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TCP FTAT (Fast Transmit Adaptive Transmission): A NEW END-TO- 

END CONGESTION CONTROL ALGORITHM 

 
MOHAMMED AHMED MELEGY MOHAMMED AFIFI 

 
 

ABSTRACT 
 

 

Congestion Control in TCP is the algorithm that controls allocation of network 

resources for a number of competing users sharing a network. The nature of computer 

networks, which can be described from the TCP protocol perspective as unknown 

resources for unknown traffic of users, means that the functionality of the congestion 

control algorithm in TCP requires explicit feedback from the network on which it 

operates. Unfortunately this is not the way it works with TCP, as one of the fundamental 

principles of the TCP protocol is to be end-to-end, in order to be able to operate on any 

network, which can consist of hundreds of routers and hundreds of links with varying 

bandwidth and capacities. This fact requires the Congestion Control algorithm to be 

adaptive by nature, to adapt to the network environment under any given circumstances 

and to obtain the required feedback implicitly through observation and measurements. In 

this thesis we propose a new TCP end-to-end congestion control algorithm that provides 

performance improvements over existing TCP congestion control algorithms in computer 

networks in general, and an even greater improvement in wireless and/or high bandwidth- 

delay product networks. 
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CHAPTER I 

Introduction and motivation 
 

 

 

1.1. Introduction 

 
 

TCP Congestion Control has gone through many improvements and 

enhancements over the past 26 years, since Van Jacobson proposed the original Tahoe 

algorithm in 1988 [1]. One of the most deployed algorithms is TCP NewReno [2], which 

is an improvement over the original TCP Tahoe. The first transition was from TCP 

Tahoe to TCP Reno through adding a new algorithm called Fast Recovery in 1990 by 

Van Jacobson [3]. The second transition was by Sally Floyd and T. Henderson in 1999, 

through enhancing the Fast Recovery algorithm to recover from multiple losses in the 

same window [2]. Since that time, wired networks have advanced and congestion 

became almost the only cause for timeout and data loss in wired networks. At the same 

time, wireless technology has advanced and wireless networks have been deployed 

rapidly, which caused the radio channel errors to be the main source of packets loss after 

congestion in wireless networks. This evolution has required a change in the way the 

congestion signal should be handled. 
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1.2. TCP NewReno currently is not suitable for today’s networks 

 

 

 
 

a. High bandwidth-delay product networks that are currently in increased 

deployment, require a rate of increase in the congestion window (cwnd) that is 

more than a linear increase of one Maximum Segment Size (MSS), every round- 

trip time (RTT) to grab its share of the network bandwidth, which is due to the 

high RTT that encountered in such networks, which are hundreds of milliseconds. 

 

 

b. At the start-up phase, cwnd starts with a maximum of 4380 Bytes [4] and 

increases slowly, which takes a long time to gain a proper window size and hence 

good throughput, and yet a single packet loss identified by three duplicate 

acknowledgments will reduce the cwnd to half of the current value. 

 

 
c. There are no obvious differences between packet loss caused by congestion and 

loss caused by a wireless connection, and hence all losses are assumed to be 

congestion and handled in the same way, which degrades the overall throughput 

for a given connection operating over hybrid network consists of wireless as well 

as wired networks. 
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Since the original congestion control algorithm by Van Jacobson, many proposals 

have been introduced to address these issues. Some of these algorithms which have been 

studied for many years by researchers are Westwood, Vegas, Veno, and SACK. 

Westwood is a modification of the NewReno algorithm in the sender-side, which is less 

sensitive to random loss in the wireless environments than NewReno due to its behavior 

when a loss is detected [5]. Westwood reacts to a segment loss by adjusting the cwnd to 

an estimated value of the network’s available bandwidth. 

Westwood+ [6] introduced a modified bandwidth measurement procedure different from 

the one used in Westwood. The bandwidth estimation procedure used in Westwood+ 

collects a sample every RTT instead of every acknowledgment. This reduces the effect of 

acknowledgment compression. The simulation results presented in this thesis show that 

Westwood+ suffers from performance degradation when operating under reverse traffic. 

Vegas is another end-to-end approach to congestion control, which bases its link 

bandwidth estimation process on the RTT [7]. Vegas measures the RTT, then performs a 

comparison between the actual rate of sending, computed as 

(
Congestion Window

measured RTT
⁄ ) to the expected rate of sending using the 

minimum measured RTT computed, as (
Congestion Window

minimum RTT⁄ ) [7]. After 

computing the difference between the rate of sending and the expected rate of sending, 

three scenarios could happen: 

 

1. The Congestion  Window  is  increased  additively,  if  the  computed  

difference reveals that it is less than threshold α. 
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2. The Congestion Window is decreased additively, if the computed difference 

reveals that it is larger than threshold β. 

3. The Congestion Window is kept the same; if the computed difference is less than 

β and larger than α. 

 

TCP Vegas operates on a principle of congestion prevention, which tries to prevent 

congestion instead of dealing with it after it happens. Studies [8] show that it yields better 

throughput than Reno in specific scenarios, but in other studies such as [9] it has been 

shown that TCP Vegas, when competing with other congestion control algorithms such 

as as Reno that tries to achieve the network capacity in systematic way, cannot allocate 

its share of the network bandwidth. 

 

1.3. Solutions specific for Wireless Networks 

 
 

Because of the problem of the random loss, and the stability of Additive-Increase, 

Multiplicative-Decrease (AIMD) algorithms such as NewReno in wired networks, calls 

have been introduced for new approaches for wireless networks and proposals have been 

introduced as a result [10]. The approaches that are designed for wireless or hybrid 

networks specifically, which usually deploy a split mechanism or a modification to the 

TCP structure, usually does not follow the end-to-end principle [6]. The split approach 

splits a hybrid network into a wired portion and a wireless portion. In such a case, the 

wired portion operates by using a conventional congestion control algorithm, which is 

usually an AIMD approach such as NewReno. Whereas the wireless network access point 

operates by using protocols that manage the acknowledgment returned from the wireless 

network. Some approaches that employ the split-connection semantic are Indirect TCP (I- 
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TCP) [11], Snoop protocol [14], Multicast TCP (M-TCP) [12], and Explicit Congestion 

Notification (ECN) [13]. Each of these mechanisms will be discussed in the next sections. 

Of course the problem of the high bandwidth-delay product of today’s networks          

was not a big concern when these approaches was proposed, which makes them special 

solutions specific for wireless networks. The next subsections discusses these approaches 

in more details. 

 

1.3.1. Indirect TCP (I-TCP) 

 
 

The Indirect TCP (I-TCP) is one of the approaches specific for wireless networks, 

in which a proxy is inserted between the wired network and the wireless network to 

manage the connection, and the wireless network operates using a modified TCP 

congestion control algorithm. 

 

 

1.3.2. Snoop protocol 

 
 

Another approach is the Snoop protocol, which can be considered as one of the 

most successful approaches of these different solutions [15]. TCP Westwood provided 

380% improvement over NewReno, while in the same environment, Snoop provided a 

400% improvement over NewReno. The Snoop protocol is based between the wired 

network and the wireless connection. Every packet sent from the wired network to the 

wireless network is cached at the snoop base. When an acknowledgment is received from 

the wireless connection, snoop checks for duplicate acknowledgment, if there are 

duplicate acknowledgment, snoop retransmits the reported lost segment by the duplicate 

acknowledgment cached packets, and the duplicate acknowledgment is held at the snoop 
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base. If the retransmission is successful, Snoop will resume the transmission as normal; 

otherwise snoop sends the duplicate acknowledgment through the wired connection to the 

sender implicitly reporting congestion. 

 

1.3.3. Multicast TCP (M-TCP) 

 
 

Multicast TCP (M-TCP) is another approach to deal with wired/wireless 

connections and specifically the wireless links that have low bit rate. M-TCP operates by 

splitting the nodes connected through the wired connection FH (fixed-host) from the 

nodes connected through the wireless connection MH (mobile-host) by a SH (supervisor- 

host). The FH operates using the standard TCP congestion control, and the MH operates 

using a special version of TCP. The main purpose of the SH is to manage the 

communication between the FH and the MH, as when the FH sends a packet to the MH, 

the SH receives it first and forwards it to the MH. If the MH stops responding, the SH 

sends an acknowledgment to the FH stating a receiver window size of zero. At that time 

the FH sends a probe packet to the end node (MH), the SH receives the probe packet and 

responds back with a receiver window size of zero. This process ends when the MH starts 

responding, at that time the connection resume normally. 

 

 

1.3.4. Explicit Congestion Notification (ECN) 

 
 

Explicit Congestion Notification (ECN) operates by reserving two bits in the IP 

header and two bits in the TCP header for ECN notification. When there is congestion in 

the network, these bits are set to true, which in turn alerts the receiver that there is 

congestion and the receiver responds with an acknowledgment with the two bits set to 
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true. When the sender receives the acknowledgment from the receiver, the sender reacts 

to the congestion by reducing the cwnd and thus the sending rate. If the sender discovers 

a lost segment and these two bits were set to false, the sender knows that the segment lost 

was due to wireless link errors and not due to congestion and as a consequence, the 

sender does not reduce its sending rate. While in this TCP congestion control approach, 

the loss cause can be identified precisely, ECN requires changes to every node and device 

involved in the communication process between the two end nodes. 

 

1.4. The Thesis 

 
 

We defend the following thesis: 

 
 

A new end-to-end TCP congestion control algorithm that addresses the difficulties 

faced by the current TCP congestion control; namely the initial throughput, operating 

over wireless or hybrid networks and operating over large bandwidth-delay product 

networks. The proposed algorithm does not take the conventional congestion signal 

(duplicate acknowledgment) as guaranteed sign of congestion, instead, it employ a new 

approach in testing the cause of the loss to determine the actual network capacity, and as 

a result does not degrade the throughput due to false congestion signal. 

In this thesis, our focus will be on NewReno as it was the dominant congestion control 

for many years, and Westwood+ because it is one of the most successful end-to-end 

approaches to congestion control that addresses the random loss issue and shares with 

FTAT the same principle of using the returning acknowledgment as a feedback to 

estimate the network capacity, also the comparison of the proposed algorithm will cover 

all of the Linux implemented congestion control algorithms. 
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1.5. Statement of Purpose 

 
 

The function of TCP Congestion Control is to limit the rate of sending when the 

End-to-End path indicates congestion and to allow the expansion of the cwnd to grab its 

share of the network resources, when there is no indication of congestion. 

 

In the early days of the Internet, the only concern when designing and implementing the 

congestion control of TCP was to avoid congestion as much as possible, and to deal with 

congestion when it occurred. Other factors affecting the performance of TCP in today’s 

networks were not, at that time real concerns. With today’s wide deployment of wireless 

technologies, high-speed networks and the high proportion of applications on the 

Internet, which consist of small amount of data that require throughput at the start-up 

phase, TCP with its current congestion control algorithm is no longer a suitable standard 

for all networks. From that point of view a real need for contributions of proposals to the 

Congestion Control of TCP that address the challenges faced by TCP in today’s networks 

and to complies with the End-to-End semantic of TCP is vital. 
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CHAPTER II 

 

NewReno and Westwood 
 

 

 

 

2.1. NewReno 

 
 

2.1.1. Slow-Start 

 
 

The NewReno algorithm consists of four sub algorithms, which are: Slow-Start, 

Congestion Avoidance, Fast Retransmit, and Fast Recovery. The NewReno congestion 

window (cwnd) starts as minimum of one segment and a maximum of four segments, it 

increases exponentially by one segment on each successful delivered segment to the 

destination, indicated by a received acknowledgement at the sender side. The window 

continues to grow until one of two cases takes place: either the capacity of the network is 

hit, and in that case the congestion window returns to one, or the Slow Start threshold 

(ssthresh) is achieved, and in that case the Congestion Avoidance starts. The Congestion 

Window gains the doubles each RTT. 

 

Table 1: Slow Start 
 

 

Begins cwnd <= ssthresh 

Every new Acknowledgment cwnd += MSS 

cwnd gain every RTT: cwnd = 2 × cwnd 

Congestion Avoidance starts cwnd >= ssthresh 
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2.1.2. Congestion Avoidance 

 
 

The Congestion Avoidance state starts when the congestion window has reached 

the Slow-Start threshold, and in that case the congestion window increases slowly to 

prevent a possible congestion. The congestion window increases by one MSS every RTT 

or (MSS × MSS/ cwnd) per each new acknowledgement. 

 

A note here that on the first RTT, the ssthresh might not reflect the actual network 

capacity at all, and as a result the congestion avoidance phase starts and the congestion 

window increases very slowly while it should increase rapidly to achieve the fair share 

capacity of a high bandwidth network, and as a result the stability of a network is 

achieved but no adequate throughput is gained. 

 

Table 2: Congestion Avoidance 
 

 

Starts cwnd >= ssthresh 

Every new Acknowledgment cwnd += MSS × MSS/ cwnd 

cwnd gain every RTT: cwnd += 1 × MSS 

 

 

2.1.3. Fast Retransmit and Fast Recovery 

 
 

If a packet loss is identified by three duplicate acknowledgments after the 

original acknowledgment, the Fast Retransmit starts. In the Fast Retransmit 

phase, the sequence number of the highest transmitted packet is recorded in a 

variable called recover. The ssthresh is set as in the event of retransmit time-out, 

to the maximum of half the flight- size and two MSS. The cwnd is set to the 
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ssthresh + three MSS to compensate the available bandwidth indicated by the 

arrival of the three packets to the receiver indicated by three duplicate 

acknowledgment. The lost segment is then retransmitted. 

 

In NewReno, the new acknowledgment after a duplicate acknowledgment in the 

Fast Recovery phase could refer to full acknowledgment or partial 

acknowledgment. A full acknowledgment is the new acknowledgment that 

acknowledges all of the transmitted data packets, while a partial 

acknowledgment is the new acknowledgment that acknowledges only some of 

the previous transmitted data packets. 

In case of a full acknowledgment, the cwnd is set to either the minimum of 

(flight-size + one MSS) or ssthresh, and the Fast Recovery is exited. In the case 

of a partial acknowledgment, the first sequence number in the cwnd which has 

not been acknowledged yet is retransmitted, the cwnd is deflated back to the 

amount of data that has been acknowledged plus one MSS, and one new packet 

is transmitted [2]. 

 

Table 3: Fast Recovery 
 

recover variable: Highest transmitted packet sequence number 

flight-size: Minimum (rwnd, cwnd) 

ssthresh : Maximum (flight-size/2, 2) 

cwnd: ssthresh + 3 × MSS 

Lost Segment Retransmitted 

Partial acknowledgment: Send highest sequence number not acknowledged 

cwnd: amount of data acknowledged + 1 × MSS 

New Packet is transmitted 



12  

full acknowledgment: 

cwnd: Minimum (ssthresh, flight-size + 1 × MSS) 

Exit Fast Recovery, resume Congestion Avoidance. 

 

 

 
Figure 1: FSM Description of TCP Congestion Control [reproduced from 16]. 

 

2.2. TCP Westwood and Westwood+ 

 
 

Westwood is a congestion control algorithm that was designed to address the 

random loss issue in wireless networks, and is a modification of NewReno that uses a 

different procedure when a loss is detected. In the Slow-Start and Congestion Avoidance 

phases, Westwood increases the cwnd the same way as NewReno, one MSS every new 

acknowledgment, and one MSS every RTT in the Congestion Avoidance phase. 

 

The main difference between NewReno and Westwood is seen when a three duplicate 
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acknowledgment are received, or retransmission time-out occurs. Westwood employs a 

novel bandwidth estimation mechanism that is used to set the cwnd and ssthresh upon 

receiving three duplicate acknowledgments or encountering a retransmission time-out. 

After setting the new values for ssthresh and cwnd, the algorithm performs normal Fast 

Retransmit and Fast Recovery as in NewReno. 

 

 
2.2.1. Congestion Window Update in Westwood 

 

 

 

Westwood relies on the feedback of the returning acknowledgments to estimate 

the network bandwidth. After a loss is acknowledged by way three duplicate 

acknowledgments, the ssthresh and cwnd are adjusted according to the bandwidth 

measured at the time of congestion multiplied by the minimum RTT observed during the 

connection; the result is then divided by MSS. After the ssthresh is set, the cwnd is 

compared to the value of ssthresh, and if the cwnd value is greater than ssthresh, the 

cwnd is set equal to the ssthresh, and the gain rate of cwnd is the same as in the 
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Congestion Avoidance phase. Otherwise, no change is made to the cwnd value, and the 

algorithm resumes in the Slow Start phase [5]. 

If Westwood detects the loss by a retransmission time-out, the ssthresh and the cwnd are 

set in a different way. First ssthresh is set in the same manner, and then ssthresh is 

checked, if the value is less than two, ssthresh is set equal to two. The cwnd is set in the 

same way as in NewReno after retransmission time-out. 

 
After Three Duplicate Acknowledgment: 

 

Table 4: Westwood window update 
 

 

ssthresh: Maximum (Measured Bandwidth × minimum RTT/ Segment Size, 2) 

cwnd > ssthresh: cwnd = ssthresh ( Congestion Avoidance) 

cwnd <= ssthresh:                   ( No Change, Slow Start) 

 

After Retransmission time-out: 
 
 

ssthresh: Maximum ((Measured Bandwidth × minimum RTT/ Segment Size), 2) 

Ssthresh < 2: ssthresh = 2 

cwnd:                                     cwnd  = 1     ( Slow Start) 

 

 

 

2.2.2. Westwood Bandwidth Estimation Mechanism 

 

 

The available bandwidth in the network is calculated as the number of data 

bytes acknowledged during the recent received acknowledgment divided by the 

difference in the time between the most recent acknowledgment and the previous 

acknowledgment. 
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Westwood measures the bandwidth after each acknowledgment is received. When a 

loss happens, the bandwidth sample is processed into a low-pass filter to obtain the 

low- frequency average component of the sample. 

Table 5: Bandwidth Sampling 
 

 

Bandwidth Sample 

(Bk): 

Dk /∆k 

Where 

 

Dk : Data acknowledged in Bytes (Number of acknowledged segments × Segment Size) 

 

∆k : Time of The Received Acknowledgment – Time of The Previous Acknowledgment 

 

 

The filtering process is achieved by Tustin approximation [17, 5] is as follow: 
 
 

 

 
 

 

The coefficient αK has been chosen to be dependent on the inter-arrival time ∆k.  

The relationship between the inter-arrival time ∆k and the coefficient αK is 

inversely proportion. So when the inter-arrival time increases, the value of the 

coefficient decreases and hence the significance of the last filtered sample (Ḃk-1) 

decreases. On the other hand, when the inter-arrival time decreases the 

Bk: The recent bandwidth sample 
 

Bk-1: The pervious bandwidth sample 

ḂK = αK × Ḃk-1 + (1 – αK) (Bk + Bk-1)/2 

Where 

ḂK: The Filtered Bandwidth at time (t = tk) 

αK = (2τ − ∆k)/(2τ + ∆k), where ∆k = tk – tk-1 and 1/ τ is the filter cutoff frequency 

Ḃk-1: The last filtered bandwidth sample 
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significance of the last filtered sample increases. 

 

 

 

2.2.3. Westwood Packet Counting Procedure 

 
 

Westwood uses a very accurate counting procedure for data bytes 

acknowledged. The counting procedure takes into count the delayed and 

cumulative acknowledgements. 

 

Table 6: Westwood packets counting procedure 
 

 

cumul_ack: Current Acknowledgement Sequence – Last Acknowledgement Sequence 

cumul_ack == 0     accounted_for + 1; cumul_ack = 1;   ( Duplicate  

Acknowledgment) 

cumul_ack > 1 && 

accounted_for >= 

cumul_ack 

accounted_for = (accounted_for - cumul_ack), cumul_ack = 1 

 

 

 

         ( Delayed Acknowledgment) 

cumul_ack > 1 && 

accounted_for < cumul_ack 

cumul_ack = cumul_ack - accounted_for; accounted_for = 0 

 

( New Acknowledgment) 

Last Acknowledgment Sequence = Current Acknowledgement Sequence 

 

   ( Update Acknowledgment Sequence Number) 

acked: cumul_ack 

return (acked) 
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Where 

 

cumul_ack: The Number of Acknowledged Segments accounted_for: 

The Number of Duplicate Acknowledgment 

acked : Number of Acknowledged Segments Reported by Current Received Acknowledgment 

 

 

 

2.2.4. Westwood+ 

 
 

Westwood+ is a further refinement of Westwood, with the key 

improvement occurring in the bandwidth measurement procedure. The 

available bandwidth measurement of Westwood+ relies on the acknowledged 

data bytes during one RTT period, which provides a better measurement of the 

available bandwidth and eliminates the dependency of the acknowledgment 

inter-arrival times. 

 

Bandwidth Sampling: 

 

 

 
 

 

The time-invariant filter proposed in Westwood+ is a modified version Westwood 

time- variant filter [15, 18]: 

Where 

 

Dk : Data acknowledged in Bytes ( Number of acknowledged segments × Segment Size) 

 

∆k : The RTT of The Computed Sample 

Bandwidth Sample 

(Bk): 

Dk /∆k 
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Table 7: Westwood Bandwidth Sampling 

 

 
Figure 2: FSM description of Westwood [produced from 18, 19] 

 
 
 
 
 

ḂK = αK × Ḃk-1 + (1 – αK) × Bk 

Where 

ḂK: The Filtered Bandwidth at time (t = tk) 
 

αK = 0.9 

Ḃk-1: The last filtered bandwidth sample 

Bk: The recent bandwidth sample 
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CHAPTER III 

 

FTAT – A New Congestion Control Algorithm 

 

 

One of the most fundamental principles of the Transmission Control Protocol (TCP) 

is that the congestion control must be End-to-End. In other words, there must be no 

explicit feedback from the network between the two end-systems [5]. This design 

principle of TCP allows the connection to be reliable no matter what kind of networks it 

operates on, and the kinds of failures that can be encountered in the intermediate nodes. 

Therefore, any information about the network needs to be obtained using measurements 

and observations, while treating the network as a “black box”. 

 

 
3.1. The Problem 

 
 

The problem that researchers have been studying for many years is how to distinguish 

data loss caused by radio links (random loss), from that caused by congestion. This 

distinction is difficult to pin down, as the data bytes lost during a connection due to radio 

links are random and suggests no specific systematic way that can be traced and differed 

than that of congestion. As well, there are other important attributes involved in the 

reliable communication of the TCP connection such as network stability, fairness of 

shared network bandwidth among nodes sharing a network operating over a TCP 

connection, and inter-protocol friendliness of different kinds of TCP implementations. 

Some researchers suggest an explicit notification from some network devices such as 

routers to determine the connection type, and as a result handle the loss in a proper way 
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[20]. Other researchers have proposed installing proxies between the radio links and the 

wired links to isolate each connection from the other and hence handle losses in a proper 

way [13, 11, 21]. Finally there is the end-to-end solution, which complies with the TCP 

principles as an End-to-End reliable Transmission Control Protocol. 

 

The primary reason to have to distinguish data loss from random loss from that caused by 

congestion is that the data loss in the two cases needs different treatment. The loss caused 

by congestion requires immediate action from the TCP sender to reduce the rate of 

segments transmitted to the network in order to avoid congestion collapse, while the 

random loss should not have any effect on the rate of sending as the loss cause is not 

urgent (or repeatable). In reality, however, the original TCP (Reno) does not have a 

mechanism to distinguish between the random loss from congestion loss, as a result any 

segment loss is considered congestion and the cwnd is cut to half if the loss signal is three 

duplicate acknowledgments, and reduced to one segment if the loss signal is a 

retransmission time-out. 

 

 
3.2. Solution 

 
 

The proposed solution is whenever a loss signal has been activated, the network 

capacity is “tested” to measure the reality of the loss cause. One of the ways this “testing” 

can be performed is by sending a defined amount of data, and observing the received data 

at the end-node in a specific period of time, then adjusting the cwnd accordingly. In 

correspondence to the loss scenario, duplicating the same environment with the same 

attributes were the loss occurred reveals the cause of the loss; duplicating the same 
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environment in terms of one RTT and the cwnd size. In the next section, a visualization of loss 

scenarios is presented. 

 

 

3.3. End-to-End Loss Scenario 

 

 

 
3.3.1. Ideal Congestion Scenario 

 

 

 
 

 
 

Figure 3: Black Box Principle in the Presence of Congestion 

 

In Figure 3, a TCP sender is injecting data segments into the network, which is 

from the TCP sender’s perspective a “Black Box”. The network is facing congestion, 

and as a consequence, only half of the data segments have reached the TCP receiver, 
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and the other half has dropped by the network. Acknowledgments of the received 

segments will be sent to the sender. 

 

3.3.2. Ideal Wireless Segments Loss 
 

 

 
 

 
 

Figure 4: Black Box Principle in the Presence of Random Loss 

 

In this scenario, a TCP sender is sending a stream of data segments into the 

network, the network has unreliable wireless links which drops data segments. The 

result will be that most of the data segments will reach the destination node, 

acknowledgments from the receiver will be sent back to the sender, and very few data 

segments (in the range of 1-5%) will be dropped. 
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3.3.3. Actual Scenario 

 
 

In an actual scenario, the network may have many paths with numerous users 

sharing the network. Further, the network may have many links with different 

connections. As an example, a TCP client can be in one country, and the TCP server 

is in totally different geographic region. As a result, the data segments can face either 

of the two kinds of data loss. 

 

 
 

Figure 5: Black Box Principle in the Presence of Congestion and Random Loss 

 

 

In such a case, the data sent through the network by the TCP sender has gone through 

hybrid networks, and has experienced loss due to wireless links and congestion. This 

scenario also signifies the importance of the fundamental principle of TCP, the end-to- 

end approach to congestion control. In such a scenario, the TCP sender needs to be able 
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to decide whether to (a) decrease the cwnd to the correct network capacity and prevent 

congestion collapse, or (b) keep the cwnd the same, because random loss is not a 

predictor of future congestion collapse 

The key contribution of the FTAT approach is in implicitly determining the cause of data 

loss, and then adjusting the congestion window in the correct manner. The congestion 

window is degraded only when necessary – when the loss is actually caused by 

congestion. 

 

 

 
3.4. FTAT Approach 

 
 

FTAT and Westwood share the same principle of using the feedback of returning 

acknowledgments to measure the network capacity and adjust the cwnd accordingly. 

However, Westwood’s filtering mechanism has its own drawbacks. Filtering the 

measured capacity samples is good from one point of view: it results in an averaged 

sample that is not greatly affected by loss. On the other hand, the filtering mechanism 

assumes that the network has reached its capacity and does not instantly reflect the actual 

capacity of the network at the time of the sample measurement. This can be shown 

through simulations conducted using ns-3 implementation and the Linux-stack kernel. 

This causes Westwood to fall in the same category as NewReno in not predicting the 

actual network capacity and as a result degrading the throughput. 

 

The mechanism employed by FTAT of testing the network when a loss is detected to 

implicitly determine the cause of the loss, and accordingly adjusting the cwnd, is shown 

that it greatly predict the cause of the loss, and as a result produce better throughput. To 
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achieve the “testing”, the same environment when the loss occurred is duplicated, then 

the delivered data bytes to the receiver is computed, and the cwnd is adjusted 

accordingly. Computing the capacity of the network without filtering the samples is good 

from the point that it reflects the actual capacity of the network at the time of the 

sampling and hence can increase the cwnd instead of decreasing the cwnd as in the 

congestion case. 

The next graph demonstrates the testing mechanism effect on the cwnd throughout the 

connection, in random loss case, and in congestion case. 

 

 

 
Figure 6: Adaptive Transmission Effect 

 

 

In the graph it is shown that whenever the testing mechanism is applied, if the cause of 

the loss was congestion, the result will be always a reduction in the cwnd to the correct 
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capacity of the network. When the loss cause is random loss that has no relevance to the 

network capacity, the result of the testing is an adjustment of the cwnd to the right 

capacity of the network, which can lead sometimes to reduction in the cwnd and other 

times expansion in the cwnd. 

 

 

 
3.5. TCP FTAT Congestion Control 

 
 

TCP FTAT is a new end-to-end congestion control algorithm, which is a modification 

of Reno that does not require modifications to the TCP structure, and only requires 

installation in the TCP sender side. TCP FTAT achieves much higher throughput/ 

goodput gain over the other TCP congestion control algorithms. By way of ns-3 

simulations, we show that it can achieve more than 22900% and 8500% goodput gain 

over NewReno and Westwood+, respectively, in congested networks as well as in 

wired/wireless/hybrid networks due to its adaptive mechanism in adjusting the cwnd to 

the right network capacity and ensuring the delivery of the lost segments in a timely 

manner. In high bandwidth-delay product networks, TCP FTAT outperforms most of the 

TCP congestion control algorithms in the throughput/goodput gain. TCP FTAT does not 

degrade the cwnd dramatically each time a loss occurs, as FTAT is sensitive to the nature 

of the data loss. FTAT does not degrade the cwnd directly when a loss occurs, instead the 

effect of loss is only observed in the overall network bandwidth measurement. 
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The congestion window, which characterizes the behavior of the congestion control 

algorithm, has a specific pattern in the case of NewReno and other similar congestion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: NewReno Congestion Window Pattern 

 

control algorithms, which try to “guess” the available bandwidth in the network. For 

example due to the halving of cwnd when three duplicate acknowledgments are received, 

NewReno’s cwnd almost follows a “sawtooth pattern”, the following graph emphasize 

the sawtooth pattern of NewReno. 

TCP FTAT’s cwnd, on the other hand, does not follow such a specific pattern; FTAT 

uses an Adaptive-Increase Adaptive-Decrease paradigm, which measures the network’s 

available bandwidth, and uses these measurements in order to determine the inflation or 

deflation of cwnd. 

 

FTAT is based on two states, Adaptive Transmission, and Additive Increase. The 

 

Adaptive Transmission measures the network capacity in a duration of one RTT, then the 
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data bytes measured is used to adjust the cwnd. If the measured capacity indicates that the 

available bandwidth is lower than the current size of the congestion window, the result is 

cwnd degradation to the correct capacity of the network. If the measured capacity 

indicates higher available throughput, however, the cwnd is inflated to the available 

network capacity. This possible increase in the size of the congestion window is key to 

the increased performance afforded by TCP FTAT. 

In the Additive Increase phase, the cwnd increases by a combination of the linear and 

exponential increase of Reno’s two phases: Slow Start and Congestion Avoidance. 

The purpose of the Additive Increase algorithm is as follows: 

 

1. After an initial estimation of the network capacity, Reno assumes that the network 

is in a stable state and the capacity of the network has been reached. 

2. An Additive increase paradigm takes over to probe for any additional changes to 

the network capacity. 

 

 

3.5.1. Initial Congestion Window 

 
 

The quality of service for the majority of applications on the World Wide Web faces 

degradation due to the size of the initial congestion window of AIMD protocols. The 

initial congestion window of Reno is limited to 4380 bytes, which causes the majority of 

applications on the WWW (that transmit multiples of hundreds of KB) to take longer 

times in the start-up phase than it would take in normal transmission [12]; in addition to 

the large products of bandwidth-delay networks that are in increased deployment, which 

cause the segments to take a long time to travel to the destination and the 
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acknowledgment to return to the sender. At the same time, if the congestion window is 

too large in the start-up phase with no knowledge of the condition of a network, that 

could lead to congestion and may threat the stability of the Internet. FTAT adjusts the 

cwnd at the start-up phase to 64 KB, which corresponds to the start phase of Congestion 

Avoidance in Reno algorithm. 

 

 

3.5.2. FTAT Algorithm 

 
 

The connection starts with cwnd set to 64 KB, which allows a predictable amount of 

initial throughput. With the first cwnd data bytes sent to the network, the 

acknowledgments are monitored and counted. After the first round-trip time (RTT) has 

elapsed, the cwnd is set to the network’s capacity computed as the data bytes 

acknowledged during the last RTT. The Additive Increase algorithm starts when the 

cwnd value is equal to or greater than the Congestion Window Threshold 

(cwndthreshold), which increases the cwnd linearly by one MSS every RTT. If the cwnd 

is less than the cwndthreshold or if the cwnd value is less than 64 KB as Reno, the cwnd 

increases exponentially by one MSS upon receiving each new acknowledgment. 

 

The cwndthreshold stores the value of the cwnd just before a segment is lost, and hence if 

the Adaptive Transmission algorithm sets the cwnd to a lower value, the Additive 

Increase algorithm is acknowledged that the capacity of the network is greater and is 

probing in a fast-paced for the additional bandwidth. When the cwnd reaches the value of 

cwndthreshold, the Additive Increase algorithm is alerted that the cwnd is in the range of 

a previous congestion, and hence the rate of cwnd increase is slowed down. 
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The Adaptive Transmission phase starts when there is an alert of change to the network 

capacity by way of three duplicate acknowledgements. In the Adaptive Transmission 

state, the packet with the sequence number reported to be lost is retransmitted, and a new 

bandwidth estimation procedure is initiated. Upon receiving a new acknowledgement or 

duplicate acknowledgement, a new packet is transmitted in the network. When the 

number of duplicate acknowledgements reaches three duplicate acknowledgements, the 

lost packet is retransmitted, and for any additional duplicate acknowledgement a new 

packet is transmitted through the network. After a period of RTT, the new bandwidth is 

measured and the Additive Increase state resumes. If the algorithm in the Adaptive 

Transmission state and a retransmission time-out (RTO) occurs, the Adaptive 

Transmission state ends and the bandwidth is computed for the data acknowledged in the 

elapsed period of the RTT. The occurrence of RTO in the Additive Increase state is 

treated the same way as the NewReno: the cwnd is set to one MSS. Figure 8 shows a 

finite state machine depiction of FTAT. 

 
Figure 8: FSM description of FTAT 
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CHAPTER IV 

 
Implementation of FTAT in ns-3 

 

 

 
 

4.1. The Network Simulator – 3 

 
 

The network simulator (ns) is a discrete-event network simulator for Internet 

Systems [22, 23, 24]. Network simulators are widely deployed in the networking research 

community, and ns-2 alone was reported to be used for over 50% of ACM and IEEE 

simulation-based research papers for the period from 2000 to 2004 [24]. 

The ns-3 project was adapted by Tom Henderson, Sumit Roy (University of 

Washington), George Riley (Georgia Tech.), and Sally Floyd (ICIR) to address the 

weaknesses of ns-2, mainly in aligning with how research is currently conducted, and to 

improve the credibility of the network simulator. ns-3 is an open source network 

simulator intended to replace ns-2, although ns-3 is not considered an extension to ns-2 

due to a new implementation which replaces the OTcl API with C++ wrapped by Python, 

and replaces the guts of the simulator completely, and introduces new visualizers. 

 

4.2. The Implementation of TCP in ns-3 

 

TCP in ns-3 is implemented using several classes that provide reliable transport 

protocol services and communicate with the network layer. The classes that implement 

the TCP protocol are TcpSocketBase, TcpSocket, TcpHeader, TcpTxBuffer, 

TcpRxBuffer, TcpL4Protocol, and the different congestion control algorithms 
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implementations. 

 

 The TcpSocketBase class inherits from TcpSocket, and provides the interface 

required for the application layer to the sockets, and is the base for the different 

TCP congestion control variants. 

 The TcpSocket class is an abstract class that contains the attributes for required 

for a TCP socket. 

 The TcpHeader class contains the implementation for a TCP segment header. 

 

 The TcpTxBuffer class provides a buffer service to the application layer, which 

allows the data to buffer before send out. 

 The TcpRxBuffer class provides a buffer for the data coming from the network 

layer before it is passed up to the application layer. 

 TcpL4Protocol class provides an interface for the network layer to the sockets, 

and it is responsible for the interactions with the network layer, and it performs 

the data checksum for the incoming packets. 

Ns-3 provides different implementation of the congestion control algorithms, which 

inherits from the TcpSocketBase class. These algorithms are Westwood/ Westwood+, 

NewReno, Reno, and Tahoe. 

 

4.3. Implementation of FTAT in ns-3 

 
 

The tcp-FTAT class includes the TCP FTAT congestion control implementation. This 

class inherits from the class TcpSocketBase and provides the required functionalities for 

the TCP FTAT. The main functions are ReceivedAck(), NewAck(), DupAck(), 

EstimateRTT(), EstimateBW(), NewAckProcessing(), CountAck(), 
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UpdateAckedSegements(), and Retransmit(). The class diagram is shown in Fig. 1. 

 

 receivedAck() is an inherited function from the TcpSocketBase class. It 

determines if the received acknowledgement is a new acknowledgement or a 

duplicate acknowledgement. Based on this check, either the newAck() function or 

the dupAck() is invoked. 

The newAck() function is invoked after receiving a new acknowledgement. The 

way the cwnd is handled in newAck() is dependent on the state Adaptive 

Transmission or Additive Increase. If the algorithm state is in Additive Increase, 

the cwnd is compared to cwndthreshold to determine the rate of increase. If the 

cwnd is less than cwndthreshold, then the rate of increase would be exponential, 

one MSS every new acknowledgement. If the cwnd is equal to or greater than the 

cwndthreshold, then the cwnd is increased at a rate equal to the Maximum of 

((MSS*MSS/cwnd), 1) + cwnd, which increases the cwnd by approximately one 

MSS every RTT. It worth noting here that this formula is specified in RFC2581 

[25].  

If the algorithm state is Adaptive Transmission, the newAck() function will be 

invoked once a new acknowledgement is received, at this stage the newAck() 

function will evaluate the variable m_pcktsRound to determine the number of 

data packets acknowledged and transmit the same number of packets to the 

network. 
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Figure 9: TCP Implementation in ns-3 including FTAT 

 

 The dupAck() function is called after a duplicate acknowledgement is received. If 

the Algorithm state is Additive Increase, there are no any actions taken by the 

dupAck() function except when the number of duplicate acknowledgements 

reaches 3. When the number of duplicate acknowledgements reaches 3, the lost 

segment is retransmitted and the Adaptive Transmission state is activated without 

any changes to the cwnd or cwndthreshold variables. If the state of the algorithm 

is Adaptive Transmission and the dupAck() is called, on every single call to the 
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dupAck() function, the value of the m_pcktsRound is evaluated for the number of 

data packets acknowledged and a new packet is transmitted to the network. 

 The estimateRTT() function is called to calculate the last RTT. In tcp-FTAT, 

estimateRTT() performs the following two tasks: 

 Perform the last RTT calculation. 

 

 Schedule a new bandwidth measurement for a period of RTT. 

 

 The estimateBW() function is called by estimateRTT() after the RTT period 

has elapsed and it is time to adjust the cwnd to the estimated bandwidth and 

deactivate the Adaptive Transmission. The bandwidth is measured as the 

maximum of (m_SegmentSize, m_ackedSegements * m_SegmentSize) were 

the m_SegmentSize is the MSS and m_ackedSegements is the number of 

acknowledged data packets during the state of the Adaptive Transmission and 

it is reset after setting the cwnd to prepare for a new measurement. 

 The newAckProcessing() function performs the housekeeping for the Adaptive 

Transmission state. It is called by the estimateBW() function and returns the 

control to estimateBW(). 

 The countAck() and updateAckedSegements(), are two functions of the 

Westwood+ which perform the counting of the number of data packets 

acknowledged. It is a novel procedure and gives an accurate calculation for the 

data packets and takes into account the delayed and accumulative 

acknowledgements. They are called from the receivedAck() function, First the 

countAck() function is called to calculate the number of acknowledged packets, 

and then the  updateAckedSegements() is called to update the m_ackedSegements 

variable. 
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 The Retransmit() function is called after a RTO occurs, it performs the 

retransmission by calling DoRetransmit() of the TcpSocketBase class, and 

deactivate the Adaptive Transmission if active and calls the EstimateBW(), or 

adjusts the cwnd to one MSS if the algorithm is in the Additive Increase state. 
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CHAPTER V 

 
TCP FTAT Linux-Stack Implementation 

 

 

 

 

 

 

5.1. Introduction 

 
 

The Linux operating system has been the most popular choice for many 

networking applications for more than a decade. These applications include server-side 

technologies, embedded systems, and a significant number of research efforts in the area 

of computer networks. Linux also provides the capability of producing customized 

networking kernels for different networking applications. 

 

Although there are many benefits to using Linux in networking research and applications, 

it lacks good documentation for its TCP kernel source code, which, in turn, requires 

significant effort in reading the source code and to get the required information from 

different resources in order to identify the correct changes to make. 

 

 
5.2. TCP Congestion Control in Linux 

 
 

The Linux kernel source code is implemented in C programming language. TCP 

FTAT is currently implemented in copies of source code for linux-source-3.2.0 and linux- 

2.6.36. The first attempt to implement TCP FTAT in linux-source-3.2.0 was successful, 
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and it was recompiled in Ubuntu 12.04 LTS. The second implementation was in 

linux- 2.6.36, and it was to align with the DCE framework in order to conduct live 

simulation with the Linux TCP kernel stack. 

 

The TCP protocol implementation in Linux is shown in Figure 10 and Figure 11. Since 

the congestion control implementation of TCP FTAT is only in the sender-side, the 

framework has not been changed; only additional congestion control implementation 

has been added. There are currently 13 congestion control protocols available in 

Linux, which are Cubic, Reno, BIC, Westwood, Highspeed, Hybla, HTCP, Vegas, 

Veno, Scalable, LP, Yeah, and Illinois. A brief description on each of these algorithms 

are as follows. 

 TCP Tahoe [1]: The original congestion control by van Jacobson, which 

consists of Slow Start, Congestion Avoidance, Fast Retransmit. 

 TCP Reno [26]: A modification of TCP Tahoe, with the addition of Fast 

Recovery. This algorithm later became the de facto standard. 

 TCP NewReno [2]: A modified version of Reno, also became a standard. 

 

 TCP BIC [27]: Binary Increase Congestion, where the cwnd grows more rapidly 

than NewReno by doing binary search to reach the middle point of the cwnd 

when the congestion was last observed, and then grow rapidly before reaching 

the congestion point, then slows down the rate of growth when the congestion 

point is reached, then the window grows rapidly again in search of another 

congestion point. 

 TCP Cubic [28]: The current default congestion control algorithm in Linux, it is 

designed to address for the high-speed networks, and it is the successor of TCP 
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BIC. 

 TCP Scalable [29]: A congestion control algorithm designed on the idea of 

making the time of recovery from a congestion constant and unrelated to the 

congestion window size. 

 TCP HighSpeed [30]: A congestion control algorithm that uses a cutoff point to 

determine the increase factor and the decrease factor in the AIMD paradigm. 

 TCP HTCP [31]: The HTCP uses the time since the last congestion as a factor in 

increasing the congestion window. It has an accurate function based on the RTT 

to measure the queue size of the bottleneck link along the path, and it uses the 

measurement to adjust the congestion window decrease factor. 

 TCP Vegas [7]: Uses the measurement of the RTT to determine the state of the 

congestion in the connection and as a result, decreases or increases or maintains 

the congestion window size. 
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Figure 10: Classes interaction in Linux 

 

 TCP Westwood [5, 6]: An Additive Increase Adaptive Decease paradigm 

algorithm that uses the returning acknowledgement as implicit feedback to 

determine the congestion window size. 

 TCP Illinois [32]: Congestion control algorithm that uses the delay of queuing to 

calculate the factors of the congestion window increase and decrease. 
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 TCP Hybla [33]: Attempt to determine the increase rate of the congestion window 

based on the measured RTT to ensure flows fairness. It uses a reference value for 

the RTT to determine the state of the connection. 

 TCP Veno [34]: Uses the same paradigm as NewReno in adjusting the congestion 

window, but it tries to detect the random losses based on the delay of queuing, 

and it reduces the congestion window by a factor of 0.20 not the halve as 

NewReno. 

 TCP LP [35]: A Low-Priority Service congestion control that attempt to utilize 

the unused bandwidth in a TCP flows. 

 

 TCP YeAH [36]: Yet Another Highspeed TCP, is a congestion control algorithm 

that uses two modes for the congestion window growth, namely, Slow mode and 

Fast mode. In the slow mode, it implements the Reno rules of growth to the 

congestion window. While in the Fast mode, it implements the Scalable rules of 

growth to the congestion window. 

 

The TCP Congestion Control implementation in Linux uses states to differentiate 

between different congestion states of the connection. It provides more than just the 

standard states of NewReno, but allows more control such as reversing the cwnd 

decreases. There are two paths for an additive increase state: Slow Path and Fast Path. 

For the slow path to be active, there must be a duplicate acknowledgement. The fast path 

takes place when there are no duplicate acknowledgements and the connection is open. 

The states used by Linux to determine the state of the connection and hence take a proper 

action by congestion control are Open, Disorder, CWR, Recovery, and Loss. 
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Figure 11: TCP function interaction in Linux 

 

 Open State: when there are no duplicate acknowledgements, the packets 

received are forward to the Fast Path, and it is the normal state. 

 Disorder State: When there are duplicate acknowledgements or SACK, and the 

packets are forwarded to the Slow Path. 
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 CWR State: The state, which handles congestion notifications that come from 

congestion control based on explicit notifications such as ECN. 

 Recovery State: It is stated when there is indication of loss and it is time to enter a 

recovery state, it has the Fast Retransmit operations. 

 Loss: It is entered due to loss of RTO or SACK reneging. 
 
 
 

5.3. FTAT Implementation in Linux TCP Stack 

 
 

The TCP FTAT implementation in the TCP Linux kernel source code resides in the 

tcp_FTAT.c in the ipv4 sub folder of the net folder in the Linux kernel source code. 

Additional header file has been added for the tcp_output.c in order for FTAT to use some 

functions in tcp_output.c to perform packets transmission in the Adaptive Transmission 

State. 

 

 tcp_FTAT_init(): initializes the variables at the start of the connection. 

 

 tcp_FTAT_pkts_acked(): It is called after processing some packets. It adjusts the 

RTT to the SRTT (Smoothed Round Trip Time) after, and checks the processed 

packets’ RTO status to deactivate the Adaptive Transmission and sets the cwnd to 

the measured capacity of the network, or sets the cwnd to one MSS in case of 

Additive Increase. 

 westwood_acked_count(): A function from tcp_westwood, which performs the 

counting procedure for the acknowledged bytes after receiving an 

acknowledgement. 

 tcp_FTAT_Bandwidth(): called after Adaptive Transmission, performs the 

capacity calculation of the network, and adjusts the cwnd. 



44  

 tcp_FTAT_cwndthreshold(): returns the value of the FTAT_cwndthreshold. 

 

 tcp_init_data_skb(): Is called from tcp_FTAT_probe_skb(), prepares control bits, 

and performs the sequence number sliding for the packets which are sent in the 

Adaptive Transmission state. 

 tcp_FTAT_probe_skb(): Is called from tcp_FTAT_probe_skb() to send new 

packet in the Adaptive Transmission upon reception of new acknowledgement 

or duplicate acknowledgement. 

 tcp_FTAT_additive_increase(): The additive increase function which checks the 

cwndthreshold in comparison to the cwndthreshold to determine the rate of 

increase. 

 

 

 tcp_FTAT_adaptive_transmission(): The center piece function which holds most 

of the logic of FTAT in TCP Linux. It is called in the Slow path and Fast path, 

and it performs the following tasks: 

 Checks the RTT to start a new bandwidth measurement. 

 

 Initializes the snd_una variable on the first received acknowledgement 

to adjust the sequence number of the first unacknowledged byte. 

 Determines if it is time to switch from Adaptive Transmission to Additive 

Increase and adjust the cwnd to new capacity of the network. 

 Determines if it is time to activate the Adaptive Transmission state, if it is 

not active. 

 In the Adaptive Transmission state, calls tcp_FTAT_probe_skb() to send 

packets. 

 tcp_FTAT_event(): Switches between states, manages which function gets 
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called on each state. 

 tcp_congestion_ops(): Provides the information for the congestion control 

handler interface. 

One important setting for using FTAT is to adjust the sending and receiving buffers to a 

fair value in order for the end-nodes to be able to buffer a good amount of data in the 

presence of packets disorder. The current value that has been adjusted for the buffer sizes 

in Linux and ns-3 is 5 MB. 
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CHAPTER VI 

 
A Mathematical Model of TCP FTAT 

 

 

 
 

In this chapter we derive a mathematical model of FTAT Adaptive-Increase Adaptive- 

Decrease mechanism. Because FTAT is a sender side modification of NewReno and for 

the sake of simplicity, we follow the same arguments developed by Kelly in his paper 

“Mathematical modeling of the Internet” [14], and that was used in [6] to derive a 

mathematical model for TCP FTAT. 

  
Theorem: A simplified steady state throughput of the FTAT algorithm 

 is as follow: 

 

Equation 1 

 

𝑇𝐹𝑇𝐴𝑇  =  lim
𝑡 → ∞

𝑥(𝑡) =
𝐵

2
+ √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝
 

 

Proof. To develop the model we consider a TCP flow controlled by FTAT, 𝑝 is the probability 

of loss signal at the window update, 𝐵 is the available bandwidth share for the flow, 𝑅𝑇𝑇 is the 

mean round trip time. The 𝑐𝑤𝑛𝑑 is updated upon receiving an Acknowledgement, we assume 

that the connection is in stable state, and that the 𝑐𝑤𝑛𝑑 is greater than the 𝑐𝑤𝑛𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

which increase the 𝑐𝑤𝑛𝑑 by 
1

𝑐𝑤𝑛𝑑
 upon receiving new acknowledgement. In the case of 

congestion signal, the algorithm enters the Adaptive Transmission state, and the 𝑐𝑤𝑛𝑑 is 

updated after one 𝑅𝑇𝑇 or time-out by 𝐵 ∙  𝑅𝑇𝑇 –  𝑐𝑤𝑛𝑑. By the given assumptions, we derive 
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the following update step for the 𝑐𝑤𝑛𝑑: 

Equation 1 

∆ 𝑐𝑤𝑛𝑑 =
1 − 𝑝

𝑐𝑤𝑛𝑑
+ (𝐵 ∙   𝑅𝑇𝑇 − 𝑐𝑤𝑛𝑑) ∙   𝑝 

Since an approximation of the rate at which the 𝑐𝑤𝑛𝑑 is updated in the Additive increase state 

is 𝑥 =
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
, the time between the update steps in the Additive Increase state or the start of the 

Adaptive Transmission state is about 
𝑅𝑇𝑇

𝑐𝑤𝑛𝑑
, and the expected change in the rate 𝑥 per unit time 

is approximately: 

𝜕𝑥(𝑡)

𝜕𝑡
=

(
1 − 𝑝

𝑐𝑤𝑛𝑑⁄  + (𝐵 ∙   𝑅𝑇𝑇 − 𝑐𝑤𝑛𝑑) ∙   𝑝)
𝑅𝑇𝑇

⁄

𝑅𝑇𝑇
𝑐𝑤𝑛𝑑⁄

 =  
1 − 𝑝

𝑅𝑇𝑇2
+ (

𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
 ∙  𝐵 − (

𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
)

2

) ∙ 𝑝 

 

Equation 2 

𝜕𝑥(𝑡)

𝜕𝑡
=  

1 − 𝑝

𝑅𝑇𝑇2
+ (𝑥(𝑡) ∙ 𝐵 − 𝑥2(𝑡))  ∙ 𝑝  

Equation 3 is separable differential equation. After separating the variables, Equation 3 can be 

written: 

Equation 3 

− 𝜕𝑡 ∙ 𝑝 =  
𝜕𝑥(𝑡)

𝑥2(𝑡) − 𝑥(𝑡) ∙  𝐵 − 
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

 

The solution can be obtained by integrating each member 

∫ −𝑝 𝜕𝑡 =  ∫
1

𝑥2(𝑡) − 𝑥(𝑡) ∙  𝐵 −  
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝

𝜕𝑥(𝑡) 

↓ 

𝑥(𝑡) =  
𝑥1 − 𝑥2 ∙ 𝐶 ∙ 𝑒−𝑝∙𝑡∙(𝑥1−𝑥2)

1 − 𝐶 ∙ 𝑒−𝑝∙𝑡∙(𝑥1−𝑥2)
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Where 𝐶 depends on the initial conditions, and the roots of the equation  

𝑥2 − 𝑥 ∙  𝐵 −  
1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝
 = 0 

↓ 

𝑥1,2 =
𝐵

2
± √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝
 

And a simplified steady state throughput of the FTAT algorithm can be described as: 

 

𝑇𝐹𝑇𝐴𝑇 = lim
𝑡→∞

𝑥(𝑡) =
𝐵

2
+ √

𝐵2

4
+

1 − 𝑝

𝑅𝑇𝑇2 ∙ 𝑝
 

By deriving the steady state throughput of the FTAT algorithm, we are able to show the 

following corollary. 

 

Corollary: The FTAT congestion control is stable (𝑻𝑭𝑻𝑨𝑻 ≤ 𝑩) 

Proof. From Equation 4, we can argue that 𝑇𝐹𝑇𝐴𝑇 is always less than or equal to the available 

bandwidth, 𝐵. To show that, we use the same contradictions in [6], that is if we assume that  

𝑇𝐹𝑇𝐴𝑇 > 𝐵, this assumption leads to congestion collapse, and this leads to drop probability, 

𝑝 up to 1. As a result Equation 4. will result 𝑇𝐹𝑇𝐴𝑇 = 𝐵, this result will contradict the 

assumption. And by this we can conclude that 𝑇𝐹𝑇𝐴𝑇 is always less than or equal to 𝐵, in other 

words 𝑇𝐹𝑇𝐴𝑇 ≤ 𝐵. 
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CHAPTER VII 

 
Evaluation based comparison of TCP-NewReno, TCP-Westwood+, and 

TCP-FTAT using ns-3 

 

In this chapter we compare the performance of NewReno, Westwood+, and FTAT 

congestion control algorithms using ns-3 in order to evaluate the behavior of each 

algorithm in different networks.  NewReno and Westwood+ are the native 

implementations in ns-3. For wireless connections, a packet error model is installed on the 

links, and the error rate is denoted as 𝑝. For all topologies, unless otherwise stated, the 

default configuration of the buffer size and MSS are 5MB and 536 bytes, respectively. 

 

7.1.Topology One 

 

 

 
Figure 12: First Topology 

This topology examines the congestion control algorithm when the segments must 

travel through different connections. The first connection is a wireless connection with 

2% packet loss error, the next connection is high Bandwidth-delay product (BDP) 

network. The last connection is an Ethernet connection. Packets may experience losses 

due to the wireless connection, and experience large RTT. The simulation time is set to 

1000 seconds. 
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a) NewReno cwnd 

 

 

 

b) Westwood+ cwnd 

 

 
c) FTAT cwnd 

 

Figure 13: cwnd graphs for Topology one 
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The congestion window vs time graph (Figure 13) is helpful in confirming the congestion 

control behavior in different situations, for example NewReno reacts to a retransmission 

timeout (RTO) by resting the congestion window to one packet, while in the case of triple 

duplicate acknowledgement, NewReno halves the congestion window. Westwood+ 

reduces the congestion Window upon receiving three duplicate acknowledgements, by 

adjusting it to the last bandwidth measurement obtained, and FTAT starts new bandwidth 

measurement and enters the Adaptive Transmission which can identify a false alert of 

congestion and in that case, the congestion window increases. In case of congestion, 

FTAT reduces the congestion window to the available network bandwidth. 

The cwnd graph of NewReno shows the behavior of the slow start and the congestion 

avoidance. Because of the long RTT and the loss rate, the window is going to one MSS 

more often, and it does not grow more than 12,000 bytes. On the other hand, Westwood 

shows more growth to the cwnd, also goes to one MSS more often, and the window does 

not grow more than 20,000 bytes. The cwnd of FTAT shows more growth even under the 

long RTT and the loss rate, the cwnd growth up to 500,000 Bytes, and goes to one MSS 

less often. 
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a) NewReno  

 

 
 

b) Westwood+ 

 

 
c) FTAT 

 

Figure 14: RTT graphs for topology two 
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The three graphs (Figure 14), show almost the same range. NewReno shows almost 

constant behavior along the connection time. Westwood+ exhibits slight difference in the 

RTT at some points. While FTAT shows totally new behavior for the RTT, which gives 

sometimes shorter RTTs and other times a bit longer RTTs. This is due to the nature of 

the FTAT algorithm, which tries to adapt to the network available bandwidth with time, 

so the algorithm tries to send more data in the network, but because this is a 

heterogeneous network with different links and different propagation delays with packet 

loss probability of 2%, data gets lost and timeout occurs, which increases the RTT. 

The graphs in Figure 15 shows the sequence number advancement for the packets 

throughout the connection life time. 

 
Figure 15: Sequence number topology one 
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The FTAT algorithm is shown in the red line, while Westwood in the blue line, and 

NewReno in the black line. The graph shows that NewReno and Westwood+ almost 

have linear packet sequence number advancement. NewReno reached sequence number 

12638881, Westwood+ reached 28204321, and FTAT reached 205139529. 

The total throughput for the simulation for the three algorithms is shown in Figure 16. 

Because throughput might sometimes be deceptive as a measure, goodput is shown for 

the three algorithms as well. Goodput is calculated as 

𝑆𝑒𝑛𝑡 𝑏𝑦𝑡𝑒𝑠 –  𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦𝑡𝑒𝑠

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑖𝑚𝑒
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Figure 16: Throughput and Goodput topology one 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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7.2.Topology Two 

 
 

In this topology, a network with various traffic directions share a link of 100 

Mbps and 10 ms delay with the TCP-variant on the server side, and the receiving node 

has a packet loss model of 2%. 10 TCP NewReno senders are injecting traffic in the 

same direction as the TCP-variant, and 10 TCP NewReno nodes are injecting traffic in 

the reverse direction. The access links are 100 Mbps and 1ms delay time. The 

simulation time is 100 seconds. 

 

 
Figure 17: Topology two 
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a) NewReno  

 

 

 

b) Westwood 

 

 
 

c) FTAT 
 

Figure 18: cwnd graphs topology two 
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The cwnd graphs in Figure 18 show that NewReno cwnd growth in the presence of 

reverse traffic and packet loss rate of 2% did not exceed 12,000 bytes except at the 

second 50, which was just a notch, and the window goes to one MSS rapidly. 

Westwood’s cwnd shows less fluctuations with a window growth reaching 20,000 Bytes. 

FTAT shows more window growth reached 350,000 Bytes, and goes to one MSS much 

less often. 

 

 
a) NewReno  

 

 

b) Westwood 
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c) FTAT 
Figure 19: RTT graphs for topology two 

 

 

The RTT graphs in Figure 19 show that NewReno has almost constant range of 

fluctuations for the RTT ranging from 25 ms to about 54 ms. Westwood+ has a higher 

upper limit for the RTT reaches about 60 ms. FTAT has a much lower rate of fluctuations 

for the RTT, and has a lower average RTT of about 29 ms. 

 

 
Figure 20: Sequence number topology two 

The packets advancement sequence number graph in Figure 20 shows that NewReno 
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reached 7,661,585 packets transmitted, Westwood+ reached 14,429,121 packets, and 

FTAT reached 64,793,825 packets. 

 

 
 

 
Figure 21: Throughput and Goodput for topology two 
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In Figure 21, it is shown the throughput/ goodput of the three scenarios. In NewReno 

scenario, all forward and reverse traffic is controlled by NewReno congestion control, the 

NewReno flow under test was unable to grab its share of the network available bandwidth 

of the 100 Mbps, the throughput is measured to be about 0.635 Mbps. 

In Westwood scenario, all forward and reverse traffic is controlled by NewReno except 

the sender of the Westwood flow, which is controlled by Westwood+ congestion control. 

The throughput graph shows improvement over NewReno, and the measured throughput 

is computed to be 1.198 Mbps. 

In FTAT scenario, again all the traffic is controlled by NewReno except the FTAT 

sender, which is controlled by FTAT congestion control. Because the high volume of 

traffic on the bottleneck link, which is 21 TCP flows with 42 nodes, and in different 

directions. NewReno flows was unable to grab a proper share of the network available 

bandwidth, and as a consequence, huge bandwidth was left unutilized, and FTAT flow 

was able to achieve 40.736 alone. 
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7.3.Topology Three 

 
 

In this topology, a TCP-variant source is sending persistent traffic to a 

TCP NewReno sink, and 10 On-Off TCP NewReno sources send traffic in the 

reverse direction of the TCP-variant. The 10 TCP NewReno sources are on 

during the periods [250, 500] and [750, 1000], and off during the periods [0, 

250] and [500, 750]. The bottleneck link, which determines the capacity of the 

network, is 2 Mbps and a delay of 1ms. This topology examine the reaction of 

the congestion control algorithm when the traffic is dominated by reverse traffic, 

and is used in [15]. 

 

 

 
 

Figure 22: Third Topology 
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a) NewReno  

 

 
 

b) Westwood 

 

 
c) FTAT 

 

Figure 23: cwnd topology three 
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The cwnd graph of NewReno shows smooth fluctuations in the period from [0, 250] and 

[500, 750], and a random fluctuations in the periods [250, 500] and [750, 1000]. 

Westwood+ cwnd graph shows that before the second 250, before the reverse traffic 

starts, the cwnd has behavior similar to that of NewReno, which can be described as 

smooth fluctuation. After the reverse traffic starts at second 250, there is a lower bound 

for the fluctuations, at the second 500, after the reverse traffic has stopped, the window 

increases rapidly until the reverse traffic starts again at second 750. 

FTAT enters the Adaptive Transmission state when there are loss events, in order to 

determine the cause of the loss, and as a result the actual bandwidth of the network. The 

cwnd graph shows light fluctuation from the period of [0, 250], where there are no heavy 

loss events, and as result FTAT behaves much similar as NewReno. in the period [250, 

500], the cwnd starts to fluctuate heavily, due to the high loss events of the reverse 

traffic. Although in this scenario this behavior did not reveal more bandwidth, it is very 

important in high bandwidth-delay product networks such as Geo Sattellite stations, 

where there are both long delays and high data loss probability. 
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a) NewReno  

 

 
 

b) Westwood 

 

 
c) FTAT 

Figure 24: RTT graphs topology three 

 

The RTT graphs in Figure 24 for NewReno and Westwood shows almost similar 

behavior for the RTT variations. FTAT shows an almost constant RTT in the 
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period [0, 250]. 

 
Figure 25: Throughput topology three 

 

Figure 25 shows the throughput of the three protocols. In case of NewReno, the 

algorithm was very stable throughout the connection, and the graphs shows it has 

the least fluctuations when the reverse traffic was introduced. This is because the 

network is limited to the bandwidth of the bottleneck link, which is 2 Mbps. In 

Westwood scenario, the graphs shows that the Westwood algorithm was affected 

greatly by the reverse traffic, and there are many occurs of the timeout, and as a 

result the throughput was affected and reduced. In the FTAT scenario, the graphs 

shows that the algorithm reacted to the reverse traffic by entering the Adaptive 

Transmission state frequently, and it achieved slight improvement over 

NewReno in the throughput for the duration of the connection. 
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7.4.Fourth Topology: Two-way Geo Satellite Scenario 
 

 

 
 

 
Figure 26: Topology four 

 
 

In Figure 26, the node on the left side uses the TCP-variants, and the node on the 

right side uses TCP NewReno. The nodes are sending in both directions on a connection 

which encounters a packet loss rate of 1% with a long delay of 270 ms. The bandwidth of 

the connection is 10 Mbps, the simulation time is 1000 seconds, and the packet size is 

536 bytes. 

In the first scenario, the left-side node operates with TCP NewReno and the right-side 

node operates with TCP NewReno. In second Scenario, the left-side node is TCP- 

Westwood+ and the right-side node is TCP NewReno. And in the third scenario, the left- 

side node is TCP-FTAT, and the right-side node is TCP-NewReno. The focus of the 

analysis is on the TCP-variants on the left-side node. 
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a) NewReno  

 

 

 
b) Westwood 

 

 
c) FTAT 

 

Figure 27: cwnd topology four. 
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The cwnd graphs in Figure 27 show that NewReno failed to reach cwnd size of 10,000 

bytes, while Westwood reached about 35,000 byte window size, and FTAT reached (in 

the first 200 seconds) more than 600,000 bytes and then started to fluctuate heavily 

during the connection due to the long delay and the packet loss probability of 1% in the 

presence of another connection trying to achieve a bandwidth share on the same link. 

 

 

 
 

a) NewReno  

 

 
 

b) Westwood 
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c) FTAT 
 

Figure 28: RTT topology four 

 

The RTT graphs in Figure 28 shows large values for the RTT, which can be explained 

by the long delay for a geostationary satellite of 270 ms. NewReno and Westwood have 

almost identical behavior for the RTT, and the RTT fluctuates between about 54 ms and 

about 74 ms. The RTT graph for FTAT shows much less fluctuations in the RTT with 

average RTT of about 57 ms. This is due to FTAT algorithm dropped to one segment 

much less frequent than NewReno or Westwood, and as a result achieved a state of 

stability in the presence of long delay, packets drop probability of 1%, and the reverse 

traffic introduced by the competing connection. 
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Figure 29: Sequence number topology four 

 

The sequence number graphs in Figure 29 show that during the time of the simulation 

(1000 seconds), NewReno represented by the black line reached 6,995,873 packet 

sequence number, while Westwood+ represented by the blue line reached 22,329,761 

packet sequence number, and FTAT in red, advanced to reach 171,932,721 packet 

sequence number. 
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Figure 30: Throughput and goodput topology four 

 

In this scenario, a connection with 10 Mbps, and two competing users sending and 

receiving data concurrently over the connection. Figure 30 shows that when the two TCP 

users was using NewReno as the congestion control algorithm, each node achieved about 
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0.0577 Mbps, and this why NewReno is not a suitable congestion control in high 

bandwidth-delay product networks. On the other hand, Westwood was able to achieve 

throughput improvement over NewReno due to the adaptive mechanism used by 

Westwood, but still was unable to achieve a proper share of the available network 

bandwidth, and it achieved about 0.189 Mbps. In case of FTAT, the algorithm was able 

to detect most of the false congestion signals due to the testing mechanism, and as a 

result was able to utilize the available bandwidth, and it achieved about 6.45 Mbps. 



74  

 
 

CHAPTER VIII 

 
Evaluation and Comparison of Different Congestion Control 

Algorithms of Linux Stack Using DCE Cradle (Direct Code Execution 

Cradle) 

 

 

 

8.1.Introduction 

 
 

Simulation based comparison is helpful for any new protocol or addition to an 

existing one. Although the benefits of using simulators means reducing the development 

and testing time, reproducibility, cost effectiveness, etc., there are limitations of using 

simulation. For example, protocols implementations are not available for all the 

algorithms in every simulator. For these reasons and others, researchers do not rely only 

on the simulations, but they use it as an important indication toward the performance of a 

protocol. Another alternative is to use emulators, which combine the benefits of 

simulations and real systems. Emulators, however, also have drawbacks such as they are 

mostly based on Virtual Machines and run on real-time, which makes them limited to the 

capabilities of the hardware. As well, debugging an emulated system is very difficult. 

 

Another solution is the use of real stacks of operating systems in simulators such as ns-3 

which is open source discrete-event widely deployed and accepted in the networking 

community, for realistic results. Currently the widely deployed ways of using real kernel 

stacks in simulators is through Network Simulation Cradle (NSC) [37], Direct Code 
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Execution (DCE) [38], and Direct Code Execution Cradle (DCE Cradle) [39]. The use of 

such frameworks has been shown in many research papers that they produce very 

accurate results. 

Our choice here was to use DCE Cradle, since it is an open source framework that 

provides more features than DCE by allowing utilization of ns-3 applications, and 

provides more Linux kernel versions support than NSC. 

 

 
8.2.Simulation and Comparisons 

 
 

8.2.1. Topology One: One-way Geo Satellite Scenario 
 

 

 
Figure 31: Topology one. 

 

This topology (Figure 31) is helpful in showing the behavior of the congestion 

control protocol in high BDP networks with loss rate. It is also important to note that 

there is a difference between this scenario and the one used with ns-3, as the flow here is 
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only one-way directional, as opposed to the two-way flow in that case (Section 6.4). The 

node on the left side uses the different TCP-variants, and the node on the right side is 

TCP NewReno. The link exhibits a loss rate of 2% with a long delay of 270 ms. The 

connection bandwidth is 10 Mbps, the simulation time is 1000 seconds, and the packet 

size is 536 bytes. 

There are 14 scenarios for this topology, which examine every congestion control 

implementation in the Linux Stack. The Congestion control algorithms that are examined 

in this scenario are Reno, BIC, Cubic, Westwood, Highspeed, Hybla, Vegas, Veno, 

HTCP, Scalable, LP, YeAH, Illinois, and FTAT. 
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Figure 32: cwnd topology one 

 

It should be noted here that DCE does not have a framework such as in ns-3 for 

tracing capabilities, which requires individual efforts to implement the traces. The 

cwnd tracing included much more points than that provided in ns-3 graphs which 

makes the graphs not very smooth. Also due to the differences in the implementation 

of the Linux for TCP and ns-3 for TCP, the cwnd graphs have different scales. Linux 

cwnd is implemented in terms of number of packets, while ns-3 implement the cwnd 

in terms of bytes. 

The cwnd for each algorithm is shown in Figure 32. It can be observed that each 

algorithm has upper limit for the cwnd, Cubic reached about 45 packets, NewReno 

reached about 16 packets, Veno around 21 packets, Vegas around 24 packets, 

Westwood 20 packets, FTAT 130, and so on. Hybla cwnd reached around 70,000 

packets, which is out of range and impractical, but this spark can be explained as a 

bug in the implementation of the algorithm in the Linux kernel. 

The graph in Figure 33 shows the sequence number advancement gathered in one 

graph. Due to the huge number of points from the traces, it was not possible to make 

the graph, as a result a number of points was chosen to implement the graph and 
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show the relative advancement of the sequence number for each algorithm grouped in 

single graph. 

 
Figure 33: Sequence number topology one 

 

 

 
 

 
Figure 34: Highest sequence number 
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In Figure 34, it’s shown the highest sequence number achieved by each 

congestion control. FTAT achieved the highest sequence number, followed 

by Hybla, and then most of the algorithms varies slightly. 

 
 

Figure 35: Throughput topology one 

 

In Figure 35, the throughput measurements is presented. FTAT algorithm achieved 

about 1.6 Mbps, while Hybla achieved about 1 Mbps, and Cubic achieved about 0.266 

Mbps. It is proper to emphasize here that NewReno and Westwood+, gained 

throughput improvement over the topology in Section 6.4. This is due to the nature of 

this connection, which is one-way that is no competing user on the same connection. 

While FTAT experienced throughput degradation, this can be a result of the 

experimental implementation of FTAT in linux and the changes in the topology. 
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8.2.2. Topology Two 
 

 

 
Figure 36: Topology two 

 

The second topology (Figure 36) gathers the 14 algorithms in one network in 

order to get more insight about the behavior of each congestion control algorithm when 

competing with other nodes. The bottleneck link is the link between the two routers, 
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which is a wireless link and has a packet loss rate of 2%, bandwidth of 2Mbps, and a 

delay of 100 ms. The access links are 5Mbps each with a delay of 1 ns. 

The flows start at 4 seconds, and the simulated time is 1000 seconds, the throughput is 

shown in Figure 37. 

 
 

 
 

Figure 37: Throughput topology two 

Again here in Figure 37, it is shown that FTAT algorithm achieved the best throughput of 

about 640 Kbps, while Hybla of about 206 Kbps, and Cubic of about 139 Kbps. With the 

high volume of traffic on the bottleneck link that is characterized by the long propagation 

delay, most of the nodes controlled by a specific TCP congestion control fall under 100 

Kbps. 
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8.2.3. Topology Three 

 

 
Figure 38: Topology Three 

 

To further investigate the effect of high BDP links, we set the same topology with the 

same conditions (Figure 38), except the bottleneck link changed to 100 Mbps. The 

throughput is shown in Figure 39. 
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Figure 39: Throughput topology three 

 

For the sake of experimenting the different congestion control algorithms in linux, the 

bandwidth of the bottleneck link was increased. In Figure 39, it is shown that FTAT 

achieved the best throughput of about 1.4 Mbps, while Hybla of about 1 Mbps, and Cubic 

of about 278 Kbps. Many of the congestion control in linux was still unable to increase 

the throughput to a proper values in the presence of the long delay. 
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8.2.4. Fourth Topology 

 
 

The last topology (Figure 40) examines the effect of high bandwidth, low delay 

networks. The settings are the same as the previous topology, except for the wireless link 

between the two routers, which is changed to 1 ms. 

 

 
Figure 40: Topology Four 

. 
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The throughput analysis is shown in the next graph. 

 

 

 

 
 

Figure 41: Throughput topology four 

 

In Figure 41, it is shown great improvement of the throughput for the different congestion 

control algorithms in linux TCP stack. Westwood was the most algorithm that benefited 

from the propagation delay reduction, which shows that it is greatly dependent on the 

propagation delay of the links in a network. NewReno algorithm also is one of the highest 

algorithms in the graph, which emphasize again that it was designed for networks with 

specific characteristics. Cubic also shows big improvement in the throughput in 

comparison to the results of the topology in the last section. FTAT achieved throughput 

improvement, but was unable to achieve the best throughput, as the way FTAT operates 
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require relatively high propagation delays, which makes it excellent for the networks with 

high bandwidth-delay product. Although FTAT did not achieve the best results in this 

topology, it still ranks as one of the best algorithms operated in this network, with slight 

throughput improvement over Cubic TCP congestion control.
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CHAPTER IX 

 

Conclusion 

 

 
The proposed algorithm has been tested through simulation using ns-3, and the 

Linux kernel code against the major deployed congestion control algorithms. It was 

shown in the simulation results that FTAT gains a throughput improvement over other 

TCP congestion control algorithms in wireless and high bandwidth-delay product 

networks. 

The steady state throughput mathematical model derived for FTAT shows that FTAT is 

stable even under severe congestion conditions, which was supported by the experiments 

conducted using simulations in ns-3 and DCE - Linux that FTAT throughput is limited to 

the network available bandwidth. The fundamental principle which makes FTAT is stable 

that FTAT uses self-clocking as NewReno to send new data to the network but differ in 

the way FTAT interpret congestion state. 

Although there are indications through the experiments conducted that FTAT is friendly 

to other TCP congestion control algorithms and has Fairness among connections 

operating with FTAT. Fairness and Friendliness is a case study, and it can be completed 

in future work. 

From our study and the experiments that was conducted, we have found that due to the 

additive-increase multiplicative-decrease of NewReno, it is unable to grow the 

congestion window to a proper sizes in high bandwidth and long delays networks, and 

even after long period of time in a connection, a single packet time-out will reduce the 
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congestion window to 1 segment, and three duplicate acknowledgements will reduce the 

congestion window to half of its current value. On the other hand FTAT is Adaptive- 

Increase Adaptive-Decrease, which measures the network’s available bandwidth upon 

three duplicate acknowledgements, and adjusts the congestion window accordingly. Also 

from the experiments that have been conducted, it was observed that FTAT does not take 

from the bandwidth of the other algorithms sharing the network. Instead, it achieves the 

network available bandwidth. 

The current implementations of the congestion control such as NewReno, gives stability 

for a TCP connection and prevents congestion in the network, but in the same time it 

limits the throughput and results in wasted bandwidth in the case of high BDP networks. 

Although NewReno was considered as the standard congestion control for TCP for many 

years, it is unable to grab the available bandwidth in a connection in long delay networks, 

due to its slow rate of the cwnd increase. Most of the congestion control implementations 

in TCP follow the same rule, which are not suited for today’s high-speed networks. 

FTAT offers an adaptive mechanism that allows the window to grow when such growth 

is possible, and to be conservative when the available bandwidth is limited. FTAT is best 

described as using an Adaptive-Increase Adaptive-Decrease paradigm. It gets the best 

results when it is operated in networks with high bandwidth in the presence of large 

delays, and in wireless networks where there random packet loss. FTAT does not rely on 

the high bandwidth in order to perform well, but it requires a loss rate or a delay in the 

network in order for the adaptive mechanism to have the optimum results. 

In order for FTAT to gain its working mechanism, the sending and receiving buffers size 

should be set to a value large enough in order to buffer the packets not in ordered, in the 
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adaptive state. To the best of our knowledge, there are no constraint on the buffer sizes, 

and it is adjustable in every Linux system. The value that was set in the simulations and 

experiments in this thesis was 5 Megabytes, which does not introduce any overhead. 

FTAT currently has experimental implementations in the Linux kernel stack (3.2.0 and 

2.6.36), and in ns-3. As a future work, we will submit the implementations to be officially 

part of the ns-3 and Linux OS. 
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