
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2014

TCP FTAT (Fast Transmit Adaptive
Transmission): a New End-To-End Congestion
Control Algorithm
Mohammed Ahmed Melegy Mohammed Afifi
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Afifi, Mohammed Ahmed Melegy Mohammed, "TCP FTAT (Fast Transmit Adaptive Transmission): a New End-To-End Congestion
Control Algorithm" (2014). ETD Archive. 730.
https://engagedscholarship.csuohio.edu/etdarchive/730

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/730?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

TCP FTAT (Fast Transmit Adaptive Transmission): A NEW END-TO-

END CONGESTION CONTROL ALGORITHM

MOHAMMED AHMED MELEGY MOHAMMED AFIFI

Bachelor of Electronics Engineering and Technology

World College

July 2011

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY
December 2014

We hereby approve this thesis

For

MOHAMMED AHMED MELEGY MOHAMMED AFIFI

Candidate for the Master of Science in Electrical Engineering degree

For the Department of

Electrical and Computer Engineering

And

CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Dr. Nigamanth Sridhar, Committee Chair

Department & Date

Dr. Chansu Yu, Committee Member

Department & Date

Dr. Pong Chu, Committee Member

Department & Date

May 7, 2014

Student’s Date of Defense

To my beloved parents…

ACKNOWLEDGEMENTS

I would like to thank all those who gave me the opportunity to complete my thesis

work. I would like to thank my advisor, Professor Nigamanth Sridhar, for all the

guidance and the support throughout my thesis work. I would also like to thank the

Department of Electrical and Computer Engineering, of which I have had the pleasure

being a student for the past two years.

v

TCP FTAT (Fast Transmit Adaptive Transmission): A NEW END-TO-

END CONGESTION CONTROL ALGORITHM

MOHAMMED AHMED MELEGY MOHAMMED AFIFI

ABSTRACT

Congestion Control in TCP is the algorithm that controls allocation of network

resources for a number of competing users sharing a network. The nature of computer

networks, which can be described from the TCP protocol perspective as unknown

resources for unknown traffic of users, means that the functionality of the congestion

control algorithm in TCP requires explicit feedback from the network on which it

operates. Unfortunately this is not the way it works with TCP, as one of the fundamental

principles of the TCP protocol is to be end-to-end, in order to be able to operate on any

network, which can consist of hundreds of routers and hundreds of links with varying

bandwidth and capacities. This fact requires the Congestion Control algorithm to be

adaptive by nature, to adapt to the network environment under any given circumstances

and to obtain the required feedback implicitly through observation and measurements. In

this thesis we propose a new TCP end-to-end congestion control algorithm that provides

performance improvements over existing TCP congestion control algorithms in computer

networks in general, and an even greater improvement in wireless and/or high bandwidth-

delay product networks.

vi

Table of Contents

ABSTRACT ... v

Table of Contents ... vi

List of Figures .. x

LIST OF TABLES ... xii

CHAPTER I ... 1

Introduction and motivation .. 1

1.2. TCP NewReno currently is not suitable for today’s networks 2

1.3. Solutions specific for Wireless Networks ... 4

1.3.1. Indirect TCP (I-TCP)... 5

1.3.2. Snoop protocol .. 5

1.3.3. Multicast TCP (M-TCP) .. 6

1.3.4. Explicit Congestion Notification (ECN) ... 6

1.4. The Thesis ... 7

1.5. Statement of Purpose ... 8

CHAPTER II ... 9

NewReno and Westwood .. 9

2.1. NewReno ... 9

2.1.1. Slow-Start ... 9

2.1.2. Congestion Avoidance .. 10

vii

2.1.3. Fast Retransmit and Fast Recovery .. 10

2.2. TCP Westwood and Westwood+ .. 12

2.2.1. Congestion Window Update in Westwood ... 13

2.2.2. Westwood Bandwidth Estimation Mechanism .. 14

2.2.3. Westwood Packet Counting Procedure .. 16

2.2.4. Westwood+ ... 17

CHAPTER III ... 19

FTAT – A New Congestion Control Algorithm .. 19

3.1. The Problem ... 19

3.2. Solution ... 20

3.3. End-to-End Loss Scenario ... 21

3.3.1. Ideal Congestion Scenario ... 21

3.3.2. Ideal Wireless Segments Loss .. 22

3.3.3. Actual Scenario ... 23

3.4. FTAT Approach ... 24

3.5. TCP FTAT Congestion Control .. 26

3.5.1. Initial Congestion Window .. 28

3.5.2. FTAT Algorithm .. 29

CHAPTER IV .. 31

Implementation of FTAT in ns-3 ... 31

viii

4.1. The Network Simulator – 3 ... 31

4.2. The Implementation of TCP in ns-3 ... 31

4.3. Implementation of FTAT in ns-3 .. 32

CHAPTER V ... 37

TCP FTAT Linux-Stack Implementation ... 37

5.1. Introduction .. 37

5.2. TCP Congestion Control in Linux .. 37

5.3. FTAT Implementation in Linux TCP Stack .. 43

CHAPTER VI .. 46

A Mathematical Model of TCP FTAT .. 46

Theorem: A simplified steady state throughput of the FTAT algorithm 46

Corollary: The FTAT congestion control is stable (𝑻𝑭𝑻𝑨𝑻 ≤ 𝑩) ... 48

CHAPTER VII .. 49

Evaluation based comparison of TCP-NewReno, TCP-Westwood+, and TCP-FTAT

using ns-3 ... 49

7.1. Topology One ... 49

7.2. Topology Two ... 56

7.3. Topology Three .. 62

7.4. Fourth Topology: Two-way Geo Satellite Scenario ... 67

CHAPTER VIII ... 74

Evaluation and Comparison of Different Congestion Control Algorithms of Linux

ix

Stack Using DCE Cradle (Direct Code Execution Cradle) ... 74

8.1. Introduction .. 74

8.2. Simulation and Comparisons .. 75

8.2.1. Topology One: One-way Geo Satellite Scenario .. 75

8.2.2. Topology Two ... 81

8.2.3. Topology Three .. 83

8.2.4. Fourth Topology ... 85

CHAPTER IX .. 88

Conclusion ... 88

BIBLIOGRAPHY ... 91

x

List of Figures

Figure 1: FSM Description of TCP Congestion Control [reproduced from 16]. 12

Figure 2: FSM description of Westwood [produced from 18, 19] ... 18

Figure 3: Black Box Principle in the Presence of Congestion ... 21

Figure 4: Black Box Principle in the Presence of Random Loss ... 22

Figure 5: Black Box Principle in the Presence of Congestion and Random Loss 23

Figure 6: Adaptive Transmission Effect .. 25

Figure 7: NewReno Congestion Window Pattern .. 27

Figure 8: FSM description of FTAT .. 30

Figure 9: TCP Implementation in ns-3 including FTAT.. 34

Figure 10: Classes interaction in Linux ... 40

Figure 11: TCP function interaction in Linux .. 42

Figure 12: First Topology .. 49

Figure 13: cwnd graphs for Topology one ... 50

Figure 14: RTT graphs for topology two ... 52

Figure 15: Sequence number topology one .. 53

Figure 16: Throughput and Goodput topology one .. 55

Figure 17: Topology two .. 56

Figure 18: cwnd graphs topology two .. 57

Figure 19: RTT graphs for topology two ... 59

Figure 20: Sequence number topology two.. 59

Figure 21: Throughput and Goodput for topology two .. 60

Figure 22: Third Topology ... 62

xi

Figure 23: cwnd topology three ... 63

Figure 24: RTT graphs topology three ... 65

Figure 25: Throughput topology three ... 66

Figure 26: Topology four ... 67

Figure 27: cwnd topology four. .. 68

Figure 28: RTT topology four .. 70

Figure 29: Sequence number topology four ... 71

Figure 30: Throughput and goodput topology four .. 72

Figure 31: Topology one. ... 75

Figure 32: cwnd topology one .. 78

Figure 33: Sequence number topology one .. 79

Figure 34: Highest sequence number ... 79

Figure 35: Throughput topology one ... 80

Figure 36: Topology two .. 81

Figure 37: Throughput topology two ... 82

Figure 38: Topology Three .. 83

Figure 39: Throughput topology three ... 84

Figure 40: Topology Four .. 85

Figure 41: Throughput topology four... 86

xii

LIST OF TABLES

Table 1: Slow Start .. 20

Table 2: Congestion Avoidance .. 21

Table 3: Fast Recovery ... 22

Table 4: Westwood window update ... 25

Table 5: Bandwidth Sampling .. 26

Table 6: Westwood packets counting procedure .. 27

Table 7: Westwood Bandwidth Sampling ... 29

1

CHAPTER I

Introduction and motivation

1.1. Introduction

TCP Congestion Control has gone through many improvements and

enhancements over the past 26 years, since Van Jacobson proposed the original Tahoe

algorithm in 1988 [1]. One of the most deployed algorithms is TCP NewReno [2], which

is an improvement over the original TCP Tahoe. The first transition was from TCP

Tahoe to TCP Reno through adding a new algorithm called Fast Recovery in 1990 by

Van Jacobson [3]. The second transition was by Sally Floyd and T. Henderson in 1999,

through enhancing the Fast Recovery algorithm to recover from multiple losses in the

same window [2]. Since that time, wired networks have advanced and congestion

became almost the only cause for timeout and data loss in wired networks. At the same

time, wireless technology has advanced and wireless networks have been deployed

rapidly, which caused the radio channel errors to be the main source of packets loss after

congestion in wireless networks. This evolution has required a change in the way the

congestion signal should be handled.

2

1.2. TCP NewReno currently is not suitable for today’s networks

a. High bandwidth-delay product networks that are currently in increased

deployment, require a rate of increase in the congestion window (cwnd) that is

more than a linear increase of one Maximum Segment Size (MSS), every round-

trip time (RTT) to grab its share of the network bandwidth, which is due to the

high RTT that encountered in such networks, which are hundreds of milliseconds.

b. At the start-up phase, cwnd starts with a maximum of 4380 Bytes [4] and

increases slowly, which takes a long time to gain a proper window size and hence

good throughput, and yet a single packet loss identified by three duplicate

acknowledgments will reduce the cwnd to half of the current value.

c. There are no obvious differences between packet loss caused by congestion and

loss caused by a wireless connection, and hence all losses are assumed to be

congestion and handled in the same way, which degrades the overall throughput

for a given connection operating over hybrid network consists of wireless as well

as wired networks.

3

Since the original congestion control algorithm by Van Jacobson, many proposals

have been introduced to address these issues. Some of these algorithms which have been

studied for many years by researchers are Westwood, Vegas, Veno, and SACK.

Westwood is a modification of the NewReno algorithm in the sender-side, which is less

sensitive to random loss in the wireless environments than NewReno due to its behavior

when a loss is detected [5]. Westwood reacts to a segment loss by adjusting the cwnd to

an estimated value of the network’s available bandwidth.

Westwood+ [6] introduced a modified bandwidth measurement procedure different from

the one used in Westwood. The bandwidth estimation procedure used in Westwood+

collects a sample every RTT instead of every acknowledgment. This reduces the effect of

acknowledgment compression. The simulation results presented in this thesis show that

Westwood+ suffers from performance degradation when operating under reverse traffic.

Vegas is another end-to-end approach to congestion control, which bases its link

bandwidth estimation process on the RTT [7]. Vegas measures the RTT, then performs a

comparison between the actual rate of sending, computed as

(
Congestion Window

measured RTT
⁄) to the expected rate of sending using the

minimum measured RTT computed, as (
Congestion Window

minimum RTT⁄) [7]. After

computing the difference between the rate of sending and the expected rate of sending,

three scenarios could happen:

1. The Congestion Window is increased additively, if the computed

difference reveals that it is less than threshold α.

4

2. The Congestion Window is decreased additively, if the computed difference

reveals that it is larger than threshold β.

3. The Congestion Window is kept the same; if the computed difference is less than

β and larger than α.

TCP Vegas operates on a principle of congestion prevention, which tries to prevent

congestion instead of dealing with it after it happens. Studies [8] show that it yields better

throughput than Reno in specific scenarios, but in other studies such as [9] it has been

shown that TCP Vegas, when competing with other congestion control algorithms such

as as Reno that tries to achieve the network capacity in systematic way, cannot allocate

its share of the network bandwidth.

1.3. Solutions specific for Wireless Networks

Because of the problem of the random loss, and the stability of Additive-Increase,

Multiplicative-Decrease (AIMD) algorithms such as NewReno in wired networks, calls

have been introduced for new approaches for wireless networks and proposals have been

introduced as a result [10]. The approaches that are designed for wireless or hybrid

networks specifically, which usually deploy a split mechanism or a modification to the

TCP structure, usually does not follow the end-to-end principle [6]. The split approach

splits a hybrid network into a wired portion and a wireless portion. In such a case, the

wired portion operates by using a conventional congestion control algorithm, which is

usually an AIMD approach such as NewReno. Whereas the wireless network access point

operates by using protocols that manage the acknowledgment returned from the wireless

network. Some approaches that employ the split-connection semantic are Indirect TCP (I-

5

TCP) [11], Snoop protocol [14], Multicast TCP (M-TCP) [12], and Explicit Congestion

Notification (ECN) [13]. Each of these mechanisms will be discussed in the next sections.

Of course the problem of the high bandwidth-delay product of today’s networks

was not a big concern when these approaches was proposed, which makes them special

solutions specific for wireless networks. The next subsections discusses these approaches

in more details.

1.3.1. Indirect TCP (I-TCP)

The Indirect TCP (I-TCP) is one of the approaches specific for wireless networks,

in which a proxy is inserted between the wired network and the wireless network to

manage the connection, and the wireless network operates using a modified TCP

congestion control algorithm.

1.3.2. Snoop protocol

Another approach is the Snoop protocol, which can be considered as one of the

most successful approaches of these different solutions [15]. TCP Westwood provided

380% improvement over NewReno, while in the same environment, Snoop provided a

400% improvement over NewReno. The Snoop protocol is based between the wired

network and the wireless connection. Every packet sent from the wired network to the

wireless network is cached at the snoop base. When an acknowledgment is received from

the wireless connection, snoop checks for duplicate acknowledgment, if there are

duplicate acknowledgment, snoop retransmits the reported lost segment by the duplicate

acknowledgment cached packets, and the duplicate acknowledgment is held at the snoop

6

base. If the retransmission is successful, Snoop will resume the transmission as normal;

otherwise snoop sends the duplicate acknowledgment through the wired connection to the

sender implicitly reporting congestion.

1.3.3. Multicast TCP (M-TCP)

Multicast TCP (M-TCP) is another approach to deal with wired/wireless

connections and specifically the wireless links that have low bit rate. M-TCP operates by

splitting the nodes connected through the wired connection FH (fixed-host) from the

nodes connected through the wireless connection MH (mobile-host) by a SH (supervisor-

host). The FH operates using the standard TCP congestion control, and the MH operates

using a special version of TCP. The main purpose of the SH is to manage the

communication between the FH and the MH, as when the FH sends a packet to the MH,

the SH receives it first and forwards it to the MH. If the MH stops responding, the SH

sends an acknowledgment to the FH stating a receiver window size of zero. At that time

the FH sends a probe packet to the end node (MH), the SH receives the probe packet and

responds back with a receiver window size of zero. This process ends when the MH starts

responding, at that time the connection resume normally.

1.3.4. Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) operates by reserving two bits in the IP

header and two bits in the TCP header for ECN notification. When there is congestion in

the network, these bits are set to true, which in turn alerts the receiver that there is

congestion and the receiver responds with an acknowledgment with the two bits set to

7

true. When the sender receives the acknowledgment from the receiver, the sender reacts

to the congestion by reducing the cwnd and thus the sending rate. If the sender discovers

a lost segment and these two bits were set to false, the sender knows that the segment lost

was due to wireless link errors and not due to congestion and as a consequence, the

sender does not reduce its sending rate. While in this TCP congestion control approach,

the loss cause can be identified precisely, ECN requires changes to every node and device

involved in the communication process between the two end nodes.

1.4. The Thesis

We defend the following thesis:

A new end-to-end TCP congestion control algorithm that addresses the difficulties

faced by the current TCP congestion control; namely the initial throughput, operating

over wireless or hybrid networks and operating over large bandwidth-delay product

networks. The proposed algorithm does not take the conventional congestion signal

(duplicate acknowledgment) as guaranteed sign of congestion, instead, it employ a new

approach in testing the cause of the loss to determine the actual network capacity, and as

a result does not degrade the throughput due to false congestion signal.

In this thesis, our focus will be on NewReno as it was the dominant congestion control

for many years, and Westwood+ because it is one of the most successful end-to-end

approaches to congestion control that addresses the random loss issue and shares with

FTAT the same principle of using the returning acknowledgment as a feedback to

estimate the network capacity, also the comparison of the proposed algorithm will cover

all of the Linux implemented congestion control algorithms.

8

1.5. Statement of Purpose

The function of TCP Congestion Control is to limit the rate of sending when the

End-to-End path indicates congestion and to allow the expansion of the cwnd to grab its

share of the network resources, when there is no indication of congestion.

In the early days of the Internet, the only concern when designing and implementing the

congestion control of TCP was to avoid congestion as much as possible, and to deal with

congestion when it occurred. Other factors affecting the performance of TCP in today’s

networks were not, at that time real concerns. With today’s wide deployment of wireless

technologies, high-speed networks and the high proportion of applications on the

Internet, which consist of small amount of data that require throughput at the start-up

phase, TCP with its current congestion control algorithm is no longer a suitable standard

for all networks. From that point of view a real need for contributions of proposals to the

Congestion Control of TCP that address the challenges faced by TCP in today’s networks

and to complies with the End-to-End semantic of TCP is vital.

9

CHAPTER II

NewReno and Westwood

2.1. NewReno

2.1.1. Slow-Start

The NewReno algorithm consists of four sub algorithms, which are: Slow-Start,

Congestion Avoidance, Fast Retransmit, and Fast Recovery. The NewReno congestion

window (cwnd) starts as minimum of one segment and a maximum of four segments, it

increases exponentially by one segment on each successful delivered segment to the

destination, indicated by a received acknowledgement at the sender side. The window

continues to grow until one of two cases takes place: either the capacity of the network is

hit, and in that case the congestion window returns to one, or the Slow Start threshold

(ssthresh) is achieved, and in that case the Congestion Avoidance starts. The Congestion

Window gains the doubles each RTT.

Table 1: Slow Start

Begins cwnd <= ssthresh

Every new Acknowledgment cwnd += MSS

cwnd gain every RTT: cwnd = 2 × cwnd

Congestion Avoidance starts cwnd >= ssthresh

10

2.1.2. Congestion Avoidance

The Congestion Avoidance state starts when the congestion window has reached

the Slow-Start threshold, and in that case the congestion window increases slowly to

prevent a possible congestion. The congestion window increases by one MSS every RTT

or (MSS × MSS/ cwnd) per each new acknowledgement.

A note here that on the first RTT, the ssthresh might not reflect the actual network

capacity at all, and as a result the congestion avoidance phase starts and the congestion

window increases very slowly while it should increase rapidly to achieve the fair share

capacity of a high bandwidth network, and as a result the stability of a network is

achieved but no adequate throughput is gained.

Table 2: Congestion Avoidance

Starts cwnd >= ssthresh

Every new Acknowledgment cwnd += MSS × MSS/ cwnd

cwnd gain every RTT: cwnd += 1 × MSS

2.1.3. Fast Retransmit and Fast Recovery

If a packet loss is identified by three duplicate acknowledgments after the

original acknowledgment, the Fast Retransmit starts. In the Fast Retransmit

phase, the sequence number of the highest transmitted packet is recorded in a

variable called recover. The ssthresh is set as in the event of retransmit time-out,

to the maximum of half the flight- size and two MSS. The cwnd is set to the

11

ssthresh + three MSS to compensate the available bandwidth indicated by the

arrival of the three packets to the receiver indicated by three duplicate

acknowledgment. The lost segment is then retransmitted.

In NewReno, the new acknowledgment after a duplicate acknowledgment in the

Fast Recovery phase could refer to full acknowledgment or partial

acknowledgment. A full acknowledgment is the new acknowledgment that

acknowledges all of the transmitted data packets, while a partial

acknowledgment is the new acknowledgment that acknowledges only some of

the previous transmitted data packets.

In case of a full acknowledgment, the cwnd is set to either the minimum of

(flight-size + one MSS) or ssthresh, and the Fast Recovery is exited. In the case

of a partial acknowledgment, the first sequence number in the cwnd which has

not been acknowledged yet is retransmitted, the cwnd is deflated back to the

amount of data that has been acknowledged plus one MSS, and one new packet

is transmitted [2].

Table 3: Fast Recovery

recover variable: Highest transmitted packet sequence number

flight-size: Minimum (rwnd, cwnd)

ssthresh : Maximum (flight-size/2, 2)

cwnd: ssthresh + 3 × MSS

Lost Segment Retransmitted

Partial acknowledgment: Send highest sequence number not acknowledged

cwnd: amount of data acknowledged + 1 × MSS

New Packet is transmitted

12

full acknowledgment:

cwnd: Minimum (ssthresh, flight-size + 1 × MSS)

Exit Fast Recovery, resume Congestion Avoidance.

Figure 1: FSM Description of TCP Congestion Control [reproduced from 16].

2.2. TCP Westwood and Westwood+

Westwood is a congestion control algorithm that was designed to address the

random loss issue in wireless networks, and is a modification of NewReno that uses a

different procedure when a loss is detected. In the Slow-Start and Congestion Avoidance

phases, Westwood increases the cwnd the same way as NewReno, one MSS every new

acknowledgment, and one MSS every RTT in the Congestion Avoidance phase.

The main difference between NewReno and Westwood is seen when a three duplicate

13

acknowledgment are received, or retransmission time-out occurs. Westwood employs a

novel bandwidth estimation mechanism that is used to set the cwnd and ssthresh upon

receiving three duplicate acknowledgments or encountering a retransmission time-out.

After setting the new values for ssthresh and cwnd, the algorithm performs normal Fast

Retransmit and Fast Recovery as in NewReno.

2.2.1. Congestion Window Update in Westwood

Westwood relies on the feedback of the returning acknowledgments to estimate

the network bandwidth. After a loss is acknowledged by way three duplicate

acknowledgments, the ssthresh and cwnd are adjusted according to the bandwidth

measured at the time of congestion multiplied by the minimum RTT observed during the

connection; the result is then divided by MSS. After the ssthresh is set, the cwnd is

compared to the value of ssthresh, and if the cwnd value is greater than ssthresh, the

cwnd is set equal to the ssthresh, and the gain rate of cwnd is the same as in the

14

Congestion Avoidance phase. Otherwise, no change is made to the cwnd value, and the

algorithm resumes in the Slow Start phase [5].

If Westwood detects the loss by a retransmission time-out, the ssthresh and the cwnd are

set in a different way. First ssthresh is set in the same manner, and then ssthresh is

checked, if the value is less than two, ssthresh is set equal to two. The cwnd is set in the

same way as in NewReno after retransmission time-out.

After Three Duplicate Acknowledgment:

Table 4: Westwood window update

ssthresh: Maximum (Measured Bandwidth × minimum RTT/ Segment Size, 2)

cwnd > ssthresh: cwnd = ssthresh (Congestion Avoidance)

cwnd <= ssthresh: (No Change, Slow Start)

After Retransmission time-out:

ssthresh: Maximum ((Measured Bandwidth × minimum RTT/ Segment Size), 2)

Ssthresh < 2: ssthresh = 2

cwnd: cwnd = 1 (Slow Start)

2.2.2. Westwood Bandwidth Estimation Mechanism

The available bandwidth in the network is calculated as the number of data

bytes acknowledged during the recent received acknowledgment divided by the

difference in the time between the most recent acknowledgment and the previous

acknowledgment.

15

Westwood measures the bandwidth after each acknowledgment is received. When a

loss happens, the bandwidth sample is processed into a low-pass filter to obtain the

low- frequency average component of the sample.

Table 5: Bandwidth Sampling

Bandwidth Sample

(Bk):

Dk /∆k

Where

Dk : Data acknowledged in Bytes (Number of acknowledged segments × Segment Size)

∆k : Time of The Received Acknowledgment – Time of The Previous Acknowledgment

The filtering process is achieved by Tustin approximation [17, 5] is as follow:

The coefficient αK has been chosen to be dependent on the inter-arrival time ∆k.

The relationship between the inter-arrival time ∆k and the coefficient αK is

inversely proportion. So when the inter-arrival time increases, the value of the

coefficient decreases and hence the significance of the last filtered sample (Ḃk-1)

decreases. On the other hand, when the inter-arrival time decreases the

Bk: The recent bandwidth sample

Bk-1: The pervious bandwidth sample

ḂK = αK × Ḃk-1 + (1 – αK) (Bk + Bk-1)/2

Where

ḂK: The Filtered Bandwidth at time (t = tk)

αK = (2τ − ∆k)/(2τ + ∆k), where ∆k = tk – tk-1 and 1/ τ is the filter cutoff frequency

Ḃk-1: The last filtered bandwidth sample

16

significance of the last filtered sample increases.

2.2.3. Westwood Packet Counting Procedure

Westwood uses a very accurate counting procedure for data bytes

acknowledged. The counting procedure takes into count the delayed and

cumulative acknowledgements.

Table 6: Westwood packets counting procedure

cumul_ack: Current Acknowledgement Sequence – Last Acknowledgement Sequence

cumul_ack == 0 accounted_for + 1; cumul_ack = 1; (Duplicate

Acknowledgment)

cumul_ack > 1 &&

accounted_for >=

cumul_ack

accounted_for = (accounted_for - cumul_ack), cumul_ack = 1

 (Delayed Acknowledgment)

cumul_ack > 1 &&

accounted_for < cumul_ack

cumul_ack = cumul_ack - accounted_for; accounted_for = 0

(New Acknowledgment)

Last Acknowledgment Sequence = Current Acknowledgement Sequence

 (Update Acknowledgment Sequence Number)

acked: cumul_ack

return (acked)

17

Where

cumul_ack: The Number of Acknowledged Segments accounted_for:

The Number of Duplicate Acknowledgment

acked : Number of Acknowledged Segments Reported by Current Received Acknowledgment

2.2.4. Westwood+

Westwood+ is a further refinement of Westwood, with the key

improvement occurring in the bandwidth measurement procedure. The

available bandwidth measurement of Westwood+ relies on the acknowledged

data bytes during one RTT period, which provides a better measurement of the

available bandwidth and eliminates the dependency of the acknowledgment

inter-arrival times.

Bandwidth Sampling:

The time-invariant filter proposed in Westwood+ is a modified version Westwood

time- variant filter [15, 18]:

Where

Dk : Data acknowledged in Bytes (Number of acknowledged segments × Segment Size)

∆k : The RTT of The Computed Sample

Bandwidth Sample

(Bk):

Dk /∆k

18

Table 7: Westwood Bandwidth Sampling

Figure 2: FSM description of Westwood [produced from 18, 19]

ḂK = αK × Ḃk-1 + (1 – αK) × Bk

Where

ḂK: The Filtered Bandwidth at time (t = tk)

αK = 0.9

Ḃk-1: The last filtered bandwidth sample

Bk: The recent bandwidth sample

19

CHAPTER III

FTAT – A New Congestion Control Algorithm

One of the most fundamental principles of the Transmission Control Protocol (TCP)

is that the congestion control must be End-to-End. In other words, there must be no

explicit feedback from the network between the two end-systems [5]. This design

principle of TCP allows the connection to be reliable no matter what kind of networks it

operates on, and the kinds of failures that can be encountered in the intermediate nodes.

Therefore, any information about the network needs to be obtained using measurements

and observations, while treating the network as a “black box”.

3.1. The Problem

The problem that researchers have been studying for many years is how to distinguish

data loss caused by radio links (random loss), from that caused by congestion. This

distinction is difficult to pin down, as the data bytes lost during a connection due to radio

links are random and suggests no specific systematic way that can be traced and differed

than that of congestion. As well, there are other important attributes involved in the

reliable communication of the TCP connection such as network stability, fairness of

shared network bandwidth among nodes sharing a network operating over a TCP

connection, and inter-protocol friendliness of different kinds of TCP implementations.

Some researchers suggest an explicit notification from some network devices such as

routers to determine the connection type, and as a result handle the loss in a proper way

20

[20]. Other researchers have proposed installing proxies between the radio links and the

wired links to isolate each connection from the other and hence handle losses in a proper

way [13, 11, 21]. Finally there is the end-to-end solution, which complies with the TCP

principles as an End-to-End reliable Transmission Control Protocol.

The primary reason to have to distinguish data loss from random loss from that caused by

congestion is that the data loss in the two cases needs different treatment. The loss caused

by congestion requires immediate action from the TCP sender to reduce the rate of

segments transmitted to the network in order to avoid congestion collapse, while the

random loss should not have any effect on the rate of sending as the loss cause is not

urgent (or repeatable). In reality, however, the original TCP (Reno) does not have a

mechanism to distinguish between the random loss from congestion loss, as a result any

segment loss is considered congestion and the cwnd is cut to half if the loss signal is three

duplicate acknowledgments, and reduced to one segment if the loss signal is a

retransmission time-out.

3.2. Solution

The proposed solution is whenever a loss signal has been activated, the network

capacity is “tested” to measure the reality of the loss cause. One of the ways this “testing”

can be performed is by sending a defined amount of data, and observing the received data

at the end-node in a specific period of time, then adjusting the cwnd accordingly. In

correspondence to the loss scenario, duplicating the same environment with the same

attributes were the loss occurred reveals the cause of the loss; duplicating the same

21

environment in terms of one RTT and the cwnd size. In the next section, a visualization of loss

scenarios is presented.

3.3. End-to-End Loss Scenario

3.3.1. Ideal Congestion Scenario

Figure 3: Black Box Principle in the Presence of Congestion

In Figure 3, a TCP sender is injecting data segments into the network, which is

from the TCP sender’s perspective a “Black Box”. The network is facing congestion,

and as a consequence, only half of the data segments have reached the TCP receiver,

22

and the other half has dropped by the network. Acknowledgments of the received

segments will be sent to the sender.

3.3.2. Ideal Wireless Segments Loss

Figure 4: Black Box Principle in the Presence of Random Loss

In this scenario, a TCP sender is sending a stream of data segments into the

network, the network has unreliable wireless links which drops data segments. The

result will be that most of the data segments will reach the destination node,

acknowledgments from the receiver will be sent back to the sender, and very few data

segments (in the range of 1-5%) will be dropped.

23

3.3.3. Actual Scenario

In an actual scenario, the network may have many paths with numerous users

sharing the network. Further, the network may have many links with different

connections. As an example, a TCP client can be in one country, and the TCP server

is in totally different geographic region. As a result, the data segments can face either

of the two kinds of data loss.

Figure 5: Black Box Principle in the Presence of Congestion and Random Loss

In such a case, the data sent through the network by the TCP sender has gone through

hybrid networks, and has experienced loss due to wireless links and congestion. This

scenario also signifies the importance of the fundamental principle of TCP, the end-to-

end approach to congestion control. In such a scenario, the TCP sender needs to be able

24

to decide whether to (a) decrease the cwnd to the correct network capacity and prevent

congestion collapse, or (b) keep the cwnd the same, because random loss is not a

predictor of future congestion collapse

The key contribution of the FTAT approach is in implicitly determining the cause of data

loss, and then adjusting the congestion window in the correct manner. The congestion

window is degraded only when necessary – when the loss is actually caused by

congestion.

3.4. FTAT Approach

FTAT and Westwood share the same principle of using the feedback of returning

acknowledgments to measure the network capacity and adjust the cwnd accordingly.

However, Westwood’s filtering mechanism has its own drawbacks. Filtering the

measured capacity samples is good from one point of view: it results in an averaged

sample that is not greatly affected by loss. On the other hand, the filtering mechanism

assumes that the network has reached its capacity and does not instantly reflect the actual

capacity of the network at the time of the sample measurement. This can be shown

through simulations conducted using ns-3 implementation and the Linux-stack kernel.

This causes Westwood to fall in the same category as NewReno in not predicting the

actual network capacity and as a result degrading the throughput.

The mechanism employed by FTAT of testing the network when a loss is detected to

implicitly determine the cause of the loss, and accordingly adjusting the cwnd, is shown

that it greatly predict the cause of the loss, and as a result produce better throughput. To

25

achieve the “testing”, the same environment when the loss occurred is duplicated, then

the delivered data bytes to the receiver is computed, and the cwnd is adjusted

accordingly. Computing the capacity of the network without filtering the samples is good

from the point that it reflects the actual capacity of the network at the time of the

sampling and hence can increase the cwnd instead of decreasing the cwnd as in the

congestion case.

The next graph demonstrates the testing mechanism effect on the cwnd throughout the

connection, in random loss case, and in congestion case.

Figure 6: Adaptive Transmission Effect

In the graph it is shown that whenever the testing mechanism is applied, if the cause of

the loss was congestion, the result will be always a reduction in the cwnd to the correct

26

capacity of the network. When the loss cause is random loss that has no relevance to the

network capacity, the result of the testing is an adjustment of the cwnd to the right

capacity of the network, which can lead sometimes to reduction in the cwnd and other

times expansion in the cwnd.

3.5. TCP FTAT Congestion Control

TCP FTAT is a new end-to-end congestion control algorithm, which is a modification

of Reno that does not require modifications to the TCP structure, and only requires

installation in the TCP sender side. TCP FTAT achieves much higher throughput/

goodput gain over the other TCP congestion control algorithms. By way of ns-3

simulations, we show that it can achieve more than 22900% and 8500% goodput gain

over NewReno and Westwood+, respectively, in congested networks as well as in

wired/wireless/hybrid networks due to its adaptive mechanism in adjusting the cwnd to

the right network capacity and ensuring the delivery of the lost segments in a timely

manner. In high bandwidth-delay product networks, TCP FTAT outperforms most of the

TCP congestion control algorithms in the throughput/goodput gain. TCP FTAT does not

degrade the cwnd dramatically each time a loss occurs, as FTAT is sensitive to the nature

of the data loss. FTAT does not degrade the cwnd directly when a loss occurs, instead the

effect of loss is only observed in the overall network bandwidth measurement.

27

The congestion window, which characterizes the behavior of the congestion control

algorithm, has a specific pattern in the case of NewReno and other similar congestion

Figure 7: NewReno Congestion Window Pattern

control algorithms, which try to “guess” the available bandwidth in the network. For

example due to the halving of cwnd when three duplicate acknowledgments are received,

NewReno’s cwnd almost follows a “sawtooth pattern”, the following graph emphasize

the sawtooth pattern of NewReno.

TCP FTAT’s cwnd, on the other hand, does not follow such a specific pattern; FTAT

uses an Adaptive-Increase Adaptive-Decrease paradigm, which measures the network’s

available bandwidth, and uses these measurements in order to determine the inflation or

deflation of cwnd.

FTAT is based on two states, Adaptive Transmission, and Additive Increase. The

Adaptive Transmission measures the network capacity in a duration of one RTT, then the

28

data bytes measured is used to adjust the cwnd. If the measured capacity indicates that the

available bandwidth is lower than the current size of the congestion window, the result is

cwnd degradation to the correct capacity of the network. If the measured capacity

indicates higher available throughput, however, the cwnd is inflated to the available

network capacity. This possible increase in the size of the congestion window is key to

the increased performance afforded by TCP FTAT.

In the Additive Increase phase, the cwnd increases by a combination of the linear and

exponential increase of Reno’s two phases: Slow Start and Congestion Avoidance.

The purpose of the Additive Increase algorithm is as follows:

1. After an initial estimation of the network capacity, Reno assumes that the network

is in a stable state and the capacity of the network has been reached.

2. An Additive increase paradigm takes over to probe for any additional changes to

the network capacity.

3.5.1. Initial Congestion Window

The quality of service for the majority of applications on the World Wide Web faces

degradation due to the size of the initial congestion window of AIMD protocols. The

initial congestion window of Reno is limited to 4380 bytes, which causes the majority of

applications on the WWW (that transmit multiples of hundreds of KB) to take longer

times in the start-up phase than it would take in normal transmission [12]; in addition to

the large products of bandwidth-delay networks that are in increased deployment, which

cause the segments to take a long time to travel to the destination and the

29

acknowledgment to return to the sender. At the same time, if the congestion window is

too large in the start-up phase with no knowledge of the condition of a network, that

could lead to congestion and may threat the stability of the Internet. FTAT adjusts the

cwnd at the start-up phase to 64 KB, which corresponds to the start phase of Congestion

Avoidance in Reno algorithm.

3.5.2. FTAT Algorithm

The connection starts with cwnd set to 64 KB, which allows a predictable amount of

initial throughput. With the first cwnd data bytes sent to the network, the

acknowledgments are monitored and counted. After the first round-trip time (RTT) has

elapsed, the cwnd is set to the network’s capacity computed as the data bytes

acknowledged during the last RTT. The Additive Increase algorithm starts when the

cwnd value is equal to or greater than the Congestion Window Threshold

(cwndthreshold), which increases the cwnd linearly by one MSS every RTT. If the cwnd

is less than the cwndthreshold or if the cwnd value is less than 64 KB as Reno, the cwnd

increases exponentially by one MSS upon receiving each new acknowledgment.

The cwndthreshold stores the value of the cwnd just before a segment is lost, and hence if

the Adaptive Transmission algorithm sets the cwnd to a lower value, the Additive

Increase algorithm is acknowledged that the capacity of the network is greater and is

probing in a fast-paced for the additional bandwidth. When the cwnd reaches the value of

cwndthreshold, the Additive Increase algorithm is alerted that the cwnd is in the range of

a previous congestion, and hence the rate of cwnd increase is slowed down.

30

The Adaptive Transmission phase starts when there is an alert of change to the network

capacity by way of three duplicate acknowledgements. In the Adaptive Transmission

state, the packet with the sequence number reported to be lost is retransmitted, and a new

bandwidth estimation procedure is initiated. Upon receiving a new acknowledgement or

duplicate acknowledgement, a new packet is transmitted in the network. When the

number of duplicate acknowledgements reaches three duplicate acknowledgements, the

lost packet is retransmitted, and for any additional duplicate acknowledgement a new

packet is transmitted through the network. After a period of RTT, the new bandwidth is

measured and the Additive Increase state resumes. If the algorithm in the Adaptive

Transmission state and a retransmission time-out (RTO) occurs, the Adaptive

Transmission state ends and the bandwidth is computed for the data acknowledged in the

elapsed period of the RTT. The occurrence of RTO in the Additive Increase state is

treated the same way as the NewReno: the cwnd is set to one MSS. Figure 8 shows a

finite state machine depiction of FTAT.

Figure 8: FSM description of FTAT

31

CHAPTER IV

Implementation of FTAT in ns-3

4.1. The Network Simulator – 3

The network simulator (ns) is a discrete-event network simulator for Internet

Systems [22, 23, 24]. Network simulators are widely deployed in the networking research

community, and ns-2 alone was reported to be used for over 50% of ACM and IEEE

simulation-based research papers for the period from 2000 to 2004 [24].

The ns-3 project was adapted by Tom Henderson, Sumit Roy (University of

Washington), George Riley (Georgia Tech.), and Sally Floyd (ICIR) to address the

weaknesses of ns-2, mainly in aligning with how research is currently conducted, and to

improve the credibility of the network simulator. ns-3 is an open source network

simulator intended to replace ns-2, although ns-3 is not considered an extension to ns-2

due to a new implementation which replaces the OTcl API with C++ wrapped by Python,

and replaces the guts of the simulator completely, and introduces new visualizers.

4.2. The Implementation of TCP in ns-3

TCP in ns-3 is implemented using several classes that provide reliable transport

protocol services and communicate with the network layer. The classes that implement

the TCP protocol are TcpSocketBase, TcpSocket, TcpHeader, TcpTxBuffer,

TcpRxBuffer, TcpL4Protocol, and the different congestion control algorithms

32

implementations.

 The TcpSocketBase class inherits from TcpSocket, and provides the interface

required for the application layer to the sockets, and is the base for the different

TCP congestion control variants.

 The TcpSocket class is an abstract class that contains the attributes for required

for a TCP socket.

 The TcpHeader class contains the implementation for a TCP segment header.

 The TcpTxBuffer class provides a buffer service to the application layer, which

allows the data to buffer before send out.

 The TcpRxBuffer class provides a buffer for the data coming from the network

layer before it is passed up to the application layer.

 TcpL4Protocol class provides an interface for the network layer to the sockets,

and it is responsible for the interactions with the network layer, and it performs

the data checksum for the incoming packets.

Ns-3 provides different implementation of the congestion control algorithms, which

inherits from the TcpSocketBase class. These algorithms are Westwood/ Westwood+,

NewReno, Reno, and Tahoe.

4.3. Implementation of FTAT in ns-3

The tcp-FTAT class includes the TCP FTAT congestion control implementation. This

class inherits from the class TcpSocketBase and provides the required functionalities for

the TCP FTAT. The main functions are ReceivedAck(), NewAck(), DupAck(),

EstimateRTT(), EstimateBW(), NewAckProcessing(), CountAck(),

33

UpdateAckedSegements(), and Retransmit(). The class diagram is shown in Fig. 1.

 receivedAck() is an inherited function from the TcpSocketBase class. It

determines if the received acknowledgement is a new acknowledgement or a

duplicate acknowledgement. Based on this check, either the newAck() function or

the dupAck() is invoked.

The newAck() function is invoked after receiving a new acknowledgement. The

way the cwnd is handled in newAck() is dependent on the state Adaptive

Transmission or Additive Increase. If the algorithm state is in Additive Increase,

the cwnd is compared to cwndthreshold to determine the rate of increase. If the

cwnd is less than cwndthreshold, then the rate of increase would be exponential,

one MSS every new acknowledgement. If the cwnd is equal to or greater than the

cwndthreshold, then the cwnd is increased at a rate equal to the Maximum of

((MSS*MSS/cwnd), 1) + cwnd, which increases the cwnd by approximately one

MSS every RTT. It worth noting here that this formula is specified in RFC2581

[25].

If the algorithm state is Adaptive Transmission, the newAck() function will be

invoked once a new acknowledgement is received, at this stage the newAck()

function will evaluate the variable m_pcktsRound to determine the number of

data packets acknowledged and transmit the same number of packets to the

network.

34

Figure 9: TCP Implementation in ns-3 including FTAT

 The dupAck() function is called after a duplicate acknowledgement is received. If

the Algorithm state is Additive Increase, there are no any actions taken by the

dupAck() function except when the number of duplicate acknowledgements

reaches 3. When the number of duplicate acknowledgements reaches 3, the lost

segment is retransmitted and the Adaptive Transmission state is activated without

any changes to the cwnd or cwndthreshold variables. If the state of the algorithm

is Adaptive Transmission and the dupAck() is called, on every single call to the

35

dupAck() function, the value of the m_pcktsRound is evaluated for the number of

data packets acknowledged and a new packet is transmitted to the network.

 The estimateRTT() function is called to calculate the last RTT. In tcp-FTAT,

estimateRTT() performs the following two tasks:

 Perform the last RTT calculation.

 Schedule a new bandwidth measurement for a period of RTT.

 The estimateBW() function is called by estimateRTT() after the RTT period

has elapsed and it is time to adjust the cwnd to the estimated bandwidth and

deactivate the Adaptive Transmission. The bandwidth is measured as the

maximum of (m_SegmentSize, m_ackedSegements * m_SegmentSize) were

the m_SegmentSize is the MSS and m_ackedSegements is the number of

acknowledged data packets during the state of the Adaptive Transmission and

it is reset after setting the cwnd to prepare for a new measurement.

 The newAckProcessing() function performs the housekeeping for the Adaptive

Transmission state. It is called by the estimateBW() function and returns the

control to estimateBW().

 The countAck() and updateAckedSegements(), are two functions of the

Westwood+ which perform the counting of the number of data packets

acknowledged. It is a novel procedure and gives an accurate calculation for the

data packets and takes into account the delayed and accumulative

acknowledgements. They are called from the receivedAck() function, First the

countAck() function is called to calculate the number of acknowledged packets,

and then the updateAckedSegements() is called to update the m_ackedSegements

variable.

36

 The Retransmit() function is called after a RTO occurs, it performs the

retransmission by calling DoRetransmit() of the TcpSocketBase class, and

deactivate the Adaptive Transmission if active and calls the EstimateBW(), or

adjusts the cwnd to one MSS if the algorithm is in the Additive Increase state.

37

CHAPTER V

TCP FTAT Linux-Stack Implementation

5.1. Introduction

The Linux operating system has been the most popular choice for many

networking applications for more than a decade. These applications include server-side

technologies, embedded systems, and a significant number of research efforts in the area

of computer networks. Linux also provides the capability of producing customized

networking kernels for different networking applications.

Although there are many benefits to using Linux in networking research and applications,

it lacks good documentation for its TCP kernel source code, which, in turn, requires

significant effort in reading the source code and to get the required information from

different resources in order to identify the correct changes to make.

5.2. TCP Congestion Control in Linux

The Linux kernel source code is implemented in C programming language. TCP

FTAT is currently implemented in copies of source code for linux-source-3.2.0 and linux-

2.6.36. The first attempt to implement TCP FTAT in linux-source-3.2.0 was successful,

38

and it was recompiled in Ubuntu 12.04 LTS. The second implementation was in

linux- 2.6.36, and it was to align with the DCE framework in order to conduct live

simulation with the Linux TCP kernel stack.

The TCP protocol implementation in Linux is shown in Figure 10 and Figure 11. Since

the congestion control implementation of TCP FTAT is only in the sender-side, the

framework has not been changed; only additional congestion control implementation

has been added. There are currently 13 congestion control protocols available in

Linux, which are Cubic, Reno, BIC, Westwood, Highspeed, Hybla, HTCP, Vegas,

Veno, Scalable, LP, Yeah, and Illinois. A brief description on each of these algorithms

are as follows.

 TCP Tahoe [1]: The original congestion control by van Jacobson, which

consists of Slow Start, Congestion Avoidance, Fast Retransmit.

 TCP Reno [26]: A modification of TCP Tahoe, with the addition of Fast

Recovery. This algorithm later became the de facto standard.

 TCP NewReno [2]: A modified version of Reno, also became a standard.

 TCP BIC [27]: Binary Increase Congestion, where the cwnd grows more rapidly

than NewReno by doing binary search to reach the middle point of the cwnd

when the congestion was last observed, and then grow rapidly before reaching

the congestion point, then slows down the rate of growth when the congestion

point is reached, then the window grows rapidly again in search of another

congestion point.

 TCP Cubic [28]: The current default congestion control algorithm in Linux, it is

designed to address for the high-speed networks, and it is the successor of TCP

39

BIC.

 TCP Scalable [29]: A congestion control algorithm designed on the idea of

making the time of recovery from a congestion constant and unrelated to the

congestion window size.

 TCP HighSpeed [30]: A congestion control algorithm that uses a cutoff point to

determine the increase factor and the decrease factor in the AIMD paradigm.

 TCP HTCP [31]: The HTCP uses the time since the last congestion as a factor in

increasing the congestion window. It has an accurate function based on the RTT

to measure the queue size of the bottleneck link along the path, and it uses the

measurement to adjust the congestion window decrease factor.

 TCP Vegas [7]: Uses the measurement of the RTT to determine the state of the

congestion in the connection and as a result, decreases or increases or maintains

the congestion window size.

40

Figure 10: Classes interaction in Linux

 TCP Westwood [5, 6]: An Additive Increase Adaptive Decease paradigm

algorithm that uses the returning acknowledgement as implicit feedback to

determine the congestion window size.

 TCP Illinois [32]: Congestion control algorithm that uses the delay of queuing to

calculate the factors of the congestion window increase and decrease.

41

 TCP Hybla [33]: Attempt to determine the increase rate of the congestion window

based on the measured RTT to ensure flows fairness. It uses a reference value for

the RTT to determine the state of the connection.

 TCP Veno [34]: Uses the same paradigm as NewReno in adjusting the congestion

window, but it tries to detect the random losses based on the delay of queuing,

and it reduces the congestion window by a factor of 0.20 not the halve as

NewReno.

 TCP LP [35]: A Low-Priority Service congestion control that attempt to utilize

the unused bandwidth in a TCP flows.

 TCP YeAH [36]: Yet Another Highspeed TCP, is a congestion control algorithm

that uses two modes for the congestion window growth, namely, Slow mode and

Fast mode. In the slow mode, it implements the Reno rules of growth to the

congestion window. While in the Fast mode, it implements the Scalable rules of

growth to the congestion window.

The TCP Congestion Control implementation in Linux uses states to differentiate

between different congestion states of the connection. It provides more than just the

standard states of NewReno, but allows more control such as reversing the cwnd

decreases. There are two paths for an additive increase state: Slow Path and Fast Path.

For the slow path to be active, there must be a duplicate acknowledgement. The fast path

takes place when there are no duplicate acknowledgements and the connection is open.

The states used by Linux to determine the state of the connection and hence take a proper

action by congestion control are Open, Disorder, CWR, Recovery, and Loss.

42

Figure 11: TCP function interaction in Linux

 Open State: when there are no duplicate acknowledgements, the packets

received are forward to the Fast Path, and it is the normal state.

 Disorder State: When there are duplicate acknowledgements or SACK, and the

packets are forwarded to the Slow Path.

43

 CWR State: The state, which handles congestion notifications that come from

congestion control based on explicit notifications such as ECN.

 Recovery State: It is stated when there is indication of loss and it is time to enter a

recovery state, it has the Fast Retransmit operations.

 Loss: It is entered due to loss of RTO or SACK reneging.

5.3. FTAT Implementation in Linux TCP Stack

The TCP FTAT implementation in the TCP Linux kernel source code resides in the

tcp_FTAT.c in the ipv4 sub folder of the net folder in the Linux kernel source code.

Additional header file has been added for the tcp_output.c in order for FTAT to use some

functions in tcp_output.c to perform packets transmission in the Adaptive Transmission

State.

 tcp_FTAT_init(): initializes the variables at the start of the connection.

 tcp_FTAT_pkts_acked(): It is called after processing some packets. It adjusts the

RTT to the SRTT (Smoothed Round Trip Time) after, and checks the processed

packets’ RTO status to deactivate the Adaptive Transmission and sets the cwnd to

the measured capacity of the network, or sets the cwnd to one MSS in case of

Additive Increase.

 westwood_acked_count(): A function from tcp_westwood, which performs the

counting procedure for the acknowledged bytes after receiving an

acknowledgement.

 tcp_FTAT_Bandwidth(): called after Adaptive Transmission, performs the

capacity calculation of the network, and adjusts the cwnd.

44

 tcp_FTAT_cwndthreshold(): returns the value of the FTAT_cwndthreshold.

 tcp_init_data_skb(): Is called from tcp_FTAT_probe_skb(), prepares control bits,

and performs the sequence number sliding for the packets which are sent in the

Adaptive Transmission state.

 tcp_FTAT_probe_skb(): Is called from tcp_FTAT_probe_skb() to send new

packet in the Adaptive Transmission upon reception of new acknowledgement

or duplicate acknowledgement.

 tcp_FTAT_additive_increase(): The additive increase function which checks the

cwndthreshold in comparison to the cwndthreshold to determine the rate of

increase.

 tcp_FTAT_adaptive_transmission(): The center piece function which holds most

of the logic of FTAT in TCP Linux. It is called in the Slow path and Fast path,

and it performs the following tasks:

 Checks the RTT to start a new bandwidth measurement.

 Initializes the snd_una variable on the first received acknowledgement

to adjust the sequence number of the first unacknowledged byte.

 Determines if it is time to switch from Adaptive Transmission to Additive

Increase and adjust the cwnd to new capacity of the network.

 Determines if it is time to activate the Adaptive Transmission state, if it is

not active.

 In the Adaptive Transmission state, calls tcp_FTAT_probe_skb() to send

packets.

 tcp_FTAT_event(): Switches between states, manages which function gets

45

called on each state.

 tcp_congestion_ops(): Provides the information for the congestion control

handler interface.

One important setting for using FTAT is to adjust the sending and receiving buffers to a

fair value in order for the end-nodes to be able to buffer a good amount of data in the

presence of packets disorder. The current value that has been adjusted for the buffer sizes

in Linux and ns-3 is 5 MB.

46

CHAPTER VI

A Mathematical Model of TCP FTAT

In this chapter we derive a mathematical model of FTAT Adaptive-Increase Adaptive-

Decrease mechanism. Because FTAT is a sender side modification of NewReno and for

the sake of simplicity, we follow the same arguments developed by Kelly in his paper

“Mathematical modeling of the Internet” [14], and that was used in [6] to derive a

mathematical model for TCP FTAT.

Theorem: A simplified steady state throughput of the FTAT algorithm

 is as follow:

Equation 1

𝑇𝐹𝑇𝐴𝑇 = lim
𝑡 → ∞

𝑥(𝑡) =
𝐵

2
+ √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

Proof. To develop the model we consider a TCP flow controlled by FTAT, 𝑝 is the probability

of loss signal at the window update, 𝐵 is the available bandwidth share for the flow, 𝑅𝑇𝑇 is the

mean round trip time. The 𝑐𝑤𝑛𝑑 is updated upon receiving an Acknowledgement, we assume

that the connection is in stable state, and that the 𝑐𝑤𝑛𝑑 is greater than the 𝑐𝑤𝑛𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

which increase the 𝑐𝑤𝑛𝑑 by
1

𝑐𝑤𝑛𝑑
 upon receiving new acknowledgement. In the case of

congestion signal, the algorithm enters the Adaptive Transmission state, and the 𝑐𝑤𝑛𝑑 is

updated after one 𝑅𝑇𝑇 or time-out by 𝐵 ∙ 𝑅𝑇𝑇 – 𝑐𝑤𝑛𝑑. By the given assumptions, we derive

47

the following update step for the 𝑐𝑤𝑛𝑑:

Equation 1

∆ 𝑐𝑤𝑛𝑑 =
1 − 𝑝

𝑐𝑤𝑛𝑑
+ (𝐵 ∙ 𝑅𝑇𝑇 − 𝑐𝑤𝑛𝑑) ∙ 𝑝

Since an approximation of the rate at which the 𝑐𝑤𝑛𝑑 is updated in the Additive increase state

is 𝑥 =
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
, the time between the update steps in the Additive Increase state or the start of the

Adaptive Transmission state is about
𝑅𝑇𝑇

𝑐𝑤𝑛𝑑
, and the expected change in the rate 𝑥 per unit time

is approximately:

𝜕𝑥(𝑡)

𝜕𝑡
=

(
1 − 𝑝

𝑐𝑤𝑛𝑑⁄ + (𝐵 ∙ 𝑅𝑇𝑇 − 𝑐𝑤𝑛𝑑) ∙ 𝑝)
𝑅𝑇𝑇

⁄

𝑅𝑇𝑇
𝑐𝑤𝑛𝑑⁄

 =
1 − 𝑝

𝑅𝑇𝑇2
+ (

𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
 ∙ 𝐵 − (

𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
)

2

) ∙ 𝑝

Equation 2

𝜕𝑥(𝑡)

𝜕𝑡
=

1 − 𝑝

𝑅𝑇𝑇2
+ (𝑥(𝑡) ∙ 𝐵 − 𝑥2(𝑡)) ∙ 𝑝

Equation 3 is separable differential equation. After separating the variables, Equation 3 can be

written:

Equation 3

− 𝜕𝑡 ∙ 𝑝 =
𝜕𝑥(𝑡)

𝑥2(𝑡) − 𝑥(𝑡) ∙ 𝐵 −
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

The solution can be obtained by integrating each member

∫ −𝑝 𝜕𝑡 = ∫
1

𝑥2(𝑡) − 𝑥(𝑡) ∙ 𝐵 −
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

𝜕𝑥(𝑡)

↓

𝑥(𝑡) =
𝑥1 − 𝑥2 ∙ 𝐶 ∙ 𝑒−𝑝∙𝑡∙(𝑥1−𝑥2)

1 − 𝐶 ∙ 𝑒−𝑝∙𝑡∙(𝑥1−𝑥2)

48

Where 𝐶 depends on the initial conditions, and the roots of the equation

𝑥2 − 𝑥 ∙ 𝐵 −
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝
 = 0

↓

𝑥1,2 =
𝐵

2
± √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

And a simplified steady state throughput of the FTAT algorithm can be described as:

𝑇𝐹𝑇𝐴𝑇 = lim
𝑡→∞

𝑥(𝑡) =
𝐵

2
+ √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

By deriving the steady state throughput of the FTAT algorithm, we are able to show the

following corollary.

Corollary: The FTAT congestion control is stable (𝑻𝑭𝑻𝑨𝑻 ≤ 𝑩)

Proof. From Equation 4, we can argue that 𝑇𝐹𝑇𝐴𝑇 is always less than or equal to the available

bandwidth, 𝐵. To show that, we use the same contradictions in [6], that is if we assume that

𝑇𝐹𝑇𝐴𝑇 > 𝐵, this assumption leads to congestion collapse, and this leads to drop probability,

𝑝 up to 1. As a result Equation 4. will result 𝑇𝐹𝑇𝐴𝑇 = 𝐵, this result will contradict the

assumption. And by this we can conclude that 𝑇𝐹𝑇𝐴𝑇 is always less than or equal to 𝐵, in other

words 𝑇𝐹𝑇𝐴𝑇 ≤ 𝐵.

49

CHAPTER VII

Evaluation based comparison of TCP-NewReno, TCP-Westwood+, and

TCP-FTAT using ns-3

In this chapter we compare the performance of NewReno, Westwood+, and FTAT

congestion control algorithms using ns-3 in order to evaluate the behavior of each

algorithm in different networks. NewReno and Westwood+ are the native

implementations in ns-3. For wireless connections, a packet error model is installed on the

links, and the error rate is denoted as 𝑝. For all topologies, unless otherwise stated, the

default configuration of the buffer size and MSS are 5MB and 536 bytes, respectively.

7.1.Topology One

Figure 12: First Topology

This topology examines the congestion control algorithm when the segments must

travel through different connections. The first connection is a wireless connection with

2% packet loss error, the next connection is high Bandwidth-delay product (BDP)

network. The last connection is an Ethernet connection. Packets may experience losses

due to the wireless connection, and experience large RTT. The simulation time is set to

1000 seconds.

50

a) NewReno cwnd

b) Westwood+ cwnd

c) FTAT cwnd

Figure 13: cwnd graphs for Topology one

51

The congestion window vs time graph (Figure 13) is helpful in confirming the congestion

control behavior in different situations, for example NewReno reacts to a retransmission

timeout (RTO) by resting the congestion window to one packet, while in the case of triple

duplicate acknowledgement, NewReno halves the congestion window. Westwood+

reduces the congestion Window upon receiving three duplicate acknowledgements, by

adjusting it to the last bandwidth measurement obtained, and FTAT starts new bandwidth

measurement and enters the Adaptive Transmission which can identify a false alert of

congestion and in that case, the congestion window increases. In case of congestion,

FTAT reduces the congestion window to the available network bandwidth.

The cwnd graph of NewReno shows the behavior of the slow start and the congestion

avoidance. Because of the long RTT and the loss rate, the window is going to one MSS

more often, and it does not grow more than 12,000 bytes. On the other hand, Westwood

shows more growth to the cwnd, also goes to one MSS more often, and the window does

not grow more than 20,000 bytes. The cwnd of FTAT shows more growth even under the

long RTT and the loss rate, the cwnd growth up to 500,000 Bytes, and goes to one MSS

less often.

52

a) NewReno

b) Westwood+

c) FTAT

Figure 14: RTT graphs for topology two

53

The three graphs (Figure 14), show almost the same range. NewReno shows almost

constant behavior along the connection time. Westwood+ exhibits slight difference in the

RTT at some points. While FTAT shows totally new behavior for the RTT, which gives

sometimes shorter RTTs and other times a bit longer RTTs. This is due to the nature of

the FTAT algorithm, which tries to adapt to the network available bandwidth with time,

so the algorithm tries to send more data in the network, but because this is a

heterogeneous network with different links and different propagation delays with packet

loss probability of 2%, data gets lost and timeout occurs, which increases the RTT.

The graphs in Figure 15 shows the sequence number advancement for the packets

throughout the connection life time.

Figure 15: Sequence number topology one

54

The FTAT algorithm is shown in the red line, while Westwood in the blue line, and

NewReno in the black line. The graph shows that NewReno and Westwood+ almost

have linear packet sequence number advancement. NewReno reached sequence number

12638881, Westwood+ reached 28204321, and FTAT reached 205139529.

The total throughput for the simulation for the three algorithms is shown in Figure 16.

Because throughput might sometimes be deceptive as a measure, goodput is shown for

the three algorithms as well. Goodput is calculated as

𝑆𝑒𝑛𝑡 𝑏𝑦𝑡𝑒𝑠 – 𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦𝑡𝑒𝑠

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑖𝑚𝑒

55

Figure 16: Throughput and Goodput topology one

.

56

7.2.Topology Two

In this topology, a network with various traffic directions share a link of 100

Mbps and 10 ms delay with the TCP-variant on the server side, and the receiving node

has a packet loss model of 2%. 10 TCP NewReno senders are injecting traffic in the

same direction as the TCP-variant, and 10 TCP NewReno nodes are injecting traffic in

the reverse direction. The access links are 100 Mbps and 1ms delay time. The

simulation time is 100 seconds.

Figure 17: Topology two

57

a) NewReno

b) Westwood

c) FTAT

Figure 18: cwnd graphs topology two

58

The cwnd graphs in Figure 18 show that NewReno cwnd growth in the presence of

reverse traffic and packet loss rate of 2% did not exceed 12,000 bytes except at the

second 50, which was just a notch, and the window goes to one MSS rapidly.

Westwood’s cwnd shows less fluctuations with a window growth reaching 20,000 Bytes.

FTAT shows more window growth reached 350,000 Bytes, and goes to one MSS much

less often.

a) NewReno

b) Westwood

59

c) FTAT
Figure 19: RTT graphs for topology two

The RTT graphs in Figure 19 show that NewReno has almost constant range of

fluctuations for the RTT ranging from 25 ms to about 54 ms. Westwood+ has a higher

upper limit for the RTT reaches about 60 ms. FTAT has a much lower rate of fluctuations

for the RTT, and has a lower average RTT of about 29 ms.

Figure 20: Sequence number topology two

The packets advancement sequence number graph in Figure 20 shows that NewReno

60

reached 7,661,585 packets transmitted, Westwood+ reached 14,429,121 packets, and

FTAT reached 64,793,825 packets.

Figure 21: Throughput and Goodput for topology two

61

In Figure 21, it is shown the throughput/ goodput of the three scenarios. In NewReno

scenario, all forward and reverse traffic is controlled by NewReno congestion control, the

NewReno flow under test was unable to grab its share of the network available bandwidth

of the 100 Mbps, the throughput is measured to be about 0.635 Mbps.

In Westwood scenario, all forward and reverse traffic is controlled by NewReno except

the sender of the Westwood flow, which is controlled by Westwood+ congestion control.

The throughput graph shows improvement over NewReno, and the measured throughput

is computed to be 1.198 Mbps.

In FTAT scenario, again all the traffic is controlled by NewReno except the FTAT

sender, which is controlled by FTAT congestion control. Because the high volume of

traffic on the bottleneck link, which is 21 TCP flows with 42 nodes, and in different

directions. NewReno flows was unable to grab a proper share of the network available

bandwidth, and as a consequence, huge bandwidth was left unutilized, and FTAT flow

was able to achieve 40.736 alone.

62

7.3.Topology Three

In this topology, a TCP-variant source is sending persistent traffic to a

TCP NewReno sink, and 10 On-Off TCP NewReno sources send traffic in the

reverse direction of the TCP-variant. The 10 TCP NewReno sources are on

during the periods [250, 500] and [750, 1000], and off during the periods [0,

250] and [500, 750]. The bottleneck link, which determines the capacity of the

network, is 2 Mbps and a delay of 1ms. This topology examine the reaction of

the congestion control algorithm when the traffic is dominated by reverse traffic,

and is used in [15].

Figure 22: Third Topology

63

a) NewReno

b) Westwood

c) FTAT

Figure 23: cwnd topology three

64

The cwnd graph of NewReno shows smooth fluctuations in the period from [0, 250] and

[500, 750], and a random fluctuations in the periods [250, 500] and [750, 1000].

Westwood+ cwnd graph shows that before the second 250, before the reverse traffic

starts, the cwnd has behavior similar to that of NewReno, which can be described as

smooth fluctuation. After the reverse traffic starts at second 250, there is a lower bound

for the fluctuations, at the second 500, after the reverse traffic has stopped, the window

increases rapidly until the reverse traffic starts again at second 750.

FTAT enters the Adaptive Transmission state when there are loss events, in order to

determine the cause of the loss, and as a result the actual bandwidth of the network. The

cwnd graph shows light fluctuation from the period of [0, 250], where there are no heavy

loss events, and as result FTAT behaves much similar as NewReno. in the period [250,

500], the cwnd starts to fluctuate heavily, due to the high loss events of the reverse

traffic. Although in this scenario this behavior did not reveal more bandwidth, it is very

important in high bandwidth-delay product networks such as Geo Sattellite stations,

where there are both long delays and high data loss probability.

65

a) NewReno

b) Westwood

c) FTAT

Figure 24: RTT graphs topology three

The RTT graphs in Figure 24 for NewReno and Westwood shows almost similar

behavior for the RTT variations. FTAT shows an almost constant RTT in the

66

period [0, 250].

Figure 25: Throughput topology three

Figure 25 shows the throughput of the three protocols. In case of NewReno, the

algorithm was very stable throughout the connection, and the graphs shows it has

the least fluctuations when the reverse traffic was introduced. This is because the

network is limited to the bandwidth of the bottleneck link, which is 2 Mbps. In

Westwood scenario, the graphs shows that the Westwood algorithm was affected

greatly by the reverse traffic, and there are many occurs of the timeout, and as a

result the throughput was affected and reduced. In the FTAT scenario, the graphs

shows that the algorithm reacted to the reverse traffic by entering the Adaptive

Transmission state frequently, and it achieved slight improvement over

NewReno in the throughput for the duration of the connection.

67

7.4.Fourth Topology: Two-way Geo Satellite Scenario

Figure 26: Topology four

In Figure 26, the node on the left side uses the TCP-variants, and the node on the

right side uses TCP NewReno. The nodes are sending in both directions on a connection

which encounters a packet loss rate of 1% with a long delay of 270 ms. The bandwidth of

the connection is 10 Mbps, the simulation time is 1000 seconds, and the packet size is

536 bytes.

In the first scenario, the left-side node operates with TCP NewReno and the right-side

node operates with TCP NewReno. In second Scenario, the left-side node is TCP-

Westwood+ and the right-side node is TCP NewReno. And in the third scenario, the left-

side node is TCP-FTAT, and the right-side node is TCP-NewReno. The focus of the

analysis is on the TCP-variants on the left-side node.

68

a) NewReno

b) Westwood

c) FTAT

Figure 27: cwnd topology four.

69

The cwnd graphs in Figure 27 show that NewReno failed to reach cwnd size of 10,000

bytes, while Westwood reached about 35,000 byte window size, and FTAT reached (in

the first 200 seconds) more than 600,000 bytes and then started to fluctuate heavily

during the connection due to the long delay and the packet loss probability of 1% in the

presence of another connection trying to achieve a bandwidth share on the same link.

a) NewReno

b) Westwood

70

c) FTAT

Figure 28: RTT topology four

The RTT graphs in Figure 28 shows large values for the RTT, which can be explained

by the long delay for a geostationary satellite of 270 ms. NewReno and Westwood have

almost identical behavior for the RTT, and the RTT fluctuates between about 54 ms and

about 74 ms. The RTT graph for FTAT shows much less fluctuations in the RTT with

average RTT of about 57 ms. This is due to FTAT algorithm dropped to one segment

much less frequent than NewReno or Westwood, and as a result achieved a state of

stability in the presence of long delay, packets drop probability of 1%, and the reverse

traffic introduced by the competing connection.

71

Figure 29: Sequence number topology four

The sequence number graphs in Figure 29 show that during the time of the simulation

(1000 seconds), NewReno represented by the black line reached 6,995,873 packet

sequence number, while Westwood+ represented by the blue line reached 22,329,761

packet sequence number, and FTAT in red, advanced to reach 171,932,721 packet

sequence number.

72

Figure 30: Throughput and goodput topology four

In this scenario, a connection with 10 Mbps, and two competing users sending and

receiving data concurrently over the connection. Figure 30 shows that when the two TCP

users was using NewReno as the congestion control algorithm, each node achieved about

73

0.0577 Mbps, and this why NewReno is not a suitable congestion control in high

bandwidth-delay product networks. On the other hand, Westwood was able to achieve

throughput improvement over NewReno due to the adaptive mechanism used by

Westwood, but still was unable to achieve a proper share of the available network

bandwidth, and it achieved about 0.189 Mbps. In case of FTAT, the algorithm was able

to detect most of the false congestion signals due to the testing mechanism, and as a

result was able to utilize the available bandwidth, and it achieved about 6.45 Mbps.

74

CHAPTER VIII

Evaluation and Comparison of Different Congestion Control

Algorithms of Linux Stack Using DCE Cradle (Direct Code Execution

Cradle)

8.1.Introduction

Simulation based comparison is helpful for any new protocol or addition to an

existing one. Although the benefits of using simulators means reducing the development

and testing time, reproducibility, cost effectiveness, etc., there are limitations of using

simulation. For example, protocols implementations are not available for all the

algorithms in every simulator. For these reasons and others, researchers do not rely only

on the simulations, but they use it as an important indication toward the performance of a

protocol. Another alternative is to use emulators, which combine the benefits of

simulations and real systems. Emulators, however, also have drawbacks such as they are

mostly based on Virtual Machines and run on real-time, which makes them limited to the

capabilities of the hardware. As well, debugging an emulated system is very difficult.

Another solution is the use of real stacks of operating systems in simulators such as ns-3

which is open source discrete-event widely deployed and accepted in the networking

community, for realistic results. Currently the widely deployed ways of using real kernel

stacks in simulators is through Network Simulation Cradle (NSC) [37], Direct Code

75

Execution (DCE) [38], and Direct Code Execution Cradle (DCE Cradle) [39]. The use of

such frameworks has been shown in many research papers that they produce very

accurate results.

Our choice here was to use DCE Cradle, since it is an open source framework that

provides more features than DCE by allowing utilization of ns-3 applications, and

provides more Linux kernel versions support than NSC.

8.2.Simulation and Comparisons

8.2.1. Topology One: One-way Geo Satellite Scenario

Figure 31: Topology one.

This topology (Figure 31) is helpful in showing the behavior of the congestion

control protocol in high BDP networks with loss rate. It is also important to note that

there is a difference between this scenario and the one used with ns-3, as the flow here is

76

only one-way directional, as opposed to the two-way flow in that case (Section 6.4). The

node on the left side uses the different TCP-variants, and the node on the right side is

TCP NewReno. The link exhibits a loss rate of 2% with a long delay of 270 ms. The

connection bandwidth is 10 Mbps, the simulation time is 1000 seconds, and the packet

size is 536 bytes.

There are 14 scenarios for this topology, which examine every congestion control

implementation in the Linux Stack. The Congestion control algorithms that are examined

in this scenario are Reno, BIC, Cubic, Westwood, Highspeed, Hybla, Vegas, Veno,

HTCP, Scalable, LP, YeAH, Illinois, and FTAT.

78

Figure 32: cwnd topology one

It should be noted here that DCE does not have a framework such as in ns-3 for

tracing capabilities, which requires individual efforts to implement the traces. The

cwnd tracing included much more points than that provided in ns-3 graphs which

makes the graphs not very smooth. Also due to the differences in the implementation

of the Linux for TCP and ns-3 for TCP, the cwnd graphs have different scales. Linux

cwnd is implemented in terms of number of packets, while ns-3 implement the cwnd

in terms of bytes.

The cwnd for each algorithm is shown in Figure 32. It can be observed that each

algorithm has upper limit for the cwnd, Cubic reached about 45 packets, NewReno

reached about 16 packets, Veno around 21 packets, Vegas around 24 packets,

Westwood 20 packets, FTAT 130, and so on. Hybla cwnd reached around 70,000

packets, which is out of range and impractical, but this spark can be explained as a

bug in the implementation of the algorithm in the Linux kernel.

The graph in Figure 33 shows the sequence number advancement gathered in one

graph. Due to the huge number of points from the traces, it was not possible to make

the graph, as a result a number of points was chosen to implement the graph and

79

show the relative advancement of the sequence number for each algorithm grouped in

single graph.

Figure 33: Sequence number topology one

Figure 34: Highest sequence number

80

In Figure 34, it’s shown the highest sequence number achieved by each

congestion control. FTAT achieved the highest sequence number, followed

by Hybla, and then most of the algorithms varies slightly.

Figure 35: Throughput topology one

In Figure 35, the throughput measurements is presented. FTAT algorithm achieved

about 1.6 Mbps, while Hybla achieved about 1 Mbps, and Cubic achieved about 0.266

Mbps. It is proper to emphasize here that NewReno and Westwood+, gained

throughput improvement over the topology in Section 6.4. This is due to the nature of

this connection, which is one-way that is no competing user on the same connection.

While FTAT experienced throughput degradation, this can be a result of the

experimental implementation of FTAT in linux and the changes in the topology.

81

8.2.2. Topology Two

Figure 36: Topology two

The second topology (Figure 36) gathers the 14 algorithms in one network in

order to get more insight about the behavior of each congestion control algorithm when

competing with other nodes. The bottleneck link is the link between the two routers,

82

which is a wireless link and has a packet loss rate of 2%, bandwidth of 2Mbps, and a

delay of 100 ms. The access links are 5Mbps each with a delay of 1 ns.

The flows start at 4 seconds, and the simulated time is 1000 seconds, the throughput is

shown in Figure 37.

Figure 37: Throughput topology two

Again here in Figure 37, it is shown that FTAT algorithm achieved the best throughput of

about 640 Kbps, while Hybla of about 206 Kbps, and Cubic of about 139 Kbps. With the

high volume of traffic on the bottleneck link that is characterized by the long propagation

delay, most of the nodes controlled by a specific TCP congestion control fall under 100

Kbps.

83

8.2.3. Topology Three

Figure 38: Topology Three

To further investigate the effect of high BDP links, we set the same topology with the

same conditions (Figure 38), except the bottleneck link changed to 100 Mbps. The

throughput is shown in Figure 39.

84

Figure 39: Throughput topology three

For the sake of experimenting the different congestion control algorithms in linux, the

bandwidth of the bottleneck link was increased. In Figure 39, it is shown that FTAT

achieved the best throughput of about 1.4 Mbps, while Hybla of about 1 Mbps, and Cubic

of about 278 Kbps. Many of the congestion control in linux was still unable to increase

the throughput to a proper values in the presence of the long delay.

85

8.2.4. Fourth Topology

The last topology (Figure 40) examines the effect of high bandwidth, low delay

networks. The settings are the same as the previous topology, except for the wireless link

between the two routers, which is changed to 1 ms.

Figure 40: Topology Four

.

86

The throughput analysis is shown in the next graph.

Figure 41: Throughput topology four

In Figure 41, it is shown great improvement of the throughput for the different congestion

control algorithms in linux TCP stack. Westwood was the most algorithm that benefited

from the propagation delay reduction, which shows that it is greatly dependent on the

propagation delay of the links in a network. NewReno algorithm also is one of the highest

algorithms in the graph, which emphasize again that it was designed for networks with

specific characteristics. Cubic also shows big improvement in the throughput in

comparison to the results of the topology in the last section. FTAT achieved throughput

improvement, but was unable to achieve the best throughput, as the way FTAT operates

87

require relatively high propagation delays, which makes it excellent for the networks with

high bandwidth-delay product. Although FTAT did not achieve the best results in this

topology, it still ranks as one of the best algorithms operated in this network, with slight

throughput improvement over Cubic TCP congestion control.

88

CHAPTER IX

Conclusion

The proposed algorithm has been tested through simulation using ns-3, and the

Linux kernel code against the major deployed congestion control algorithms. It was

shown in the simulation results that FTAT gains a throughput improvement over other

TCP congestion control algorithms in wireless and high bandwidth-delay product

networks.

The steady state throughput mathematical model derived for FTAT shows that FTAT is

stable even under severe congestion conditions, which was supported by the experiments

conducted using simulations in ns-3 and DCE - Linux that FTAT throughput is limited to

the network available bandwidth. The fundamental principle which makes FTAT is stable

that FTAT uses self-clocking as NewReno to send new data to the network but differ in

the way FTAT interpret congestion state.

Although there are indications through the experiments conducted that FTAT is friendly

to other TCP congestion control algorithms and has Fairness among connections

operating with FTAT. Fairness and Friendliness is a case study, and it can be completed

in future work.

From our study and the experiments that was conducted, we have found that due to the

additive-increase multiplicative-decrease of NewReno, it is unable to grow the

congestion window to a proper sizes in high bandwidth and long delays networks, and

even after long period of time in a connection, a single packet time-out will reduce the

89

congestion window to 1 segment, and three duplicate acknowledgements will reduce the

congestion window to half of its current value. On the other hand FTAT is Adaptive-

Increase Adaptive-Decrease, which measures the network’s available bandwidth upon

three duplicate acknowledgements, and adjusts the congestion window accordingly. Also

from the experiments that have been conducted, it was observed that FTAT does not take

from the bandwidth of the other algorithms sharing the network. Instead, it achieves the

network available bandwidth.

The current implementations of the congestion control such as NewReno, gives stability

for a TCP connection and prevents congestion in the network, but in the same time it

limits the throughput and results in wasted bandwidth in the case of high BDP networks.

Although NewReno was considered as the standard congestion control for TCP for many

years, it is unable to grab the available bandwidth in a connection in long delay networks,

due to its slow rate of the cwnd increase. Most of the congestion control implementations

in TCP follow the same rule, which are not suited for today’s high-speed networks.

FTAT offers an adaptive mechanism that allows the window to grow when such growth

is possible, and to be conservative when the available bandwidth is limited. FTAT is best

described as using an Adaptive-Increase Adaptive-Decrease paradigm. It gets the best

results when it is operated in networks with high bandwidth in the presence of large

delays, and in wireless networks where there random packet loss. FTAT does not rely on

the high bandwidth in order to perform well, but it requires a loss rate or a delay in the

network in order for the adaptive mechanism to have the optimum results.

In order for FTAT to gain its working mechanism, the sending and receiving buffers size

should be set to a value large enough in order to buffer the packets not in ordered, in the

90

adaptive state. To the best of our knowledge, there are no constraint on the buffer sizes,

and it is adjustable in every Linux system. The value that was set in the simulations and

experiments in this thesis was 5 Megabytes, which does not introduce any overhead.

FTAT currently has experimental implementations in the Linux kernel stack (3.2.0 and

2.6.36), and in ns-3. As a future work, we will submit the implementations to be officially

part of the ns-3 and Linux OS.

91

BIBLIOGRAPHY

[1] V. Jacobson “Congestion Avoidance and Control”, Proceeding SIGCOMM '88

Symposium proceedings on Communications architectures and protocols, pp. 314 –

329, 1988.

[2] Floyd, S., Henderson, T. New Reno Modification to TCP's Fast Recovery, RFC

2582, April 1999.

 [3] Jacobson, V., "Berkeley TCP Evolution from 4.3-Tahoe to 4.3, Reno," Proceedings

of the 18th Internet Engineering Task Force, University of British Colombia,

Vancouver, BC, September 1990.

[4] M. Allman, S. Floyd, C. Partridge “Increasing TCP’s Initial Window” RFC 3390,

October. 2002.

 [5] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, Ren Wang. “TCP

Westwood: End-to-End Congestion Control for Wired/Wireless Networks”, Wireless

[6] Luigi A. Grieco and SaverioMascolo. “TCP Westwood and Easy RED to

Improve Fairness in High-Speed Networks”, Seventh International Workshop on

Protocols For High-Speed Networks (PfHSN’2002), Berlin, Germany, April. 2002.

 [7] Lawrence S. Brakmo, Sean W. O’Malley, Larry L. Peterson. “TCP Vegas: New

Techniques for Congestion Detection and Avoidance”, Proc. ACM SIGCOMM ’94,

Vol. 24 Issue 4, Pages 24-35, Oct. 1994.

[8] Jong Suk Ahn, Peter B. Danzing, Zhen Liu, Limin Yan. “Evaluation of TCP Vegas:

Emulation and Experiment”, Proc. ACM SIGCOMM 95, Vol. 25 Issue 4, Pages 185-

195, October 1995.

92

[9] J. Mo et al., “Analysis and comparison of TCP/Reno and Vegas,” in Proc. IEEE

INFOCOM, pp. 1556–1563, 1999.

 [10] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, Randy H. Katz, “Improving

TCP/IP performance over wireless networkS”, Proceeding MobiCom '95 Proceedings

of the 1st annual international conference on Mobile computing and networkin, PP. 2 –

11, 1995.

[11] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular Networks”, ACM

Computer Communications Review, vol. 27, no. 5, pp. 19-43, 1997.

[12] San-Qi Li, Song Chong, Chia-Lin Hwang “Link capacity allocation and network

control by filtered input rate in high speed networks”, IEEE/ ACM, Networking

Transactions , vol. 3, no. 1, pp. 10 – 25, 1995.

[13] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz, “Improving

TCP/IP Performance over Wireless Networks”, Proceedings of the 1st ACM

Conference on Mobile Computing and Networking, Berkeley, CA, November 1995.

 [14] Frank Kelly. “Mathematical modelling of the Internet”, Proceedings of the Fourth

International Congress on Industrial and Applied Mathematics, PP. 105 – 116, 1999.

 [15] Luigi A. Grieco and SaverioMascolo. “Performance Evaluation and Comparison

of Westwood+, New Reno, and Vegas TCP Congestion Control”, IFIP International

Federation for Information Processing, 2009.

 [16] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H.

Katz “A Comparison of Mechanisms for Improving TCP Performance over Wireless

Links”, Networking, IEEE/ACM Transactions on, (Volume 5, Issue: 6), pp. 756 – 769,

Dec 1997.

93

 [17] James F. Kurose, Keith W. Ross, Computer Networking: A Top-Down Approach,

5/E, ©2010 • Addison-Wesley • Cloth, 864 pp.

 [18] Grieco, L. A and Mascolo, S., End-to-End Bandwidth Estimation for

Congestion Control in Packet Networks. Second International Workshop, QoS-IP

2003, Milano, Italy, February 2003.

 [19] Xylomenos, G., Polyzos, G.C., Mahonen, P., Saaranen, M., “TCP Performance

Issues over Wireless Links”, Communications Magazine, IEEE (Volume:39 , Issue: 4),

pp. 52 – 58, Apr 2001.

 [20] K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Congestion

Notification (ECN) to IP”, RFC 2481, January 1999.

 [21] Shohei Kodama, Masayoshi Shimamura, Katsuyoshi Iida. “Initial CWND

Determination Method for Fast Startup TCP Algorithms”, Quality of Service (IWQoS),

2011 IEEE 19th International Workshop, pp. 1 – 3, 2011.

 [22] http://nsnam.isi.edu/nsnam/index.php/User_Information.

[23] Thomas R. Henderson, Mathieu Lacage, George F. Riley. “Network Simulations

with the ns-3 Simulator”, Proc. ACM SIGCOMM, 2008.

 [24] GJAM Carneiro. “NS-3: Network Simulator 3”,

https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf, April

2010.

 [25] M. Allman, V. Paxson, andW. Stevens, “TCP congestion control,” IETF, RFC

2581, Apr. 1999.

 [26] Jacobson, V., "Berkeley TCP Evolution from 4.3-Tahoe to 4.3, Reno,"

Proceedings of the 18th Internet Engineering Task Force, University of British

Colombia, Vancouver, BC, September 1990.

http://nsnam.isi.edu/nsnam/index.php/User_Information
https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf

94

 [27] Lisong Xu, Khaled Harfoush, and Injong Rhee. “Binary Increase Congestion

Control (BIC) for Fast Long-Distance Networks”, INFOCOM 2004. Twenty-third

Annual Joint Conference of the IEEE Computer and Communications Societies, PP.

2514 - 2524 vol.4, March 2004.

 [28] Sangtae Ha, Injong Rhee, Lisong Xu. “CUBIC: A New TCP-Friendly High-

Speed TCP Variant”, ACM SIGOPS Operating Systems Review - Research and

developments in the Linux kernel, PP. 64-74, vol. 42, July 2008.

 [29] Robert Morris. “Scalable TCP Congestion Control”, Proceedings of the IEEE

INFOCOM 2000 Conference, PP. 1176 – 1183, vol. 3, Mar 2000.

[30] S. Floyd. “HighSpeed TCP for Large Congestion Windows”, RFC 3649,

December 2003.

[31] D. Leith, R. Shorten. “H-TCP: TCP for high-speed and long-distance networks”,

Proceedings of PFLDnet, 2004.

 [32] Shao Liu, Tamer Basar, R. Srikant. “TCP-Illinois: A loss- and delay-based

congestion control algorithm for high-speed networks”, Performance Evaluation, PP.

417–440, vol. 65, June 2008.

 [33] Carlo Cainin, and Rosario Firrincieli. “TCP Hybla: a TCP enhancement

for heterogeneous networks”, International Journal of Satellite

Communications and Networking, PP. 547 – 566, vol. 22, October 2004.

 [34] Cheng Peng Fu, and Liew, S.C. “TCP Veno: TCP enhancement for transmission

over wireless access networks”, PP. 216 – 228, vol. 21, February 2003.

 [35] A Kuzmanovic, EW Knightly. “TCP-LP: low-priority service via end-point

congestion control”, Networking, IEEE/ACM Transactions, PP. 739 – 752, vol. 14,

August 2006.

95

 [36] Andrea Baiocchi, Angelo P. Castellani and Francesco Vacirca. “YeAH-TCP: Yet

Another Highspeed TCP”, Proceedings of PFLDnet, 2007.

 [37] Sam Jansen and Anthony McGregor. “Simulation with Real World Network

Stacks”, IEEE - Simulation Conference, December 2005.

 [38] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel

Camara, Thierry Turletti, Walid Dabbous. “Direct code execution: revisiting library

OS architecture for reproducible network experiments”, Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies, PP. 217 –

228, 2013.

 [39] Hajime Tazaki, Frédéric Urbani, Thierry Turletti. “DCE Cradle: Simulate

Network Protocols with Real Stacks for Better Realism”, Proceedings of the 6th

International ICST Conference on Simulation Tools and Techniques, PP. 153 – 158,

2013.

	Cleveland State University
	EngagedScholarship@CSU
	2014

	TCP FTAT (Fast Transmit Adaptive Transmission): a New End-To-End Congestion Control Algorithm
	Mohammed Ahmed Melegy Mohammed Afifi
	Recommended Citation

	tmp.1458054365.pdf.w4qyC

