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HIGH INTENSITY LASER POWER BEAMING  

FOR WIRELESS POWER TRANSMISSION 

 

 

DANIEL EDWARD RAIBLE 

 

 

ABSTRACT 

This paper describes work supporting the development of a high intensity laser 

power beaming (HILPB) system for the purpose of wireless power transmission.  The 

main contribution of this research is utilizing high intensity lasers to illuminate vertical 

multi-junction (VMJ) solar cells developed by NASA-GRC.  Several HILPB receivers 

are designed, constructed and evaluated with various lasers to assess the performance of 

the VMJ cells and the receiver under a variety of conditions.  Several matters such as 

parallel cell back-feeding, optimal receiver geometry, laser wavelength, non-uniform 

illumination and thermal effects at high intensities are investigated.  Substantial power 

densities are achieved, and suggestions are made to improve the performance of the 

system in future iterations.  Thus far, the highest amount of energy obtained from a 

receiver during these tests was 23.7778 watts.  In addition, one VMJ cell was able to 

achieve a power density of 13.6 watts per cm
2
, at a conversion efficiency of 24 %.  These 

experiments confirm that the VMJ technology can withstand and utilize the high intensity 

laser energy without damage and/or significant reduction in the conversion efficiency.  
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CHAPTER I 

INTRODUCTION 

Although the notion of wireless power transmission is now almost 200 years old, 

it remains innovative as ever while developing technology pursues the concept.  New 

advances in solid state light amplification by stimulated emission of radiation (lasers) and 

photovoltaic (PV) technologies generate an opportunity to revisit this concept.  The 

implementation of the high intensity laser power beaming (HILPB) system will extend 

the capabilities of existing applications here on Earth, and create many new avenues for 

the exploration of our universe. 

1.1 Overview and Applications of Wireless Power Transmission 

Wireless power transmission is the process by which electrical energy is sent from 

a power source to a load, without the use of conventional interconnecting wires.  This is 

ideal in applications where either an instantaneous amount or a continuous delivery of 

energy is needed, but where conventional conduction wires are prohibitively 

inconvenient, expensive, hazardous or impossible. 
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The underlying physics of wireless power transmission resembles that of wireless 

communications, but with an important difference.  Unlike information transfer, where 

the percentage of received power must be only sufficiently high enough to recover the 

signal, wireless power transmission places a critical emphasis on the maximum amount 

of possible energy transfer and conversion efficiency.  Ideally, a wireless power 

transmission system would have the ability to transmit any amount of power to any point 

in space, but practical limitations such as conversion efficiencies at the source and the 

receiver, and disturbances in the transmission medium will always limit the performance 

of an implemented system. 

Low-level and short-range wireless power transfer has found niche applications in 

everyday life, such as with radio-frequency identification (RFID) tags, induction charging 

of portable consumer electronics, electromagnetic card readers and transcutaneous energy 

transfer (TET) systems in artificial hearts and other surgically implanted devices [8].   

Wireless power transfer is a revolutionary concept whose full potential has yet to 

be realized.  High intensity long-range transmission is an enabling technology, by 

extending the capabilities of existing applications and facilitating the development for 

completely new paradigms.  A HILPB system will have the potential to connect lunar 

habitats, landing sites and power-plants.  It will have the capability to deliver energy 

indefinitely to remote vehicles and crafts such as unmanned aerial vehicle (UAV) 

swarms, high altitude airships, orbiting satellites, extra-terrestrial robotic rovers and deep 

space probes, thereby increasing their coverage, autonomy and endurance.  A high 

intensity long range wireless power transmission system could be used to relay power 
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from a solar farm or a nuclear reactor to the dark side of the moon, and can be easily 

reconfigured to serve as a flexible virtual power grid.     

The concept of a long range wireless power transmission system has been ahead 

of its practical implementation for a long time, but this gap is shrinking.  The current state 

of the art in technology is providing for a high intensity long range wireless power 

transmission system to be designed using many commercial off-the-shelf (COTS) 

components.  The vast application potential makes the pursuit of the HILPB system a 

worthwhile endeavor.        

1.2 Existing Work in Wireless Power Transmission 

The discussion of significant amounts of wireless power transmission began with 

Nikola Tesla near the end of the nineteenth century.  Tesla built upon his previous 

research in radio transmission to successfully design, construct and demonstrate several 

wireless power transmitters.  His designs were operated on the principles of 

electromagnetic radiation through tuned circuitry.  Although he could power light bulbs 

and vacuum tubes within the vicinity of his transmitters, Tesla had a much broader vision 

for where his technology should be used.  Rather than stringing up copper conductors on 

wooden poles in an effort to connect the country to a power distribution grid, he 

envisioned a worldwide system of radiated energy.  His large scale experiments probed 
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the very fabric of our Earth‟s electrical conduction characteristics in an effort to exploit it 

for this purpose.   

Although Tesla was not afforded an opportunity to complete his research, much 

of his work is being revisited today for applications such as virtual lightning rods and 

weaponry.  The potentially volatile nature of this technology due to the large amounts of 

uncontrollable radiated energy has partially prevented it from gaining support for 

wireless power transmission applications. 

Around the middle of the twentieth century, research on applying microwave 

communications technology to wireless power transmission was started.  This work 

mainly focused on utilizing the technology to transmit energy from solar power satellites 

down to Earth, or to provide power and propulsion to other spacecraft.  Several large 

scale ground based microwave demonstrators have been constructed and operated.  The 

drawback to this technology is that microwaves have very long wavelengths which 

exhibit a moderate amount of diffraction over long distances.  This necessitates a large 

power receiver dish, which limits the flexibility of this technology to certain applications.  

The ability for HILPB to focus large amounts of power to a small aperture across long 

distances is what separates it from the microwave technology, and this broadens the 

number of potential applications for the technology. 
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1.3 New Approaches, Laser Power Beaming 

Since Schawlow and Towne‟s early patented ideas at Bell Labs [1 and 2] which 

led to the development of laser technology, wireless power transmission has been a 

considered application.  The laser‟s efficient atmospheric propagation window, and its 

ability to deliver large amounts of photonic energy to a small aperture make it an ideal 

source for wireless power transmission.  Original research proposed the use of lasers to 

provide thermal energy for beamed energy propulsion to spacecraft.  Later, it was 

proposed to use the laser with a photovoltaic receiver, to effectively beam electrical 

power from one location to another.  The main limiting factors to the laser power 

beaming (LPB) system are the conversion efficiencies of the laser (electrical to photonic) 

and the photovoltaic cells (photonic to electrical).  The advancement of both of these 

technologies is allowing for greater power handling capacities and conversion 

efficiencies.  However, although there are a variety of photovoltaic cells on the market 

approaching conversion efficiencies of 40 % (such as triple junction cells), these 

technologies cannot operate at intensities 1000 times or greater than that of the sun.   

This work proposes the use of vertical-multi junction (VMJ) photovoltaic cells for 

utilization in the laser power beaming application.  These cells were originally developed 

by NASA-GRC scientists and are currently produced by Photovolt, Inc. for high intensity 

solar energy applications (greater than 2500 suns), such as parabolic and Fresnel solar 

concentrators.  VMJ cells offer high power density and conversion efficiencies through 
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the use of edge-illuminated semiconductor junctions and can operate at favorable laser 

wavelengths.   

1.4 Research Objectives 

The first objective of this work is to design, construct and test a preliminary 

engineering model of a HILPB receiver as a proof-of-concept hardware device.  The 

receiver needs to meet the thermal and electrical demands of the system, and will be 

tested with various laser sources to evaluate the performance of the VMJ cells for this 

application.  Next, the receiver design needs to be refined, in order to demonstrate 

substantial power densities and conversion efficiencies.  This will be accomplished by 

investigating matters such as the parallel-cell back-feeding, optimal receiver geometry, 

non-uniform illumination and thermal effects at high intensities.  New iterations of the 

receiver will be designed, constructed and tested to support these investigations and to 

provide solutions to problems encountered during development.  Finally, suggestions will 

be made to improve the future performance of the design, based on the analysis of the 

data collected from these experiments. 
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1.5 Document Overview 

This paper is organized as follows:  Chapter 2 investigates the history of wireless 

power transfer, from the early days of induction and electromagnetic radiation, to 

microwave power transmission and finally laser power beaming.  The enabling PV and 

laser technologies for HILPB are discussed in Chapter 3.  The experimental apparatus are 

described in Chapter 4, including the design, construction and validation of the HILPB 

receivers and the supporting electronics.  Chapter 5 contains the experimental results and 

conclusions concerning issues such as parallel cell array back-feeding, optimal receiver 

geometry and proper laser wavelengths to maximize conversion efficiency, the impact of 

non-uniform beam distribution and thermal effects at high intensities.  Finally, Chapter 6 

offers a summary of the results and suggestions for future work. 
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CHAPTER II 

 HISTORY OF LONG-RANGE WIRELESS POWER TRANSFER 

From the beginnings of wireless power transfer with the prolific Tesla literally 

igniting the world on fire with his kilovolts of energy, the prospects of a large scale 

system have engaged many researchers to push the technology further.  Airships, lunar 

bases and spacecraft applications have been identified as benefactors of this concept, and 

as the technology progresses so do the capabilities of the wireless power transmission 

systems.  

2.1 Electromagnetic Radiation 

The origins of wireless power transfer can be traced back to the first half of the 

nineteenth century with the invention of the electromagnet by William Sturgeon, the 

discovery of electromagnetic induction by Michael Faraday and the mathematical 

modeling of electromagnetic radiation by James Maxwell.  These discoveries were 

combined and demonstrated by Nicholas Callan‟s construction of the induction coil and 

Guglielmo Marconi‟s Hertz-wave transmitter apparatus, but it wasn‟t until Nikola Tesla‟s 
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coupled-tuned-circuit oscillator that the concept of wireless power transmission became 

widely known.  His vision of a "world system for the transmission of electrical energy 

without wires" [3, 4 and 5] led him to design his own transmitter, whose power handling 

capacity was five orders-of-magnitude greater than those of its predecessors.  It consisted 

of two flat coil variations of his Tesla coil design, with the capability to tune its operating 

frequency. 

Tesla‟s apparatus was demonstrated as early as 1891 in his New York 

laboratories.  While conducting an experiment, his electro-mechanical oscillators started 

to generate a resonant frequency in the surrounding buildings, causing them to shake 

violently.  As the speed of the oscillators grew, he hit the resonant frequency of his own 

laboratory, and had to terminate the experiment with a sledgehammer to avoid a 

catastrophe.  During these experiments, the radiated energy lit up vacuum tubes within 

the proximity of the oscillators, providing impressive evidence for the potential of 

wireless power transmission.  This type of electrical conduction (the movement of energy 

through space and matter, and not just the production of voltage across a conductor) was 

named the Tesla effect. 
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Figure 1: Tesla‟s Wireless Energy Apparatus [3] 

Tesla demonstrated his wireless power transmission method to the public over the 

next few years, including the 1893 World Fair at Chicago where he powered fluorescent 

lamps and single node bulbs with his apparatus.  He delivered a well received 

demonstration lecture to the Institute of Electrical Engineers (IEE) in London and the 

American Institute of Electrical Engineers (AIEE) in New York City, which fueled his 

desire to design and construct a large scale wireless power transmission demonstrator. 
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Figure 2: Tesla‟s Wireless Energy Lecture - Wikipedia 

By 1900, he applied for patents describing improvements to his system 

[3, 4 and 5], and he began construction of his large 187 foot Wardenclyffe Tower facility 

on Long Island to conduct his high-voltage, high-frequency experiments.  The main focus 

of Wardenclyffe was to serve as a wireless power transmission facility, and allow him to 

increase the intensity of the generated electrical oscillations.  This was to be the first of 

many such installations around the world, thus creating a global system of multi-channel 

broadcasting and wireless industrial transmission of electric power. 

http://en.wikipedia.org/wiki/Wireless_energy_transfer
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Figure 3: Tesla‟s Wardenclyffe Tower - Wikipedia  

At Wardenclyffe, he operated across a range of frequencies from 1 kHz to 

100 kHz at powers up to 1.5 MW in an effort to excite and exploit the Earth‟s inherent 

resonant LC circuits through the ionosphere and the natural ground.  Excitation at these 

frequencies would yield the most economical method of power transmission, and his 

apparatus indicated an efficient range between 30 – 35 kHz.  Under certain conditions, he 

found that he could send pulses of electricity through the air with undiminished strength 

by setting up a longitudinal acoustic-type compression wave, rather than an 

electromagnetic Hertzian-type transverse wave.  He could also include a stationary 

resonant wave within the earth-ionosphere cavity, as well as add an 8 Hz component to 

resonate with the Earth‟s Schumann cavity to determine the most efficient method of the 

wireless transmission of power. These preliminary experiments revealed much about the 
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electrical nature of Earth, from its resistivity, capacitance and inductance, and these 

findings convinced Tesla that his large scale construction would not only work, but 

would be the beginning of greater technologies:   

"As soon as [the Wardenclyffe facility is] completed, it will be possible for a 

business man in New York to dictate instructions, and have them instantly appear in type 

at his office in London or elsewhere. He will be able to call up, from his desk, and talk to 

any telephone subscriber on the globe, without any change whatever in the existing 

equipment. An inexpensive instrument, not bigger than a watch, will enable its bearer to 

hear anywhere, on sea or land, music or song, the speech of a political leader, the address 

of an eminent man of science, or the sermon of an eloquent clergyman, delivered in some 

other place, however distant. In the same manner any picture, character, drawing, or print 

can be transferred from one to another place ..." – N. Tesla [6]  

Unfortunately the Wardenclyffe Tower facility was never fully completed, due to 

Tesla‟s economic hardship partially resulting from the US Patent Office revoking his 

earlier patent for the radio and awarding it to Marconi.  By 1917, the tower was 

dismantled, and his large scale vision of wireless power transmission was forfeited. 

The viability of such a large-scale electromagnetic radiation system has yet to be 

demonstrated, and faces the key challenges of efficiently coupling power into and out of 

the earth-ionosphere cavity through its resonant modes, and in devising a small and 

efficient receiver [7].  Implementation concerns such as safety, susceptibility to weather 

and environmental impact have also limited the pursuit of this form of wireless power 

transmission. 
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Recently, a group of researchers at MIT have revisited Nikola Tesla‟s original 

idea of transporting energy over a distance without a carrier medium using 

electromagnetism.  They identified the impracticality of radiating the energy in an Omni-

directional manner, due to the large amount of energy that is wasted into free space.  The 

focus of their research is on directional (rather than radiated) power transfer at mid-range 

distances (where the length of the transmission equals a few multiples of the size of the 

device) for autonomous mobile electronics applications such as laptops and cell phones.  

This is achieved by establishing near field resonant coupling between the objects, upon 

which energy can be transferred [8].  A demonstrator of this system has been constructed 

using self-resonant coils, and has achieved a transfer of 60 watts with 40 % efficiency 

over distances in excess of 2 meters [9].  The approximate practical transmission distance 

of this scheme is 8 times the radius of the coils, which would be the primary limiting 

factor when considering the end applications. 

2.2 Microwave Power Transmission 

Following the World War II development of high-power microwave emitters 

(called cavity magnetrons), the idea of using microwaves for wireless power transfer was 

researched.  One of the main pioneers of this concept of microwave power transmission 

(MPT) was William Brown, who in 1964 on CBS News with Walter Cronkite, 

demonstrated a microwave-powered model helicopter that received all of its flight power 

from a microwave beam [10].  MPT for a proposed micro-helicopter application was later 

http://en.wikipedia.org/wiki/CBS_News
http://en.wikipedia.org/wiki/Walter_Cronkite
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revisited and demonstrated using a 1.3 GHz continuous wave at 1 watt of transmitted 

power, nearing efficiencies of 31 % [11]. 

 

Figure 4: W. C. Brown with MPT Helicopter [10] 

Brown later served as technical director of a JPL-Raytheon program between 

1969 and 1975 that beamed 30 kW over a distance of 1 mile at 84 % efficiency.  Further 

MPT experiments in the tens of kilowatts have been conducted at the JPL Goldstone 

Deep Space Communications Complex in California in 1975 [12, 13 and 14] and more 

recently (1997) at Grand Bassin on Reunion Island [15]. 

http://en.wikipedia.org/wiki/JPL
http://en.wikipedia.org/wiki/Raytheon
http://en.wikipedia.org/wiki/Kilowatt
http://en.wikipedia.org/wiki/Goldstone_Deep_Space_Communications_Complex
http://en.wikipedia.org/wiki/Reunion_Island
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Figure 5: JPL Ground-to-Ground MPT Experiment [12]  

Following the MPT research of W.C. Brown, notable field experiments have been 

conducted such as the Stationary High Altitude Relay Platform (SHARP) in Canada 

which utilized 2.45 GHz to successfully power a large scale fuel free aircraft [16].  The 

SHARP concept envisions a microwave powered airplane circling at a 21 km altitude for 

the purpose of distributing telecommunications services within a 600 km region.  A 1/8 

scale model of the aircraft was constructed and successfully flown. 
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Figure 6: 1/8 SHARP Flight Experiment Model [16] 

A similar fuel-free airplane flight experiment using a MPT phased array with 

2.411 GHz in 1992 was conducted in Japan [17].  The target application was another high 

altitude long endurance airship.  A rectenna (rectifying antenna) was designed to employ 

a dual polarization technique to double the microwave power flux density, and this array 

was mounted on an airship which had a successful microwave powered flight test lasting 

3 minutes and a demonstrated radio frequency to direct current conversion efficiency of 

81 %. 
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Figure 7: Phased Array Model Airplane Experiment [17] 

One particular endoatmospheric application of MPT is to provide power to pulsed 

particle accelerators for an ion propulsion mode Micro-Wave Light Craft (MWLC).  This 

type of vehicle would be able to achieve hypersonic velocities at 100 to 1000X cost 

reduction over conventional chemical propulsion methods.  This concept was 

demonstrated in 2003 by transmitting 3 kW of 5.85 Ghz microwave power to a remote 

rectenna [18].  The rectenna delivered 6 kV to a special „Ion Breeze‟ engine, which 

applied a torque to the charged hull for pitch and roll maneuvers (Figure 8).  This 

demonstrated the feasibility of using MPT for endoatmospheric ion propulsion. 
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Figure 8: Microwave Transmitter (left) and Rectenna [18] 

The inherent nature of the microwave propagation lends itself to dual use wireless 

power beaming and data telemetry applications.  A communications signal could be 

modulated on top of the power transfer, or in the case of a multifunctional stacked patch 

antenna, an optimized dual mode system could be developed.  A proposal has been made 

for antennae that operate with 10 dBi of gain and 18 % bandwidth at 5.8 GHz, and 4 dBi 

of gain and 3.2 % bandwidth at 2.45 GHz [19].  The ability to switch between these 

modes would allow for a system that could provide for a wireless power transmission at 

high frequencies and data telemetry at lower frequencies, thereby obtaining dual usage 

from a single technology. 

The deployment of a MPT infrastructure in Low Earth Orbit (LEO) would have 

the potential to radically reduce the cost of space missions by factors of 100 to 1000 

times.  A space-based microwave (SBM) power station would offer operational flexibility 

by providing a power boost to heavy lift launch vehicles from the ground, to light-craft 
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ascending from LEO to Geosynchronous Orbit (GEO) (Figure 9) and other orbital 

vehicles & satellites within the station‟s power beaming range [20].  The proposed station 

may be up to 1 km in diameter, and use 320 MW of photovoltaic arrays as a means to 

operate a 20 GW microwave for a short duration of time.   

 

Figure 9: Light-craft Ascending a Microwave Beam [20] 

2.3 Laser Power Beaming 

During the past decade, there have been many valued applications for HILPB that 

have been identified and assessed.  The development of a practical HILPB system has 

been slow due to the significant non-reoccurring engineering costs of the components, 

but these technologies are continually being improved for applications in other fields.  

The benefits from these improvements can translate to the realization of a HILPB system.   
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One such work under development is the PowerSphere (PS) [21], which is a high 

efficiency Photovoltaic Cavity Converter (PVCC).  The PS has a target power range of 

1 kW to 100 kW, and at this time it is functioning within the 100 watt to 200 watt level 

using a Nd:YAG laser operating at 1.064 µm.  The current PVCC prototype is 

constructed from 22 Si concentrator cells (limited to 500 suns), and the overall array 

efficiency is 14 %.  This prototype needs to be optimized by perfectly matching the 

photovoltaic cell band gaps to the laser frequency, reducing the 15 % reflectance in the 

anti-reflective (AR) coating of the cells, increasing the flux density inside of the sphere 

(currently it is 30 % less than one sun) and increasing the cell population density within 

the PVCC.  These limitations will need to be overcome in order for the PS to become a 

practical for HILPB.     

 

Figure 10: PVCC and its Concept Layout [21] 

In the past, researchers have demonstrated a variety of model aircraft being 

powered using beamed microwave energy.  The limitation to this technology is the 

energy loss caused by the microwave beam dispersion, which prohibits long-distance 

power transfer.  The focused characteristic of a laser beam when compared to that of a 
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microwave beam makes it a natural choice for practical power beaming.  The first 

successful flight demonstration of a small-scale aircraft flying under the power delivered 

from a laser was conducted at NASA‟s Marshall Space Flight Center in 2003 [22].  A 

lightweight, 11 ounce aircraft was fitted with a custom Spectrolab thin film photovoltaic 

panel, consisting of triple junction Ga:In:P2 cells.  Because these cells could not 

individually handle the high energy densities of the laser, the beam had to be spread out 

over an array of 24 cells which hung from the fuselage of the aircraft, as shown in 

Figure 11. 

  

Figure 11: First Laser Powered Aircraft Flight [22] 

The aircraft was flown in a continuous circle inside of a large building, and an 

operator manually tracked its flight path with an adjustable 1.5 kW laser at 940 nm with 

an approximate distance of 15 meters.  At a laser intensity of 500 watts (39.56 watts 

irradiating the panel), the photovoltaic receiver was able to provide 7 watts of power to 

the motor, which was sufficient to sustain flight.  This experiment demonstrated a 17.7 % 
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efficiency of the loaded cells.  The experiment was re-attempted outdoors, but the small 

aircraft could not handle the wind conditions. 

More recently than the NASA flight endeavor, engineers at the EADS Space 

Transportation facility successfully powered a mini-rover with a laser [23].  A tracking 

system was developed to maintain an orthogonal angle between the photovoltaic cell 

panel and the laser beam, and the test was conducted at a range of 250 meters. 

 

Figure 12: EADS Laser Powered Mini-rover [23] 

One of the future applications for laser power beaming in space exploration may 

be Power With Out Wires (POWOW) [24].  The POWOW concept is a solar electric 

spacecraft for the purpose of running cargo to and from Mars.  The spacecraft would be 

fitted with high efficiency solar cells and an electric propulsion system, and once in orbit 

of the planet, it could beam power down to the Martian surface using lasers.  By 

delivering power in this fashion, the surface infrastructure could be reduced.  Laser 
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power beaming is optimal for this application, because at an aero-synchronous orbit 

distance of 17,000 km, a laser receiver would have an aperture area of 360 meters
2
 to 

contain the beam.  This is considerably smaller than if MPT were used. 

Another application for HILPB in space is with space elevators.  A space elevator 

is simply a 100,000 km carbon nano-tube composite cable attached to Earth at one end 

and a space platform at the other.   

 

Figure 13: Spaceward Foundation Elevator 

A mechanical climber ascends the cable for the purpose of carrying satellites into 

space, providing a cost effective alternative to conventional heavy lift space launch 

vehicles.  With current developing technologies, a 20,000 kg capacity space elevator 

appears feasible at a cost of $40B [25].  Although the basic design and components of the 

space elevator have been worked out, the matter of delivering power to the climbers 

remains an issue.  Ground-based HILPB is an ideal solution, since the area surrounding 

the cable will already be secure, and the target is stationary. 
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A further application of laser power beaming in space is to provide auxiliary 

power to satellites during periods of eclipse, to compensate for the solar panel 

degradation or after an electrical failure [26].  In this way, a laser-equipped satellite could 

take the place of the solar flux to effectively extend the mission duration of other 

degraded satellites. 

 

Figure 14: Beaming Power to an Obscured Satellite  
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CHAPTER III 

ENABLING TECHNOLOGIES 

The present technological maturity in PV devices, high power lasers and 

advanced control optics creates an opportunity to develop a HILPB system.  

Understanding the interaction of these technologies is fundamental to designing a 

successful system, in order to uncover potential problems that may require an engineering 

solution.  This chapter describes the theory and functionality of the technologies 

employed for HILPB. 

3.1 Photovoltaic’s 

The first section explains the fundamental properties of PV devices using a single-

junction solar cell.  These are compared and contrasted with the construction and 

characteristics of the vertical multi-junction (VMJ) cell in the second section. 
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3.1.1 Photovoltaic Theory 

 

Figure 15: Cross Section of a Single-Junction Solar Cell 

A solar cell is a semiconducting device that is typically made up of silicon 

(although other semiconducting materials may be used).  During the manufacturing 

process boron and phosphor additives are doped into the silicon material, thus creating a 

p-type and an n-type material, respectively.  The simplest topology of a photocell is a 

single p-n junction with metal contacts on either sides of the semiconductor stack.  The 

front contacts only partially cover the n-type material to allow the impinging photonic 

energy to enter.  These photons must have energy greater than or equal to the band-gap in 

the material in order for the cell to generate electricity.  Photons with wavelengths greater 

than hc/Eg (where h is the Planck constant, c is the speed of light and Eg is the band-gap 
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energy) will promote electrons at a certain efficiency rate, and develop a photocurrent 

through the cell under a loaded condition.  This process is referred to as the photoelectric 

effect, as mathematically described by Einstein [27].  Photons with energy less than the 

band-gap of the material will not make a contribution to the generated electricity due to 

the semiconductor recombination process, which results in the conversion to heat. 

The band-gap of the photocell is determined by the semiconductor material used 

in its construction.  This material is chosen to balance the design parameter tradeoff 

between high output voltages (high energy band-gaps) or high output currents (low 

energy band-gaps) [28]. 

 

Figure 16: Optimal Band-Gaps for Semiconductors 

When the photons enter the semiconducting material, they interact with the atoms 

in the lattice.  The collision of a single photon with a single electron promotes that 

electron to a higher energy level, specifically the conduction band in the n-type material.  

The resulting hole in the valence band is swept across the junction field to the p-type 

material.  In doing so, a field has been set up where conduction band electrons travel to 
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the n-type side, and valence holes travel to the p-type side, all while the photons continue 

to bombard the semiconductor.  Once there, they cannot re-cross the junction, as this 

would oppose the field.  This migration of the electrons in one direction and holes in the 

opposite direction builds up a separation of charge, which eventually overcomes the 

junction field to create a forward biased junction.  When connected to a load the cell will 

discharge this potential energy across it, creating electrical power. 

 

Figure 17: Illustration of Photovoltaic Theory 

The performance of a solar cell can be evaluated by a few simple concepts. 

a) Current-Voltage (I-V) Curves 

The I-V curve describes the electrical characteristics of the solar cell across its 

operational range of voltages and currents.  These curves are obtained by recording the 

voltage and current values of a cell exposed to a constant level of light and held at 

constant temperature while a variable resistive load is swept from open-circuit to short-
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circuit states (from infinity to zero ohms).  The resulting curve graphically represents 

typical electrical performance parameters required for characterization.  Isc refers to the 

short-circuit current when the output terminals of the cell are effectively connected 

together, and it intersects the vertical axis.  At the opposite extreme of the curve, Voc 

refers to the open circuit-voltage, and it intersects the horizontal axis. 

 

 

Figure 18: Typical Photovoltaic I-V Curve 

b) Maximum Power (Pmp) 

The product of the voltage and the current at any point on the curve describes the 

electrical power output of the cell.  The point where this is a maximum is denoted Pmax, 

and the corresponding contributions are labeled Vmp and Imp. 
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c) Fill Factor (FF) 

Fill Factor describes the degree to which the values at Vmp and Imp match the 

values at Voc and Ioc.  In other words, it describes the „squareness‟ of the curve, and can 

be calculated by: 

𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟  𝐹𝐹 =
𝑉𝑚𝑝  × 𝐼𝑚𝑝

𝑉𝑜𝑐  × 𝐼𝑜𝑐
× [%]  (3.1) 

d) Conversion Efficiency (ƞ%) 

The conversion efficiency of a photovoltaic cell is the percentage of the total incident 

energy on the device that is converted into electrical energy, as given by  

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (ƞ%) =
𝑃𝑚𝑝

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑆𝑜𝑙𝑎𝑟  𝐸𝑛𝑒𝑟𝑔𝑦
× [%] (3.2) 

e) Quantum Efficiency (QE) 

Quantum Efficiency describes the relationship of the response of the cell to 

different wavelength components of incident light.  It is the ratio of the number of charge 

carriers collected by the solar cell to the number of photons across the spectrum incident 

on the PV device.  The Quantum Efficiency of the device is determined from its chemical 

makeup and its construction.  This is generally optimized to best approximate the solar 

spectrum for maximum conversion efficiency at all frequencies, as shown in Figure 19. 
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Figure 19: Hahn-Meitner Solar Radiation Spectrum  

Finally, it is important to note that conversion efficiency is dependent on the angle 

of incidence of the photonic energy.  A PV cell exhibits its highest conversion efficiency 

when it is orthogonal to the incoming photons.  As the angle of incidence is increased, the 

cell efficiency tapers off.  The rate at which this occurs is dependent upon the design and 

construction of the cell. 

 

Figure 20: Solar Sprint Panel Incidence Variation 
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3.1.2 Vertical Multi-Junction Solar Cells 

High voltage silicon vertical multi-junction (VMJ) solar cells have been 

developed by NASA-GRC scientists [29] that can provide efficient operation at solar 

intensities exceeding 2500 suns.  These cells have a demonstrated performance of 40.4 

watts per cm
2
 output at 211 watts per cm

2
 input with an estimated efficiency near 20 %.  

The remainder of the unconverted solar energy is given off into heat and/or reflected 

away.  At these extremely high levels of solar flux, conventional planar solar cells would 

fail due to thermal degradation, while the VMJ cell is capable of efficient operation in 

this region.  This makes the VMJ cell ideally suited for solar concentrator applications, 

where the performance advantage of the VMJ cell can lower the cost of the expensive 

semiconductor material required [30]. 

 

Figure 21: VMJ Cells in a 9 kW Solar Concentrator 
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The VMJ cell is an integrally bonded series-connected array of miniature silicon 

junction unit cells.  The illuminated face of the cell is oriented at the side of the junctions, 

and so it is also referred to as an “edge illumination” multi-junction cell.  Because of the 

series connected junctions, one small 40-junction VMJ cell (0.8 cm² area) can output a 

nominal 24 V under load.  This eliminates the need to construct series stacks of 

photovoltaic cells in an array to interface with downstream electronics, resulting in a 

more compact receiver.  The number of junctions in a VMJ cell can easily be varied 

during the manufacturing process to accommodate the bus voltage requirements of the 

end application. 

  

Figure 22: 40-junction VMJ Silicon Photovoltaic [29] 

The unique design of the VMJ cell has several major inherent advantages.  First, 

since the cell is edge illuminated, the need for electrical contacts on the illuminated face 

is eliminated.  This allows for a greater convertible surface area for the photonic energy 

to enter the cell.  Since the junctions are vertical, the cell thickness is not limited by the 

thickness of the silicon wafer, but can be adjusted during manufacturing to optimize 
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performance.  Through the depth of each junction, there is an equal probability that an 

excess carrier can be generated from the impinging energy, increasing the chance for a 

photonic collision to occur.  This produces an improved spectral response at low and high 

frequencies [31]. 

 

Figure 23: Spectral Response of the VMJ Cells 

Second, the series connections of the junctions provide high compatibility with 

most loads.  This also creates a very high reverse voltage breakdown immunity, which 

reduces the need for adding bypass protection diodes that are typical in paralleled 

photovoltaic arrays.  In a reverse biased experiment, a 40-junction VMJ cell was able to 

withstand a 6 kV potential (the limit of the test equipment) with only minimal leakage 

current. 

VMJ PV Cells Spectral Response
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Figure 24: Reverse-Biased Test of a VMJ Cell 

Most importantly, the design of the VMJ cell offers low resistance at high 

injection levels to decrease parasitic losses, and the edge contact interconnections allow 

for a higher packing density when compared with planar cells.  This contributes to the 

VMJ cells ability to withstand high intensities while providing a low loss path for the 

generated electrons to flow. 

The performance of the VMJ cells has been evaluated under steady state 

conditions in outdoor solar concentrators, as well as in NASA-GRC‟s Large Area Pulsed 

Solar Simulator (LAPSS).  The characterization of a single 40-junction VMJ cell across a 

range of intensities can be seen in the results from the LAPSS test in Figure 25. 
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Figure 25: VMJ Cell I-V Curves from LAPSS 

The nominal efficiency of the VMJ cells is at 25 ºC, above which the performance 

decreases steadily with increases in temperature.  This is typical for all types of 

photovoltaic devices, and the rate of the performance degradation is dependent on the 

material and the construction of the particular device.  Since the VMJ design does not 

require conduction wires which would mask large portions of the active photovoltaic 

area, the possibility for a freed electron to recombine with a hole in an electron-hole 

annihilation process is decreased.  This contributes to the overall efficiency of the cell, 

and reduces the chance of runaway heat generation which may result in permanent 

damage. 
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There are many VMJ cells in operation with solar concentration units around the 

world, and the data collected from these units can be used to observe the efficiency losses 

due to thermal de-rating.  Figure 26 shows the comparison of VMJ cells in a concentrator 

application when compared with triple-junction PV cells. 

 

Figure 26: VMJ Cell Efficiency vs. Temperature  

Since the VMJ cells are designed to operate under extremely high solar 

intensities, large amounts of heat will be absorbed and/or generated within the individual 

cells.  As was previously discussed, the efficiency of solar cells degrades with increases 

in temperature.  To obtain the maximum performance it is important that the temperature 

of the cells be maintained as low as possible.  At high intensities this requires transferring 

substantial amounts of heat out of the cells and into a heat exchanger for rejection, except 
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in cases where operating at these reduced efficiencies is acceptable.  A maximum limit 

must be avoided, above which catastrophic failures will occur from the delaminating of 

the junctions and the melting of the electrical contacts.  The VMJ cells are very rugged 

however, and are able to withstand high temperatures up to 600 ºC. 

3.1.3    Considerations with Laser Power Beaming 

The demonstrated conversion efficiency of the VMJ cells is in the 20 – 25 % 

range for full spectrum light, which is an average value across the frequencies of the solar 

spectrum.  As indicated by the quantum efficiency peak in Figure 23, the conversion 

efficiency of the cell increases as the energy of the incident photons approaches the 

indirect band gap energy of silicon in the near-infrared region (around 1000 nm).  The 

indirect band gap for silicon cells ranges from 1.125 - 1.2 eV depending on its crystalline 

structure.  With incident laser energy in the 800 - 1000 nm range, the theoretical 

conversion efficiency of the cells will approach 50 - 60 %.  It is also expected that the 

VMJ cells will maintain the same linearity for high laser power concentrations as was 

previously noted in the case of the solar spectrum in Figure 25. 

A limiting factor in the performance of the VMJ cell under HILPB conditions is 

the energy profile of the incident light.  Since the cell is made up of series junctions, it is 

ideal to have uniform illumination across the entire convertible surface.  A single or 

group of weaker junctions (resulting from relatively less illumination) will limit the 

overall output from the cell.  Since the cell is a series stack of many individual current 
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sources, the overall stack current will be limited by the weakest junction‟s contribution.  

The problem arises with HILPB, since the very nature of the propagation of a laser beam 

is not uniform, but fundamentally Transverse Electro-Magnetic Gaussian (TEM00) in 

profile [32].  This is a primary issue that will be explored later in this paper. 

 

Figure 27: Gaussian Cell Illumination 

The ability to exploit the dual use potential of the HILPB technology for both 

power transmission and communications is very substantial.  Work has been done in 

determining the transient response of gallium arsenide and silicon solar cells using short 

laser pulses [33].  At laser intensities of 50 watts per cm
2
 (500 suns), the GaAs cells 

exhibited a high frequency roll-off on the order of 1-2 GHz, and the Si cells exhibited a 

high frequency roll-off on the order of 5 MHz when subjected to a 840 nm and 1.06 

micron, 25 nS pulse, respectively.  These roll-offs set the initial bounds for practical 

communication bandwidth. 
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In the future implementation of HILPB, when the infrastructure is in the vicinity 

of life forms, the operational frequency of the laser can be shifted to an eye-safe region.  

High current density GaAs and GaSb photovoltaic materials have been developed for 

HILPB [34], and they are optimized for operation in the spectral range of 1300-1680 nm. 

3.2 Lasers 

3.2.1 State of the Art and Beyond 

The recent decade has seen the rapid development of compact high energy solid 

state lasers, driven by the market need in the manufacturing sector for cutting and 

welding applications.  There is an ever increasing selection of COTS kilowatt range 

lasers, and the continual development and accessibility of these lasers will benefit the 

HILPB system. 

When considering the feasibility of a HILPB system in a particular application, 

the end-to-end system efficiency must be considered in order to make a fair assessment.  

This includes the electrical to optical conversion efficiency of the laser source.  Although 

there have been many recent advances in the field of solid state lasers contributing to 

compact packaging solutions, the average solid state laser efficiency is roughly 10%.  In 

order for HILPB to become a viable option for practical wireless power transfer, each 
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efficiency component of the system must be improved to provide for a higher end-to-end 

system efficiency.   

Fortunately, a new class of diode pumped alkali vapor lasers (DPALs) has been 

developed that can offer high electrical efficiencies of 25-30 % [35].  The DPALs are 

currently offered at wavelengths which couple well with the efficiencies of existing 

photovoltaic technologies: silicon at 895 nm (cesium), and GaAs at 795 nm (rubidium) 

and at 770 nm (potassium).  These lasers will offer the ability to expand into the multi-

kilowatt range through a single aperture by paralleling multiple laser modules.  This 

would open up potential large-scale applications such as HILPB propulsion in order to 

raise satellites from LEO to GEO [36]. 

For the past few decades, much of the development of the High Energy Laser 

(HEL) has been directed towards weapons applications [37].  Much of this same 

technology is also directly applicable to power beaming.  A typical HEL system consists 

of the laser device, beam control and acquisition tracking & pointing (ATP) systems. 
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Figure 28: Elements of a HEL System [37] 

In a typical HEL weapons application, the ATP sub-system is dealing with a 

hostile target, which may be an inbound ordinance.  Technologies such as thermal 

imaging and pattern recognition may be employed to track the target.  Techniques such as 

on-line sensing of the beam propagation through the atmosphere and adaptive optics have 

successfully been employed to insure the integrity of the beam propagation and to reduce 

jitter and compensate for air turbulence in the megawatt class Airborne Laser (ABL) 

research and development platform, whose ultimate mission is to destroy tactical ballistic 

missiles (TBMs) [38].  The 600 km destruction range of the ABL is a testament to the 

maturity of the current HEL technologies, and these military successes can be capitalized 

on with laser power beaming.  The high-profile ABL program is an ongoing effort, and 
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new advances in laser control will be continually developed to increase the range and 

accuracy of the beam [39]. 

 

Figure 29: Boeing ABL with Laser Turret [38] 

In a power beaming application, since the target is the power receiver, telemetry 

can be employed to augment the amount of information available to the ATP sub-system, 

thereby increasing the performance of the system. 

Weapons applications for lasers have been an active pursuit since the early stages 

of their development.  The ability to project a large amount of power onto a distant, small 

area makes them inherently suited for this task.  Also proposed early on was an 

application of a high-powered laser for the civilian space program [40].  This proposal by 

Kantrowitz in 1972 investigated the feasibility of an earth-to-orbit launch system, in 

which a ground based laser provides thermal energy to a rocket propellant (such as 
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hydrogen), for the purpose of reducing the lift-off weight of the vehicle by eliminating 

the oxidizer.  The technological problems unique to such a laser and the cost aspects of 

the system were considered.  This set the stage for many similar proposals on laser power 

and propulsion during the 1970s.  These activities identified several major themes 

concerning laser power transmission for space applications, and revealed that advanced 

space missions requiring expensive transportation applications showed a high potential 

for cost reduction through the use of remote laser power [41].  A comparative analysis by 

Holloway and Garrett [42] showed a substantial payoff for remote power beaming to 

orbital transfer vehicles, and particularly those employing a direct nuclear or solar 

pumped laser source.  A preliminary analysis between such a system and a comparable 

1 megawatt planar solar photovoltaic system reveals that the laser receivers were lighter 

and smaller than the conventional photovoltaic panels, resulting in less drag at lower 

altitudes and allowing for fewer Shuttle trips for construction [43]. 

From these studies in the 1970‟s, a general set of requirements began to emerge 

for laser power beaming in space.  The remote deployment of the system demands that 

the laser be capable of long-term operation without significant maintenance, which 

suggests either solar or nuclear powered lasers.  Also, since the largest payoff is in high-

power applications, the laser must be capable of supplying a high amount of average 

power, on the order of 100 kW or greater.  This requirement suggests the use of either 

continuous wave or rapidly pulsed lasers.  Three general laser mechanisms have been 

identified to meet these reliability and power requirements: photodissociation lasing 
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driven directly by sunlight, photoexcitation lasing driven directly by sunlight and 

photoexcitation lasing driven by thermal radiation. 

Several types of organic iodide lasants based on photodissociation have been 

identified and successfully solar-pumped, resulting in an emitted wavelength of 

1.3 micrometers.  Several reports on modeling and experimental results with IBr and 

C3F7I lasants have been published [44, 45, 46, 47 and 48], and have found that the lasant 

does not require resupply (unlike most chemical lasers) since the lasant molecules tend to 

spontaneously recombine,  and that the laser remains cool enough to eliminate a thermal 

radiator since these lasants absorb almost no visible light.  Techniques for further 

enhancing the recombination of the photodissociation products are being investigated, as 

this will contribute to an increase in laser efficiency. 

 

Figure 30: One-Megawatt Iodine Solar-Pumped Laser [41] 
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The group of direct solar-pumped photoexcitation lasers relies on the electronic-

vibration excitations produced by the sunlight to power the laser action.  One such system 

being studied is a liquid neodymium (Nd) ion laser, which emits in the near-infrared 

region at 1.06 um.  Another system is the dye laser, which absorbs in the blue-green 

range and emits in the red region near 0.6 um.  Although these types of lasers offer good 

quantum efficiency and a relatively short wavelength, they require extremely high 

excitation to overcome their high threshold for lasing, and are still being researched as to 

their feasibility. 

The group of indirect photoexcitation lasers driven by thermal radiation typically 

has a longer wavelength emission.  A blackbody-cavity-pumped laser [49] and a 

blackbody-pumped transfer laser [50] operate on the principle of passing preheated 

molecules such as CO2 and N2O through a laser nozzle and/or cavity.  Although they 

offer great potential for converting solar thermal energy to laser energy in space, they can 

also convert thermal energy generated by chemical reactions, nuclear power, electrical 

power or other high temperature sources. 

Although the laser power requirements for space applications are very different 

from those of the military, the basic research conducted by these other agencies is 

applicable.  Future space transportation applications show a high potential for cost 

reduction using laser power beaming, and this is driving the research toward higher laser 

conversion efficiencies.  The development of laser power transmission in space is a 

revolutionary technology that will enable exploration missions that were previously not 

possible. 
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Figure 31: Laser Power to a Lunar Base and Vehicle [41] 

3.2.2 Atmospheric Considerations 

The atmosphere has a wide region where it is least susceptible to ionization (least 

absorbance) by the longest wavelengths of the light spectrum, as described by Beer-

Lambert‟s Law.  For this reason, a laser in the infra-red (IR) region (the region of interest 

for this HILPB system) would be optimal for long distance power beaming within the 

atmosphere.   
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Figure 32: Atmospheric Optical Window - Wikipedia 

Safety is a major consideration in the design and implementation of a HILPB 

system.  Spurred by the recent developments in weapons-grade ultra-high power pulsed 

lasers, beam conditioning and control optics have also been developed.  Information 

regarding the manipulation and transmission of high powered lasers is generally 

classified due to the nature of their application.  It is widely known however, that 

successful high power laser systems are currently operational, and it follows that the 

conditioning and control optics are in place to handle such a system [51].  For many of 

the laser weapons systems, a secondary laser is used to test the integrity of the primary 

beam between pulses.  Many of these systems also rely on optical recognition to track 

their targets.  This technology could be easily adapted to suit the needs of the laser power 

beaming application. 

The condition of the atmospheric medium must be considered as an operational 

issue for the optimum and safe transmission of power.  Various circumstances will have 
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an influence on the nature of the optical propagation.  Moisture in the form of rain 

droplets will cause a minimal amount of Raleigh and Mie Scattering, as well as 

absorption of the laser energy as seen in Figure 33.  Fog will have a much larger 

attenuation effect, since the aerosol particles are closer in size to the wavelength of the 

laser.  A denser fog will cause an increase in the scattering and absorption of the laser 

energy.  Scintillation will also result from the small-scale fluctuations in the index of 

refraction of the atmosphere, as depicted by the energy fluctuations at the right edge of 

Figure 33.  This will cause small variations in the temperature of the atmosphere, leading 

to inconsistencies within the laser beam.  As the result, the system will be able to function 

predictably during rainstorms, but will change its operating characteristics during periods 

of heavy fog. 

 

Figure 33: Mie Scattering, Scintillation and Absorption 
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Larger airborne solids, such as particles of sand, will have a dramatic attenuation 

effect on the laser energy.  To a lesser degree, atmospheric turbulence will also disrupt 

the integrity of the beam.  Natural events such as sandstorms would hinder the proper 

operation of the system. 
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CHAPTER IV 

EXPERIMENTAL SETUP 

As previously discussed, the HILPB receiver is the part of the system which 

converts the optical energy to electrical energy (desirable) and dissipates the 

(undesirable) thermal energy.  This conversion is accomplished through the vertical 

multi-junction (VMJ) cells originally developed by scientists at NASA-GRC and 

currently supplied by Photovolt. 

Support to develop this system was provided by the Air Force Research 

Laboratory (AFRL) Munitions Directorate at Eglin Air Force Base in Florida.  The tests 

were conducted at Northrop Grumman Space Technology (NGST) Park in Los Angeles, 

California and at Lissotschenko Mikrooptik GmbH (LIMO) Laser Applications 

Laboratory in Dortmund, Germany.  The large distance from these locations to the 

Industrial Space Systems Laboratory (ISSL) in Cleveland, Ohio facilitated the need to 

develop portable hardware to conduct the experiments.  
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The receiver was designed to maximize the conversion potential of the VMJ cells 

for laser applications, by tailoring the geometry of the receiver to the beam and by 

providing sufficient cooling and electrical connections.  These prototype receivers are 

supported by data collection electronics, which were developed specifically for this 

application to automatically track the voltages, currents and temperatures during the 

experiments. 

4.1 HILPB Receiver Design and Construction 

The design and construction of the HILPB receiver addresses four main issues.  

First, the receiver needs to provide sufficient thermal dissipation in order to handle the 

excess unconverted energy.  Second, the materials in the power receiver must have 

similar coefficients of thermal expansion to avoid stress fracturing during thermal 

cycling.  Third, the electrical paths and connections in the receiver must be of low 

resistance in order to minimize electrical losses.  Lastly, the receiver must provide 

electrical isolation for the junctions in the VMJ cells as well as for the electrical routing 

and connections. 

A standard COTS heat-sink was selected and modified for the receiver to permit 

rapid prototyping of the design.  Figure 34 shows the Zalman unit, which is typically 

used to dissipate approximately 100 watts of thermal energy while maintaining a 60 ºC 

temperature for a computer processor inside of a forced-air enclosure.  The initial phase 
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of laser testing was to be at 100-200 watt intensities, and so the expected operating 

temperature of 60 ºC by the Zalman unit made it an appropriate choice.  The unit is 

constructed from plated copper to resist tarnishing, and features three heat pipe re-

circulators that are partially filled with a phase transition fluid [52].  The heat pipes 

traverse through a radial array of fins, where airflow is induced by a small fan.  For the 

HILPB application the fan has been replaced by a more powerful motor and propeller 

arrangement supplied by the AFRL, in order to increase the cooling capacity beyond the 

manufacturer‟s specifications.  The front mating surface of the heat-sink is polished to 

provide maximum contact area to aid in heat transfer, and it is upon this surface that the 

power receiver is constructed.     

    

Figure 34: Zalman 9500 Heat-sink 

A cross-sectional illustration of the receiver design is shown in Figure 35.  The 

VMJ cell is mounted on a substrate using boron nitride filled epoxy resin [53].  This resin 

has good thermal conductivity (1.5 watts per meter ºK), and a relatively high maximum 

operating temperature (approximately 200 ºC) which is sufficiently far away from the 
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normal operating range of the receiver.  In the center of the stack-up is the polished 

aluminum nitride substrate [54].  Aluminum nitride has very good thermal performance 

characteristics (175 watts per meter ºK) and low thermal expansion (4.6E-6 from 20-400 

ºC) to match the silicon VMJ cells, and good dielectric strength (10E14 ohm-cm) to 

provide electrical insulation.  It is commonly used as a substitute for the standard FR4 

fiberglass in printed circuit board (PCB) construction for better thermal conductivity.  

These characteristics make it ideal for the HILPB receiver application.  The substrate is 

mounted to the heat-sink using another layer of the boron nitride epoxy resin. 

 

Figure 35: Receiver Cross-Sectional Stack-up 

The electrical paths were routed using a ferrite-nickel-cobalt alloy wire known as 

Kovar™ [55].  Kovar™ is a material commonly used for bond wires within 

semiconductor construction, since its coefficient of thermal expansion (3.3E-6 from 20-

100 ºC) is similar to that of silicon, which makes it an appropriate material to use with the 

VMJ cells.  6 % silver plating was applied to the Kovar™ wire, resulting in a low 

electrical resistance of 31.9 Ω per 1000 ft.  The routing wires are attached to the outer 

two junctions of the VMJ cell with an electrically conductive silver-filled adhesive paste 
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[56].  The paste has a high melting temperature (962 ºC) and a low electrical resistivity 

(3.0E-5 Ω-cm). 

Basic thermal analysis was performed to determine the approximate maximum 

theoretical temperature of the receiver during HILPB operation.  This was accomplished 

by considering the thermal conductivity and the dimensions, then calculating the thermal 

resistance for each material in the stack.  For the purpose of this calculation the complete 

receiver is interpreted as a bulk resistance, and so the tabulated values are combined with 

the ambient temperature and the optical input power to determine the average steady-state 

temperature of the receiver [57]. 

TABLE I: THERMAL ANALYSIS OF THE LASER POWER BEAMING RECEIVER 

 

With an ambient temperature of 20 ºC, the manufacture‟s cooling fan running at 

2,600 RPM, 30 % conversion efficiency for the VMJ cells and an input power of 130 

optical watts, Table 1 yields an average theoretical receiver temperature of 51.4 ºC.  With 

an input power equal to a value of 220 optical watts, the average theoretical receiver 

temperature is 73.15 ºC.  Although in practice there will be a temperature delta at each of 

the junctions, as well as a gradient across each of the materials, the calculated results give 
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a good indication as to the expected performance of the receiver.  By upgrading the stock 

fan, these temperatures can be decreased, thus increasing the upper limit of the maximum 

thermal load the system can dissipate.   

The published airflow data for the original cooling fan are 20.6 cubic feet per 

minute (CFM) at 1,350 revolutions per minute (RPM) and 36.5 CFM at 2,600 RPM.  In 

replacing the original cooling fan with a new motor and propeller, a rough estimate was 

made to determine an approximate operating speed needed to achieve the original airflow 

specification.  The new motor has a 1 inch diameter hub, and an 8 inch diameter propeller 

with two blades at a 4.3 inch pitch.  These dimensions are used to calculate the amount of 

air displaced from the new propeller advancing by one revolution, as illustrated in 

Figure 36.   

 

Figure 36: Propeller Path Representing Displacement 

The volume of air displaced by one revolution of the propeller is determined by 

calculating the volume of air created from one revolution of the advancing propeller, and 

subtracting the volume occupied by the center hub, as shown in the following 

calculations.  A bulk aerodynamic efficiency of 60 % is selected to account for the 
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slippage of the propeller, the compression of the air, the efficiency of the airfoil and the 

use of a two blade propeller: 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑝𝑟𝑜𝑝  =  𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠𝑝𝑟𝑜𝑝
2 × 𝑝𝑖𝑡𝑐 (4.1) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑝𝑟𝑜𝑝  = 0.125 𝑓𝑒𝑒𝑡3 (4.2) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑢𝑏  =  𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠𝑢𝑏
2 × 𝑝𝑖𝑡𝑐 (4.3) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑢𝑏  = 0.00195 𝑓𝑒𝑒𝑡3 (4.4) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑡𝑜𝑡𝑎𝑙  =  0.6 ×  𝐷𝑖𝑠𝑝𝑝𝑟𝑜𝑝 − 𝐷𝑖𝑠𝑝𝑢𝑏   (4.5) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑡𝑜𝑡𝑎𝑙  =  0.074 𝑓𝑒𝑒𝑡3 (4.6) 

In order to match the original 36.5 CFM of airflow, the new motor must turn at 

the following speed: 

𝑠𝑝𝑒𝑒𝑑 =
𝑎𝑖𝑟𝑓𝑙𝑜𝑤 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙
 (4.7) 

𝑠𝑝𝑒𝑒𝑑 = 494.4 𝑅𝑃𝑀 (4.8) 

The new propeller allows the new motor to turn at a much slower rate than with 

the original fan.  At higher speeds the new propeller provides cooling capability to the 

heat sink well beyond the manufacture‟s original design, which will allow for higher 

power tests to be conducted. 

The temperatures at various points in the receiver are monitored by five type-K 

thermocouples.  Two miniature 0.020 inch square channels have been machined into the 

front face of the heat-sink, as illustrated by the cross pattern in Figure 37.  Four transition 
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junction thermocouple probes are embedded into these channels with the boron-nitride 

epoxy, thereby residing between the face of the copper heat-sink and the aluminum-

nitride substrate.  Each thermocouple probe extends toward the center of the face by a 

different distance in order to depict the temperature profile across the face of the heat-

sink.  The fifth thermocouple is mounted on the top surface of the aluminum-nitride 

substrate next to the VMJ cell, in order to monitor the temperature difference between the 

surface and the center of the receiver directly underneath the VMJ cell array. 

  

Figure 37: Probe Channels Machined into the Face 

The electrical routing and connections are physically supported by GPO-3 high 

temperature electrical grade glass polyester laminate material.  This material can 

withstand 120 ºC, and provides a rigid insulating surface for the electrical connection 

points.  Aluminum mounting brackets were designed and machined to bolt the remaining 

structural components of the receiver together, and to serve as a mounting point for the 

clamps used on the optical bench.  
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The mounting and routing arrangement for a completed four cell receiver is 

shown in Figure 38.  On this particular receiver, the wiring allows each cell to either be 

used individually or together in a parallel configuration.  Single, double, nine and eleven 

cell arrays have also been designed and constructed to accommodate a variety of 

experiments to be covered in the next chapter. 

 

Figure 38: Instrumented Four Cell HILPB Receiver 

In order to obtain some preliminary data points, and to empirically verify the 

thermal dissipation capabilities of the HILPB receivers, a solar concentration apparatus 

was designed and constructed from steel and stainless tubing (Figure 39).  A 30 inch by 

40 inch acrylic Fresnel lens was selected to focus the solar energy down to the size of the 
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receiver.  Various apertures were used to regulate the amount of light entering the lens, 

thus providing a way to control the energy being delivered to the receiver.  The 

concentrator is manipulated with a pivoting indexer, so it can be manually adjusted to 

follow the arc of the sun moving across the sky.  The receiver is mounted at the focal 

point of the lens, and is electrically connected to multi-meters and a variable load.  

Provisions were made to record the thermal, electrical and optical data during the 

experiments. 

 

Figure 39: HILPB Receiver in the Solar Concentrator 

Translational and rotational micro-positioning stages were assembled together to 

provide positional control of the receiver beneath the Fresnel lens.  The stages allow for 

six degrees of freedom to enable alignment with the focal point.  

During the day of the experiment the solar energy reaching the lens was measured 

to be 800 watts per meter
2
.  A mask was used to limit the input to a circular area with a 

radius of 25.4 cm.  The lens transmission efficiency was 90 % and the focusing efficiency 

was approximately 80 % (due to the difficulty in obtaining precise optical alignment) 
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[58].  The total resulting solar energy illuminated the receiver was approximately 116 

watts.  This energy was extremely Gaussian due to the concentration stage [59], which 

for these purposes approximates the profile of a laser beam.  

Figure 40 shows the temperature trend from the embedded thermocouples while 

the test was conducted.  At the start and near 1200 seconds the propeller was turned off, 

as illustrated by the peaks nearing 50-60 ºC in the graph.  The steady-state temperature 

resides at 40 ºC.  The results of the experiment surpass the theoretical predictions, and 

this confirms the thermal dissipation capabilities of the receiver.   

 

Figure 40: Thermal Validation of the Receiver 

Although the primary purpose of this experiment was to evaluate the thermal 

management of the receiver, electrical data was also recorded during the experiment to 

verify that it was operational following its construction.  This data is shown in Figure 41.  

Of the total solar energy, approximately 23 watts were illuminating the VMJ cells.  The 

sensitive optical alignment issues and the cosine losses from the Fresnel lens limited the 

peak output power of the VMJ cells to approximately 3 watts, for a conversion efficiency 

of approximately 13 %. 

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

time [sec]

te
m

p
e
ra

tu
re

 [
C

]

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

time [sec]

te
m

p
e
ra

tu
re

 [
C

]

0 200 400 600 800 1000 1200 1400
0

20

40

60

time [sec]

fa
n
 s

p
e
e
d
 [

%
]

t1

t2

t3

t4

t5



 

63 

 

 

Figure 41: Electrical Validation of the Receiver 

4.2 Data Acquisition 

In order to characterize the performance of the receiver, a variable load may be 

used in conjunction with a current meter and a volt meter, as illustrated in Figure 42.  By 

varying the value of the load from open-circuit to short-circuit for a given optical input 

and recording the data, an I-V curve for the receiver may be constructed. 

 

Figure 42: Schematic for Characterizing the Receivers 
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This characterization process was automated by developing a data acquisition 

(DATAQ) system that records the voltage, current, and temperature information across 

multiple channels.  The system is comprised of three subsystems: an active variable load, 

the sensing circuitry, and the data logging and processing.  Care was taken in the design 

of the buffering, gain and sampling circuitry to provide the cleanest possible analog 

signals with highly accurate digital representations.  For example, the current sensors 

employ an open-loop/Hall Effect configuration, thus minimizing noise interference and 

current draw.  Also, in terms of accuracy, the data is represented by 16-bit words, and 

these values are sent to the computer at an update rate across all channels at 6 Hz.  There 

is extra filtering in the power conversion circuitry to minimize ripple.  The functional 

block diagram of the DATAQ system is illustrated in Figure 43.    

 

Figure 43: DATAQ Functional Block Diagram 

For reliability and modularity, the DATAQ system is divided into two PCBs, as 

shown in Figure 44.  The Xilinx Spartan-3 development board serves as the mother 

board, where a 200k gate field programmable gate array (FPGA) is utilized for 
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processing and sending the data to a personal computer through a RS-232 interface for 

logging and analysis.  The power, channel sensing and analog to digital conversion 

circuitry has been integrated together within a separate daughter board, which interfaces 

to the main development board through multiple headers.  This board was carefully 

designed to provide separation between the analog and digital signals and power planes 

to provide for noise immunity.   

 

Figure 44: DATAQ Hardware 

After the data from the electronics is sent to the computer, it is displayed on a 

Graphical User Interface (GUI) (Figure 45).  The real-time plotting of the I-V data, and 

the continuous recalculation of the power output during the experiments allow for an 
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efficient use of the time in the laser laboratory, by automating the data collection process 

as much as possible.    

 

Figure 45: DATAQ GUI Plotting a Typical I-V Curve 

4.3 Lasers and Optics 

There were a total of four different continuous-wave fiber-coupled lasers 

available to conduct the experiments.  Three of the lasers were 70 watt capacity units 

with 200 um diameter fibers, and had wavelengths of 808 nm, 940 nm and 976 nm 
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(LIMO70-F200-DL808, LIMO70-F200-DL940, LIMO70-F200-DL976).  These three 

lasers were used for determining the best wavelength for receiver efficiency.  The fourth 

laser was a 200 watt capacity 980 nm unit (HLU200-F400-980P2-M2), and this was used 

for all of the high power tests.   

The lasers are complete systems including the power, control, water chiller and 

diode module.  They are controlled by limiting the current delivered by the power supply, 

to regulate the amount of generated optical energy.  A calibration curve describes the 

relationship between electrical input and optical output of the laser, and this is verified 

regularly with a power meter. 

  

Figure 46: LIMO Turnkey Laser System 
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The wavelength of the laser deviates slightly, as can be seen in Figure 47.  Here a 

980 nm laser is measured to be operating at 977.2 nm, with a spectral bandwidth of 

2.9 nm.  For the purposes of HILPB, these variances are negligible. 

 

Figure 47: LIMO Laser Spectral Measurement 

As was previously discussed, the energy profile across laser beam is Gaussian in 

nature.  This can be measured and imaged, as shown in Figure 48.  The graph shows the 

very tip of the Gaussian distribution, and the picture show the entire profile, as captured 

by a thermal imaging camera. 
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Figure 48: LIMO Laser Energy Profile Measurements 

In order to protect the end of the optical fiber from dust and disturbance, a shroud 

was placed over it with an optical window.  This is a common practice for laser welding 

applications in dirty environments, and it increases the life expectancy of the fiber.  The 

window is a Melles Griot part 02WBK044 with anti-reflective (AR) coating /077.  There 

is a minor efficiency loss in using the optical window, and this is taken into account in 

the analysis of the results. 
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Figure 49: Melles Griot Transmittance Curve 

 

Figure 50: HEBBAR  Coating for Near-Infrared /077 

 In order to observe the effects of the Gaussian laser beam versus a flat profile on 

the performance of the VMJ cells, a LIMO flat-top optics stage was used to condition the 
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beam.  This optics stage can provide for a profile variation within 1 % at efficiencies of 

around 80 %. 

 

Figure 51: Typical Beam Profiles with the Flat-top Optics 

 

Figure 52: Illustration of the Flat-top Optics 
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4.4 Complete Apparatus and Methodology 

To date, there have been over 10 HILPB receivers designed and constructed.  

Each one served a different purpose, either to investigate a particular issue or demonstrate 

a certain performance.  A few of the receivers that were used to obtain predominantly 

significant results are shown here.   

 

Figure 53: 9 and 40-junction Receiver 
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Figure 54: Four and Nine-Cell Square Array Receivers 

 

Figure 55: Eleven-Cell Radial Orientation Receiver 
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A typical HILPB test consists of the laser source, a mount for the optical fiber, a 

receiver mounted to a 3-axis translational stage, the cooling fan, the DATAQ electronics 

and a logging computer (Figure 56).  Depending on the test requirements, additional 

optics stages or beam trimmers may be required.  Supporting equipment such as beam 

guards and dumps, IR viewfinders & cameras and laser pyrometers were also used for 

safety as well as for calibration and alignment. 

  

Figure 56: Illustration of the HILPB Test Rig 

When conducting a test, the first thing was to check the laser calibration with a 

meter to insure that it was operating to its full potential.  Next, all of the hardware for the 

experiment was fastened down to the optical bench and aligned as eyesight permits.  At 
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this point the appropriate electrical connections were made, and the DATAQ was brought 

online.  The laser was then operated at a relatively low intensity while the receiver 

position was adjusted in three axes, until the maximum output power was generated.  

This was accomplished by continually sweeping the load to trace new I-V curves at each 

new location of the receiver, until the output power of the receiver was observed to 

„peak‟.  Performing this initial alignment was usually the most involved step in the 

process.  The laser power was then increased to the levels required by the test plan, and 

the receiver was once again „peaked‟, typically requiring only minor adjustment.  This 

final adjustment was necessary due to wave-front variations over the operational range of 

fiber coupled lasers, and with extended tests it was a good practice to periodically 

recheck the alignment.  At this point, the test plan was executed, while the cooling fan 

was controlled to regulate the receiver temperature.  Devices such as IR viewfinders and 

cameras were used to image the beam and make notes about the size, distance, amount 

and alignment of the illumination.  These observations would later be used to calculate 

efficiencies. 

The amount of power developed by the receiver is automatically reported by the 

DATAQ system, but the efficiencies must be manually calculated.  For the purposes of 

this research, the efficiency calculations describe the amount of photonic energy 

illuminating the cells with respect to the amount of generated power of the receiver.  The 

focus is on developing the greatest amount of power at high efficiencies, and as such the 

performance of the HILPB receiver refers to the isolated unit that receives photonic 

energy and converts it into electric energy while dissipating the excess thermal energy.  
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This performance is dependent on the response of the VMJ cells to laser energy at a given 

frequency, intensity and profile, the geometric packing efficiency of the VMJ cells on the 

surface of the receiver, the capacity of the thermal system to reject the excess heat, and 

the efficiency of the electronics to maximize and measure the power output.  It does not 

include the factors associated with the generation and transmission of the laser energy, 

and it takes into account the over-fill of the beam beyond the convertible surface of the 

VMJ cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

 

 

CHAPTER V 

EXPERIMENTAL RESULTS 

Various apparatus was designed and constructed to first evaluate the feasibility of 

using the VMJ cells in a HILPB application, and then to start to answer some of the more 

complex issues through experimentation.  The performance of a parallel array of cells 

was observed with different geometries, under different intensities, wavelengths and 

wave fronts.  The tests were conducted at the NGST and LIMO laser laboratory.  The 

limited availability of these laser testing facilities facilitated the need to conduct efficient 

test plans, and a great emphasis was placed on safety due to the weapons-grade nature of 

the lasers. 
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Figure 57: AFRL and CSU Personnel in the NGST Lab 

5.1 Parallel Cell Back-Feeding 

The purpose of this test was to investigate the back-feeding phenomenon of VMJ 

cells wired in parallel.  This effect is encountered in a conventional solar array under 

conditions where they are subjected to non-uniform illumination (such as from partial 

shading or debris on the panel), and this is commonly solved by inserting blocking diodes 

between the cells to prevent the current flow from back-feeding into a weaker cell.  The 
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downside of doing this is that a voltage drop will occur across the diodes during normal 

operation of the array, resulting in a slightly lower output power. 

Since the beam profile of the laser is non-uniform, this phenomenon could be 

encountered when using a parallel array of VMJ cells for HILPB.  To investigate this, an 

experiment was conducted on a multi-cell receiver, using two of the available VMJ cells 

(referred to as the top and the top-right cell) connected in parallel.  These particular cells 

were chosen because they represent two different grades of VMJ cells, with one offering 

consistently better performance than the other.  This would establish the conditions for 

the imbalance to occur.  Low-loss diodes were selected for the blocking application, and 

these could be introduced into the circuit to observe their effects.  Ammeters were used to 

measure the amount and polarity of the individual branch current contributions. 

 

Figure 58: Connections With and Without Blocking Diodes 

The test was conducted using a 200 watt 980 nm laser, with the beam directed in 

proximity of the two cells as to allow for each to receive the similar profile.  The test was 

conducted with three different amounts of beam overfill to vary the profile illuminating 

the cells, and was repeated both with and without the blocking diodes in the circuit.  The 
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receiver temperature was maintained within 50–60 °C.  The results of these tests are 

shown below, and the relative diameter and placement of the beam overfill is illustrated. 

 

Figure 59: Cell Back-feeding with Small Overfill 

  

Figure 60: Cell Back-feeding with Medium Overfill 

 

Figure 61: Cell Back-feeding with Large Overfill 

The negative currents can be seen in Figures 59-61 when the blocking diodes are 

not present, and represent the back-feeding of the current from the strong cell into the 

weak cell.  The addition of the blocking diodes does correct the flow, but at the expense 

of the inherent power loss through the diodes, to the extent that the diodes did not 

improve the overall output power for any of the experimental results, and it was observed 
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in these instances that their presence was more detrimental than beneficial.  This is due to 

the voltage drop losses exceeding the branch current gains, leading to a decrease in 

output power.   

5.2 Radial versus Square Geometry 

The purpose of this test was to determine an effective orientation of the cells with 

respect to the non-uniform laser illumination.  Since the junctions within a VMJ cell are 

all oriented in the same direction, each one will not receive equal intensities of laser light.  

This permits the possible scenario where the VMJ cell may be limited by the performance 

of its weakest junction, and the excess energy of the other junctions would then be 

wasted. 

To explore this premise and quantify the degree of its severity, two receiver 

geometries are considered, a 9-cell square array and a 9-cell radial orientation array.  The 

9-cell square array simply orients all of the p-n junctions in the same direction, which 

enables for the maximum junction to junction delta when illuminated with a Gaussian 

beam.  The receiver is hard-wired for three stacks of three parallel cells, and for this test 

each stack is patched together to produce nine parallel cells. 
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Figure 62: Nine-Cell Square Receiver 

The 9-cell radial orientation array places all of the junctions in eight of the cells 

on a radial to the center-point of the receiver.  When centered with the laser beam, the 

Gaussian profile will extend down the length of each p-n junction, rather than across the 

junctions.  In this way, the junction-to-junction delta is minimized, resulting in an equal 

average illumination.  A compromise to this rule is made by placing a single cell at the 

center of the array, for the purpose of maximizing packing density.  Each cell has its own 

dedicated pair of leads.  This receiver also has two additional miniature cells mounted in 

the corners, which were not used for this test.  



 

83 

 

 

Figure 63: Radial Orientation Receiver Layout 

The first objective of this test was to establish a baseline maximum power 

measurement for the subsequent tests.  The nine-cell square receiver was illuminated with 

a 980 nm laser.  The receiver position was adjusted in three axes to obtain the maximum 

output power with the laser intensity set to 200 watts, resulting in a 30 % illumination as 

depicted in Figure 64.  The output of the receiver was measured to be 23 watts, and the 

temperature was regulated within 50–60 °C.   
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Figure 64: Square Receiver at 30 % Fill, 23 Watts Pmp 

For the next part of the test, the radial orientation receiver was used.  First, the 

same conditions were used as with the previous test to align the receiver at full laser 

intensity, starting with the inner grouping of five cells.  Next the individual cells in the 

array were characterized in order to determine their contribution to the overall output of 

the receiver.  The resulting output I-V curves are shown below, and the relative diameter 

and placement of the beam overfill is illustrated. 
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Figure 65: Top Cell I-V Curve, 7.471 Watts Pmp 

 

Figure 66: Right Cell I-V Curve, 7.467 Watts Pmp 

 

Figure 67: Bottom Cell I-V Curve, 7.485 Watts Pmp 

 

Figure 68: Left Cell I-V Curve, 7.385 Watts Pmp 
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Figure 69: Center Cell I-V Curve, 6.852 Watts Pmp 

It is interesting to note that the center cell, where the beam energy is the strongest, 

did not have a higher output power than the four immediately surrounding cells.  This 

may be attributed to the fact that unlike the surrounding cells, the center cell does not 

comply with the radial configuration, and even though it is receiving the highest intensity 

portion of the laser beam, it is unable to convert the energy efficiently since it is seeing an 

uneven power distribution across its p-n junctions.  This is an indication into the 

magnitude of the detrimental effect of uneven power distribution across the p-n junctions, 

and is also a first glimpse into the validity of the radial arrangement of the surrounding 

cells. 

For the next part of the test, data was collected from both the inner four and five 

cell arrangements wired in parallel.  These tests were performed with the same optical 

alignment as before and at the 200W laser power level.  The resulting output I-V curves 

are shown below, and the relative diameter and placement of the beam overfill is 

illustrated. 
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Figure 70: Four-Cell I-V Curve, 19.976 Watts Pmp 

 

Figure 71: Five-Cell I-V Curve, 23.935 Watts Pmp 

A comparison of the results obtained in Figures 70 and 71 with those in Figures 

65-69 shows that the four inner cells are contributing the majority of the radial receiver‟s 

total output.  Although the center cell is illuminated by the most intense part of the laser 

beam, it is converting less energy than its four neighboring cells.  As stated earlier, this 

may be attributed to the center cell not complying with the radial configuration.    

The five-cell output power of 23.935 watts (Figure 71) was calculated to be a 

conversion efficiency of 22.75 %.  Comparing these results with those in Figure 64 

demonstrates that five cells in the radial orientation can outperform nine cells in the 

square orientation, providing further validation of the radial concept. 

For the final portion of the test, the over-fill of the receiver was increased to 

involve more of the corner cells in the overall output.  As with all of the previous parts of 
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this test the laser was operated at 200 watts, and the receiver temperature was regulated 

within 50–60 °C.  

 

Figure 72: 48.09 % Illum., 25.286 Watts Pmp at 26.2 % Ƞ 

 

Figure 73: 37.72 % Illum., 23.479 Watts Pmp at 31.12 % Ƞ 

 

Figure 74: 25.24 % Illum., 22.488 Watts Pmp, at 44.39 % Ƞ 

The smallest beam over-fill yielded the highest output power collected during the 

test, at 25.206 watts.  At this level of overfill, the conversion efficiency was calculated to 
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be 26.2 %.  The highest conversion efficiency was found to be with the largest beam 

over-fill, at 44.39 %. 

These results show that a radial orientation of the p-n junctions on the receiver 

face will outperform a uniform orientation, and even with less VMJ cells.  This 

demonstrated the impact of the cell geometry in the receiver design.  

5.3 Output Linearity 

The objective of this test was to establish an input-output relationship across 

different illumination intensities.  The nine-cell radial orientation receiver was 

illuminated with a 980 nm laser.  The receiver position was adjusted in three axes to 

obtain the maximum output power with the laser intensity set to 58.2 watts, with an over-

fill as shown in Figure 75. 

 

Figure 75: Linearity Test Over-fill 
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At the 58.2 watt intensity, the load was varied to obtain the characteristic I-V 

curve of the receiver.  This was repeated at laser intensities of 118, 146 and 200 watts, 

without readjusting the amount of beam overfill, while the temperature of the receiver 

was controlled between 50-60 °C.  The resulting output data is shown below. 

 

Figure 76: Linearity Test at 58 Watts 

 

Figure 77: Linearity Test at 118 Watts 

 

Figure 78: Linearity Test at 146 Watts 
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Figure 79: Linearity Test at 200 Watts 

A comparison graph of the laser input power versus converted electrical output 

power is shown in Figure 80.  It can be seen that the response of the receiver for this 

range of optical power is fairly linear, within the 200 watts of available laser energy.  

 

Figure 80: Linear Input-Output Power Relationship 

5.4 Determining the Optimal Laser Wavelength 

At low injection levels, Shockley equations are adequate for describing the 

current-voltage relationship of p-n junction semiconductor devices.  High injection levels 
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cause a change in the carrier generation and recombination process, resulting in a 

narrowing of the band gap [60].  If the conversion efficiency is to be maintained at high 

intensities, the energy wavelength must adhere to this non-linear constraint.  In 

semiconductor material, beyond the cutoff wavelength the absorption coefficient 

decreases rapidly [61], as illustrated by the knee in the silicon curve in Figure 81.  In the 

case of the band-gap narrowing, the curve would shift, and depending on the thickness of 

the semiconductor material there may not be sufficient depth of penetration for efficient 

photoelectric conversion, resulting in saturation.  Another possible phenomenon is the 

increase in the wavelength of light as it penetrates through the silicon, due to oblique 

collisions in the capture cross section, until the energy is beyond the band-gap of the 

material.  Either scenario would lead to an increase in heating and a decrease in 

efficiency.     

 

Figure 81: Semiconductor Optical Absorption Coefficients 
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Although the original quantum efficiency information for the VMJ cells can be 

used to initially determine the best range for narrowband illumination, this needs to be 

verified at continuous high intensities to verify that saturation is not occurring.  An 

experiment utilizing similar lasers at different operational frequencies will verify this, and 

reveal the optimal operating frequency for maximum efficiency.  Unfortunately, current 

technology does not provide for an infinitely tunable high power laser, but there are 

standardized frequencies that can be selected. 

Three standard frequencies within the range of interest were available to conduct 

this experiment, and three corresponding lasers at 808, 940 and 976 nm were provided by 

LIMO laser.  A single cell receiver was used, and to maintain a control during the 

experiment the same laser fiber was left in alignment, leaving only the laser diode 

module to be replaced between trials.  These three lasers had a maximum output of 

70 watts, and were identical in all ways except for their frequencies. 

The tests were conducted across the full power range of the laser, and the receiver 

was aligned in three axes until the maximum output power was achieved.  This occurred 

at an over-fill amount where 26 watts of laser energy was illuminating the cell, and these 

results are tabulated in Tables II, III and IV, with the maximum output power of each test 

indicated. 
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TABLE II:       976 NM WAVELENGTH RESULTS 

 

TABLE III: 940 NM WAVELENGTH RESULTS 

 

TABLE IV: 808 NM WAVELENGTH RESULTS 

 

The output power, I-V curves and efficiency data are plotted in Figures 82, 83 and 

84, along with images of the experiment.  Although the laser beams are observed as three 

different colors, they are all in the IR region that is invisible to the human eye.  The 

coloring effects are artifacts of the digital camera used to image the laser beam. 

Rated Operating Adj. Optical Impinging VMJ

Current Optical Optical Window Optical Peak Conversion Receiver

Setpoint Power Power Transmittance Power Power Efficiency Temp.

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) (%) (°C)

10 9.8 9.114 8.52159 3.6217 1.5481 42.74 24.1

20 25.4 23.622 22.08657 9.3868 3.5402 37.71 24.7

30 40.9 38.037 35.564595 15.1150 5.1722 34.22 27.5

40 56 52.08 48.6948 20.6953 6.4459 31.15 30.1

50 70 65.1 60.8685 25.8691 7.2430 28.00 32.6

LIMO70-F200-DL976 LIMO70-F200-DL976

Rated Operating Adj. Optical Impinging VMJ

Current Optical Optical Window Optical Peak Conversion Receiver

Setpoint Power Power Transmittance Power Power Efficiency Temp.

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) (%) (°C)

10 9.9 9.207 8.608545 3.6586 1.5198 41.54 24.4

20 25.7 23.901 22.347435 9.4977 3.5398 37.27 25

30 40.9 38.037 35.564595 15.1150 5.0675 33.53 27.6

40 55.1 51.243 47.912205 20.3627 6.1611 30.26 30.1

50.8 70 65.1 60.8685 25.8691 6.8263 26.39 32

LIMO70-F200-DL940LIMO70-F200-DL940

Rated Operating Adj. Optical Impinging VMJ

Current Optical Optical Window Optical Peak Conversion Receiver

Setpoint Power Power Transmittance Power Power Efficiency Temp.

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) (%) (°C)

10 1.7 1.581 1.478235 0.6282 0.3131 49.83 22.5

20 20.3 18.879 17.651865 7.5020 1.8050 24.06 28.7

30 38.9 36.177 33.825495 14.3758 3.0695 21.35 35.4

40 56.4 52.452 49.04262 20.8431 3.9837 19.11 41.8

49.4 70 65.1 60.8685 25.8691 4.6798 18.09 47.2

LIMO70-F200-DL808LIMO70-F200-DL808
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Figure 82: Wavelength Input versus Output 

 

Figure 83: Wavelength Maximum Power I-V Curves 
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Figure 84: Wavelength Conversion Efficiencies 

The results from these tests clearly indicate that the 976 nm wavelength offers the 

best high intensity performance with these receivers.  Comparison graphs are shown in 

Figures 85 and 86 to further illustrate this point.  It is interesting to note that at the lowest 

intensity the 808 nm wavelength offered an efficiency of almost 50 %, but this quickly 

dropped at higher intensities.  Although this may be indicative of saturation, it may also 

be that a large amount of this energy is being reflected back from the surface of the cells 

at these intensities.  This was noted in the pictures by the amount of visible scattering 

around the cell at the 808 nm frequency, and warrants further investigation in the future. 
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Figure 85: Wavelength Output Comparison 

 

Figure 86: Wavelength Efficiency Comparison 

5.5 Uniform versus Gaussian Beam Profiles 

Although the typically encountered operation of a laser is in a TEM00 resonator 

mode (Gaussian), the previously discussed concern over uniform illumination of the 

junctions in the VMJ cell warrants an investigation into the effects.  The prior experiment 
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in 5.2 successfully compensated for the non-uniform beam by considering the geometry 

of the receiver.  In this experiment the laser beam is conditioned to a uniform state using 

optics stages from LIMO.  The beam shaping optics delivers a 44.5 x 44.5 mm square 

laser beam within a 1 % variation of intensity. 

The first part of the test establishes a baseline for the comparison with and 

without the conditioning optics.  The nine-cell square receiver was selected for the test, 

and was illuminated with a 980 nm laser.  The receiver position was adjusted in three 

axes to obtain the maximum output power with the laser intensity set to for different 

intensities, while the receiver temperature was regulated within 50–60 °C.   

 

Figure 87: Nine-Cell Receiver with Gaussian Beam 
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TABLE V:       GAUSSIAN BEAM RESULTS 

 

 

Figure 88: Gaussian Receiver Output 

 

Figure 89: Gaussian Receiver Efficiencies 

After After

Rated Operating Optical Flat-Top

Current Optical Optical Window Optics

Setpoint Power Power Transmittance Transmittance

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W)

10 30.2 28.086 26.26041 22.18794

20 91.2 84.816 79.30296 67.00464

30 150 139.5 130.4325 110.205

39.5 201.9 187.767 175.562145 148.33593

HLU200-F400-980P2-M2

Impinging VMJ

Optical Peak Conversion Receiver

Power Power Efficiency Temp.

Watts (W) Watts (W) (%) (°C)

13.8918 4.3895 31.60 29

41.9513 12.2321 29.16 37

68.9988 18.2832 26.50 47.2

92.8724 23.7778 25.60 47

9-cell Gaussian
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In the next stage of the experiment, the flat-top optics stage was inserted.  The 

receiver position was re-adjusted in three axes to obtain the maximum output power with 

the laser intensity set to for different intensities, while the receiver temperature was 

regulated within 50–60 °C.   

 

 

Figure 90: Nine-Cell Receiver with Flat-Top Beam 
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TABLE VI: FLAT-TOP RESULTS 

 

 

Figure 91: Flat-Top Receiver Output 

 

Figure 92: Flat-Top Receiver Efficiencies 

After After

Rated Operating Optical Flat-Top Impinging VMJ

Current Optical Optical Window Optics Optical Peak Conversion Receiver

Setpoint Power Power Transmittance Transmittance Power Power Efficiency Temp.

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) (%) (°C)

10 30.2 28.086 26.26041 22.18794 7.0780 2.2668 32.03 23

20 91.2 84.816 79.30296 67.00464 21.3745 6.7194 31.44 27.2

30 150 139.5 130.4325 110.205 35.1554 10.6178 30.20 31.7

39.5 201.9 187.767 175.562145 148.33593 47.3192 13.8387 29.25 35.7

HLU200-F400-980P2-M2 9-cell Flat-Top Optics
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The results from the two setups are compared in Figures 93 and 94.  Because the 

size of the flat-top beam is much larger than the aperture of the receiver, a considerable 

amount of laser energy is not being utilized.  Therefore, the data for the flat-top portion of 

the test does not extend as high as with the Gaussian test.  At the lower intensities, the 

uniform illumination provided by the flat-top optics demonstrates a performance 

increase, which will have to be quantified at the higher intensities in the future with either 

a higher power laser or a receiver whose aperture matches the size of the flat-top beam. 

 

Figure 93: Gaussian vs. Flat Top Output Comparison 
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Figure 94: Gaussian vs. Flat Top Efficiency Comparison 

5.6 Maximum Power Density 

The objective of this test is to obtain the maximum power density performance 

with the available equipment.  The 200 watt 980 nm laser was selected with a single cell 

receiver, so that the beam could be focused down to a smallest diameter possible while 

still illuminating the cell.  As with the previous tests, the receiver position was re-

adjusted in three axes to obtain the maximum output power while the laser intensity was 

set to for different intensities.  The final alignment of the apparatus can be seen in 

Figure 95.  It is important to note that for this test, the nominal receiver temperature was 

exceeded, as the concentrated amount of laser energy exceeded the capabilities of the 

thermal system.  Despite this, the results of the test successfully exceeded all of the 

power density numbers thus far. 
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Figure 95: Maximum Power Density Alignment 

 

TABLE VII: MAXIMUM POWER DENSITY DATA 

After After

Rated Operating Optical Flat-Top Impinging VMJ

Current Optical Optical Window Optics Optical Peak Conversion Receiver

Setpoint Power Power Transmittance Transmittance Power Power Efficiency Temp.

Amps (A) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) Watts (W) (%) (°C)

10 30.2 28.086 26.26041 22.18794 11.1607 4.0751 36.51 31.1

20 91.2 84.816 79.30296 67.00464 33.7038 9.6017 28.49 49.4

25 121 112.53 105.21555 88.8987 44.7166 10.7461 24.03 60.5

30 150 139.5 130.4325 110.205 55.4338 7.9400 14.32 67.5

35 177 164.61 153.91035 130.0419 65.4119 2.7001 4.13 75

HLU200-F400-980P2-M2 1-cell Gaussian
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Figure 96: Maximum Power Density Output 

 

Figure 97: Maximum Power Density Efficiency 

Figure 96 shows that the output of receiver peaked at 44.72 watts of laser energy, 

above which the performance degraded.  At this peak, the optical power density was 56.6 

watts per cm
2
, and the single VMJ cell was able to produce 10.7461 watts (equivalent to 

13.6 watts per cm
2
) for a conversion efficiency of 24 %.  The I-V curve for this operating 

point is shown in Figure 98. 
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Figure 98: Maximum Power Density I-V Curve 

Beyond this operating point, the performance of the cell degraded.  Table VIII 

shows the output power and efficiency data, and the corresponding measured receiver 

temperatures.  As the thermal system reached saturation, the receiver temperature 

exceeded its nominal temperature, and the conversion efficiency was consequently 

degraded. 

TABLE VIII: RECEIVER TEMPERATURE LOG 

 

The receiver temperature values are recorded by thermocouples embedded behind 

the mounting substrate, and so the actual temperatures at the VMJ semiconductor 

material are much higher than those in the table due to the delta differences between the 

materials in the receiver stack-up.  Also, the Gaussian distribution of the beam set up an 

extremely intense thermal field at the center of the cell.  Unfortunately, the proper 

Impinging VMJ

Optical Peak Conversion Receiver

Power Power Efficiency Temp.

Watts (W) Watts (W) (%) (°C)

11.1607 4.0751 36.51 31.1

33.7038 9.6017 28.49 49.4

44.7166 10.7461 24.03 60.5

55.4338 7.9400 14.32 67.5

65.4119 2.7001 4.13 75
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equipment was not available at the time of the experiment to image the surface 

temperature profile across the receiver. 

Although the increasing receiver temperatures contribute to the decrease in 

conversion efficiency, there may be more to the explanation.  Revisiting the earlier 

experiment with the Gaussian beam and the flat top optics gives some further insight.  By 

plotting the efficiency of the receiver against its measured temperatures (Figure 99), an 

interesting trend can be observed.  Up to approximately 60 °C, the efficiency degrades 

linearly at a slope of around 8 % per 10 °C.  Above 60 °C, the efficiency drops 

substantially at a slope of 13 % per 10 °C.  This does not match the expected thermal 

degradation representative of a silicon photocell (Figure 100), which is shown to be linear 

out to nearly 125 °C.  

 

Figure 99: Efficiency Drop-off Beyond 60 °C 
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Figure 100: Photocell Thermal Efficiency Degradation  

An explanation of this phenomenon may be optical scattering & reflection off the 

surface of the cell, due to this hot field rejecting the energy.  Evidence of this resides 

during the high-energy portions of the experiments, where it was observed that the laser 

optics were heating up due to back reflection off the receivers.  The VMJ cells feature an 

anti-reflective (AR) coating to reduce this, and the substrate material in the receiver is a 

non-reflective dull surface.  Furthermore, the heating at the optics stage was only 

observed at high intensities, corresponding with the knee in the efficiency curve.  Up to 

this temperature, the standard temperature de-rating applies to the receiver efficiency.  

Above this point some of the laser energy is reflected back away from the surface of the 

receiver.  Detailed pictures taken during one of the experiments may reveal this 

Efficiency of Concentrator PhotoCells Vs. Temperature

(Solar Spectrum)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

25 35 45 55 65 75 85 95 105 115 125

Temperature in Degrees C

C
o

n
v
e
rs

io
n

 E
ff

ic
e
n

c
y
 

Silicon Based Tripple Junction Based



 

109 

 

reflection, as shown in Figures 101-104.  In viewing the trend of these pictures, as the 

laser energy is increased a series of dark patterns are seen to develop in the center of each 

of the nine VMJ cells.  At the high power setting in Figure 104, the patterns have grown 

in size to fully shroud the cells, and this may represent the refection of the laser energy.  

This energy reflection would explain why the efficiencies dropped significantly, as the 

photons were no longer able to enter the photovoltaic material.  Fortunately, there are 

several ways to solve this problem, which are addressed in the summary. 
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Figure 101: Surface Reflections at 30 Watt Intensity 
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Figure 102: Surface Reflections at 91 Watt Intensity 
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Figure 103: Surface Reflections at 150 Watt Intensity 
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Figure 104: Surface Reflections at 200 watt Intensity 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

The primary data gathered from these experiments is instrumental in shaping the 

future of the HILPB program, as it progresses toward higher intensity and efficiency 

goals.  The proof of concept objectives have been met, and further investigations into the 

details of the system have been performed.  The following is a synopsis of the research 

achievements, with suggestions for future improvements. 

6.1 Summary and Contributions 

1. VMJ cells were successfully utilized with HILPB, and the maximum continuous 

power obtained from a receiver is 23.7778 watts. 
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2. The maximum continuous optical to electrical conversion efficiency obtained 

from a HILPB receiver is 49.83 % (nearing the 50-60 % theoretical limit), at low 

intensities with an 808 nm laser. 

3. The peak power density produced by a single VMJ is 13.6 watts per cm², with an 

optical input 56.6 watts per cm
2
.  

4. The optimal frequency of the laser energy is in the 980 nm range (976 nm 

commercially available). 

5. There is approximately a 10% absolute improvement in the efficiency of the 

photocells when using a uniform beam distribution versus a normal Gaussian 

beam. 

6. The geometry of the HILPB receiver can be designed to favor the Gaussian laser 

beam, or the beam can be conditioned with optics to provide for a uniform 

distribution at the receiver.  

7. The commercial off the shelf (COTS) thermal management system was not 

effective at keeping the temperature of the photocell array at an acceptable level 

during the highest power density portions of the experiments, thus resulting in 

drastic reductions in their conversion efficiency.  

8. Conventional solar array blocking diodes are not applicable to HILPB. 

 

The main contribution of this work was in designing, constructing and testing a 

preliminary engineering model of the HILPB receiver as a proof-of-concept hardware 
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device.  For these initial tests, the receiver was able to meet the thermal and electrical 

demands of the system.  With modifications to subsequent designs, the receivers were 

also able to be tested with a variety of laser sources to evaluate the performance of the 

VMJ cells for this application.  These newer iterations allowed for the further 

investigations into parallel-cell back-feeding, optimal receiver geometry, non-uniform 

illumination and thermal effects at high intensities.  The receivers have been tested to 

their capable limits, and to move forward with higher intensities and efficiencies it is 

necessary to design a more robust HILPB receiver. 

6.2 Future Work 

Further cell improvements will have an effect on the packing density of the 

receiver.  The addition of welded leads to the VMJ cells will improve their robustness, 

increase the packing density and enhance the manufacturability of the receiver.  The lead 

attachment may be accomplished through ultrasonic welding. 

The excess unconvertible area due to the electrical connections between the cells 

could be minimized by using a substrate with embedded circuit traces, similar to a PCB.  

The rapid prototyping demand and the various cell configurations facilitated the usage of 

the delicate silver-plated kovar leads, but chemically etched bus paths directly on the 

receiver surface would increase the thermal conductivity and the current handling 

capability of the connections.   
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Another method to maximize the convertible area on the surface of the receiver 

would be to adjust the manufacturing of the cells in order to obtain an optimal radial 

geometry, in a way that reflects the Gaussian distribution of the laser beam.  This could 

be accomplished by manufacturing the cells in a chevron shape with a taper inversely 

related to the Gaussian distribution, which would improve both the packing density and 

the uniformity of the junction illumination.  An illustration of this concept is shown in 

Figure 105.  A possible way to fabricate the angled cells may be to use laser-cutting 

techniques, which have been successfully employed to cut silicon wafers. 

 

 

Figure 105: Chevron Concept for a VMJ Radial Array 

Another method to maximize the convertible area is to return to the original 

rectangular array design (made up of square VMJ cells), and condition the laser beam 

with optics into a flat profile.  This beam manipulation could be done at either the laser or 
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the receiver end, for experimental purposes.  By insuring a relatively uniform power 

distribution in the beam, the geometry of the receiver could be made simpler and more 

compact, allowing for a much higher power density.   

At the very best cell efficiencies, 40-50 % of the impinging laser energy will still 

be lost into heat.  With HILPB, large amounts of heat will be generated in a relatively 

small area.  Although in their current form the VMJ cells are able to withstand 

temperatures up to 600 ºC, they do so with a considerably degraded efficiency.  

Therefore, thermal management is of the utmost concern in the design and operation of 

the HILPB system.  The COTS system was effective for supporting the fundamental 

HILPB research, and now a new thermal management system must be designed to 

facilitate significantly higher energy intensities.  A few preliminary designs have been 

constructed using anodized aluminum as the base thermal conductor, which may be 

ported for fluid circulation.  A new mounting technique is used to attach the VMJ cells 

directly to the heat-sink face, eliminating the number of thermal barriers present in the 

receiver.  This is possible since the anodized coating supplies the electrical isolation, 

eliminating the need for the Aluminum Nitride substrate.  Kapton
TM

 insulation material 

and copper foil may be used for the electrical routing.  A new epoxy film is also being 

evaluated for the cell adhesion which has an improved thermal transfer rating, is 

dimensionally consistent and simplifies the fabrication process.  Examples of this type of 

construction are shown in Figure 106. 
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Figure 106: Direct Bonding to Anodized Aluminum 

As an alternative to dissipating the excess heat generated from HILPB, the heat 

may be harnessed for energy usage.  An example of this would be the implementation of 

a fluid heat exchanger / micro-turbine system instead of a heat-sink, to convert the excess 

thermal energy into a usable electric form. 

The energy scattering/reflection issue can be approached in a number of ways.  

Fundamentally, the new thermal management system will lower the overall temperature 

of the receiver, which will decrease the energy rejection effect.  The effectiveness of 

other AR coatings on the surface of the cell may also be investigated.  Another possibility 

would be to align the receiver slightly off axis from the beam.  The data obtained from 

performing an experiment where the receiver is articulated in two different axes will 

provide the performance parameters for the beam tracking and control system in a HILPB 

system implementation.   
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Although the blocking diodes were more detrimental than beneficial to the overall 

performance of the receiver, they did correct the current flow.  An active switching and 

control system can be developed to minimize the inherent losses resulting from 

unbalanced power levels from the cells caused by uneven illumination and manufacturing 

variability.  The sensors and switches in the power electronics system need to be selected 

to minimize the amount of parasitic losses to the receiver.  This may be accomplished 

through inductive current sensing and low-loss FET (field effect transistor) switches. 
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APPENDICES 

TABLE IX: HILPB RECEIVER CONSTRUCTION LOG  

 

Construction Log 

Designator Cells Notes 

MK-I H3-14 single, consistant side down, lead ripped off during testing 

  H3-11 obscured during assembly 

MK-IB E12-11 rebuild double, consistant side up 

  H3-33 rebuild double, consistant side down 

MK-II E12-4 single, consistant side up, lead ripped off during testing & repaired at Northrop 

    experienced a burn to the AR coating from the Gaussian laser set to 110W 

MK-IIB K3-5 rebuild single 

    consistant side up 

MK-III K1-C double, IR coating, thick cell 

  SCA9-A double, IR coating, small cell 

MK-IV K3-23 double, IR coating 

  SCA9-B double IR coating, small cell 

MK-V E12-10 top left corner 

  E12-13 top right corner 

  H3-7 bottom right corner 

  F1-5 bottom left corner 

MK-VI K1-B top left corner 

  K3-3 top center 

  K3-4 top right corner 

  K3-15  right center 

  K3-20 bottom right corner 

  K3-19 bottom center 

  K3-17 bottom left corner 

  K3-8 left center 

  K3-12 center 

MK-VII K3-1 top left corner 

  K3-27 top center 

  E12-8 top right corner 

  E12-20 right center 

  K3-11 bottom right corner 

  E12-17 bottom center 

  E12-18 bottom left corner 

  K3-10 left center 

  F3-13 center 

MK-VIII-A H3-5 top left corner 

(radial) K5-19 top center 

  H1-14 top right corner 

  K12-13 right center 

  H1-29 bottom right corner 

  K7-16 bottom center 

  H1-31 bottom left corner 

  K12-3 left center 

  K11-9 center 

  SCA9-D top-right small cell 

  SCA9-E bottom-left small cell 
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Figure 107: DATAQ PCB Artwork 
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