primer and 7 mutations were identified using Kras 189bp primer. After 

HRM analysis, the PCR amplicons with aberrant curves were subject to the Sanger 

Sequencing method. The summary of all mutations detected in the panel of 20 colon cancer 

biopsy samples and 11 cell line samples is presented in Table IV. 
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Figure 11 Sensitivity of high resolution melting analysis. Depend on the primer design 
and mutation type, the sensitivity of high resolution melting analysis ranges from 10% to 
20%. 
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Table IV P53 and Kras mutation results determined via HRM and sequencing 
Sample  Histology HRM Sequencing 
779 Adenocarcinoma WT WT 
864 Adenocarcinoma Not Covered P53 190 CCT>CTT 
788 Adenocarcinoma P53 mutation P53 267 CGG>CCG 
946 Adenocarcinoma P53 mutation P53 274 GTT>TTT 
  Kras mutation Unsequenced 
955 Adenocarcinoma Kras mutation Kras 12 GGT>GAT 
1012 Adenocarcinoma Kras mutation Kras 12 GGT> TGT 
  P53 WT P53 248 CGG>TGG 
1122 Adenocarcinoma Kras mutation Kras 12 GGT> TGT 
1186 Adenocarcinoma Kras mutation Kras 12 GGT> GTT 
1278 Adenocarcinoma Kras mutation Kras 12 GGT> GTT 
1319 Adenocarcinoma WT Kras 12 GGT> TGT 
1166 Adenocarcinoma P53 mutation P53 175 CGC>CAC 
1719 Adenocarcinoma P53 mutation P53 248 CGG>CAG 
1913 Adenocarcinoma WT P53 175 CGC>CAC 
2088 Adenocarcinoma P53 mutation P53 213 CGA>TGA 
2151 Adenocarcinoma P53 mutation P53 273 CGT> TGT 
2181 Adenocarcinoma P53 mutation P53 273 CGT> TGT 
2373 Adenocarcinoma P53 mutation P53 196 CGA>TGA 
2381 Adenocarcinoma P53 mutation P53 213 CGA>TGA 
2418 Adenocarcinoma P53 mutation P53 248 CGG>CAG 
2779 Adenocarcinoma P53 mutation P53 196 CGA>TGA 
V8 Adenocarcinoma WT WT 
HCT 116 Adenocarcinoma WT WT 
V410 Cell line WT WT 
V425 Cell line P53 mutation P53 248 CGG>TGG 
V441 Cell line P53 mutation P53 193 CAT>CGT 
V451 Cell line WT WT 
V456 Cell line WT WT 
V478 Cell line P53 mutation Unsequenced 
V489 Cell line WT WT 
V576 Cell line P53 mutation P53 273 CGT>CTT 
V531 Cell line WT P53 205 TAT>TTT 
Normal Cell line WT Normal 
Sensitivity  19/23  
Specificity  8/8  
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Figure 12 Comparing HRM difference plot and Sanger sequencing results in wild 
type sample and P53 196-213 mutations samples. 2373, 2381, 2088 and 2779 are 
colorectal cancer tissue samples. V441 is cell line DNA sample. The 10 µl HRM test of 
each sample was performed in triplicate.  
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Figure 12 shows a difference plot and sequencing results for cell line controls, 

wild-type samples and a selection of patients with P53 196-213 mutations. Cell line sample 

V441, which had HRM curves above the wild-type curves, showed the presence of a 

homozygous p53 193 CAT>CGT mutations with prominent mutant peaks. Sample 2381 

and 2088 all contained P53 codon 213 CGA>TGA mutation which had a HRM curve that 

deviated less from the wild-type plot. Sample 2381 showed a relative small peak for the 

low mutation to wild type ratio in DNA template. The same situation applied to sample 

2373 and 2779 with P53 196 codon CGA>TGA mutation. 

2.4 Discussion 

The principle of HRM is to measures the fluorescent signal changes of 

double-stranded DNA molecules melting. Usually the template will be amplified by PCR 

reaction which will generate a strong enough signal for detection. The new fluorescent 

dyes can bind more specifically to the double-stranded but not single-stranded DNA at a 

high concentration without suppressing the PCR reaction. Once the dyes bind to the DNA, 

they don’t redistribute along the DNA duplex like old non-saturation dyes which can show 

biased melting curve and omit the difference between the homoduplex and heteroduplex. 

The sensitivity and accuracy of heterozygote detection were both high. Most of 

research groups can determine close to 100% of mutations, though there may be a small 

amount of false positive results. Point mutations share the same pattern. The conducted 

study showed the lowest level of mutation detection by HRM is 5% or lower; the majority 
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of detection limit is around 10-20%.  

The volume change due to PCR buffer evaporation from badly sealed membrane or 

calibration of auto pipette can cause difficulties to analyze sample. Theoretically, the 

fluorescence signal change is the only factor for HRM and normalization can minimize the 

data deviation due to volume change. But from our experience, a 10 % volume change 

causes the problem of a wide melting curve distribution. 

There are not established rules for HRM primer design. All categories of mutations, 

insertions, and deletions can be detected as long as the PCR reaction can be performed. 

Location of mutation positions in the PCR amplicon can clearly affect the shape and 

magnitude of melting curve for certain primer pairs. Mutations are detectable at any 

position at any location in the amplicon, even close to or within the PCR primers. Sample 

V441 with a mutation at P53 codon 193 CAT>CGT is a perfect example (Figure 12). 

Amplicon length and GC content may also influence the sensitivity of HRM assay, but the 

relationship among them is not clear enough to help primer design. The type of mutation is 

also important for successful detection. The switch between GC base pair to AT base pair 

usually shows the highest sensitivity. A>T mutation generate comparatively small signal 

change, and for our assay of the sample V531 with P53 codon 205 TAT>TTT, this 

mutation was unable to be detected. But carefully designed primers do detect A to T or T to 

A mutations. The melting domains within the amplicon and secondary structure of the 

amplicon may have more impact on the HRM analysis. 

Single Nucleotide Polymorphism (SNP) within an amplicon is a challenge for  the 
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HRM method too. False positive results may result from SNP existence. As a result, 

positive results from HRM assay always need the sequencing method to confirm the 

identity of variants. 

In conclusion, we have developed a robust assay for screening P53 and Kras 

mutations that is found in clinical samples. The main limitation of HRM analysis is that the 

precise mutation cannot be readily identified, and the Sanger sequencing method is needed 

to confirm the result. HRM is a closed tube method with less possibility of contamination 

and template purification. Comparing to the other scanning method, the HRM analysis has 

a lower cost and easily prepare samples. The sensitivity and specificity is higher than the 

most of traditional enzyme based method. The high throughput of HRM is possible in the 

future with development of nano-scaled PCR reaction.  
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CHAPTER III 

ALTERATIONS OF DNA METHYLATION IN 

COLORECTAL CANCER 

 

 

 

3.1 Introduction 

Colorectal cancer is the third leading cancer type for males in the United States. 

According to the statistic data from Center for Disease Control and Prevention (CDC), 

139,127 people were diagnosed with colorectal cancer, and 53,196 people died from it in 

2006. Because of the long study time, the essential mechanism about cancer is becoming 

clear. There are more approaches to diagnose cancer at early stage and improve treatment. 



   54 

 

Gene mutations of cancer have been associated with the main focus during the last 

decades. Two sorts of genes control the proliferation of human cells: 1) proto-oncogenes, 

which serve as accelerators to activate the genes of the cell; and 2) tumor suppressor genes, 

which can slow down the growth of cells. When proto-oncogenes are mutated, they will 

lead to cancer. But recent research found that epigenetic events might be the origin of 

human cancer. Different from genetic changes, epigenetic changes have a higher incidence 

rate than genetic change. Epigenetic changes include DNA methylation and histone 

modification (methylation or acetylation). Those epigenetic changes directly affect 

secondary structures of chromatin and promoter sequence of certain genes without 

influencing the native DNA sequence. When the promoter region is heavily methylated, 

the downstream gene will not be transcripted. The aberrant methylation of gene promoter 

regions may result in loss of tumor-suppressor gene function and lead to cancer.  

3.1.1 Definition of CpG island 

CpG islands are genomic regions that contain a high frequency of CG 

dideoxynucleotides. A definition of CpG island is the base pair number greater than 500, 

the GC content is no less than 55% and observed CpG/expected CpG ratio of greater than 

or equal to 0.65. CpG island is the target of methylation. Recent research results have 

shown that methylation of promoter CpG islands plays an important role in gene silencing, 

genomic imprinting, X-chromosome inactivation, and carcinogenesis. Based on this 

definition, more than 35% of the human protein coding genes have their own CpG islands. 

In mammalian genomes, CpG islands are typically 300-3,000 base pairs in length. 

 

CpG islands typically occur at or near the transcription start site of genes, 
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particularly housekeeping genes. Normally a cytosine base followed immediately by a G 

(guanine) base (a CpG) is rare in vertebrate DNA because the cytosines in such an 

arrangement tend to be methylated. This methylation helps distinguish the newly 

synthesized DNA strand from the parent strand, which aids the final stages of DNA 

proofreading after DNA duplication (Bishop 1995; Jones and Laird 1999; Baylin and 

Herman 2000). 

3.1.2 Methylation modification of Cytosine 

Cytosine methylation occurs after DNA synthesis by transferring a methyl group 

from methyl donor S-adenosylmethionine to the carbon-5 position of cytosine. The 

enzymatic reaction is performed by DNA methyltransferase (DNMTs). Four active DNA 

methyltransferases have been identified in mammals: DNMT1, DNMT2, DNMT3A and 

DNMT3B. DNMT1 is the major enzyme in mammals, which can methylate the newly 

synthesized DNA strand after replication. DNMT1 is responsible for maintenance 

methylation in mammal (Saxonov, Berg et al. 2006; Yamada, Shirakawa et al. 2006).  
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Figure 13 Mechanism of DNA methylation. 5-Methylcytosine is produced by the DNA 
methyltransferases (DNMT) that transfer a methyl group (CH3) from 
S-adenosylmethionine (SAM) to the carbon-5 position of cytosine. 
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Most methylated cytosine residues are located outside of CpG islands. Methylation 

of some CpG islands in non-cancer tissue increases with age, but the genomic 

5-methylcytosine level decreases. Hypomethylation has been hypothesized to contribute to 

carcinogenesis by transcriptional activation of oncogene or activation of latent transposons. 

At the same time, hypermethylation of CpG island and histone modification leads to gene 

silencing, which is an early sign of carcinogenesis. Right now cancer-related DNA 

methylation research focuses on the hypermethylation status of the certain gene. 

Researchers find some stable and reliable methylated CpG islands as biomarkers for 

diagnosing early stage cancer (Robinson, Bohme et al. 2004; Holm, Jackson-Grusby et al. 

2005).  

3.1.3 Methylation and transcription regulation 

Cytosine-5 DNA methylation occurs in mammals at CpG dinucleotides. About 70% 

of the CpG dinucleotides in the mammalian genome are methylated. According to Hanahan 

and Weinberg, six new phenomenon of a cell should take place before a tumor become 

malignant: (1) limitless replicative potential, (2) self-sufficiency in growth signals, (3) 

insensitivity to growth-inhibitory signals, (4) evasion of programmed cell death, (5) 

sustained angiogenesis, (6) tissue invasion and metastasis. The most studied genes are 

categorized by these six events. The transcriptional silencing of tumor suppressor genes by 

promoter CpG island hypermethylation can contribute to oncogenesis. New methylation 

markers are discovered every year.  

Methylation of promoter CpG islands causes terminated transcription of 

downstream genes, which means loss of corresponding gene expression that regulates 
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tumor suppression, cell growth, differentiation and apoptosis. 

3.1.4 DNA methylation in colon cancer 

During cancer development two different changes in DNA methylation take place. 

One is the genome-wide hypomethylation and the hypermethylation in 

promoter-associated CpG islands related to tumor suppressor genes. Since both 

hypermethylation and hypomethylation are early events in cancinogenesis, detection of 

DNA methylation may greatly help to the early diagnosis of cancer.  

The role of methylation in oncogenesis has been explored during the past 10 years. 

There are there possible mechanisms that determine the development of cancer 

development. First, hypermethyaltion of CpG islands in promoter regions can delay or stop 

the transcription of tumor suppress genes. P16, MGMT, E-cadherin and RB are identified 

as methylation inactivated genes (Chen, Mao et al. 2004; Krakowczyk, Strzelczyk et al. 

2008; Attaleb, El hamadani et al. 2009; Moreira, Guimaraes et al. 2009). Second, 

mutations are closely associated with DNA hypermethylation patterns. Hypermethylation 

of tumor suppressor genes like APC, MGMT, and hMLH1 is very common in pre-invasive 

colorectal neoplasia causing the increased mutation rate among the oncogenes (Nagasaka, 

Sasamoto et al. 2004; Judson, Stewart et al. 2006). Finally, Chromosomal instability and 

microsatellite instability can be initialized by DNA methylation (Kaina, Ziouta et al. 1997; 

Derks, Postma et al. 2008). 

Jones and Baylin point out that the tumor development can be triggered by promoter 

hypermethylation of tumor suppressor genes. Genome-wide loss and regional gains of 

DNA methylation are associated with inappropriate gene silencing, which significantly 

affect tumor progression.  
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3.1.5 Methylation frequency of ALX4, UNC5, EYA, BMP3 and GATA5 

Aristaless-like homeobox-4  

Aristaless-like homeobox-4 (ALX4) gene controls parietal bone growth, which is 

localized in human genome 11p11.2 (Wu, Badano et al. 2000). Mutation of ALX4 gene 

may cause skull defects (Wuyts, Cleiren et al. 2000) and craniofacial development as in 

skin and hair follicle development in human (Kayserili, Uz et al. 2009). ALX4 also plays a 

major role in anterior-posterior pattern formation during bovine limb development 

(Wohlke, Kuiper et al. 2006). Lymphoid Enhancer Factor-1 gene also can interact with 

ALX4 gene during early embryonic development, especially for embryonic 

vasculogenesis (Boras-Granic, Grosschedl et al. 2006). Chang‘s group displays that loss 

of ALX4 expression in epithelial and stromal cells may be a potential marker for breast 

cancer (Chang, Mohabir et al. 2009). Recently research results support ALX4 could be a 

sensitive methyaltion marker for cancer diagnosis.  In 2006 Ebert and Model first pointed 

out that heavily methylated ALX4 genes could be a novel genetic and epigenetic marker 

indicative of changes in the pathogenesis of colon cancer. They used methylation-specific 

arbitrarily primed polymerase chain reaction to identify 41/60 colon adenoma and primary 

colorectal cancer samples (Ebert, Model et al. 2006). This result was confirmed by study 

conducted by Hongzhi Zou in 2007 (Zou, Harrington et al. 2007). Another research result 

shows that methylation frequency of ALX4 gene in bladder cancer was around 25% which 

is much lower than colorectal cancer, but still could be a potential methylation marker 

when combining with other genes (Yu, Zhu et al. 2007). The frequency of methylated 

ALX4 gene in colorectal cancer is 56%-68% (He, Chen et al.; Ebert, Model et al. 2006; 

Zou, Harrington et al. 2007). 
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UNC5 family 

UNC5 gene belongs to a family of netrin-1 receptors, but UNC5C only shows 

limited expression in certain adult human tissues (Ackerman and Knowles 1998). Netrin-1 

receptors mediate several critical neuronal and vascular development (Moore, 

Tessier-Lavigne et al. 2007; Bernet and Fitamant 2008; Freitas, Larrivee et al. 2008; Low, 

Culbertson et al. 2008). Recent study shows that UNC5C gene generated UNC5 receptors 

and these UNC5 receptors facilitate chemorepulsion away from Netrin source (Dillon, 

Jevince et al. 2007). The molecular mechanisms of UNC5C gene expression are 

systematically studied. Netrin-1 and its receptors deleted in colorectal cancer play an 

important part in tumorigenesis by inhibiting p53-depended apoptosis (Arakawa 2004). 

Recent research indicated that UNC5C methylation was significantly correlated with 

colorectal cancer development. Bernet and Mazelin’s results show that UNC5C expression 

is down-regulated in human colorectal cancers through promoter methylation and loss of 

UNC5C expression observed in human colorectal cancer is the cause of increased 

intestinal tumor progression and a decrease in tumor cell apoptosis (Bernet, Mazelin et al. 

2007). Comparing with the 6% methylated UNC5C gene in normal mucosa, UNC5C was 

significantly methylated in colorectal cancer (76.2%) and adenomatous polyps (63.5%) 

(Shin, Nagasaka et al. 2007). The research result from 36 patients’ primary carcinomas 

and the corresponding normal tissues in 2009 showed that aberrant methylation of the 

UNC5C gene is as high as 69% (Hibi, Mizukami et al. 2009).  
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Eyes absent (EYA) family  

EYA2 and EYA4 are key regulators of ocular development. Lost expression of EYA 

gene will cause absence of eye development (Borsani, DeGrandi et al. 1999). It is also 

found that EYA4 is important for the maturation of organ of Corti (Wayne, Robertson et al. 

2001). An EYA4 point mutation caused hearing loss was reported, which was thought 

because of long-term exposure to loud noise (Hildebrand, Coman et al. 2007). EYA4 

expression also shows strong correlation with premalignant esophageal cancer (Li, Diao 

et al. 2009). Zou and Harrington showed that the EYA2 gene was highly methylated in 

colorectal neoplasia (Zou, Harrington et al. 2007). Another study from Osborn and Zou 

showed that EYA4 gene promoter methylation in colorectal tissues can be used for 

discrimination of neoplasia in chromic ulcerative colitis. The EYA4 gene promoter is 

heavily methylated commonly in sporadic and colitic neoplasia and may be a potential 

methylation marker for neoplasia in chronic ulcerative colitis. EYA4 promoter shows 

hypermethylation in 80% of colorectal cancers (Osborn, Zou et al. 2006).  

 

Bone morphogenetic protein 3 (BMP3) 

Bone morphogenetic protein (BMP) is responsible for regulating cell proliferation, 

differentiation and apoptosis in different cell types. BMP mediates two signaling pathways: 

1) BMP binds to transmembrane receptors and activates their kinase activity, then the 

kinase phosphorylates SMAD protein(Euler-Taimor and Heger 2006); 2) Epigenetic 

silencing of BMP antigrowth signal can activate Ras/MAPK pathway and further induce 

the carcinogensis. BMP induces endochondral bone formation in human skeletal(Luyten, 

Cunningham et al. 1992). BMP signaling has multiple purposes of chondrogenesis and 
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endochondral bone formation, especially for the earliest stages of skeletogenesis (Gamer, 

Cox et al. 2009). Lost function of BMP genes may cause several disorders of cartilage and 

bone formation (Tabas, Zasloff et al. 1991). BMP3 acts as a negative regulator of bone 

formation by limiting BMP signal transduction, and BMP3 has a unique expression pattern 

in the development of perichondrium (Gamer, Ho et al. 2008). Because BMP proteins are 

one of the TGFB growth factor families in bone formation, inactivation of BMP3 gene can 

be served as an early event in colorectal cancer development (Loh, Chia et al. 2008). 

55-66% methylated BMP3 gene was observed in different colorectal cancer study.  (Zou, 

Harrington et al. 2007; Loh, Chia et al. 2008) 

 

GATA transcription factor 

The GATA family of zinc finger proteins is transcriptional regulators which regulate 

lineage differentiation and embryonic development. The GATA5 is present essentially in 

the heart and gut (Nemer, Qureshi et al. 1999). GATA5 regulates expression of Nkx2.5 

transcription factor by antagonizing transcription of Nkx2.5 (Jiang, Drysdale et al. 1999). 

Molkentin and Tymitz showed that during mouse embryogenesis GATA5 expressed in the 

heart and lung, vasculature, and genitourinary system. Mutation in GATA5 will cause 

abnormal development of the female genitourinary system (Molkentin, Tymitz et al. 2000). 

Huggins and Wong’s study confirmed that GATA5 can activate the progesterone receptor 

gene promoter in breast cancer cells (Huggins, Wong et al. 2006). GATA5 is silenced by 

epigenetic events in cancer development, which are shown by several studies (Akiyama, 

Watkins et al. 2003; Guo, Akiyama et al. 2004; Guo, House et al. 2006). Derks and 

Postma comprehensively analyzed promoter methylation status of hMLH1, O6MGMT, 



   63 

 

APC, p14F, p16, RASSF1A, GATA4, GATA5, and CHFR using methylation-specific PCR 

technology. Results show significant correlation between promoter methylation of APC, 

P16, GATA4 and GATA5 and colorectal cancer (Derks, Postma et al. 2006). Fu’s research 

also displays that GATA4 and 5 play a role in carcinogenesis of human tumors derived of 

endodermal and mesodermal origin. GATA4 and GATA5 methylation are related to 

occurrence of human pancreatic cancer (Fu, Guo et al. 2007). Other studies show that 

GATA methylation may cause the development of sporadic gastric carcinomas. 53.8% 

GATA4 and 61.3% GATA5 methylation are observed in sporadic gastric carcinomas (Wen, 

Akiyama et al.; Akiyama, Watkins et al. 2003).  

3.2 Laboratory methods for detecting methylation 

There are two directions to analyze the methylation: 1) non-specific DNA 

methylation analysis and 2) gene specific analysis.  

Before the bisulfite-modification method was invented, there were no useful 

methods to analyze the methylation status of a single gene. Therefore global methylation 

content, also called non specific DNA methylation, was the only factor which could be 

analyzed. The non-specific DNA methylation analysis plays an important role in the 

development of carcinogenesis. The nonspecific DNA methylation analysis can only give 

information about the total methylated cytosine in whole genomic DNA. But this factor 

can’t help identify the cancer marker.  

The current gene specific analysis is based on two approaches, restriction enzyme 

and bisulfite-modification. Restriction enzymes like Hpa II can cut unmethylated DNA but 

not methylated DNA. The limitation of restriction enzymes is that they only recognize 

certain DNA sequences. Bisulfite-modification is the standard method to analyze cytosine 
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methylation. The principle of bisulfite-modification is that sodium bisulfite deaminates 

cytosine located on single-stranded DNA. After the base treatment, the unmethylated 

cytosine will be converted to uracil and methylated cytosine will not be converted. 

Designing proper primers can recognize the modified DNA sequence. Combined with 

other techniques, detailed methylation status can be determined by the 

bisulfite-modification method. The bisulfite-modification method is the basis of present 

methylation analysis (Pollack, Stein et al. 1980; Oakeley 1999; Shames, Minna et al. 

2007). 

3.2.1 Global methylation content 

The distribution of 5-methylcytosine residues from genomic DNA can be analyzed 

in different ways.  

 

HPLC and TLC 

LC-mass spectrometry is considered the gold standard for DNA-methylation 

analysis as it provides the user with the exact amount of methylated cytosines in a sample. 

However it is costly and requires a certain amount of expertise. In addition the DNA must 

be digested to the single nucleotide level prior to analysis. HPLC based DNA methylation 

analysis has several variations. Using single nucleotide primer extension (SNuPE) assays 

in combination with ion pair-reverse phase-high performance liquid chromatography 

(IP-RP-HPLC) separation techniques, methylated and unmethylated CpGs can be 

discriminated and quantified based on the different masses and hydrophobicities of the 

extended primer products. This method needs bisulfite converted DNA as the template. 

The HPLC and TLC rely on DNase to hydrolyze DNA to deoxyribonuleoside. Because of 
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the different mobility of 5-methylcytosine and cytosine, their intensity can be measured 

(Kuo, McCune et al. 1980; Bestor, Hellewell et al. 1984).  

 

Chloracetaldehyde Reaction 

Chloracetaldehyde reaction is a fluorescent assay of the DNA methylation level. 

5-methylcytosine and chloracetaldehyde form ethenocytosine which is a fluorescent 

compound. Comparising genomic DNA from cell lines known to differ in their methylation 

levels, the fluorescence intensity can be interpreted to assess the level of 5-methylcytosine 

in the genome. One drawback of the chloroacetaldehyde reaction is the use of quite toxic 

reagent (Oakeley, Schmitt et al. 1999). 

 

Immunological techniques 

Immunological techniques make use of the highly specific reaction between 

monoclonal antibodies and 5-methylcytosine to study DNA methylation (Golbus, Palella et 

al. 1990; Bernardino, Lamoliatte et al. 1996). The shortcoming of immunological 

techniques is that they are only quantitative when the 5-methylcytosine is on the single 

strand DNA. Weber used an immunocapturing approach followed by DNA microarray 

analysis to generate methylation profiles of human genomic chromosomes CpG islands. 

The resolution of this method is around 80kb which can detect epigenetic modification of 

primary and transformed cells genome-wide (Weber, Davies et al. 2005). 

The global methylation studies always need large amounts of high quality genomic 

DNA. These methods can’t give satisfactory data on trace amounts of DNA. Likewise the 

specificity and sensitivity is too low to be used in clinical samples. 
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3.2.2 Gene-specific methylation analysis 

When the methylation status of a single gene is involved in research, there are two 

major kinds of methods to study methylation: 1) methylation-sensitive restriction enzymes, 

2) bisulfite-conversion based method. 

 

Methylation-sensitive restriction enzymes methods 

Restriction enzyme methods do not change the sequence of DNA strand, but use 

methylation-sensitive restriction enzyme that can’t cut the methylation DNA sequence. 

After incubation with restriction enzyme, the unmethylated DNA is digested and 

methylated DNA is left untouched. This method is only useful for probing a very limited 

number of potential methylation sites, so there is only limited information that can be 

gained. Another disadvantage of this method is that if incomplete digestion takes place, a 

false-positive result will be generated from the experiment.  

Many variations of restriction enzyme-based methods have been used in conjunction 

with genomic analysis and they are discussed below.  

 

Restriction Landmark Genomic Scanning (RLGS) 

RLGS takes advantage of methylation sensitive restriction enzymes like NotI and 

AscI which specifically cleave the unmethylated genomic DNA and leave the methylated 

DNA untouched (Costello and Vertino 2002). The advantage of the RLGS method is that 

the gene sequence information can be unknown (Smiraglia, Fruhwald et al. 1999). RLGS 

employs direct labeling of the genomic DNA fragments digested by a restriction enzyme 

and two-dimensional electrophoresis with high-resolution (Hayashizaki, Hirotsune et al. 
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1993). As long as genome wide scanning for aberrant DNA methylation patterns of 

different human cancers is performed, the methylation status can be resolved.  

 

Methylated CpG island amplification 

Methylated CpG island amplification (MCA) can be applied to both methylation 

analysis and cloning differentially methylated genes. Firstly unmethylated SmaI sites are 

eliminated by digestion with SmaI. Then methylated SmaI sites are digested with the SmaI 

isoschizomer XmaI, which digests methylated CCCGGG sites which form a ligated ends. 

Adaptors are ligated to these sticky ends and PCR is performed to amplify the methylated 

sequences. The MCA amplicons can be analyzed in a dot blot assay, and the methylation 

status of a specific gene is determined by an oligonucleotide probe (Toyota, Ho et al. 

1999). 

 

Combination of methylated-DNA precipitation and methylation-sensitive restriction 

enzymes (COMPARE-MS)  

COMPARE-MS rapidly and quantitatively detects CpG hypermethylation in 

hundreds of samples simultaneously. Genomic DNA is digested with AluI with or without 

the methylation-sensitive restriction enzyme HpaII and then DNA is precipitated by 

methyl-binding domain polypeptides immobilized on magnetic beads. Either the magnetic 

beads captured methylated DNA or all digested DNA is subjected to real-time PCR at a 

gene-specific locus. Enrichment of methylated DNA by methylation-sensitive restriction 

enzyme digestion and by magnetic beads capture of methylated DNA can increase the 

sensitivity and specificity of methylation detection (Yegnasubramanian, Lin et al. 2006). 
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Methylation-sensitive arbitrarily primed polymerase chain reaction (MS-AP-PCR) 

Arbitrarily primed polymerase chain reaction (AP-PCR) is a method for 

fingerprinting genomes. AP-PCR uses various arbitrary primers which bind to different 

sites on the two DNA strands and amplify the DNA located in between the primers 

(Menard, Brousseau et al. 1992).  

For the MS-AP-PCR, methylation sensitive restriction enzymes with different 

recognition sequences were used to digest genomic DNA samples from cell lines, tumors 

and normal tissues before AP-PCR. After resolving the PCR products on high-resolution 

polyacrylamide gels, fragments that showed differential methylation were cloned and 

sequenced (Gonzalgo, Liang et al. 1997).  

 

Methylation-specific multiplex ligation-dependent probe amplification 

MLPA (Multiplex Ligation-dependent Probe Amplification) is a multiplex PCR 

method detecting copy number changes of up to 40 different genes. MLPA probes are 

hybridized to the denatured single strand DNA sequence and ligated by thermoligase. 

Ligated probes are exponentially amplified during the subsequent PCR reactions and 

separated using capillary electrophoresis (Schouten, McElgunn et al. 2002). 

Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is 

very similar to the MLPA method, except that during ligation reaction half of the samples 

are undigested for copy number detection and the other half sample is digested by 

methylation-sensitive endonuclease HhaI. MS-MLPA probes for methylation detection all 

contain the restriction site of the methylation-sensitive endonuclease HhaI. Because 
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digested probes cannot be amplified during PCR reaction, comparing the CE data from the 

digested sample with the undigested sample shows the methylation signal (Scott, Douglas 

et al. 2008). 

There are several benefits of MS-MLPA: (1) a large number of genes can be studied 

using only trace amounts of sample DNA; (2) a large number of samples can be analyzed 

simultaneously; (3) MLPA is quantitative and can discriminate between methylation of one, 

both, or none of the alleles. 

 

Bisulfite-based Method 

Bisulfite-based method distinguishes the methylated and unmethylated DNA 

sequence by converting unmethylated cytosine to uracil. This method is a revolutionary 

tool to study methylation status. Based on the bisulfite conversion method, different 

detection methods are developed to amplify and analyze the bisulfite-converted template. 

This method only needs trace amount of DNA. The sensitivity and specificity is higher 

than previous nonbisulfite-conversion methods (Shapiro, DiFate et al. 1974).  

The bisulfite method in Figure 14 can be used to correctly identify all methylated and 

unmethylated CpG islands present in the genomic DNA. Sodium bisulfite can only 

deaminates unmethylated cytosine located on single-stranded DNA. Sodium 5, 6 

-dihydrocytosine-6 sulphonate forms at low pH condition. Raising the pH to basic 

conditions causes the degradation of sodium bisulfite and the transformation of 

unmethylated cytosine into uracil. 5-Methylcytosine may also undergo such a reaction but 

the rate of this reaction is very slow and inhibits the formation of the final product (Sono, 

Wataya et al. 1973, Piperi, Farmaki et al. 2008).  
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Figure 14 Bisulfite modification reaction. The unmethylated cytosines form sodium 5, 6 
-dihydrocytosine-6 sulphonate at low pH, and then generate uracil at the basic condition. 
The methylated cytosine has a slow reaction rate in the bisulfite modification reaction. 
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PCR product of bisulfite, converted single strand DNA replace the uracil with 

thymine. The PCR product can be analyzed by various methods including Sanger or 

pyro-sequencing (McDonald and Kay 1997; McDonald, Paterson et al. 1998), 

single-nucleotide primer extension (Gonzalgo and Jones 1997; Gonzalgo and Liang 2007; 

Boyd and Zon 2008), and ligation detection reaction (Dahl and Guldberg 2007; Scott, 

Douglas et al. 2008; Figueroa, Melnick et al. 2009). 

 

Sequencing method 

Bisulfite genomic sequencing generates methylation maps with single-base 

resolution which is still the gold standard method for methylation measurement. The 

procedure is the same as common sequencing. The method is based on the selective 

deamination of cytosine to uracil by treatment with bisulfite and the sequencing of 

subsequently generated PCR products. Different from cytosine, 5-methylcytosine does not 

react with bisulfite. Thereby the methylated CpG site is still read as CpG, while the 

unmethylated CpG site is read as TpG. Bisulfite sequencing also is the standard of other 

bisulfte-based methods, usually used to check validity (Loebel and Johnston 1996; 

McDonald and Kay 1997). 

Pyrosequencing is a relatively new method for real-time nucleotide sequencing. It 

has been widely applied in DNA sequencing, genotyping and single nucleotide 

polymorphism analysis. The pyrosequencing for methylation detection involves five major 

steps: 1) bisulfite reaction treats the genomic DNA; 2) DNA is amplified using PCR; 3) 

double-stranded DNA is converted to single-stranded DNA templates; 4) oligonucleotide 

primers are hybridized to a complementary sequence of interest; 5) the pyrosequencing 
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reaction itself (Colella, Shen et al. 2003). The pyrosequencing assays shows a sensitivity 

and specificicty around 100% and can provide a quantitative approach of methylation 

detection of all CpG sites 

 

PCR based method 

Methylation Specific PCR (MSP) was described in 1996. Methylation-specific PCR 

(MSP) is a simple, quick and cost-effective method to analyze the DNA methylation status 

of virtually any group of CpG sites within a CpG island.  The first tests included p16, p15, 

VHL and E-cad genes. After bisulfite modification, DNA was amplified with two pairs of 

primers: the methylated and the unmethylated sequences. The advantages of this method 

include a short time of analysis and the possibility of obtaining results from small amounts 

of DNA. MSP reveals the methylation status of the CpG sites within the two short 

sequences targeted by MSP primers.  Specificity and sensitivity of primers are 

significantly related to the primer design. MSP eliminates the false positive results 

generated from incomplete restriction enzyme cleavage. Methylation is detected even 

when only 0.1% of alleles are methylated. The limitations of this method are connected to 

the possibility of contamination of the analyzed sample and strict PCR condition are 

needed to avoid false-positive results (Herman, Graff et al. 1996).  

HeavyMethyl is real-time PCR assay which measures methylation biomarkers. 

Cottrell designed a set of methylation-specific oligonucleotide blockers and a 

methylation-specific probe to achieve methylation-specific amplification and detection 

(Cottrell, Distler et al. 2004). Distler extended the application to a wider level, including 

analysis of frozen, formalin-fixed samples. He presented a assay for quantitative 
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methylation measurement of GSTP1 gene (Distler 2009).  

MSP primers are normally designed to flank one or more CpG sites at or near the 3' 

end. This makes the primers highly selective for the methylated template. However if there 

is an incompletely converted sequence in the bisulfite-treated DNA, a false positive result 

is difficult to avoid. SMART-MSP used melting as a quality control to avoid false-positive 

results caused by incomplete bisulfite conversion (Kristensen, Mikeska et al. 2008). 

 

Single-nucleotide primer extension 

Single nucleotide primer extension, or so-called single base extension, was first used 

to identify genetic disease with high frequency of occurrence. Fluorescent dye or 

radioactive isotope labeled nucleotide is added to the 3’ end of a primer (Kosaki, 

Yoshihashi et al. 2001). Single nucleotide primer extension products are then carried out 

and analyzed by denaturing polyacrylamide gel electrophoresis (Sokolov 1990), 

autoradiography (Kuppuswamy, Hoffmann et al. 1991) , capillary electrophoresis (Piggee, 

Muth et al. 1997), or mass spectrometry (Fei and Smith 2000). The extension of the primer 

by a single base will show the targeted base pair of either the mutant or the wild type. 

Methylation-sensitive single nucleotide primer extension (MS-SNuPE) measure 

methylation differences at specific CpG sites based on bisulfite treatment of DNA followed 

by single nucleotide primer extension (Gonzalgo and Jones 1997). Gonzalgo’s group first 

reported SNuPE assay on the DNA methylation determination. The advantage of the 

SNuPE assay is easy to achive high throughput and supply a relatively simple 

measurement of methylated cytosine content. The generated C vs. T signal strength strands 

for original methylated cytosine vs. unmethylated cytosine positions (Boyd, Moody et al. 
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2007). 

 

Ligation detection reaction  

Ligation-mediated polymerase chain reaction (LM-PCR) was the first method to 

combine the methylation detection with ligation reaction. Genomic DNA is cleaved 

simultaneously with one methylation sensitive restriction enzymes and one methylation 

insensitive restriction enzyme. After cleavage, a gene-specific oligonucleotide primer is 

extended on the template followed by linker ligation and then conventional PCR 

(Steigerwald, Pfeifer et al. 1990). This method does not use the high discrimination of 

ligase itself but depend on the methylation sensitive restriction enzymes. 

Dahl established a multiplex, simple and cost-effective approach to analysis of CpG 

methylation. In Ligation Detection reaction/PCR assay, a pair of methylation-specific 

oligonucleotide probes hybridize to the bisulfite treated DNA template. Because the high 

specificity of ligase on double stranded DNA, the matched probe pair can be linked 

together and then amplified by a common primer pair in a PCR reaction. The PCR product 

mixture which stands for up to 6 genes can be resolve in an agarose gel (Dahl and Guldberg 

2007).  

After bisulfite treatment, two ligation-based microarray methods were developed for 

methylation analysis. Briefly, it first utilizes multiplexed PCR to amplify multi-promoter 

areas, followed by ligation chain reactions. One common upsteam proble is designed along 

with two downstream probes targeting methylated and unmethylated sequence are labeled 

with two different dyes (Cy3/Cy5). The ligation products are then hybridized on the probe 

microarray to determine the methylation status at each promoter via measuring ratio of 
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Cy3/Cy5 fluorescence signals (Cheng, Shawber et al. 2006). 

 

Physical property 

Methylation-dependent fragment separation (MDFS) is a methylation detection 

method based on Capillary electrophoresis. Electrophoresis is conducted after sodium 

bisulfite modification of genomic DNA and amplification with specific primers labeled 

with fluorescent dye. The migration speed of polymorphic sequences is different, which 

allows for the identification of methylated and unmethylated DNA (Boyd, Moody et al. 

2006; Boyd, Moody et al. 2007). After bisulfite conversion, methylated genomic DNA 

differs from unmethylated genomic DNA by multiple methylated cytosines versus uracils. 

A region of interest is then amplified using fluorescence dye-labeled primers. Since the 

primers don’t cover any CpG sites, the methylated and unmethylated DNA can be 

amplified unbiasely. The presence of the multiple polymorphisms (C vs. T) leads to 

differential migration times during fragment analysis by CE, therefore an amplicon from 

fully methylated genomic DNA is readily resolved from an amplicon from fully 

unmethylated genomic DNA. 

High resolution melting analysis (HRM) is a sensitive and low cost method for the 

detection of methylation profile. Methylated DNA and unmethylated DNA generate 

different sequences after bisulfite treatment which causes a significant change in the 

melting curve between methylated and unmethylated PCR products. MS-HRM can 

estimate the methylation level by comparing the melting profiles of unknown PCR 

products to the melting profiles of PCR products from a serial standard DNA mixture of 

methylated and unmethylated templates (Wojdacz and Dobrovic 2007).  
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High throughput methylation methods 

The Human Epigenome Project uesd standard sequencing approaches to sequence 

bisulfite-converted DNA from human tissues and primary cell lines to determine all the 

possible tissue-specific differentially methylated regions (Bradbury 2003; Rauscher 2005). 

There are a number of methods for large-scale screening of DNA methylation, but the DNA 

microarray and next generation sequencing are the most reliable and informative methods 

that can be compared easily by different laboratories (Lippman, Gendrel et al. 2005). 

 

DNA microarray 

Tampa first took microarray as a genome-wide mapping of DNA methylation 

patterns. The genomic DNA is cleaved by a methyl-sensitive restriction endonuclease and 

then followed by size fractionation and hybridization to microarrays. This study 

demonstrated that methylation patterns can be characterized by microarray (Tompa, 

McCallum et al. 2002).  Lippman from Cold Spring Harbor laboratory subsequently 

utilized the genomic microarrays to profiling DNA methylation patterns (Lippman, 

Gendrel et al. 2005). 

At the early stage of microarray studies on DNA methylation, individual laboratories 

prepared their own arrays. Today the high-quality commercial microarray products from 

Illumina, Affymetrix, NimbleGen and Agilent are more popular in methylation research. 

Bead array from Illumina are capable of single base resolution. Two primers targeting 

methylated and unmethylated bisulfite-treated sequence are labeled different fluorescent 

dyes. The ratio of two primers ligated on the common primer immobilized on solid surface 
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is used to evaluate methylation status (Bibikova, Lin et al. 2006). Affymetrix GeneChip 

arrays achieved a high density spot pattern by photolithographic method. Millions of 

probes can be synthesized on the chip surface. Each spot contains a 25-mer 

oligonucleotides that provide the specificity of the assay (Dalma-Weiszhausz, Warrington 

et al. 2006). Restriction enzyme processed DNA from human tissue has been ligated with a 

linker, then methylation binding protein is applied to enrich the methylated DNA fragments. 

The enriched DNA fragments are labeled with fluorescence dye via PCR and hybridized to 

methylation arrays for data analysis (Ho and Tang 2007). Each Affymetrix chip is designed 

for one sample at a time. To compare different samples, each sample is hybridized to a 

separate array and the resulting signals are compared. NimbleGen and Agilent adopt long 

60-mer oligonucleotide probes. The only difference between the two companies is the way 

to that oligonucleotide probes are synthesized (Nuwaysir, Huang et al. 2002; Wolber, 

Collins et al. 2006). Two samples are labeled with different fluorescent dyes, methylated 

DNA and control DNA, are hybridized on a single chip. The signal difference between the 

two samples hybrizided on the same chip indicates the variation pattern of methylation. 

The longer probes provide a better balance between specificity, sensitivity and noise. 

 

Next Generation Sequencing 

High-throughput sequencing is the newest and most promising methodology for 

genome-scale analysis of DNA methylation in the future. There are a number of platforms 

available on the market or under development (Shaffer 2007; Rusk and Kiermer 2008; 

Shendure and Ji 2008). High-throughput sequencing can be an alternative way for 

analyzing DNA methylation with oligonucleotide arrays. There is no need of labeling and 
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hybridizing control samples in array experiments, the sequencing result can be directly 

interpreted. High throughput sequencing methods provide a quantitative measure of 

methylation abundance rather than the relative measure in array-based methods. 

Next-generation sequencing is poised to incur dramatic changes in every area of molecular 

biology (Park 2008). This approach often measures billions of base pairs per run, 

compared with the millions of base pairs per day generated by automated capillary DNA 

sequencers (Chan 2009; Gargoyle and Mince 2009). 

 

3.3 Conclusion 

5-Methylcytosine, commonly referred to as DNA methylation, is a modified base 

that adds heritable information upon the DNA code, which is important for regulating 

many cellular processes. DNA methylation research is entering a new phase after years of 

study. For the first time we have the ability to analyze methylation patterns of the whole 

genomes and it provides the most basic type of information about the cytosine methylation 

signal. The genome-wide and gene-specific methylation analysis methods were briefly 

reviewed in this short review. Each method has distinct advantage and application area. 

Fast developments in high-throughput sequencing may replace microarrays within a few 

years for genome wide methylation analysis. High resolution melting curve shows more 

potential in gene specific studies.  
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CHAPTER IV 

SENSITIVE MEULTIPLEX MUTATION AND 

METHYLATION DETECTION IN A LARGE 

BACKGROUND OF Normal DNA 

 

 

 

4.1 Introduction 

The analysis of genomic mutation or methylation in cancer-related DNA markers 

plays an increasingly significant role in the fields of early cancer diagnosis. Since there are 

large numbers of genomic mutations and methylations to be screened to yield accurate 

information for cancer diagnosis/prognosis, a sensitive and low-cost method is needed for 

clinical laboratories.  
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Despite the best advances in the imaging technology, cancer is still hard to detect 

before metastasis has occurred. The cancer screening is still the most challenging and 

promising strategy for saving lives from cancer. Molecular diagnostics, which takes the 

molecules in human body like DNA, RNA, or protein as the biomarkers to detect cancer, is 

emerging as a promising method in early cancer screening. DNA mutation and methylation 

are believed to be the leading cause for the development of cancer. The mutation in p53 

and APC genes initiate 60-80% of colorectal neoplasia (Smith, Carey et al. 2002; Traverso, 

Shuber et al. 2002). Promoter methylation also plays an even more important role in 

development of cancer (Nagasaka, Sasamoto et al. 2004; Bazan, Bruno et al. 2006). 

However it has been challenging for the current screening methods to screen cancer. 

There remain two challenges in the current screening methods: 1) find a sensitive method 

to detect mutation and methylation which can detect small amounts of target sequences in 

a vast excess of wild-type DNA; 2) the screening method should be simple and 

cost-effective. Since cancer screening focuses on the general population, the 

cost-effectiveness determines the feasibility of the method.  

There are different technologies which fit for allele specific point mutation 

discrimination including single base extension (Huang, Arnheim et al. 1992; Greenwood 

and Burke 1996; Gonzalgo and Jones 1997), allele-specific hybridization (Iitia, Mikola et 

al. 1994), and restriction enzyme cleavage and ligase based assay (Giunta, Youil et al. 1996; 

Tsuji and Niida 2008). Combining these methods with microarray (Tebbutt 2007), mass 

spectrometry (Li, Butler et al. 1999; Bocker 2003), and fluorescence detection (Chen, 

Iannone et al. 2000; Dempsey, Barton et al. 2004) will greatly enhance throughput and 

sensitivity of the method.   
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Variations in DNA molecules are difficult to directly detect from body fluids, and 

current methods of discrimination do not have this capability. Nucleic acids in bodily fluids 

are present at concentrations on the order of 10–100 ng/mL. These nucleic acid sequences 

must be amplified before applying the final discrimination assay. Enrichment methods are 

employed to detect low abundance mutations. COLD-PCR (co-amplification at lower 

denaturation temperature) showed a wide and promising future (Li and Makrigiorgos 

2009). This method enables enrichment of PCR amplicons containing unknown mutations 

at any position. After strict temperature controlled PCR cycles, the ratio of mutation 

sequence to normal sequence can be elevated significantly and subsequently subjected for 

sequencing method to identify the exact nucleotide change (Luthra and Zuo 2009). This 

clever amplification process utilizes two fundamental technologies. The first technology is 

an asymmetric design of the primers which flank the target sequence. The folding primer 

and turn-back primer are designed to amplify the target through a self-priming mechanism. 

The second is to use Thermus aquaticus (Taq) MutS for reduction of background 

amplification reaction in the isothermal amplification procedure (Tatsumi, Mitani et al. 

2008).  

The greatest challege for cancer screening by mutation and methylation analysis is 

the lack of methods that can survey hundreds of DNA mutation and methylation makers in 

a sensitive way. In this study, a method called the Probe Enrich Mutation/Methylation 

HRM analysis (PEMM-HRM) is developed to detect low abundance mutation. We 

demonstrated that a single PEMM-HRM assay could easily identify one mutation sequence 

in 1,000 wild-type DNA copies.  
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4.2 Materials and methods 

4.2.1 DNA sample  

Probes and primers used in our experiments are ordered from MWG/Operon. DNA 

samples were prepared at John Hopkins University by using the standard methods. The 

mutations in primary tumors and cell line were determined using conventional sequencing 

methods. The fully unmethylated control DNA and fully methylated control genomic DNA 

samples were purchased with CpGenome DNA modification Kit (Millipore, Billerica, 

MA). The samples containing low-abundance mutated DNA were created by diluting the 

standard mutation/methylation DNA samples (copy number was measured by Real 

Time-PCR) and then the standard mutation/methylation DNA samples were mixed with 

wild type/unmethylated DNA. Samples containing 1% and 0.1% mutated DNA were 

tested.  

4.2.2 Bisulfite Treatment  

The CpGenome DNA modification Kit (Millipore, Billerica, MA) was used for 

bisulfite treatment in this study. Bisufite treatment was performed according to the protocol 

from the manufacturer. Briefly, the DNA samples were mixed with bisulfite buffer and 

maintained at 50 ºC for 15 h. Then bisulfite buffers containing DNA sample were filtrated 

by 50K Microcon centrifuge column (Millipore, Billerica, MA). The DNA left on the 

centrifuge column is washed 3 times with 500 μL 1xTE buffer (pH=7.4) on Eppendorf 

Centrifuge 5415C (Eppendorf North America, Westbury, NY) at 10,000 RPM. The 

desulfonation reaction was performed by transferring 500 μL of 0.1 M NaOH solution to 

the column, which slowly went through the centrifuge column at 3000 RPM. The column 
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was then washed 3×500 μl TE buffer. In the end, the bisulfite modified DNA was eluted 

from the column with 200 µL TE buffer. The modified DNA was used immediately or 

stored at -20 ºC for further analysis. 

4.2.3 Multiplex PCR  

About 10 ng of genomic DNA/bisulfite converted DNA was added in to 20 μl 1×ABI 

PCR buffer ( providing a final concentration of 2 mM MgCl2, 10 mM Tris-HCl, pH 8.3, 50 

mM KCl, 200 μM each dNTP and 1 unit AmpliTaq Gold DNA Polymerase). All primer 

pairs were mixed equally together with a final concentration of 0.01 μM each.  Reaction 

mixtures were incubated at 95 ºC for 10 min to activate AmpliTaq DNA Polymerase, and 

then subjected to 16 cycles consisting of 30 sec at 95 ºC, 30 sec at 65 ºC (-0.5 ºC /cycle) and 

45 sec at 72 ºC, followed by 30 cycles of 30 sec at 95 ºC, 30 sec at 57 ºC, and 45 sec at 72 

ºC. The sequences of 6 pairs of primers are listed in Table V and Table VI.  

4.2.4 Mutation/Methylation Specific Enrichment in Solution 

Multiplex PCR amplicons were incubated with a mixture of the enriching and 

blocking probes for mutation-specific enrichment. This is carried out by first denaturing 

DNA at 95ºC for 5 min, followed by stepwise by reducing the temperature at about 

0.1ºC/3 sec to 25ºC. Then the sample was incubated with the streptavidin-coupled 

Dynabeads for 30 min at room temperature to capture the mutant DNA carried by them. 

After washing, the beads were resuspended by water and heated at 95 ºC for 5 min to 

release the captured DNA. 
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4.2.5 Optimization Mutation Enrichment condition 

A mixture of enriching probes (1 μM of each) and corresponding blocking probes (7.5 μM 

of each), and was incubated with the PCR products for hybridization. This was carried out 

by first denaturing DNA at 95ºC for 5 min, followed stepwise by reducing the 

temperature at about 0.1ºC/3 sec to 25ºC. Then the sample was incubated with the 

streptavidin-coupled Dynabeads for 30 min at room temperature to capture the mutant 

DNA carried by them. The enriching probe captured the PCR products were washed three 

times with 1ml 1xTE, at 30, 40, 50, 60 and 70ºC to remove the unspecific binding. The 

enriched templates were eluted at 95ºC. The templates were experimented with HRM assay 

with normal DNA as internal standard. The sequences of primers and probes are listed in 

Table VII and Table VIII. 
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Table V PCR Primer Sequences for Mutation Detection 

Primer Forward Primer 5’-3’ Reverse Primer 5’-3’ 
Size 

(bp) 

p53 175-179 T7-TACAGCACATGACGGAGGTTG T3-GCTCACCATCGCTATCTGAG 108 

p53 196-213 T7- ACTGATTGCTCTTAGGTCTGG T3-GGCGGCTCATAGGGCACCACC 164 

p53 245-248 T7-CAACTACATGTGTAACAGTTCC T3- CTTCCAGTGTGATGATGGTG 114 

P53 273-282 T7-CCTATCCTGAGTAGTGGTAATC T3-CCTTTCTTGCGGAGATTCTC 150 

Kras 12/13 TCATTATTTTTATTATAAGGCCTGCTGAA CAAAGACTGGTCCTGCACCAGTA 189 
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Table VI PCR Primer Sequences for Methylation Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Forward Primer 5’-3’ Reverse Primer 5’-3’ 
Size 

(bp) 

BMP3 T7-GTTTTYGTTTTAGTTGGTTTGGAGTT T3-TACTCYCCCCAACCATAACTAAATAC 178 

ALX4 T7-GAGTAGGTYGGGTAAGGAGTGTATAG T3-CAAATCTCAACATTCATACCTAACTTAC 189 

EY4 T7-GGTTTTAYGAGTTYGTAGTAGTYGGTGG T3-CCTCTCTAAAACAACRACAACTTCAC 208 

UNC5 T7-GAGTTTTATTGGATATAGTTTAGTGG T3-CCCAAAAAACCAACTATAAATTTACCC 218 

GATA5 T7-AGGGAGGTAGAGGGTTYGGGATT T3-ACRTAACCCTAACAAACCCTACTC 229 
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Table VII Oligonucleotide Probe for Methylation Enrichment 
Probe Methylation Enriching probe 5’-3’ Blocking Probe 5’-3’ 

BMP3 Biotin-AGTCGACGCGTCGCGCGG AGTTGATGTGTTGTGTGG 

ALX4 Biotin-TCGCGTTTTCGTTCGTCG TTGTGTTTTTGTTTGTTG 

EY4 Biotin-CGAAACGTACGCCGCGCT CAAAACATACACCACACT 

UNC5 Biotin-GTTCGGGGCGCGTTCGTT GTTTGGGGTGTGTTTGTT 

GATA5 Biotin-CGCACGACACGAAACGAC CACACAACACAAAACAAC 
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Table VIII Oligonucleotide Probe for Mutation Enrichment 
Probe Mutation Enriching probe 5’-3’ Blocking Probe 5’-3’ 

p53 175-1 Biotin-GTTGTGAGGDGCTGCCCC GTTGTGAGGCGCTGCCCC 

p53 175-2 Biotin-GTTGTGAGGCHCTGCCCC  

p53 196-1 Biotin-ATCTTATCWGAGTGGAAGG ATCTTATCCGAGTGGAAGG 

p53 213-1 Biotin-AAACACTTTTKGACATAGTGT AAACACTTTTCGACATAGTGT 

p53 213-2 Biotin-AAACACTTTTCHACATAGTGT  

p53 248-2 Biotin-GATGGGCCTCDGGTTCAT GATGGGCCTCCGGTTCAT 

p53 245-1 Biotin-CCTGCATGGGCHGCATGA CCTGCATGGGCGGCATGA 

p53 245-2 Biotin-CCTGCATGGGCGHCATGA  

p53 273-1 Biotin-TTTGAGGTGDGTGTTTGTG TTTGAGGTGCGTGTTTGTG 

p53 273-2 Biotin-TTTGAGGTGCHTGTTTGTG  

p53 282-1 Biotin-GAGACDGGCGCACAGAGG GAGACCGGCGCACAGAGG 

p53 282-2 Biotin-GAGACCHGCGCACAGAGG  

Kras 12-1 Biotin-TTGGAGCTHGTGGCGTAGGC TTGGAGCTGGTGGCGTAGGC 

Kras 12-2 Biotin-TTGGAGCTGHTGGCGTAGGC  

Kras 13-1 Biotin-TTGGAGCTGGTHGCGTAGGC  

Kras 13-2 Biotin-TTGGAGCTGGTGHCGTAGGC  
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4.2.6 HRM Assay 

The HRM assay was performed in the LightCycler 480 (Roche Diagnostics; 

Switzerland). The same primers that amplify the genomic DNA or bisulfite converted DNA 

were used in the HRM assay. PCR reactions were performed in triplicate in 10 μl final 

volume using Type-it® HRM PCR kit (Qiagen, Maryland/USA). 0.7 μM primer and 1 μl 

enriched PCR template were added to each HRM reaction. The thermocycling consisted of 

an initial incubation at 95ºC for 5 min followed by 50 cycles of 95ºC for 10 s, 55ºC for 30 s 

and 72ºC for 10 s and a final extension step of 10 min at 72ºC.  

The melting curve analysis was performed by the Ligthcycler 480 Gene Scanning 

Program. The melting curves of each primer were normalized at its temperature range. The 

value of shifted temperature was set at 0%. Finally the HRM difference plot was generated 

by subtracting the curves from known wild-type DNA sample. The grouping software uses 

a curve shape-matching algorithm to determine the wild type and mutation. The same 

preparation protocol was applied to the wild type and tissue samples. The grouping 

sensitivities of 0.3, 0.2 and 0.1 were compared to determine the optimal mutation calling. 

The methylation specific HRM was performed in the same thermocycling condition 

and HRM kit. The only difference was that PCR reactions were performed on Opticon 2 

instruments (Bio-Rad Laboratories, Hercules, CA) instead of the Lightcycler 480 system. 

4.3 Results 

4.3.1 Mechanism of PEMM-HRM 

PEMM-HRM assay consists of five steps. First, DNA sample from human tissue, 

blood and stool samples are extracted and multiplex amplified by mutation targeting 
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primers. Second, the PCR products containing mutation and wild-type alleles are subjected 

to competitive hybridization. The enriching probes complementary to the mutation alleles 

are biotinylated and further captured by streptavidin-coupled Dynabeads. The blocking 

probes complementary to the wild-type alleles are non-biotinylated and stay in the solution. 

Third, the supernatant containing wild-type alleles are removed, but the 

streptavidin-coupled Dynabeads are kept by the magnet in the same vial. This step leads to 

the enrichment of mutation alleles. Fourth, the mutation alleles that are captured by 

streptavidin-coupled Dynabeads are eluted at 95 ºC for 5 mins. Finally, the enriched 

mutation alleles are subjected for high resolution melting analysis. Figure 15 shows a 

schematic representation of whole assay.  
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Figure 15 the Workflow of PEMM-HRM assay. PEMM-HRM assay has five steps. In 
the first step genomic DNA containing mutation sites are amplified by multiplex PCR. In 
the second step mutation amplicons are hybridized to mutation enriching probes and 
captured by streptavidin-coupled Dynabeads. In the third step, the normal amplicons are 
removed by washing the magnetic beads. In the forth step, the captured amplicons are 
released from the magnetic beads by simple disrupting the biotin and streptavidin complex 
at high temperature. In the last step, HRM curves of mutation enriched sample are 
compared with a normal control sample and determine if there is any mutation site. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   93 

 

This assay adopted a competitive hybridization approach. The principle of 

competitive hybridization is illustrated on the Figure 16. Briefly, the PCR products are 

hybridized with the biotinylated enriching probes to selectively capture mutant DNA, 

followed by depleting wild-type DNA. After separation of from enriching probes, the 

enriched DNA can be analyzed by melting curve analysis. The second and third steps are 

the key to the PEMM-HRM. The mutation allele enrichment needs an enriching probe and 

a blocking probe which are fully complementary to the mutation and wild-type sequences 

respectively. As a result, the blocking probes which are complementary to the wild-type 

sequence can tightly bind to wild-type DNA and prevent the nonspecific binding to the 

enriching probe. For the normal sample, the nonspecific binding can be suppressed at a 

very low level. The following high resolution melting analysis shows there are not 

difference before or after the enrichment. In contrast, when mutated DNA is present, the 

blocking probe will not bind the targeted mutation sites and enriching probe can capture the 

low abundance mutation alleles. In this method, we used solid phase extraction to extract 

the mutation PCR product.   

The methylation enrichment followed the same principle. The difference is that the 

extracted DNA subjected to bisulfite modification. The primers and probes were designed 

to match to the bisulfite-converted sequence.  
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Figure 16 Principle of Competitive Hybridization. PCR products containing mutation 
amplicons are selectively hybridized with the enriching probes and blocking probes, which 
are fully complementary to the mutation and wild type sequences individually. The 
blocking probes hybridize to the wild type amplicons and suppress the nonspecific binding 
between wild type amplicons and the enriching probes. The mutation amplicons will be 
captured by mutation enriching probe on streptavidin-coupled Dynabeads surface. 
 

 



   95 

 

4.3.2 Absolute Quantification 

Cell lines DNA V425 and V576 (containing p53 248 CGG>TGG and 273 

CGT>CTT individually) were used for study of the sensitivity of the PEMM-HRM method. 

The absolute DNA copy number of each cell line was measured by the standard Real time 

PCR method. Human genomic DNA was serially diluted in 50, 5, 0.5 and 0.05 ng per vial 

to construct a standard curve. The copy number of V425 and V576 is calculated by the 

LightCycler 480 software. The amplification curves were recorded as shown in Figure 17. 

4.3.3 Sensitivity of PEMM-HRM 

We used the LightCycler 480 Gene Scanning software to automatically call the TP53, 

APC, Kras mutation status from PCR amplicons fluorescent melting curves. Sensitivity 

thresholds of each primer which have been determined according to the experiment in 

Chapter II were based on the best discriminating between normal and mutation cell line 

DNA.  

We assessed the sensitivity and specificity of PEMM-HRM by diluting mutation cell 

line DNA V425 and V576 (containing p53 248 CGG>TGG and 273 CGT>CTT) into wild 

type human DNA. The absolute DNA copy number of each cell line was measured the by 

standard Real time PCR method. The dilution factor is 100%, 1%, 0.1% and 0%. Figure 

18A showed that after the probe enrichment process we can readily detect mutation in 1% 

and 0.1% mutation which can not be detected by regular HRM method. 
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Figure 17 Quantification of mutation template. The copy numbers of cell line DNA 
V425 and V576 are measured against the serially diluted normal human genomic DNA. 
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The amount of human DNA extracted from a clinical specimen may vary from 

patient to patient; thus, the assay must have a good dynamic range. The mutation 

enrichment step is very robust, the volume variation from PCR template showed no 

dependece on mutation enrichment. Figure 18 B displays the result of analyzing the 

sample containing 50 ng, 10 ng and 2 ng DNA samples which contain 1% p53 273 248 

CGG>TGG mutation were amplified by multiplex PCR assay, after performing the 

mutation enrichment. The results showed that the mutation enrichment assay was not 

influenced by the quantity of initial DNA. Even if the concentration ratio of mutation 

template to wild type template was decreased to 1:1000, detectable fluorescence melting 

curve differences between the mutated and normal templates were observed. 
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Figure 18 Sensitivity of PEMM-HRM assay. A) Before probe enrichment process, there 
was no difference among 0.1%, 1% mutation and wild type samples. After probe 
enrichment process, 0.1%, 1% mutation samples were readily identified by HRM assay. B) 
The results showed that as low as 6 copies initial mutation template can be identified by 
PEMM-HRM assay. The base line is the normalized melting curve from wild type DNA. 
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4.3.4 Temperature effect on hybridization  

Because the sensitivity in the PEMM-HRM assay depends on the selective 

hybridization between the enriching probe and amplified DNA template. The best 

hybridization condition is important to mutation enrichment. In most cases, the 

destabilizating effect of a single base pair mismatch is insufficient to reduce nonspecific 

binding between enriching probe and wild type DNA. The hybridization can be influenced 

by the temperature, buffer, and detergent. In order to find the optimum conditions, the 

streptavidin-coupled Dynabeads were washed from 40 to 80ºC, the TE buffer and DI water 

were also compared as a streptavidin-coupled Dynabeads washing buffer. The 5 µl 

streptavidin-coupled Dynabeads which captured mutation alleles were incubated in 3x 1 

ml of TE buffer at 40, 50, 60, 70 and 80ºC for 5 mins, then the supernatant was removed. 

The eluted DNA was subjected to PCR amplification and HRM analysis. Although the 

theoretical annealing temperatures between enriching probes and mutation amplicons are 

around 60ºC, the result showed that the higher temperature didn’t provide better 

discrimination effect for enriching probe. There were always certain amounts of 

nonspecific binding between enriching probe and wild-type DNA. Figure 19 displayed the 

difference plot for 0%-100% p53 248 CGG>TGG mutation after enrichment process with 

increased hybridization temperature.  
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Figure 19 Probe enrichment efficiency at different hybridization temperatures. The 
difference plot showed probe enrichment efficiency of 1% and 0.1% 248 CGG>TGG 
mutation with increased hybridization temperature. The DNA sample before probe 
enrichment, the wild type DNA and the 100% mutation DNA were used as the references. 
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4.3.5 Singleplex and Multiplex Probe Enrichment 

Oligonucleotide probes showed excellent discrimination power with single-base 

mutation enrichment. In many cases, a sequence amplified by PCR may contain multiple 

potential mutation sites. For example, the K-ras sequence amplified covers 4 potential 

mutation spots. As a result, the question must be addressed if we can use the same 

condition to enrich a variety of mutation sequence in a satisfactory manner. In this work, 

we examined the enrichment of each mutation sequence in the presence of all other probes 

to determine the degree of nonspecific hybridization. 

Figure 20 displays analysis of the samples containing 0.1% and 1% p53 codon 273 

CGT>CTT mutation which were carried out by using 36-probe mixture to survey p53 

codons 175 196 248 213 245 273 and 282. After one round of probe enrichment, 0.1% and 

1% of p53 codon 273 CGT>CTT mutation were successfully identified. Other studies also 

showed the nonspecific hybridization between the probes targeting other mutations within 

the same PCR product and wild-type DNA could affect on enrichment and lower the 

sensitivity. However this nonspecific problem can be minimized by increasing the ratio of 

the blocking probe to enriching probe or altering the sequence of the probe. 
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Figure 20 singleplex and multiplex probe enrichment efficiency. Top, 0.1% and 1% p53 
codon 273 CGT>CTT mutation were enriched by 36 mutation enrichment probes. Bottom. 
1% of P53 248 CGG>TGG mutation samples are enriched by singleplex and multiplex P53 
enriching probes. 
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4.3.6 PEMM-HRM Assay Validation  

Several mutation enrichment methods are developed for enriching known or 

unknown mutations. COLD-PCR (co-amplification at lower denaturation temperature) 

enables enrichment of PCR amplicons containing unknown mutations at any position (Li 

and Makrigiorgos 2009). This method needs strict temperature control of PCR cycles. 

SMART-amplification needs specially designed folding primers and turn-back primers and 

also needs Thermus aquaticus (Taq) MutS to suppress the normal template amplification 

(Tatsumi, Mitani et al. 2008).   

The PEMM-HRM assay exhibits excellent enrichment of the mutation template. 

This assay improves the sensitivity of original HRM assay. We used a conventional 

Sanger sequencing method to validate the result of probe enichment process. Kras codon 

12 and 13 are frequently mutated in colorectal cancer. Tissue DNA samples were 

amplified by 189 bp Kras primer pairs and P53 primer pairs. Then the mutation templates 

were enriched by standard Probe Enrich process as described before. The PCR templates 

which were processd before and after the enrichment were subjected to HRM analysis 

and Sanger sequencing methods. The results are compared side by side in Figure 21.  

The sequence result of colorectal cancer tissue 1186 sample in Figure 21 A shows 

about 30% Kras codon 12 GGT>GTT mutation. The HRM analysis can directly detect 

the mutation from the wild type sample without probe enrichment process. After the 

probe enrichment, the sequencing data shows that the wild type templates containing 

Kras codon 12 GGT are depeletd by the blocking probe. Only mutation templates 

containing Kras codon 12 GTT mutations are present. The sequence result of colorectal 

cancer tissue 1319 sample in Figure 21 B shows less than 5% Kras codon 12 GGT>TGT  
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Figure 21 Examples of probe enrichment of mutant K-RAS codon 12 are 
demonstrated. A. the 1186 colorectal tissue sample contains Kras codon 12 GGT>GTT 
mutation. After probe enrichment, templates containing Kras codon 12 GGT are depleted 
by blocking probe. Only templates containing Kras codon 12 GTT templates are present 
sequencing result. PEMM-HRM result shows increased deviation between mutation and 
wild type melting curves than the original HRM assay. B. 1319 colorectal tissue sample 
contains low abundance Kras codon 12 GGT>TGT mutation. The sequencing data show 
that Kras 12 TGT Codons are significantly enriched by the PEMM-HRM assay. In 
addition, the low abundance mutations are more readily detected in PEMM-HRM assay 
than original HRM analysis. The baselines are the melting curves of wild type DNA 
(blue). 

 

 

 

 



   105 

 

mutation, which is below the detection limit of regular HRM analysis. The HRM plot 

show a false negative result. The sequencing data shows that the ratio of Codon GGT to 

Codon TGT templates is significantly reversed by the probe enrichment process. In 

addition, PEMM-HRM assay can avoid the false negative results usually generated from 

original HRM analysis and detect the low abundance mutation. 

4.3.7 Stool DNA extraction and primer design in methylation-specific HRM 

DNA extraction from fecal samples is a challenging process. Stool samples contain 

a variety of bacterial types. The bacterial environment of each individual is determined by 

several factors. The diet is the most significant factor in stool composition and texture. 

Taking medicine can also change the balance of bacterial composition in the small and 

large intestine. Aberrantly methylated and mutated DNA sequences in tumors were 

detected in the fecal samples of cancer patients. Current studies shows that fecal DNA 

can be served as colon cancer biomarkers (Azuara, Rodriguez-Moranta et al.; Ito, 

Kobayashi et al. 2002; Glockner, Dhir et al. 2009). Fecal DNA is now feasible and a 

panel of DNA markers including mutations in k-ras, APC, p53 and BAT26 shows high 

sensitivity for colon cancer screening. These markers are highly specific and display the 

potential to replace current Fecal Occult Blood Test (FOBT) (Atkin 2003). Methylated 

DNA markers in stool DNA is also used to identify colorectal tumors. Although the 

sensitivity of methylation detection in stool sample ranges from 69-89%, stool DNA 

methylation analysis provides a noninvasive and low cost method for colorectal cancer 

screening (Azuara, Rodriguez-Moranta et al.). 

For the DNA methylation HRM analysis, there are two different strategies to design 

the primers: bisulfite sequencing primers and methylation specific primers (Wojdacz, 
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Borgbo et al. 2009). Bisulfite sequencing primers do not contain CpG sites within their 

sequences and are able to unbiasedly amplify both methylated and unmethylated DNA 

templates. Methylation specific primers contain at least one CpG site within their sequence, 

and methylation specific PCR preferably amplify the methylated DNA. Because bisulfite 

sequencing primers can faithfully amplify the both methylated and unmethylated DNA 

templates, all the HRM primers for methylation detection adopt bisulfite sequencing 

primers. This property can also be used for semiquantitative measurement of methylation 

content in melting curve analysis. 

4.3.8 Standard Curve Construction for Methylation Detection 

The base composition of PCR products derived from sodium bisulfite-modified 

templates is dependent on the methylation status. Therefore, methylated and unmethylated 

PCR products show different melting curves when they are subjected to denaturation. The 

methylation-sensitive high-resolution melting (MS-HRM) is based on the measurement of 

the melting curves of PCR products from unknown samples, then comparison of the 

unknown melting curves with standard curves constructed from methylated and 

unmethylated control DNAs. The 5 ng (before modification) bisulfite-converted DNAs 

containing 0%, 10%, 50% and 100% methylated DNA were subjected to MS-HRM in 

triplicate. The standard curves of gene BMP3 and EY4 were present in melting curve 

profile and derivative plot (Figure 22). 
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Figure 22 Melting curve of 0%, 10%, 50% and 100% methylation sample. Standard 
curves of gene BMP3 and EY4 were constructed by serially diluting methylated DNA in 
unmethylated DNA.  
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4.3.9 Methylation enriched by PEMM-HRM assay 

Probe enrichment technology is a powerful method to increase the sensitivity of 

mutation and methylation detecting. After successfully applying this technology to 

mutation enrichment, enrichment of methylation templates was tested as well.  The PCR 

products containing 0%, 10%, 50% and 100% methylation template were subjected to the 

PEMM-HRM assay.  After enrichment, the detection limit greatly extended to less than 

5% methylation. The multiplexed feature of PEMM-HRM assay was determined by 

detecting a methylation sample containing more than one methylation promoter.  
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Figure 23 DNA methylation enrichment. 5%, 10%, 50% and 100% methylation can be 
multiplex enriched by PEMM-HRM assay. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



   110 

 

4.3.10 Analysis of methylation profile of stool samples 

This study was designed to evaluate methylation frequency of colorectal cancer in 

clinical stool samples. The PEMM-HRM assay was used to detect methylation frequency 

in corresponding stools. Samples are comprised of eight stool samples with discovered 

sporadic colorectal cancer. The whole stool samples were collected in preservative buffer 

and delivered to our lab within 72 hours and stored in -80ºC refrigerator.   

We examined methylation frequency of five genes (BMP3, ALX4, UNC5C, EY4 

and GATA5) in eight cancer patient stool samples.  Comparing with original HRM 

analysis, PEMM-HRM assay shows a superior advantage with respect to detection limit. 

After the probe enrichment process, low concentrations of methylation samples can be 

detected in the PEMM-HRM assay. Because PEMM-HRM assay shows high sensitivity 

and specificity, this method should reflect clearly the actual gene methylation status in 

human body fluids, which is important for study the early stage cancer. Table IX shows 

the PEMM-HRM assay and original HRM assay show different methylation frequency 

results.  

 

 

 

 

 

 

 

 



   111 

 

 

 

Table IX List of methylation frequency in 8 stool samples 
Sample BMP3 ALX4 UNC5C EY4 GATA5 

HRM assay 25% 0% 12.5% 25% 12.5% 

PEMM-HRM assay 37.5% 25% 12.5% 37.5% 12.5% 
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4.4 Conclusion 

In the present study, we have applied Probe Enrichment Mutation/Methylation -High 

Resolution Melting analysis to human colorectal cancer. We conclude that HRM melt 

analysis is a simple and cost effective post PCR technique, which can be used for high 

throughput mutation scanning, genotyping, and methylation analysis. After the 

comprehensive tests, we found the HRM analysis perfectly compatible with the 

mutation/methylation enrichment technology. The study displays that one mutation 

template in 1000 wild type templates can be readily detected after the mutation targeting 

probe enrichment. The detecting limits reached to as low as 6 copies of genomic DNA. 

Moreover, we demonstrated that PEMM-HRM was able to enrich several mutation 

templates in a multiplex way which makes it a potential high throughput platform. The 

robustness of traditional PCR method is inherited completely by the HRM method which 

benefits from a successful rate of stool DNA amplification. This is the key in transferring 

the proposed technology from bench study to clinical research. 

Recently, a new real time PCR instrument is under development. ABI, Roche and 

Bio-rad all combine 384-well plate compatibility with fully automated robotic loading.  

ABI and Roche now also offer optional fast real-time PCR capability. With the occurrence 

of nanoliter qPCR system, the throughput of HRM method may increase dramatically 

(Dixon, Lubomirski et al. 2009).  The nanoliter qPCR system enables up to 3072 nanoliter 

qPCR assays simultaneously in a high-density array format. PEMM-HRM displayed an 

intrinsic accurate, large dynamic range, and highly sensitive approach compatible with to 

high throughputs. 
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CHAPTER V 

DETECTION OF SA AND SAICAr IN URINE BY A MS 

METHOD FOR ADENYLOSUCCINATE LYASE 

DEFICIENCY SCREENING 

 

 

 

5.1 Introduction 

More than 10 specific genetic diseases are associated with autism features, and 

adenylosuccinate lyase (ADSL, EC 4.3.2.2) deficiency is one of them (Sempere, Arias et 

al.; Santangelo and Tsatsanis 2005). ADSL deficiency is a defect of purine metabolism 

manifesting with autism, along with developmental delay and seizures (Spiegel, Colman et 

al. 2006). In patients with ADSL deficiency, succinyladenosine (SA) and succinylamino
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-imidazolecarboxamide riboside (SAICAr) (Figure 24), the two intermediates of the de 

novo purine biosynthesis pathway, are accumulated in plasma, cerebrospinal fluid (CSF), 

and urine (Jaeken and Van den Berghe 1984; Race, Marie et al. 2000). These accumulations 

can serve as reliable biomarkers for screening. There are three distinct clinical phenotypes: 

neonatal fatal form, type I (severe form) and type II (moderate or mild form) (Jurecka, 

Zikanova et al. 2008). 

Different screening methods for both SA and SAICAr have been established in the 

past years. The modified Bratton-Marshall test (Laikind, Seegmiller et al. 1986), a urine 

test for the presence of elevated levels of SAICA riboside, is relatively simple and low cost. 

However, this method could give a false positive result if the patients take certain 

medications such as sulfonamide drugs. In theory this test would also give positive results 

with a number of structurally related purine biosynthetic intermediates. In recent years 

chromatography has been introduced to detect the two compounds. Thin Layer 

Chromatography (TLC) (Wadman, de Bree et al. 1986), High Performance Liquid 

Chromatography (HPLC) (Hartmann, Okun et al. 2006), Capillary Electrophoresis (CE) 

(Adam, Friedecky et al. 1999; Hornik, Vyskocilova et al. 2007), and Mass Spectrometry 

(MS) (Krijt, Kmoch et al. 1999; Jeng, Lo et al. 2009) are used to diagnose the ADSL 

deficiency. In general the disadvantages of these methods are that it is difficult to produce 

concrete results to identify SA and SAICAr compounds in the body fluids of patients, it is 

usually time consuming for preparing and analyzing the samples, and they are therefore not 

suitable for rapid screening of large number of samples.  Currently, there are no simple 
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Figure 24 Structures of accumulated metabolites in ADSL patients 
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methods that are practical, quantitative, economic, and fast for this disease screening.  In 

this paper, we report a novel Electrospray Ionization Mass Spectrometric (ESI-MS) 

method to detect and quantify SA and SAICAr in urine, offering a method that can be 

potentially used to screen ADSL deficiency disease. 

5.2 Experimental 

5.2.1 Patients and Healthy Volunteers 

This study was approved by the DDC Clinic. The urine samples were collected from 

two patients (P1 and P2), whose ADSL deficiency had been diagnosed clinically. The urine 

samples of the parents were also collected (T1 and T2 are the parents of P1, and T3 and T4 

are the parents of P2, respectively). Four normal urine samples (N1, N2, N3, and N4) 

collected from normal persons without ADSL deficiency were used as the control. 

5.2.2 Urine Sample Preparation 

The collected urine samples were stored in -20ºC refrigerator immediately. The 

disposable Solid Phase Extraction (SPE) column was packed with 100 mg of C18 material 

(Chromabond C18, 1 mL/100 mg, octadecyl-modified silica, MACHEREY-NAGEL 

GmbH & Co. Germany) and balanced accordingly with 1 m> of the condition solutions:  

A, methanol; B, deionized water; C, 50 mM NaH2PO4, pH 2.5. The urine sample (0.4 mL, 

acidified to pH 2.5 with 2 M H3PO4) was applied to the column, followed by washing with 

1 mL solution C and 0.6 mL solution B. SA and SAICAr were eluted by 0.4 mL of solution 

D (20% methanol).  
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5.2.3 Determination of SA and SAICAr by ESI-MS 

The SA and SAICAr isolated from urine were then analyzed using an ESI-Ion Trap 

MSn System (Bruker Daltonics Inc, Billerica, MA). Briefly, 1 μL of the extracted sample 

was mixed with 99 μL of an ESI buffer and the sample infusion was performed with a 50 

μL syringe at a flow rate of 2 μL /min at room temperature. The mass spectrometer was 

operated on the positive-ion mode and scanned from 100 to 1000 Da. The ESI buffer 

consisted of acetonitrile, water, and formic acid (50:50:0.3) (Kamel and Munson 2004).  

5.2.4 Quantitation of SA and SAICAr 

The commercially available molecule of AICAr was used as an external standard to 

quantify both SA and SAICAr molecules by ESI-MS. The constant concentration of 

AICAr was spiked into the urine sample after SPE. The standard calibration curves (ISA 

/IAICAr vs. CSA/CAICAr or ISAICAr/IAICAr vs. CSAICAr/CAICAr ) were constructed for calibration 

of both molecules. 

5.3 Results and discussion 

5.3.1 Development of the SPE/ESI-MS analysis 

By combining solid phase extraction and mass spectrometric analysis, we were able 

to successfully detect both SA and SAICAr in urine (Figure 25).  
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Figure 25 Typical ESI-MS spectra obtained from the urine of Patients Patient 1 and 
Patient 2. The peaks of 375Da and 384Da show the protonated SAICAr and SA, 
respectively. The Peak of 259Da corresponds to the external standard molecule of AICAr. 
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Both urine-soaked filter-paper strips and urine samples were analyzed. With this 

method, we were able to successfully detect both SA and SAICAr in urine samples. For the 

urine-soaked filter-paper strips, only SA can be detected. The protonated SA and SAICAr 

[M+H]+ ions have m/z values of 384 Da and 375 Da, respectively (Figure 25). 

Collision-induced dissociation of the ions of 384 and 375 Da shown that the resulted 

daughter ions were generated from loss of a ribose moiety [MH-132]+ (Jeng, Lo et al. 

2009), confirming that the ions of 384 Da and 375 Da are the protonated SA and SAICAr, 

respectively. To the best of our knowledge, this work is the first one that successfully 

identified both molecules in urine by ESI-MS. 

5.3.2 Quantitative Analysis of SA and SAICAr 

To determine whether the MS method could accurately quantify these two molecules in 

urine. We discovered that a commercially available molecule of AICAr is an excellent 

external standard to quantify both molecules by ESI-MS (the peak of 259 Da in Fig 25). 

This external standard molecule was spiked into the urine sample after SPE. Because we 

do not have pure SA and SAICAr samples, we used different quantities of the urine 

sample collected from Patient P1, while keeping the AICAr concentration constant, to 

construct the calibration curves. Figure 26 displays the standard calibration curves 

constructed for calibration of both molecules, in which an excellent linear relationship 

between the MS ion signal ratio and the concentration ratio was seen for both SA and 

SAICAr (ISA /IAICAr vs. CSA/CAICAr (Figure 26A) or ISAICAr/IAICAr vs. CSAICAr/CAICAr 
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Figure 26 Calibration curves constructed for the quantitative analysis. SA (A) and 
SAICAr (B) in urine.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   121 

 

(Figure 26 B), indicating that this MS method can be used to quantify both SA and 

SAICAr in urine.  

In addition, because linear calibration curves (Figure 26) can be constructed for both 

SA and SAICAr molecules with the same external standard of AICAr, the ratio of 

ISA/ISAICAr measured by MS actually reflects the concentration ratio of CSA/CSAICAr. Since 

the ratio of CSA/CSAICAr is correlated with the toxicity of the intermediates, particularly 

neurotoxicity, the ratio of ISA/ISAICAr measured by MS can offer a means to evaluate the 

severity of ADSL deficiency of a patient as well (Van den Bergh, Vincent et al. 1993).  

5.3.3 Analysis of SAICAr 

SAICAr is an unstable biomolecule which proved difficult to be analyzed. During 

the course of this study, we found that compared with SA, SAICAR is highly unstable in 

urine, leading to large measurement errors if great care was not taken during any step of 

urine collection, storage, transportation, and solid-phase extraction. In our view, SA is a 

more practical marker for ADSL deficiency screening. Hence, we only studied SA as a 

screening marker.   

5.3.4 Improvement in diagnosis of ADSL 

We measured the ratio of ISA/IAICAr in 10 urine samples and each sample was studied 

three times. The concentration of the external standard spiked into each of the urine 

samples was 2 pmol/µL. The ratio of ISA/IAICAr of ADSL patients (P1 and P2) was greater 

than 1.5, while the ratio is 0 for normal individuals without ADSL deficiency (4 normal 

controls), indicating that this method can distinguish ADSL deficiency patients from 

normal individuals. Although a more accurate cut-off ratio of ISA/IAICAr for ADSL 
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deficiency screening needs to be defined by studying more ADSL deficiency patients, this 

study clearly establishes that this new MS method can potentially be used for ADSL 

deficiency screening.  

We also found that this new method can identify some ADSL genetic-defect carriers. 

The ratio of ISA/IAICAr was less than 0.5 for carriers (the parents of P1 and P2), but often 

larger than 0. This observation is significant as it shows that carriers can also yield 

observable MS signals, but the ratio of ISA/IAICAr of a carrier is much smaller than the ratio 

of the ADSL deficiency patients. Previous MS studies reported that ADSL deficiency 

patients could be simply identified by the appearance of a peak corresponding to SA (Krijt, 

Kmoch et al. 1999). Clearly, this qualitative approach could falsely identify an ADSL 

defect carrier as an ADSL patient. In contrast, our quantitative MS method can 

unambiguously detect ADSL deficiency patients. 

5.3.5 Validation of SPE-MS method 

Finally, we studied the robustness of this method by examining whether the measured 

ratio of ISA/IAICAr is susceptible to variation of urine samples, as urine contains many 

other components and the compositions of urine could vary from one person to another. 

P1/P2, P1/T3, and P2/T2 urine samples were 50/50 mixed, followed by measuring the  
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Table X List of the measured and expected ratios of ISA /IAICAr in samples. 
ISA /IAICAr Mixture of P1/P2 Mixture of P1/T3 Mixture of P2/T2 

Measured Value 3.203 0.854 2.032 

Expected Value 2.926 1.186 1.921 
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ratio of ISA /IAICAr in each mixture sample. Table 1 lists the measured and expected ratio of 

ISA /IAICAr in each of the three mixture samples. The expected ratio was derived by 

averaging the measured ratios of ISA /IAICAr of the two individual urines.  

Clearly, the results listed in Table X show that the measured ratio is similar to the 

expected ratio in all 3 mixture samples, suggesting that the measurement of ISA /IAICAr will 

not be affected greatly by variations of urine samples and thus this MS method is robust.   

5.4 Conclusion  

In conclusion, we have developed a novel mass spectrometric method for 

measurements of SA and SAICAr in urine, which is simple, fast, robust, and cost-effective. 

As a result, this method can potentially be used in ADSL screening.  
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