S
2
Cleveland State University “

EngagedScholarship@CSU ACADEMIC ENDEAVORS

ETD Archive

2014

TCP FTAT (Fast Transmit Adaptive

Transmission): a New End-To-End Congestion

Control Algorithm

Mohammed Ahmed Melegy Mohammed Afifi
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

b Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know!

Recommended Citation

Afifi, Mohammed Ahmed Melegy Mohammed, "TCP FTAT (Fast Transmit Adaptive Transmission): a New End-To-End Congestion
Control Algorithm" (2014). ETD Archive. 730.
https://engagedscholarship.csuohio.edu/etdarchive/730

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an

authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/730?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

TCP FTAT (Fast Transmit Adaptive Transmission): A NEW END-TO-
END CONGESTION CONTROL ALGORITHM

MOHAMMED AHMED MELEGY MOHAMMED AFIFI

Bachelor of Electronics Engineering and Technology
World College
July 2011

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY
December 2014

We hereby approve this thesis
For
MOHAMMED AHMED MELEGY MOHAMMED AFIFI
Candidate for the Master of Science in Electrical Engineering degree
For the Department of
Electrical and Computer Engineering
And
CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Dr. Nigamanth Sridhar, Committee Chair

Department & Date

Dr. Chansu Yu, Committee Member

Department & Date

Dr. Pong Chu, Committee Member

Department & Date

May 7, 2014

Student’s Date of Defense

To my beloved parents. ..

ACKNOWLEDGEMENTS

I would like to thank all those who gave me the opportunity to complete my thesis
work. | would like to thank my advisor, Professor Nigamanth Sridhar, for all the
guidance and the support throughout my thesis work. | would also like to thank the

Department of Electrical and Computer Engineering, of which | have had the pleasure

being a student for the past two years.

TCP FTAT (Fast Transmit Adaptive Transmission): A NEW END-TO-
END CONGESTION CONTROL ALGORITHM

MOHAMMED AHMED MELEGY MOHAMMED AFIFI

ABSTRACT

Congestion Control in TCP is the algorithm that controls allocation of network
resources for a number of competing users sharing a network. The nature of computer
networks, which can be described from the TCP protocol perspective as unknown
resources for unknown traffic of users, means that the functionality of the congestion
control algorithm in TCP requires explicit feedback from the network on which it
operates. Unfortunately this is not the way it works with TCP, as one of the fundamental
principles of the TCP protocol is to be end-to-end, in order to be able to operate on any
network, which can consist of hundreds of routers and hundreds of links with varying
bandwidth and capacities. This fact requires the Congestion Control algorithm to be
adaptive by nature, to adapt to the network environment under any given circumstances
and to obtain the required feedback implicitly through observation and measurements. In
this thesis we propose a new TCP end-to-end congestion control algorithm that provides
performance improvements over existing TCP congestion control algorithms in computer
networks in general, and an even greater improvement in wireless and/or high bandwidth-

delay product networks.

Table of Contents

AB ST RACT ettt bbbttt ettt nr e %
TabIe OF CONTENTS ...t Vi
I TSy o) 1o [N 1SRRI X
LIST OF TABLES ... oottt bttt b e bttt et b e e b e et b e e sbeenbeenbe e e Xii
(O N I = PSP 1
INtroduction and MOTIVATIONcciiiiiiieieee e 1
1.2. TCP NewReno currently is not suitable for today’s Networks.............ccccocvireienenne 2
1.3. Solutions specific for Wireless NEtWOIKScccciiieiiiiiiic i 4
131, INAIFECE TCP (I-TCP).ooreoiveeeeeeeeeeee e eeeseseses e esse s esseseseee s eeseeeeseeseses s st ee s e eese 5
1.3.2. SNOOP PIrOTOCOL.......ecueiiiitiitiite ittt b ettt nn e 5
1.3.3. MUIEICAST TCP (M-TCP) ...ttt 6
1.3.4. Explicit Congestion Notification (ECN)cccccviiieiiiiiiiccceee e 6
1.4. TE TRESIS ...ttt 7
1.5. STAtEMENT OF PUIPOSE ..ot 8
(O N I 1 SRS 9
NEWRENO aNd WESTWOODccuviuiiiiiiieiieitesieseee et 9
2.1. INBWREINO ...ttt e b e b bt e st e e sa e e e be e e sbbe e et e e e naaeesnbes 9
2.1 1. SIOW=STAIT ... s 9
P28 7 O] oo [=] o] @ I Y o] (o =g Vo= SRR 10

vi

2.1.3. Fast Retransmit and Fast RECOVEIYcoci i 10

2.2. TCP Westwood and WEeSIWOOUcoviiiiiiiiiiiiiieineesree s 12
2.2.1. Congestion Window Update in WEStWOOdccoveieiieiiie e 13
2.2.2. Westwood Bandwidth Estimation Mechanismccocoiiiieieiiinisine e 14
2.2.3. Westwood Packet Counting ProCedure.cccooiiiiiirineneseeeeses e 16
2.2.4. WWESTWOOF ..ottt b bbbt b ettt 17
CHAPTER T oottt ettt sb e 19
FTAT — A New Congestion Control Algorithm...........cccccoveiiiiiiicieccseee e 19
3.1. THE PrOBIBM ..o 19
3.2. SONUTION L.ttt ettt et 20
3.3. ENd-t0-ENd LOSS SCENAITO ...ttt 21
3.3.1. Ideal CongeStioN SCENAKNIOcoviiiieie et sre st sae s 21
3.3.2. Ideal Wireless SEgMENTS LOSS.......ccvciiiiiiieieiiere sttt sre et sre et sresresteesresne s 22
3330 ACTUAIL SCENAITO.eiiitiiiteieee ettt bbbttt ettt e n e 23
3.4. FTAT APPIOACKH ..ottt ettt bbb 24
3.5. TCP FTAT Congestion CONIOL..........cccocviiiiiieieieiie e sne s 26
3.5.1. Initial Congestion WINAOWccvoiiiiiiic ittt 28
3.5.2. FTAT AIGOTTTRM .o s 29
CHAPTER TV .ottt ettt st te et e et et e entesneenteeneenneenseeneens 31
Implementation of FTAT INNS-3 ... 31

Vii

41, The NetWOEK SIMUIATOE — 3 ...ttt et e e e ettt e e e e e e st e e e e e e eeeraees 31

4.2 The Implementation of TCP IN NS-3ccciiiiiiieiicese e 31
4.3. Implementation of FTAT INNS-3 ...t 32
CHAPTER V ettt ettt et et ne e nteentesneesbe et 37
TCP FTAT Linux-Stack Implementation ... 37
5.1. INEFOAUCTION ...t 37
5.2. TCP Congestion Control IN LINUXcccoiiiiiiisee e 37
5.3. FTAT Implementation in LINUX TCP Stackcccocevvivieiieiicic e 43
CHAPTER V.t beeb ettt ne s 46
A Mathematical Model 0f TCP FTAT ..o 46
Theorem: A simplified steady state throughput of the FTAT algorithmc.cocoovviene. 46
Corollary: The FTAT congestion control is stable (TFTAT < B)ccccoooeveieiioiiiiiic e 48
CHAPTER VI ..ottt sttt et et e nneenneenaeeneenneenne s 49

Evaluation based comparison of TCP-NewReno, TCP-Westwood+, and TCP-FTAT

USING NIS=3 < teeittete ettt ettt e st et e et e et e s be et e s st e s beeseeeaseebe e beeaseaaeeteenseateebeenteaneenteenneeneenreentens 49
7.1. TOPOIOGY ONE ...ttt bbb 49
7.2. TOPOIOGY TWO ...ttt bbbttt nn e 56
7.3. TOPOIOGY TINIEE ...ttt 62
7.4. Fourth Topology: Two-way Geo Satellite SCENANI0.........cccocveeereieeieie e 67
CHAPTER VL.t e ne e 74

Evaluation and Comparison of Different Congestion Control Algorithms of Linux

viii

Stack Using DCE Cradle (Direct Code Execution Cradle).........cccooeviviinvivereniieinennnns 74

8.1. INEFOAUCTION ...ttt 74
8.2. Simulation and COMPAFISONSceiieieiieie et sre e e e e sreareesresrees 75
8.2.1. Topology One: One-way Geo Satellite SCENAriO.........cccccveiivieeiiiiiie e 75
8.2.2. TOPOIOGY TWO ...oeiiiiiiiiteiieieieeee ettt ettt en e nnennen e 81
8.2.3. TOPOIOGY TRIEE ...ttt 83
8.24. (o101 T 1] o T0] [0 AU PSR 85
CHAPTER DX et bttt ettt sttt nbeene s 88
CONCIUSION ...t b et bbbttt b b ettt n et 88
BIBLIOGRAPHY ..ottt bttt et 91

List of Figures

Figure 1: FSM Description of TCP Congestion Control [reproduced from 16]..........ccccccevvviiveininenen. 12
Figure 2: FSM description of Westwood [produced from 18, 19]........cccceoviiiiiiiiie i 18
Figure 3: Black Box Principle in the Presence of CONgeStioNcccvveveiieieeie s 21
Figure 4: Black Box Principle in the Presence of Random LOSScccccvevviiiiieie i 22
Figure 5: Black Box Principle in the Presence of Congestion and Random LOSSccccceevverieinnenne. 23
Figure 6: Adaptive Transmission EFfECTcooiiiiiii i 25
Figure 7: NewReno Congestion WINAOW Patternccocveieiieie e 27
Figure 8: FSM desCription OF FTATvo ittt te e nas 30
Figure 9: TCP Implementation in nS-3 INCIUAING FTATcoiiiiiiieee e 34
Figure 10: Classes INTEraCtion N LINUXcouoieieiiieneniesiesiiseeee et 40
Figure 11: TCP function interaCtion iN LINUXcoeoiriiiiininieieee s 42
FIgure 12: First TOPOIOGYcouveiiiiieieiie ittt bbbttt bbb 49
Figure 13: cwnd graphs for TOPOIOGY ONEcoiiiiiiiiiieiecseee e 50
Figure 14: RTT graphs fOr tOPOlOQY TWOceiiiiiiiieiie et 52
Figure 15: Sequence NUMDEr tOPOIOGY ONE.......ciuiiiiiiiiie i 53
Figure 16: Throughput and Goodput tOPOIOGY ONE........ccueiiiiiiiieiiiieee e 55
FIQUIE 17: TOPOIOGY TWO ...ttt bbbttt bbb bbbttt eb bt 56
Figure 18: cwnd graphs tOPOI0GY TWO.........ciuiiiiiiiiiieiesie e 57
Figure 19: RTT graphs for tOPOlOgY TWOcuiiiiiiiienie it 59
Figure 20: Sequence NUMDBEr tOPOIOGY TWO.......ccuiiiiiiiiiiiisiese e 59
Figure 21: Throughput and Goodput for tOPOIOgY tWOceiiiiiiiiiie e 60
Figure 22: THIrd TOPOIOGYc.eeeeiiieieie sttt st bbb 62

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:

Figure 41:

CWNA tOPOIOGY ThIE ...ttt re e sreeae s 63
RTT graphs tOPology thrEeccuveie it 65
Throughput tOPoIOgY Ic.eeceeeceee e 66
QLI 10 (o0 1Y {11 OSSPSR 67
[TV g o (o] oo o]0 Y/ (o U OSSPSR 68
I (0] 01] [0 |V {0 | S SSSS 70
Sequence NUMDEr tOPOIOGY TOUN.......cciiiiiei e 71
Throughput and goodput topology fOUT........cc.eciiiiiicec e 72
QLI 010 (oo 1Yo - TSSOSO 75
(oY a0 I (o] oo (o]0 VAT o] 1 O PSSRSO 78
Sequence NUMDEr tOPOIOGY ONE........ociiiiieiice e sre e 79
Highest SEQUENCE NUMDETccvi ettt re e nas 79
Throughput tOPOIOGY ONEeeieicce e sre e 80
QLI 010 (o0 1Y LYo PSSO PRSI 81
Throughput tOPOIOGY TWOeeieiiicice e 82
TOPOIOGY TRIEE ...t e st e et sae e sbe e sreeneeareeee s 83
Throughput toPoIlOgY Ieceeeeeee e 84
TOPOIOGY FOUT ...ttt et te et e s e st e et e e aeesbeesreeneeareeeeas 85
Throughput toPOoIOgY TOUL.......ccui i e 86

Xi

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

LIST OF TABLES

SIOW STAKT......oeeece et 20
CoNQESION AVOIANCE.ccviiiieiiicie ettt re e te e re e reaneesraeeeas 21
FAST RECOVETY ..ottt ettt e e nbb e et e e nb e e nes 22
Westwood WINAOW UPAALE..........ccveieiieiicie et 25
Bandwidth SAMPIING.........ccoiiiiiiice e 26
Westwood packets counting ProCeAUIE............coveeiieieeie e 27
Westwood Bandwidth Sampling.........ccccceeeieiiiic e 29

Xii

CHAPTER |

Introduction and motivation

1.1. Introduction

TCP Congestion Control has gone through many improvements and
enhancements over the past 26 years, since Van Jacobson proposed the original Tahoe
algorithm in 1988 [1]. One of the most deployed algorithms is TCP NewReno [2], which
is an improvement over the original TCP Tahoe. The first transition was from TCP
Tahoe to TCP Reno through adding a new algorithm called Fast Recovery in 1990 by
Van Jacobson [3]. The second transition was by Sally Floyd and T. Henderson in 1999,
through enhancing the Fast Recovery algorithm to recover from multiple losses in the
same window [2]. Since that time, wired networks have advanced and congestion
became almost the only cause for timeout and data loss in wired networks. At the same
time, wireless technology has advanced and wireless networks have been deployed
rapidly, which caused the radio channel errors to be the main source of packets loss after
congestion in wireless networks. This evolution has required a change in the way the

congestion signal should be handled.

1.2.

b.

TCP NewReno currently is not suitable for today’s networks

High bandwidth-delay product networks that are currently in increased
deployment, require a rate of increase in the congestion window (cwnd) that is
more than a linear increase of one Maximum Segment Size (MSS), every round-
trip time (RTT) to grab its share of the network bandwidth, which is due to the

high RTT that encountered in such networks, which are hundreds of milliseconds.

At the start-up phase, cwnd starts with a maximum of 4380 Bytes [4] and
increases slowly, which takes a long time to gain a proper window size and hence
good throughput, and yet a single packet loss identified by three duplicate

acknowledgments will reduce the cwnd to half of the current value.

There are no obvious differences between packet loss caused by congestion and
loss caused by a wireless connection, and hence all losses are assumed to be
congestion and handled in the same way, which degrades the overall throughput
for a given connection operating over hybrid network consists of wireless as well

as wired networks.

Since the original congestion control algorithm by Van Jacobson, many proposals
have been introduced to address these issues. Some of these algorithms which have been
studied for many years by researchers are Westwood, Vegas, Veno, and SACK.
Westwood is a modification of the NewReno algorithm in the sender-side, which is less
sensitive to random loss in the wireless environments than NewReno due to its behavior
when a loss is detected [5]. Westwood reacts to a segment loss by adjusting the cwnd to
an estimated value of the network’s available bandwidth.

Westwood+ [6] introduced a modified bandwidth measurement procedure different from
the one used in Westwood. The bandwidth estimation procedure used in Westwood+
collects a sample every RTT instead of every acknowledgment. This reduces the effect of
acknowledgment compression. The simulation results presented in this thesis show that
Westwood+ suffers from performance degradation when operating under reverse traffic.
Vegas is another end-to-end approach to congestion control, which bases its link
bandwidth estimation process on the RTT [7]. Vegas measures the RTT, then performs a
comparison between the actual rate of sending, computed as

(Congestion Window/

measured RTT) to the expected rate of sending using the

Congestion Window /

minimum measured RTT computed, as (minimum RT

1) [7]. After
computing the difference between the rate of sending and the expected rate of sending,

three scenarios could happen:

1. The Congestion Window is increased additively, if the computed

difference reveals that it is less than threshold a.

2. The Congestion Window is decreased additively, if the computed difference
reveals that it is larger than threshold f.
3. The Congestion Window is kept the same; if the computed difference is less than

B and larger than a.

TCP Vegas operates on a principle of congestion prevention, which tries to prevent
congestion instead of dealing with it after it happens. Studies [8] show that it yields better
throughput than Reno in specific scenarios, but in other studies such as [9] it has been
shown that TCP Vegas, when competing with other congestion control algorithms such
as as Reno that tries to achieve the network capacity in systematic way, cannot allocate

its share of the network bandwidth.

1.3. Solutions specific for Wireless Networks

Because of the problem of the random loss, and the stability of Additive-Increase,
Multiplicative-Decrease (AIMD) algorithms such as NewReno in wired networks, calls
have been introduced for new approaches for wireless networks and proposals have been
introduced as a result [10]. The approaches that are designed for wireless or hybrid
networks specifically, which usually deploy a split mechanism or a modification to the
TCP structure, usually does not follow the end-to-end principle [6]. The split approach
splits a hybrid network into a wired portion and a wireless portion. In such a case, the
wired portion operates by using a conventional congestion control algorithm, which is
usually an AIMD approach such as NewReno. Whereas the wireless network access point
operates by using protocols that manage the acknowledgment returned from the wireless

network. Some approaches that employ the split-connection semantic are Indirect TCP (I-
4

TCP) [11], Snoop protocol [14], Multicast TCP (M-TCP) [12], and Explicit Congestion
Notification (ECN) [13]. Each of these mechanisms will be discussed in the next sections.
Of course the problem of the high bandwidth-delay product of today’s networks

was not a big concern when these approaches was proposed, which makes them special
solutions specific for wireless networks. The next subsections discusses these approaches

in more details.

1.3.1. Indirect TCP (I-TCP)

The Indirect TCP (I-TCP) is one of the approaches specific for wireless networks,
in which a proxy is inserted between the wired network and the wireless network to
manage the connection, and the wireless network operates using a modified TCP

congestion control algorithm.

1.3.2. Snoop protocol

Another approach is the Snoop protocol, which can be considered as one of the
most successful approaches of these different solutions [15]. TCP Westwood provided
380% improvement over NewReno, while in the same environment, Snoop provided a
400% improvement over NewReno. The Snoop protocol is based between the wired
network and the wireless connection. Every packet sent from the wired network to the
wireless network is cached at the snoop base. When an acknowledgment is received from
the wireless connection, snoop checks for duplicate acknowledgment, if there are
duplicate acknowledgment, snoop retransmits the reported lost segment by the duplicate

acknowledgment cached packets, and the duplicate acknowledgment is held at the snoop

5

base. If the retransmission is successful, Snoop will resume the transmission as normal;
otherwise snoop sends the duplicate acknowledgment through the wired connection to the

sender implicitly reporting congestion.

1.3.3. Multicast TCP (M-TCP)

Multicast TCP (M-TCP) is another approach to deal with wired/wireless
connections and specifically the wireless links that have low bit rate. M-TCP operates by
splitting the nodes connected through the wired connection FH (fixed-host) from the
nodes connected through the wireless connection MH (mobile-host) by a SH (supervisor-
host). The FH operates using the standard TCP congestion control, and the MH operates
using a special version of TCP. The main purpose of the SH is to manage the
communication between the FH and the MH, as when the FH sends a packet to the MH,
the SH receives it first and forwards it to the MH. If the MH stops responding, the SH
sends an acknowledgment to the FH stating a receiver window size of zero. At that time
the FH sends a probe packet to the end node (MH), the SH receives the probe packet and
responds back with a receiver window size of zero. This process ends when the MH starts

responding, at that time the connection resume normally.

1.3.4. Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) operates by reserving two bits in the IP
header and two bits in the TCP header for ECN notification. When there is congestion in
the network, these bits are set to true, which in turn alerts the receiver that there is

congestion and the receiver responds with an acknowledgment with the two bits set to

6

true. When the sender receives the acknowledgment from the receiver, the sender reacts
to the congestion by reducing the cwnd and thus the sending rate. If the sender discovers
a lost segment and these two bits were set to false, the sender knows that the segment lost
was due to wireless link errors and not due to congestion and as a consequence, the
sender does not reduce its sending rate. While in this TCP congestion control approach,
the loss cause can be identified precisely, ECN requires changes to every node and device

involved in the communication process between the two end nodes.

1.4. The Thesis

We defend the following thesis:

A new end-to-end TCP congestion control algorithm that addresses the difficulties
faced by the current TCP congestion control; namely the initial throughput, operating
over wireless or hybrid networks and operating over large bandwidth-delay product
networks. The proposed algorithm does not take the conventional congestion signal
(duplicate acknowledgment) as guaranteed sign of congestion, instead, it employ a new
approach in testing the cause of the loss to determine the actual network capacity, and as
a result does not degrade the throughput due to false congestion signal.

In this thesis, our focus will be on NewReno as it was the dominant congestion control
for many years, and Westwood+ because it is one of the most successful end-to-end
approaches to congestion control that addresses the random loss issue and shares with
FTAT the same principle of using the returning acknowledgment as a feedback to
estimate the network capacity, also the comparison of the proposed algorithm will cover

all of the Linux implemented congestion control algorithms.

7

1.5. Statement of Purpose

The function of TCP Congestion Control is to limit the rate of sending when the
End-to-End path indicates congestion and to allow the expansion of the cwnd to grab its

share of the network resources, when there is no indication of congestion.

In the early days of the Internet, the only concern when designing and implementing the
congestion control of TCP was to avoid congestion as much as possible, and to deal with
congestion when it occurred. Other factors affecting the performance of TCP in today’s
networks were not, at that time real concerns. With today’s wide deployment of wireless
technologies, high-speed networks and the high proportion of applications on the

Internet, which consist of small amount of data that require throughput at the start-up
phase, TCP with its current congestion control algorithm is no longer a suitable standard
for all networks. From that point of view a real need for contributions of proposals to the
Congestion Control of TCP that address the challenges faced by TCP in today’s networks

and to complies with the End-to-End semantic of TCP is vital.

CHAPTER 11

NewReno and Westwood

2.1. NewReno

2.1.1. Slow-Start

The NewReno algorithm consists of four sub algorithms, which are: Slow-Start,
Congestion Avoidance, Fast Retransmit, and Fast Recovery. The NewReno congestion
window (cwnd) starts as minimum of one segment and a maximum of four segments, it
increases exponentially by one segment on each successful delivered segment to the
destination, indicated by a received acknowledgement at the sender side. The window
continues to grow until one of two cases takes place: either the capacity of the network is
hit, and in that case the congestion window returns to one, or the Slow Start threshold
(ssthresh) is achieved, and in that case the Congestion Avoidance starts. The Congestion

Window gains the doubles each RTT.

Table 1: Slow Start

Begins cwnd <= ssthresh
Every new Acknowledgment cwnd += MSS

cwnd gain every RTT: cwnd =2 x cwnd
Congestion Avoidance starts cwnd >= ssthresh

2.1.2. Congestion Avoidance

The Congestion Avoidance state starts when the congestion window has reached
the Slow-Start threshold, and in that case the congestion window increases slowly to
prevent a possible congestion. The congestion window increases by one MSS every RTT

or (MSS x MSS/ cwnd) per each new acknowledgement.

A note here that on the first RTT, the ssthresh might not reflect the actual network
capacity at all, and as a result the congestion avoidance phase starts and the congestion
window increases very slowly while it should increase rapidly to achieve the fair share
capacity of a high bandwidth network, and as a result the stability of a network is

achieved but no adequate throughput is gained.

Table 2: Congestion Avoidance

Starts cwnd >= ssthresh
Every new Acknowledgment cwnd += MSS x MSS/ cwnd
cwnd aain everv RTT: cwnd +=1 x MSS

2.1.3. Fast Retransmit and Fast Recovery

If a packet loss is identified by three duplicate acknowledgments after the
original acknowledgment, the Fast Retransmit starts. In the Fast Retransmit
phase, the sequence number of the highest transmitted packet is recorded in a
variable called recover. The ssthresh is set as in the event of retransmit time-ourt,

to the maximum of half the flight- size and two MSS. The cwnd is set to the
10

ssthresh + three MSS to compensate the available bandwidth indicated by the
arrival of the three packets to the receiver indicated by three duplicate

acknowledgment. The lost segment is then retransmitted.

In NewReno, the new acknowledgment after a duplicate acknowledgment in the
Fast Recovery phase could refer to full acknowledgment or partial
acknowledgment. A full acknowledgment is the new acknowledgment that
acknowledges all of the transmitted data packets, while a partial
acknowledgment is the new acknowledgment that acknowledges only some of
the previous transmitted data packets.

In case of a full acknowledgment, the cwnd is set to either the minimum of
(flight-size + one MSS) or ssthresh, and the Fast Recovery is exited. In the case
of a partial acknowledgment, the first sequence number in the cwnd which has
not been acknowledged yet is retransmitted, the cwnd is deflated back to the
amount of data that has been acknowledged plus one MSS, and one new packet

is transmitted [2].

Table 3: Fast Recovery

recover variable: Highest transmitted packet sequence number
flight-size: Minimum (rwnd, cwnd)

ssthresh : Maximum (flight-size/2, 2)

cwnd: ssthresh + 3 x MSS

Lost Segment Retransmitted

Partial acknowledgment: Send highest sequence number not acknowledged

cwnd: amount of data acknowledged + 1 x MSS

New Packet is transmitted

11

full acknowledgment:

cwnd: Minimum (ssthresh, flight-size + 1 x MSS)

Exit Fast Recovery, resume Congestion Avoidance.

Reno

New Ack -->
cwnd = cwnd + (MSS * MSS/
Duplicate Ack --> Now ki . cwnd)
DuplicateAckCount++ aWLAC DuplicateAckCount=0
cwnd = cwnd + MSS TransmitNewSegment

DuplicateAckCount = 0
Transmit new segement

-
cwnd=1
ssthresh = 64 KB
DuplicateAckCount = 0

cwnd >= ssthresh

e)
Slow Start Congestion
L '\ Avoidance
g timeout -->
ssthresh = cwnd/2
timeout --> cwnd = 1 MSS

DuplicateAckCount =0
Retransmit Lost Segement

ssthresh = 64 KB
DuplicateAckCount = 0

timeout -->

ssthresh = cwnd/2 New Ack -->
cwnd =1 cwnd = ssthresh

DuplicateAckCount = 0 DuplicateAckCoun
Retrandqit Lost Segement

DuplicateAckCount = 3 -->
ssthresh = cwnd/ 2
cwnd = ssthresh + 3

Retransmit Lost Segement

ateAckCount = 3 -->
ssthresh = cwnd /2
cwnd = ssthresh +3
Retransmit Lost Segement

Fast Recovery

Figure 1: FSM Description of TCP Congestion Control [reproduced from 16].

2.2. TCP Westwood and Westwood+

Westwood is a congestion control algorithm that was designed to address the
random loss issue in wireless networks, and is a modification of NewReno that uses a
different procedure when a loss is detected. In the Slow-Start and Congestion Avoidance
phases, Westwood increases the cwnd the same way as NewReno, one MSS every new

acknowledgment, and one MSS every RTT in the Congestion Avoidance phase.

The main difference between NewReno and Westwood is seen when a three duplicate

12

acknowledgment are received, or retransmission time-out occurs. Westwood employs a
novel bandwidth estimation mechanism that is used to set the cwnd and ssthresh upon
receiving three duplicate acknowledgments or encountering a retransmission time-out.
After setting the new values for ssthresh and cwnd, the algorithm performs normal Fast

Retransmit and Fast Recovery as in NewReno.

2.2.1. Congestion Window Update in Westwood

Westwood relies on the feedback of the returning acknowledgments to estimate
the network bandwidth. After a loss is acknowledged by way three duplicate
acknowledgments, the ssthresh and cwnd are adjusted according to the bandwidth
measured at the time of congestion multiplied by the minimum RTT observed during the
connection; the result is then divided by MSS. After the ssthresh is set, the cwnd is
compared to the value of ssthresh, and if the cwnd value is greater than ssthresh, the

cwnd is set equal to the ssthresh, and the gain rate of cwnd is the same as in the

13

Congestion Avoidance phase. Otherwise, no change is made to the cwnd value, and the
algorithm resumes in the Slow Start phase [5].

If Westwood detects the loss by a retransmission time-out, the ssthresh and the cwnd are
set in a different way. First ssthresh is set in the same manner, and then ssthresh is
checked, if the value is less than two, ssthresh is set equal to two. The cwnd is set in the

same way as in NewReno after retransmission time-out.

After Three Duplicate Acknowledgment:

Table 4: Westwood window update

ssthresh: Maximum (Measured Bandwidth x minimum RTT/ Segment Size, 2)
cwnd > ssthresh: cwnd = ssthresh (Congestion Avoidance)
cwnd <= ssthresh: (No Change, Slow Start)

After Retransmission time-out:

ssthresh: Maximum ((Measured Bandwidth x minimum RTT/ Segment Size), 2)
Ssthresh < 2: ssthresh = 2
cwnd: cwnd =1 (Slow Start)

2.2.2. Westwood Bandwidth Estimation Mechanism

The available bandwidth in the network is calculated as the number of data
bytes acknowledged during the recent received acknowledgment divided by the
difference in the time between the most recent acknowledgment and the previous

acknowledgment.

14

Westwood measures the bandwidth after each acknowledgment is received. When a
loss happens, the bandwidth sample is processed into a low-pass filter to obtain the
low- frequency average component of the sample.

Table 5: Bandwidth Sampling

Bandwidth Sample Dk /Ak

(BK):

Where
Dk : Data acknowledged in Bytes (Number of acknowledged segments < Segment Size)

Ak : Time of The Received Acknowledgment — Time of The Previous Acknowledgment

The filtering process is achieved by Tustin approximation [17, 5] is as follow:

BK = aK % Bk-1 + (1 — aK) (Bk + Bk-1)/2
Where
BK: The Filtered Bandwidth at time (t = tk)
aK = (2t — Ak)/(2t + Ak), where Ak =tk — tk-1 and 1/t is the filter cutoff frequency

Bk-1: The last filtered bandwidth sample

Bk: The recent bandwidth sample

Bk-1: The pervious bandwidth sample

The coefficient aK has been chosen to be dependent on the inter-arrival time A%.
The relationship between the inter-arrival time Ak and the coefficient aK is
inversely proportion. So when the inter-arrival time increases, the value of the
coefficient decreases and hence the significance of the last filtered sample (Bk-1)

decreases. On the other hand, when the inter-arrival time decreases the

15

significance of the last filtered sample increases.

2.2.3. Westwood Packet Counting Procedure

Westwood uses a very accurate counting procedure for data bytes

acknowledged. The counting procedure takes into count the delayed and

cumulative acknowledgements.

Table 6: Westwood packets counting procedure

cumul_ack:

Current Acknowledgement Sequence — Last Acknowledgement Sequence

cumul_ack ==

accounted_for + 1; cumul_ack = 1;

IAcknowledgment)

(Duplicate

cumul_ack >1 &&
accounted_for >=

cumul_ack

(Delayed Acknowledgment)

accounted_for = (accounted_for - cumul_ack), cumul_ack =1

cumul_ack > 1 &&

accounted for < cumul_ack

cumul_ack = cumul_ack - accounted_for; accounted_for =0

(New Acknowledgment)

Last Acknowledgment Sequence = Current Acknowledgement Sequence

(Update Acknowledgment Sequence Number)

acked:

cumul_ack

return (acked)

16

Where
cumul_ack: The Number of Acknowledged Segments accounted_for:
The Number of Duplicate Acknowledgment

acked : Number of Acknowledged Segments Reported by Current Received Acknowledgment

2.2.4. \Westwood+

Westwood+ is a further refinement of Westwood, with the key
improvement occurring in the bandwidth measurement procedure. The
available bandwidth measurement of Westwood+ relies on the acknowledged
data bytes during one RTT period, which provides a better measurement of the
available bandwidth and eliminates the dependency of the acknowledgment

inter-arrival times.

Bandwidth Sampling:

Bandwidth Sample Dk /Ak

(BK):

Where

Dk : Data acknowledged in Bytes (Number of acknowledged segments < Segment Size)

Ak : The RTT of The Computed Sample

The time-invariant filter proposed in Westwood+ is a modified version Westwood

time- variant filter [15, 18]:

17

BK = aK x Bk-1+ (1 - aK) x Bk
Where
BK: The Filtered Bandwidth at time (t = tk)
aK =0.9
Bk-1: The last filtered bandwidth sample

Bk: The recent bandwidth sample

Table 7: Westwood Bandwidth Sampling

Westwood

New Ack -->
cwnd = cwnd + (MSS * MSS/
Duplicate Ack --> New Ack > _ cwnd) ~
DuplicateAckCount++ DuplicateAckCount=0
cwnd = cwnd + MSS TransmitNewSegment

DuplicateAckCount=0
Transmit new segement

->
cwnd =1
ssthresh = 64 KB
DuplicateAckCount = 0

_—

cwnd >= ssthresh

Congestion
Slow Start L '\ Avoidance
timeout -->
ssthresh = cwnd/2
timeout --> cwnd =1 MSS

ssthresh = 64 KB
DuplicateAckCount = 0

DuplicateAckCount =0
Retransmit Lost Segement

timeout -->
ssthresh = cwnd/2 New Ack -->
cwnd =1 cwnd = ssthresh
DuplicateAckCount = 0 DuplicateAckCoun
Retranstpit Lost Segement

DuplicateAckCount = 3 -->
ssthresh = Maximum
(Measured BW *
minRTT/IMSS, 2)
(cwnd > ssthresh) -->
cwnd = ssthresh
(cwnd < ssthresh) -->

Fast Recovery e
sthresh = Maximum
(Measured BW *

minRTT/MSS, 2)
(cwnd > ssthresh) -->

No Change cwnd = ssthresh
Retransmit Lost Segement (cwnd < ssthresh) -->
No Change

Retransmit Lost Segement

Figure 2: FSM description of Westwood [produced from 18, 19]

18

CHAPTER 111

FTAT — A New Congestion Control Algorithm

One of the most fundamental principles of the Transmission Control Protocol (TCP)
is that the congestion control must be End-to-End. In other words, there must be no
explicit feedback from the network between the two end-systems [5]. This design
principle of TCP allows the connection to be reliable no matter what kind of networks it
operates on, and the kinds of failures that can be encountered in the intermediate nodes.
Therefore, any information about the network needs to be obtained using measurements

and observations, while treating the network as a “black box”.

3.1. The Problem

The problem that researchers have been studying for many years is how to distinguish
data loss caused by radio links (random loss), from that caused by congestion. This
distinction is difficult to pin down, as the data bytes lost during a connection due to radio
links are random and suggests no specific systematic way that can be traced and differed
than that of congestion. As well, there are other important attributes involved in the
reliable communication of the TCP connection such as network stability, fairness of
shared network bandwidth among nodes sharing a network operating over a TCP
connection, and inter-protocol friendliness of different kinds of TCP implementations.
Some researchers suggest an explicit notification from some network devices such as

routers to determine the connection type, and as a result handle the loss in a proper way

19

[20]. Other researchers have proposed installing proxies between the radio links and the
wired links to isolate each connection from the other and hence handle losses in a proper
way [13, 11, 21]. Finally there is the end-to-end solution, which complies with the TCP

principles as an End-to-End reliable Transmission Control Protocol.

The primary reason to have to distinguish data loss from random loss from that caused by
congestion is that the data loss in the two cases needs different treatment. The loss caused
by congestion requires immediate action from the TCP sender to reduce the rate of
segments transmitted to the network in order to avoid congestion collapse, while the
random loss should not have any effect on the rate of sending as the loss cause is not
urgent (or repeatable). In reality, however, the original TCP (Reno) does not have a
mechanism to distinguish between the random loss from congestion loss, as a result any
segment loss is considered congestion and the cwnd is cut to half if the loss signal is three
duplicate acknowledgments, and reduced to one segment if the loss signal is a

retransmission time-out.

3.2. Solution

The proposed solution is whenever a loss signal has been activated, the network
capacity is “tested” to measure the reality of the loss cause. One of the ways this “testing”
can be performed is by sending a defined amount of data, and observing the received data
at the end-node in a specific period of time, then adjusting the cwnd accordingly. In
correspondence to the loss scenario, duplicating the same environment with the same

attributes were the loss occurred reveals the cause of the loss; duplicating the same

20

environment in terms of one RTT and the cwnd size. In the next section, a visualization of loss

scenarios is presented.

3.3. End-to-End Loss Scenario

3.3.1. Ideal Congestion Scenario

]
_,
.,

Figure 3: Black Box Principle in the Presence of Congestion

In Figure 3, a TCP sender is injecting data segments into the network, which is
from the TCP sender’s perspective a “Black Box”. The network is facing congestion,

and as a consequence, only half of the data segments have reached the TCP receiver,

21

and the other half has dropped by the network. Acknowledgments of the received

segments will be sent to the sender.

3.3.2. ldeal Wireless Segments L.oss

Figure 4: Black Box Principle in the Presence of Random Loss

In this scenario, a TCP sender is sending a stream of data segments into the
network, the network has unreliable wireless links which drops data segments. The
result will be that most of the data segments will reach the destination node,
acknowledgments from the receiver will be sent back to the sender, and very few data

segments (in the range of 1-5%) will be dropped.

22

3.3.3. Actual Scenario

In an actual scenario, the network may have many paths with numerous users
sharing the network. Further, the network may have many links with different
connections. As an example, a TCP client can be in one country, and the TCP server
is in totally different geographic region. As a result, the data segments can face either

of the two kinds of data loss.

EEEEEEEEEN Tl, EEEEEEEEEN

Figure 5: Black Box Principle in the Presence of Congestion and Random Loss

In such a case, the data sent through the network by the TCP sender has gone through
hybrid networks, and has experienced loss due to wireless links and congestion. This
scenario also signifies the importance of the fundamental principle of TCP, the end-to-

end approach to congestion control. In such a scenario, the TCP sender needs to be able

23

to decide whether to (a) decrease the cwnd to the correct network capacity and prevent
congestion collapse, or (b) keep the cwnd the same, because random loss is not a
predictor of future congestion collapse

The key contribution of the FTAT approach is in implicitly determining the cause of data
loss, and then adjusting the congestion window in the correct manner. The congestion
window is degraded only when necessary — when the loss is actually caused by

congestion.

3.4. FTAT Approach

FTAT and Westwood share the same principle of using the feedback of returning
acknowledgments to measure the network capacity and adjust the cwnd accordingly.
However, Westwood’s filtering mechanism has its own drawbacks. Filtering the
measured capacity samples is good from one point of view: it results in an averaged
sample that is not greatly affected by loss. On the other hand, the filtering mechanism
assumes that the network has reached its capacity and does not instantly reflect the actual
capacity of the network at the time of the sample measurement. This can be shown
through simulations conducted using ns-3 implementation and the Linux-stack kernel.
This causes Westwood to fall in the same category as NewReno in not predicting the

actual network capacity and as a result degrading the throughput.

The mechanism employed by FTAT of testing the network when a loss is detected to
implicitly determine the cause of the loss, and accordingly adjusting the cwnd, is shown

that it greatly predict the cause of the loss, and as a result produce better throughput. To

24

achieve the “testing”, the same environment when the loss occurred is duplicated, then
the delivered data bytes to the receiver is computed, and the cwnd is adjusted
accordingly. Computing the capacity of the network without filtering the samples is good
from the point that it reflects the actual capacity of the network at the time of the
sampling and hence can increase the cwnd instead of decreasing the cwnd as in the
congestion case.

The next graph demonstrates the testing mechanism effect on the cwnd throughout the

connection, in random loss case, and in congestion case.

Congestion Scenario Loss Scenario

Initial Congestion Window Initial Congestion Window

CWND CHANGE

Figure 6: Adaptive Transmission Effect

In the graph it is shown that whenever the testing mechanism is applied, if the cause of

the loss was congestion, the result will be always a reduction in the cwnd to the correct

25

capacity of the network. When the loss cause is random loss that has no relevance to the
network capacity, the result of the testing is an adjustment of the cwnd to the right
capacity of the network, which can lead sometimes to reduction in the cwnd and other

times expansion in the cwnd.

3.5. TCP FTAT Congestion Control

TCP FTAT is a new end-to-end congestion control algorithm, which is a modification
of Reno that does not require modifications to the TCP structure, and only requires
installation in the TCP sender side. TCP FTAT achieves much higher throughput/
goodput gain over the other TCP congestion control algorithms. By way of ns-3
simulations, we show that it can achieve more than 22900% and 8500% goodput gain
over NewReno and Westwood+, respectively, in congested networks as well as in
wired/wireless/hybrid networks due to its adaptive mechanism in adjusting the cwnd to
the right network capacity and ensuring the delivery of the lost segments in a timely
manner. In high bandwidth-delay product networks, TCP FTAT outperforms most of the
TCP congestion control algorithms in the throughput/goodput gain. TCP FTAT does not
degrade the cwnd dramatically each time a loss occurs, as FTAT is sensitive to the nature
of the data loss. FTAT does not degrade the cwnd directly when a loss occurs, instead the

effect of loss is only observed in the overall network bandwidth measurement.

26

The congestion window, which characterizes the behavior of the congestion control

algorithm, has a specific pattern in the case of NewReno and other similar congestion

70
60

50

40 Segment lost

Timeout

/

20
/
o cwnd/ 2 e cwnd/ 2
ssthresh
0 1 2 3

4 5 6 7 8

Congestion Window
(KB)

Slow Start 'I_'I!.meout Slow Start Time (seconds) Congestion Avoidance
imer

Figure 7: NewReno Congestion Window Pattern

control algorithms, which try to “guess” the available bandwidth in the network. For
example due to the halving of cwnd when three duplicate acknowledgments are received,
NewReno’s cwnd almost follows a “sawtooth pattern”, the following graph emphasize
the sawtooth pattern of NewReno.

TCP FTAT’s cwnd, on the other hand, does not follow such a specific pattern; FTAT
uses an Adaptive-Increase Adaptive-Decrease paradigm, which measures the network’s
available bandwidth, and uses these measurements in order to determine the inflation or

deflation of cwnd.

FTAT is based on two states, Adaptive Transmission, and Additive Increase. The

Adaptive Transmission measures the network capacity in a duration of one RTT, then the

27

data bytes measured is used to adjust the cwnd. If the measured capacity indicates that the
available bandwidth is lower than the current size of the congestion window, the result is
cwnd degradation to the correct capacity of the network. If the measured capacity
indicates higher available throughput, however, the cwnd is inflated to the available
network capacity. This possible increase in the size of the congestion window is key to
the increased performance afforded by TCP FTAT.
In the Additive Increase phase, the cwnd increases by a combination of the linear and
exponential increase of Reno’s two phases: Slow Start and Congestion Avoidance.
The purpose of the Additive Increase algorithm is as follows:

1. After an initial estimation of the network capacity, Reno assumes that the network

is in a stable state and the capacity of the network has been reached.
2. An Additive increase paradigm takes over to probe for any additional changes to

the network capacity.

3.5.1. Initial Congestion Window

The quality of service for the majority of applications on the World Wide Web faces
degradation due to the size of the initial congestion window of AIMD protocols. The
initial congestion window of Reno is limited to 4380 bytes, which causes the majority of
applications on the WWW (that transmit multiples of hundreds of KB) to take longer
times in the start-up phase than it would take in normal transmission [12]; in addition to
the large products of bandwidth-delay networks that are in increased deployment, which

cause the segments to take a long time to travel to the destination and the

28

acknowledgment to return to the sender. At the same time, if the congestion window is
too large in the start-up phase with no knowledge of the condition of a network, that
could lead to congestion and may threat the stability of the Internet. FTAT adjusts the
cwnd at the start-up phase to 64 KB, which corresponds to the start phase of Congestion

Avoidance in Reno algorithm.

3.5.2. FTAT Algorithm

The connection starts with cwnd set to 64 KB, which allows a predictable amount of
initial throughput. With the first cwnd data bytes sent to the network, the
acknowledgments are monitored and counted. After the first round-trip time (RTT) has
elapsed, the cwnd is set to the network’s capacity computed as the data bytes
acknowledged during the last RTT. The Additive Increase algorithm starts when the
cwnd value is equal to or greater than the Congestion Window Threshold
(cwndthreshold), which increases the cwnd linearly by one MSS every RTT. If the cwnd
is less than the cwndthreshold or if the cwnd value is less than 64 KB as Reno, the cwnd

increases exponentially by one MSS upon receiving each new acknowledgment.

The cwndthreshold stores the value of the cwnd just before a segment is lost, and hence if
the Adaptive Transmission algorithm sets the cwnd to a lower value, the Additive
Increase algorithm is acknowledged that the capacity of the network is greater and is
probing in a fast-paced for the additional bandwidth. When the cwnd reaches the value of
cwndthreshold, the Additive Increase algorithm is alerted that the cwnd is in the range of
a previous congestion, and hence the rate of cwnd increase is slowed down.

29

The Adaptive Transmission phase starts when there is an alert of change to the network
capacity by way of three duplicate acknowledgements. In the Adaptive Transmission
state, the packet with the sequence number reported to be lost is retransmitted, and a new
bandwidth estimation procedure is initiated. Upon receiving a new acknowledgement or
duplicate acknowledgement, a new packet is transmitted in the network. When the
number of duplicate acknowledgements reaches three duplicate acknowledgements, the
lost packet is retransmitted, and for any additional duplicate acknowledgement a new
packet is transmitted through the network. After a period of RTT, the new bandwidth is
measured and the Additive Increase state resumes. If the algorithm in the Adaptive
Transmission state and a retransmission time-out (RTO) occurs, the Adaptive
Transmission state ends and the bandwidth is computed for the data acknowledged in the
elapsed period of the RTT. The occurrence of RTO in the Additive Increase state is
treated the same way as the NewReno: the cwnd is set to one MSS. Figure 8 shows a

finite state machine depiction of FTAT.

FTAT

New Ack -->
—— fiew Adki=s (cwnd >= cwndthreshold) -->
uplicateAc| = *
(DuplicatechCount 1=3)--> s (Eamd x.cumithreshiold) -~ ewnd cwn::v:[gwss mes!
AckCount = countAck() DuplicateAck cwnd = cwnd + MSS dthreshold = d
i (DuplicateAckCount = 3) --> DuplicateAckCount = 0 cwnduiresnac=.own
Transmit New (AckCount) P DuplicateAckCount=0
Retransmit Lost Segement Transmit new segement P -

Segements (if possible) Transmit New Segement

->

cwnd = cwndthreshold = 64 RTT elapsed >
KB cwnd = CountedAcks * MSS
Adaptive Additive
> Transmission I 1 Increase
timeout -->
cwnd = CountedAcks * MSS
New Ack --> Retransmit Lost Segement

AckCount = countAck()
Transmit New (AckCount)
Segements (if possible) DuplicateAck
(DuplicateAckCount = 3) -->
Retransmit Lost Segement

timeout --> DuplicateAck
cwnd =1 (DuplicateAckCount < 3) -->
Retransmit Lost Segement pyplicateAckCount++

Figure 8: FSM description of FTAT
30

CHAPTER IV

Implementation of FTAT in ns-3

4.1. The Network Simulator — 3

The network simulator (ns) is a discrete-event network simulator for Internet
Systems [22, 23, 24]. Network simulators are widely deployed in the networking research
community, and ns-2 alone was reported to be used for over 50% of ACM and IEEE
simulation-based research papers for the period from 2000 to 2004 [24].

The ns-3 project was adapted by Tom Henderson, Sumit Roy (University of
Washington), George Riley (Georgia Tech.), and Sally Floyd (ICIR) to address the
weaknesses of ns-2, mainly in aligning with how research is currently conducted, and to
improve the credibility of the network simulator. ns-3 is an open source network
simulator intended to replace ns-2, although ns-3 is not considered an extension to ns-2
due to a new implementation which replaces the OTcl API with C++ wrapped by Python,

and replaces the guts of the simulator completely, and introduces new visualizers.

4.2. The Implementation of TCP in ns-3

TCP in ns-3 is implemented using several classes that provide reliable transport
protocol services and communicate with the network layer. The classes that implement
the TCP protocol are TcpSocketBase, TcpSocket, TcpHeader, TcpTxBuffer,

TcpRxBuffer, TcpL4Protocol, and the different congestion control algorithms

31

implementations.

The TcpSocketBase class inherits from TcpSocket, and provides the interface
required for the application layer to the sockets, and is the base for the different
TCP congestion control variants.

The TcpSocket class is an abstract class that contains the attributes for required
for a TCP socket.

The TcpHeader class contains the implementation for a TCP segment header.
The TcpTxBuffer class provides a buffer service to the application layer, which
allows the data to buffer before send out.

The TcpRxBuffer class provides a buffer for the data coming from the network
layer before it is passed up to the application layer.

TcpL4Protocol class provides an interface for the network layer to the sockets,
and it is responsible for the interactions with the network layer, and it performs

the data checksum for the incoming packets.

Ns-3 provides different implementation of the congestion control algorithms, which

inherits from the TcpSocketBase class. These algorithms are Westwood/ Westwood+,

NewReno, Reno, and Tahoe.

4.3. Implementation of FTAT in ns-3

The tcp-FTAT class includes the TCP FTAT congestion control implementation. This

class inherits from the class TcpSocketBase and provides the required functionalities for

the TCP FTAT. The main functions are ReceivedAck(), NewAck(), DupAck(),

EstimateRTT(), EstimateBW(), NewAckProcessing(), CountAck(),

32

UpdateAckedSegements(), and Retransmit(). The class diagram is shown in Fig. 1.

e receivedAck() is an inherited function from the TcpSocketBase class. It
determines if the received acknowledgement is a new acknowledgement or a
duplicate acknowledgement. Based on this check, either the newAck() function or

the dupAck() is invoked.

The newAck() function is invoked after receiving a new acknowledgement. The
way the cwnd is handled in newAck() is dependent on the state Adaptive
Transmission or Additive Increase. If the algorithm state is in Additive Increase,
the cwnd is compared to cwndthreshold to determine the rate of increase. If the
cwnd is less than cwndthreshold, then the rate of increase would be exponential,
one MSS every new acknowledgement. If the cwnd is equal to or greater than the
cwndthreshold, then the cwnd is increased at a rate equal to the Maximum of
((MSS*MSS/cwnd), 1) + cwnd, which increases the cwnd by approximately one
MSS every RTT. It worth noting here that this formula is specified in RFC2581

[25].

If the algorithm state is Adaptive Transmission, the newAck() function will be
invoked once a new acknowledgement is received, at this stage the newAck()
function will evaluate the variable m_pcktsRound to determine the number of
data packets acknowledged and transmit the same number of packets to the

network.

33

TepL4Protocol TepL4Protocol TepL4Protocol
m_node m_node m_node
m_endPoints é el | m_endPoints m_endPoints
m_sockets m_sockets m_sockets

I r—
| |
Allockate() é A | Allockate() | Allockate()
Send() | Send() Send()
Receive() | | Receive() | Receive()
| | |
I | |
PP | |
| |
TepL4Protocol TcpSocketBase | TepL4Protocol
|
m_node m_rwWnd - m_node
m_endPoints m_state m_endPoints
m_sockets «| m_nextTxSequence m_sockets
<>—m_sockets- -‘l
ForwardUp()
Allockate() SendPendingData() | Allockate()
Send() SendEmptyPacket() | Send()
Receive() | Receive()
L |)
G o o e
tep-rfc793 tcp-tahoe tcp-reno tcp-newreno tcp-westwood tep-FTAT
m_cWnd m_cWnd m_cWnd m_currentBW m_cwndthresh
m_ssThresh m_ssThresh m_ssThresh m_lastBW m_pcktsRound
m_retxThresh m_inFastRec m_inFastRec m_minRtt m_recover
m_recover
NewAck() NewAck() NewAck() CountAck() NewAck()
DupAck() DupAck() DupAck() DupAck() CalculateBW() DupAck()
Retransmit() Retransmit() Retransmit() EstimateRtt() Retransmit()

Figure 9: TCP Implementation in ns-3 including FTAT

e The dupAck() function is called after a duplicate acknowledgement is received. If

the Algorithm state is Additive Increase, there are no any actions taken by the

dupAck() function except when the number of duplicate acknowledgements

reaches 3. When the number of duplicate acknowledgements reaches 3, the lost

segment is retransmitted and the Adaptive Transmission state is activated without

any changes to the cwnd or cwndthreshold variables. If the state of the algorithm

is Adaptive Transmission and the dupAck() is called, on every single call to the

34

dupAck() function, the value of the m_pcktsRound is evaluated for the number of
data packets acknowledged and a new packet is transmitted to the network.
The estimateRTT() function is called to calculate the last RTT. In tcp-FTAT,
estimateRTT() performs the following two tasks:

= Perform the last RTT calculation.

= Schedule a new bandwidth measurement for a period of RTT.

The estimateBW() function is called by estimateRTT() after the RTT period
has elapsed and it is time to adjust the cwnd to the estimated bandwidth and
deactivate the Adaptive Transmission. The bandwidth is measured as the
maximum of (m_SegmentSize, m_ackedSegements * m_SegmentSize) were
the m_SegmentSize is the MSS and m_ackedSegements is the number of
acknowledged data packets during the state of the Adaptive Transmission and

itis reset after setting the cwnd to prepare for a new measurement.

The newAckProcessing() function performs the housekeeping for the Adaptive
Transmission state. It is called by the estimateBW() function and returns the
control to estimateBW().

The countAck() and updateAckedSegements(), are two functions of the
Westwood+ which perform the counting of the number of data packets
acknowledged. It is a novel procedure and gives an accurate calculation for the
data packets and takes into account the delayed and accumulative
acknowledgements. They are called from the receivedAck() function, First the
countAck() function is called to calculate the number of acknowledged packets,
and then the updateAckedSegements() is called to update the m_ackedSegements

variable.

35

e The Retransmit() function is called after a RTO occurs, it performs the
retransmission by calling DoRetransmit() of the TcpSocketBase class, and
deactivate the Adaptive Transmission if active and calls the EstimateBW(), or

adjusts the cwnd to one MSS if the algorithm is in the Additive Increase state.

36

CHAPTER YV

TCP FTAT Linux-Stack Implementation

5.1. Introduction

The Linux operating system has been the most popular choice for many
networking applications for more than a decade. These applications include server-side
technologies, embedded systems, and a significant number of research efforts in the area
of computer networks. Linux also provides the capability of producing customized

networking kernels for different networking applications.

Although there are many benefits to using Linux in networking research and applications,
it lacks good documentation for its TCP kernel source code, which, in turn, requires
significant effort in reading the source code and to get the required information from

different resources in order to identify the correct changes to make.

5.2. TCP Congestion Control in Linux

The Linux kernel source code is implemented in C programming language. TCP
FTAT is currently implemented in copies of source code for linux-source-3.2.0 and linux-

2.6.36. The first attempt to implement TCP FTAT in linux-source-3.2.0 was successful,

37

and it was recompiled in Ubuntu 12.04 LTS. The second implementation was in
linux- 2.6.36, and it was to align with the DCE framework in order to conduct live

simulation with the Linux TCP kernel stack.

The TCP protocol implementation in Linux is shown in Figure 10 and Figure 11. Since
the congestion control implementation of TCP FTAT is only in the sender-side, the
framework has not been changed; only additional congestion control implementation
has been added. There are currently 13 congestion control protocols available in
Linux, which are Cubic, Reno, BIC, Westwood, Highspeed, Hybla, HTCP, Vegas,
Veno, Scalable, LP, Yeah, and Illinois. A brief description on each of these algorithms
are as follows.

e TCP Tahoe [1]: The original congestion control by van Jacobson, which
consists of Slow Start, Congestion Avoidance, Fast Retransmit.

e TCP Reno [26]: A modification of TCP Tahoe, with the addition of Fast
Recovery. This algorithm later became the de facto standard.

e TCP NewReno [2]: A modified version of Reno, also became a standard.

e TCP BIC [27]: Binary Increase Congestion, where the cwnd grows more rapidly
than NewReno by doing binary search to reach the middle point of the cwnd
when the congestion was last observed, and then grow rapidly before reaching
the congestion point, then slows down the rate of growth when the congestion
point is reached, then the window grows rapidly again in search of another

congestion point.

e TCP Cubic [28]: The current default congestion control algorithm in Linux, it is

designed to address for the high-speed networks, and it is the successor of TCP

38

BIC.

TCP Scalable [29]: A congestion control algorithm designed on the idea of
making the time of recovery from a congestion constant and unrelated to the
congestion window size.

TCP HighSpeed [30]: A congestion control algorithm that uses a cutoff point to
determine the increase factor and the decrease factor in the AIMD paradigm.
TCP HTCP [31]: The HTCP uses the time since the last congestion as a factor in
increasing the congestion window. It has an accurate function based on the RTT
to measure the queue size of the bottleneck link along the path, and it uses the
measurement to adjust the congestion window decrease factor.

TCP Vegas [7]: Uses the measurement of the RTT to determine the state of the
congestion in the connection and as a result, decreases or increases or maintains

the congestion window size.

39

Caries Different TCP
settings

kernel main init

Congestion_Control
_Algorithm.c

Figure 10: Classes interaction in Linux

e TCP Westwood [5, 6]: An Additive Increase Adaptive Decease paradigm
algorithm that uses the returning acknowledgement as implicit feedback to

determine the congestion window size.

e TCP lllinois [32]: Congestion control algorithm that uses the delay of queuing to

calculate the factors of the congestion window increase and decrease.

40

TCP Hybla [33]: Attempt to determine the increase rate of the congestion window
based on the measured RTT to ensure flows fairness. It uses a reference value for
the RTT to determine the state of the connection.

TCP Veno [34]: Uses the same paradigm as NewReno in adjusting the congestion
window, but it tries to detect the random losses based on the delay of queuing,
and it reduces the congestion window by a factor of 0.20 not the halve as
NewReno.

TCP LP [35]: A Low-Priority Service congestion control that attempt to utilize

the unused bandwidth in a TCP flows.

TCP YeAH [36]: Yet Another Highspeed TCP, is a congestion control algorithm
that uses two modes for the congestion window growth, namely, Slow mode and
Fast mode. In the slow mode, it implements the Reno rules of growth to the

congestion window. While in the Fast mode, it implements the Scalable rules of

growth to the congestion window.

The TCP Congestion Control implementation in Linux uses states to differentiate

between different congestion states of the connection. It provides more than just the

standard states of NewReno, but allows more control such as reversing the cwnd

decreases. There are two paths for an additive increase state: Slow Path and Fast Path.

For the slow path to be active, there must be a duplicate acknowledgement. The fast path

takes place when there are no duplicate acknowledgements and the connection is open.

The states used by Linux to determine the state of the connection and hence take a proper

action by congestion control are Open, Disorder, CWR, Recovery, and Loss.

41

sk->data_read |
X

tcp_data_queue()

tcp_ack_snd_check()

Retransmit
tcp_sendmsg()

tcp_data

tcp_write_timer()

tcp_ack_send_delayed_check()

Abschnitt tcp_send_skb()

Slow Path
FastRath

tcp_data_snd_check()

tcp_rcv_state_process() tcp_rcv_established()

TCP_ESTABLISHED

tcp_retransmit_skb()

tcp_v4_do_rev()

tcp_write_xmit()

tcp_transmit_skb()

_tcp_v4_lookup()

TCP

ip_input.c ip_output.c

ip_local_deliver() ip_queue_xmit()

Figure 11: TCP function interaction in Linux

Open State: when there are no duplicate acknowledgements, the packets

received are forward to the Fast Path, and it is the normal state.

Disorder State: When there are duplicate acknowledgements or SACK, and the

packets are forwarded to the Slow Path.
42

e CWR State: The state, which handles congestion notifications that come from
congestion control based on explicit notifications such as ECN.
e Recovery State: It is stated when there is indication of loss and it is time to enter a

recovery state, it has the Fast Retransmit operations.

e Loss: Itis entered due to loss of RTO or SACK reneging.

5.3. FTAT Implementation in Linux TCP Stack

The TCP FTAT implementation in the TCP Linux kernel source code resides in the
tcp_FTAT.c in the ipv4 sub folder of the net folder in the Linux kernel source code.
Additional header file has been added for the tcp_output.c in order for FTAT to use some
functions in tcp_output.c to perform packets transmission in the Adaptive Transmission

State.

e tcp FTAT init(): initializes the variables at the start of the connection.

e tcp FTAT pkts_acked(): It is called after processing some packets. It adjusts the
RTT to the SRTT (Smoothed Round Trip Time) after, and checks the processed
packets’ RTO status to deactivate the Adaptive Transmission and sets the cwnd to
the measured capacity of the network, or sets the cwnd to one MSS in case of

Additive Increase.

e westwood_acked_count(): A function from tcp_westwood, which performs the
counting procedure for the acknowledged bytes after receiving an

acknowledgement.

e tcp FTAT_Bandwidth(): called after Adaptive Transmission, performs the

capacity calculation of the network, and adjusts the cwnd.

43

e tcp FTAT_cwndthreshold(): returns the value of the FTAT_cwndthreshold.

e tcp_init_data_skb(): Is called from tcp_FTAT_probe_skb(), prepares control bits,
and performs the sequence number sliding for the packets which are sent in the
Adaptive Transmission state.

e tcp FTAT probe_skb(): Is called from tcp_ FTAT_probe_skb() to send new
packet in the Adaptive Transmission upon reception of new acknowledgement
or duplicate acknowledgement.

e tcp FTAT additive_increase(): The additive increase function which checks the
cwndthreshold in comparison to the cwndthreshold to determine the rate of

increase.

e tcp FTAT adaptive_transmission(): The center piece function which holds most
of the logic of FTAT in TCP Linux. It is called in the Slow path and Fast path,
and it performs the following tasks:

= Checks the RTT to start a new bandwidth measurement.

= [|nitializes the snd_una variable on the first received acknowledgement
to adjust the sequence number of the first unacknowledged byte.

= Determines if it is time to switch from Adaptive Transmission to Additive
Increase and adjust the cwnd to new capacity of the network.

= Determines if it is time to activate the Adaptive Transmission state, if it is
not active.

= In the Adaptive Transmission state, calls tcp_ FTAT_probe_skb() to send
packets.

e tcp FTAT event(): Switches between states, manages which function gets
44

called on each state.
e tcp_congestion_ops(): Provides the information for the congestion control
handler interface.
One important setting for using FTAT is to adjust the sending and receiving buffers to a
fair value in order for the end-nodes to be able to buffer a good amount of data in the
presence of packets disorder. The current value that has been adjusted for the buffer sizes

in Linux and ns-3 is 5 MB.

45

CHAPTER VI

A Mathematical Model of TCP FTAT

In this chapter we derive a mathematical model of FTAT Adaptive-Increase Adaptive-
Decrease mechanism. Because FTAT is a sender side modification of NewReno and for
the sake of simplicity, we follow the same arguments developed by Kelly in his paper
“Mathematical modeling of the Internet” [14], and that was used in [6] to derive a
mathematical model for TCP FTAT.

Theorem: A simplified steady state throughput of the FTAT algorithm

is as follow:

Equation 1

. B> 1-p
Trrar = I xO =5+ [T+ &2

Proof. To develop the model we consider a TCP flow controlled by FTAT, p is the probability
of loss signal at the window update, B is the available bandwidth share for the flow, RTT is the
mean round trip time. The cwnd is updated upon receiving an Acknowledgement, we assume

that the connection is in stable state, and that the cwnd is greater than the cwndthreshold,
which increase the cwnd by ﬁ upon receiving new acknowledgement. In the case of
congestion signal, the algorithm enters the Adaptive Transmission state, and the cwnd is

updated after one RTT or time-out by B - RTT - cwnd. By the given assumptions, we derive

46

the following update step for the cwnd:
Equation 1
Aownd =~——P 4 (B - RTT d
cwnd = cond (cwnd) - p

Since an approximation of the rate at which the cwnd is updated in the Additive increase state

cwnd
RTT '

ISx = the time between the update steps in the Additive Increase state or the start of the
Adaptive Transmission state is about %, and the expected change in the rate x per unit time

is approximately:

(1_p/cwnd + (B - RTT —cwnd) - p)/

ox(t) RTT _1-7p cwnd B (cwnd)2
ac RTT; = rrr2 T\ RTT RTT p
cwnd
Equation 2
ox(t) 1-p)
Fra W+(x(t) B—x*(t) 'p

Equation 3 is separable differential equation. After separating the variables, Equation 3 can be
written:

Equation 3

9x(t)

1-p
2(4) — . p_
x2(t) —x(t)- B RTT? -p

_at.p —

The solution can be obtained by integrating each member

1
—pdt = dx(t)
f fxz(t)—x(t)- B - i

)

1 =Xy " C+ e—p't'(xl—xz)

X
x(t) = 1—C e Pt:(x1—x2)

47

Where C depends on the initial conditions, and the roots of the equation

1-p
Z—x-B- =0
o RTT? - p
)
_B, B, 1-p
2=5% T RrTE

And a simplified steady state throughput of the FTAT algorithm can be described as:

. B2 1-p
Terar = im x(©) =5+ |7+ prr2

By deriving the steady state throughput of the FTAT algorithm, we are able to show the

following corollary.

Corollary: The FTAT congestion control is stable (T prar < B)

Proof. From Equation 4, we can argue that Trr 4 is always less than or equal to the available
bandwidth, B. To show that, we use the same contradictions in [6], that is if we assume that
Trrar > B, this assumption leads to congestion collapse, and this leads to drop probability,

p up to 1. As aresult Equation 4. will result Trr4r = B, this result will contradict the
assumption. And by this we can conclude that Trr 4 IS always less than or equal to B, in other

words Trrar < B.

48

CHAPTER VII

Evaluation based comparison of TCP-NewReno, TCP-Westwood+, and
TCP-FTAT using ns-3

In this chapter we compare the performance of NewReno, Westwood+, and FTAT
congestion control algorithms using ns-3 in order to evaluate the behavior of each
algorithm in different networks. NewReno and Westwood+ are the native
implementations in ns-3. For wireless connections, a packet error model is installed on the
links, and the error rate is denoted as p. For all topologies, unless otherwise stated, the

default configuration of the buffer size and MSS are 5SMB and 536 bytes, respectively.

7.1.Topology One

| | P= 2%
— @ 1000 Mbps ‘ % 100 Mbps

100 ms 6560 ns

Figure 12: First Topology

This topology examines the congestion control algorithm when the segments must
travel through different connections. The first connection is a wireless connection with
2% packet loss error, the next connection is high Bandwidth-delay product (BDP)
network. The last connection is an Ethernet connection. Packets may experience losses
due to the wireless connection, and experience large RTT. The simulation time is set to

1000 seconds.

49

600000

500000 | i |

400000

300000 1

Cwnd in Bytes

200000 1

100000 | 1

0 e
0 100 200 300 400 500 600 700 800 9S00 1000

Time

a) NewReno cwnd

600000 —_——

500000

400000

300000 b

Cwnd in Bytes

200000 1

100000 1

T e T U O

0 100 200 300 400 500 600 700 800 9S00 1000
Time

b) Westwood+ cwnd

600000

500000

400000

300000

cwnd in Bytes

200000

100000

0 100 200 300 400 500 600 700 800 900 1000

Time

c) FTAT cwnd

Figure 13: cwnd graphs for Topology one

50

The congestion window vs time graph (Figure 13) is helpful in confirming the congestion
control behavior in different situations, for example NewReno reacts to a retransmission
timeout (RTO) by resting the congestion window to one packet, while in the case of triple
duplicate acknowledgement, NewReno halves the congestion window. Westwood+
reduces the congestion Window upon receiving three duplicate acknowledgements, by
adjusting it to the last bandwidth measurement obtained, and FTAT starts new bandwidth
measurement and enters the Adaptive Transmission which can identify a false alert of
congestion and in that case, the congestion window increases. In case of congestion,
FTAT reduces the congestion window to the available network bandwidth.

The cwnd graph of NewReno shows the behavior of the slow start and the congestion
avoidance. Because of the long RTT and the loss rate, the window is going to one MSS
more often, and it does not grow more than 12,000 bytes. On the other hand, Westwood
shows more growth to the cwnd, also goes to one MSS more often, and the window does
not grow more than 20,000 bytes. The cwnd of FTAT shows more growth even under the
long RTT and the loss rate, the cwnd growth up to 500,000 Bytes, and goes to one MSS

less often.

51

8e+08 T T T T T T T T

7e+08

Ge+08

Se+08

42408

3e+08

RTT in Nanoseconds

2e+08

le+08

0 100 200 300 400 500 600 700 800 900 1000

Time
a) NewReno

8e+08

7e+08

Ge+08

5e+08

42408

3e+08

RTT in Manoseconds

2e+08

le+08

0 100 200 300 400 500 600 700 800 900 1000

Time

b) Westwood+

8e+08 T T T T T T T T

7e+08 1

Ge+08 1

5e+08 1

4e+08 1

3e+08 b

RTT in Nanoseconds

2e+08 1

le+08 1

O L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Time

c) FTAT

Figure 14: RTT graphs for topology two

52

The three graphs (Figure 14), show almost the same range. NewReno shows almost
constant behavior along the connection time. Westwood+ exhibits slight difference in the
RTT at some points. While FTAT shows totally new behavior for the RTT, which gives
sometimes shorter RTTs and other times a bit longer RTTs. This is due to the nature of
the FTAT algorithm, which tries to adapt to the network available bandwidth with time,
so the algorithm tries to send more data in the network, but because this is a
heterogeneous network with different links and different propagation delays with packet

loss probability of 2%, data gets lost and timeout occurs, which increases the RTT.

The graphs in Figure 15 shows the sequence number advancement for the packets

throughout the connection life time.

2.5€+08 T T T T T T T T
MNewReno ——
Westwood+ —w—0m
FTAT —s—o
2e+08
@
O
e
=
- 1.5e+08
L]
[
[ah]
]
o
Lah]
W le+08
93]
2
L]
18]
o
5e+07
O 1

0 100 200 300 400 500 600 700 800 900 1000
Simulation Time

Figure 15: Sequence number topology one

53

The FTAT algorithm is shown in the red line, while Westwood in the blue line, and
NewReno in the black line. The graph shows that NewReno and Westwood+ almost
have linear packet sequence number advancement. NewReno reached sequence number
12638881, Westwood+ reached 28204321, and FTAT reached 205139529.

The total throughput for the simulation for the three algorithms is shown in Figure 16.
Because throughput might sometimes be deceptive as a measure, goodput is shown for
the three algorithms as well. Goodput is calculated as

Sent bytes - Retransmitted bytes

Transfer time

54

Throughput

8
7
6
%] 5
o
o
= 1
3
2
1
0
Throughput
W NewReno 0.10445
W FTAT 8.03093
B Westwood+ 0.239478
Goodput
8
7
6
5
w
g a
=
3
2
1
0
Goodput
W NewReno 0.10218
W FTAT 7.17802
B Westwood+ 0.234348

Figure 16: Throughput and Goodput topology one

55

7.2.Topology Two

In this topology, a network with various traffic directions share a link of 100
Mbps and 10 ms delay with the TCP-variant on the server side, and the receiving node
has a packet loss model of 2%. 10 TCP NewReno senders are injecting traffic in the
same direction as the TCP-variant, and 10 TCP NewReno nodes are injecting traffic in
the reverse direction. The access links are 100 Mbps and 1ms delay time. The

simulation time is 100 seconds.

100 Mbps

10ms -

Figure 17: Topology two

56

400000

350000

300000

250000

200000

Cwnd in Bytes

150000

100000

50000

400000

350000

300000

250000

200000

150000

Cwnd in Bytes

100000

50000

400000

350000

300000

250000

200000

cwnd in Bytes

150000
100000

50000

Figure 18: cwnd graphs topology two

e S
0 10 20 30 40 50 60 70 80 90 100
Time
a) NewReno
0 10 20 30 40 50 60 70 80 S0 100
Time
b) Westwood

10 20 30 40 50 60 70

Simulation Time

c) FTAT

57

80 90 100

The cwnd graphs in Figure 18 show that NewReno cwnd growth in the presence of
reverse traffic and packet loss rate of 2% did not exceed 12,000 bytes except at the
second 50, which was just a notch, and the window goes to one MSS rapidly.
Westwood’s cwnd shows less fluctuations with a window growth reaching 20,000 Bytes.
FTAT shows more window growth reached 350,000 Bytes, and goes to one MSS much

less often.

2.5e+08

2e+08 ¢

1.5e+08 ¢

le+08

RTT in Nanoseconds

Se+07

RN

0 10 20 30 40 50 60 70 80 90 100

Time

N AR BNINNTI

a) NewReno

2.5e+08

2e+08

1.5e+08

le+08 +

RTT in Nanoseconds

Se+07 AN T e S i

ERRRRTLER YT TR

0 iO 2IO 35 4‘0 56 66 76 85 95 100
Time

b) Westwood

0

58

2.5e+08

2e+08 ¢
1.5e+08
le+08

S5e+07 ¢] I i I 1

0

RTT in Nanoseconds

Q 10 20 30 40 50 60 70 80 S0 100
Time

c) FTAT
Figure 19: RTT graphs for topology two

The RTT graphs in Figure 19 show that NewReno has almost constant range of
fluctuations for the RTT ranging from 25 ms to about 54 ms. Westwood+ has a higher
upper limit for the RTT reaches about 60 ms. FTAT has a much lower rate of fluctuations

for the RTT, and has a lower average RTT of about 29 ms.

7e+0? T T T T T T

T T
Reno ——

Westwood+ ——

Be+07

5e+07 t

de+07

3e+07 t

2e+07

Paclcets Sequence Number

le+07

O I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Simulation Time

Figure 20: Sequence number topology two

The packets advancement sequence number graph in Figure 20 shows that NewReno
59

reached 7,661,585 packets transmitted, Westwood+ reached 14,429,121 packets, and

FTAT reached 64,793,825 packets.

45
40
35
30

25

Mbps

20

15

10

5

0

B NewReno
W FTAT
M Westwood+

40
35
30
25
a
o 20
=
15
10
5
0
H NewReno
W FTAT

B Westwood+

Figure 21: Throughput and Goodput for topology two

Throughput

Throughput
0.635224
40.7364
1.19766

Goodput

Goodput
0.620528

39.0602
1.16979

60

In Figure 21, it is shown the throughput/ goodput of the three scenarios. In NewReno
scenario, all forward and reverse traffic is controlled by NewReno congestion control, the
NewReno flow under test was unable to grab its share of the network available bandwidth
of the 100 Mbps, the throughput is measured to be about 0.635 Mbps.

In Westwood scenario, all forward and reverse traffic is controlled by NewReno except
the sender of the Westwood flow, which is controlled by Westwood+ congestion control.
The throughput graph shows improvement over NewReno, and the measured throughput
is computed to be 1.198 Mbps.

In FTAT scenario, again all the traffic is controlled by NewReno except the FTAT
sender, which is controlled by FTAT congestion control. Because the high volume of
traffic on the bottleneck link, which is 21 TCP flows with 42 nodes, and in different
directions. NewReno flows was unable to grab a proper share of the network available
bandwidth, and as a consequence, huge bandwidth was left unutilized, and FTAT flow

was able to achieve 40.736 alone.

61

7.3.Topo