
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2012

Distributed Biogeography Based Optimization for
Mobile Robots
Arpit Shah
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Shah, Arpit, "Distributed Biogeography Based Optimization for Mobile Robots" (2012). ETD Archive. 685.
https://engagedscholarship.csuohio.edu/etdarchive/685

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/685?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

DISTRIBUTED BIOGEOGRAPHY BASED OPTIMIZATION FOR

MOBILE ROBOTS

Arpit Shah

Bachelor of Science in Electronics and Communication Engineering

HNGU North Gujarat University

May, 2009

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

May, 2012

ii

DISTRIBUTED BIOGROGRAPHY BASED OPTIMIZATION FOR

MOBILE ROBOTS

ARPIT SHAH

ABSTRACT

 I present hardware testing of an evolutionary algorithm (EA) known as distributed

biogeography based optimization (DBBO). DBBO is an extended version of

biogeography based optimization (BBO). Typically, EAs require a central computer to

control the evaluation of candidate solutions to some optimization problem, and to

control the sharing of information between those candidate solutions. DBBO, however,

does not require a centralized unit to control individuals. Individuals independently run

the EA and find a solution to a given optimization problem. Both BBO and DBBO are

based on the theory of biogeography, which describes how organisms are distributed

geographically in nature. I have compared the performance of BBO and DBBO by using

fourteen benchmark functions that are commonly used to evaluate the performance of

optimization algorithms. I perform both hardware and simulation experiments. Wall-

following robots are used as hardware to implement the DBBO algorithm. Robots use

two different controllers to maintain a constant distance from the wall: one is a

proportional integral derivative (PID) controller and the other is a fuzzy controller.

DBBO optimizes the performance of the robots with respect to the control parameters.

During simulation experiments I used different EA mutation rates; different staring points

for the robots; and different wheel bases. I have also done T-tests to analyze the statistical

significance of performance differences and robustness tests to analyze the performance

iii

of the algorithms in the face of environmental changes. The results show that centralized

BBO gives better optimization results than distributed BBO. DBBO gives less optimal

solutions but it removes the necessity of centralized control. The results also show that

the fuzzy controller performs better than the PID controller.

iv

This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Dan Simon

Department/Date

Dr. Lili Dong

 Department/Date

Dr. Chansu Yu

Department/Date

v

TABLE OF CONTENTS

ABSTRACT ... ii

LIST OF FIGURES ... viii

LIST OF TABLES .. xi

NOMENCLATURE ... xii

ACRONYMS ... xiv

I. Introduction .. 1

1.1 Introduction to evolutionary algorithms ... 1

1.2 Biogeography based optimization .. 4

1.3 Problem statement .. 5

1.4 Contribution of thesis .. 6

1.5 Structure of thesis ... 7

II. Biogeography based optimization ... 9

2.1 Centralized BBO ... 10

2.2 Distributed BBO ... 13

2.3 Benchmark functions .. 16

III. Fuzzy logic ... 18

3.1 Concept of fuzzy logic .. 18

3.2 Fuzzy logic controller ... 20

3.3 Different models of fuzzy logic controllers 22

vi

3.4 Summary .. 24

IV. Mobile Robot controller ... 25

4.1 Hardware ... 26

4.2 Implementation of control .. 29

4.3 Proportional integral derivative (PID) controller 32

4.4 Fuzzy controller .. 34

4.5 Experimental procedure .. 38

V. Results .. 42

5.1 Simulation results ... 42

 5.1.1 DBBO using proportional integral derivative controller 43

 5.1.2 DBBO using fuzzy controller .. 44

5.2 Experimental results ... 56

 5.2.1 DBBO using proportional integral derivative controller 56

 5.2.2 DBBO using fuzzy controller ... 57

VI. Conclusion and future work .. 62

6.1 Conclusion ... 62

6.2 Future work .. 64

REFERENCES ... 65

APPENDIX A: Robustness test results ... 72

APPENDIX B: T-test results .. 76

vii

APPENDIX C: Benchmark functions ... 80

viii

LIST OF FIGURES

1. Block diagram of EA ... 2

2. Migration rates as a function of BBO solution fitness 12

3. Basic description of the BBO algorithm for one generation 13

4. Random robot communication .. 14

5. Basic description of the DBBO algorithm for one generation 14

6. Representation of crisp sets and fuzzy sets .. 19

7. Graphical representation of fuzzy height .. 20

8. Block diagram of fuzzy logic controller ... 21

9. PCB layout used in robot ... 26

10. Photograph of IR sensor .. 27

11. Photograph of MaxStrem 9Xtend wireless radio 28

12. Photograph of the robot ... 29

13. Block diagram of the robot system ... 30

14. Detection of wall .. 31

15. Block diagram of PID controller ... 33

16. Representation of membership functions ... 34

17. Defuzzification of fuzzy output ... 37

ix

18. Pseudo code for fuzzy logic controller ... 38

19. Flowchart of the system .. 39

20. Tracking error response of fuzzy controller at starting point 200

mm .. 47

21. Tracking error response of fuzzy controller at starting point 1000

mm .. 47

22. Fuzzy controller membership function of robots starting at 200 mm

 .. 48

23. Fuzzy controller membership function of robots starting at 1000

mm ... 49

24. Average cost values at different starting points 50

25. Robustness test variation in cost values of robots with different

wheel bases using BBO algorithm .. 53

26. Robustness test variation in cost values of robots with different

wheel bases using DBBO/2 algorithm .. 54

27. Robustness test variation in cost values of robots with different

wheel bases using DBBO/4 algorithm .. 54

28. Robustness test variation in cost values of robots with different

wheel bases using DBBO/6 algorithm .. 55

x

29. Graph of experimental cost values vs. number of generations for

DBBO/2 ... 57

30. Fuzzy controller membership function of error 58

31. Fuzzy controller membership function of ∆error 59

32. Fuzzy controller membership function of voltage 59

33. Graph of cost values vs. number of generations 61

xi

LIST OF TABLES

1. Average cost values of benchmark functions with standard

deviation .. 17

2. Range of each fuzzy parameter .. 35

3. Rule table for fuzzy if-then rules .. 36

4. 100 Monte Carlo simulation results for PID controller 43

5. T-test results for PID controller ... 44

6. Maximum and minimum value of fuzzy membership functions used

in mobile robots .. 45

7. 100 Monte Carlo simulation results for fuzzy controller 45

8. T-test results for fuzzy controller ... 46

9. Average cost for different mutation rates ... 51

10. Average cost for different wheel bases ... 51

11. PID parameters of robots at 1st and 8th generation 56

12. Fuzzy parameters of one of the robots at 1st and 10th generation . 60

xii

NOMENCLATURE

μ emigration rate

λ immigration rate

P population size

 fitness of the i-th individual

W worst fitness value

B best fitness value

δ(A) membership function of fuzzy set A

d1 distance from the wall measured by sensor 1

d2 distance from the wall measured by sensor 2

db difference between d1 and d2

yref constant distance robot has to maintain from wall

θ angle

e(t) tracking error

ecurrent current error

eold previous error

k1 constant

xiii

k2 constant

Cost cost value calculated by robots

r rise time

kp proportional constant

ki integral constant

kd derivative constant

α membership function of error input

β membership function of delta error input

γ membership function of motor voltage output

N number of candidates

Vleft pulse width modulation cycles for left wheel

Vright pulse width modulation cycles for right wheel

Vref reference pulse width modulation cycles

U uniform distribution of random numbers

xiv

ACRONYMS

BBO biogeography based optimization

bps bits per second

DBBO distributed biogeography based optimization

dBM decibels in milliwatts

DC direct current

EA evolutionary algorithm

EC evolutionary computing

EP evolutionary programming

ES evolutionary strategy

GA genetic algorithm

GP genetic programming

HSI habitat suitability index

IR infrared

LCD liquid crystal display

MF membership function

PCB printed circuit board

xv

PID proportional integral derivative

PWM pulse width modulation

SIV suitability index variable

CHAPTER I

INTRODUCTION

1.1 Introduction to evolutionary algorithms

 One of the main functions of engineers is to try to find different methods to

optimize or solve very complex and difficult problems. The evolutionary algorithm (EA)

is one of the most attractive methods to solve different problems, such as generating

adaptive genetic operators [14], evolutionary path planning for autonomous under water

vehicles [1], and smart highway systems to solve traffic problems [2]. The main

advantage of EAs over analytical optimization algorithms is their flexibility and

adaptability.

 The EA is a robust search and optimization method. The idea of EAs originated in

the 1950s based on research by Bremermann [4]; Friedberg [10], [9]; Box [3]; and others.

At that time EAs were not used widely by scientists due to a lack of powerful computers.

After a few decades, as computers became more available, more research was done in

2

this field. EA functionality is inspired by biological evolution, such as reproduction,

mutation, recombination, and selection, as shown in Figure 1 [8].

Figure 1: Block diagram of EA

Figure 1 shows the basic block diagram of EAs. The first step is to initialize the

population. Each individual in the population has a candidate solution to the problem.

Then the central unit assesses these solutions by assigning fitness values to these

solutions according to their effectiveness in solving the problem. A good solution has

high fitness and a bad solution has low fitness. EAs will sort these individuals according

to their fitness level. Evolution is done by various operators, like recombination and

mutation, as I mentioned previously. Recombination is also known as crossover.

Crossover exchanges the genes of the parent individuals to generate a new child.

Mutation randomly selects new solutions within a given search space and generates a

new child. At the end of each generation, the central unit sorts all these new solutions by

their fitness values, and after several generations the EA evolves a better solution. EAs

Selection Recombination

Reinsertion Mutation

A
ss

es
sm

en
t

P
er

fo
rm

an
ce

Initialize

population

Return

solution
y

n

3

are a subset of evolutionary computing (EC) and has mainly four approaches: evolution

strategies (ES), evolutionary programming (EP), genetic algorithm (GA) and genetic

programming (GP). I discuss these four approaches in the following paragraphs.

The ES was proposed by three students who were working on the experiment of

minimizing drag in wind tunnel [30], [40]. Their algorithm, also called “cybernetic

solution path,” has two characteristics. The first is mutation, in which the system

randomly changes the variables in each generation, and the second is selection, in which,

if the new solution from these variable changes is not good, then the system will keep the

old variables, and otherwise it will keep the new ones.

Fogel introduced EP in his book Artificial Intelligence Through Simulated

Evolution in 1962 [12], [11]. According to Fogel, artificial intelligence is the combined

ability to predict the environment of any system, and to predict the response of that

system for the predicted environment with respect to any specific independent variable.

EP mutation is different from ES. During mutation EP does not change its variables, but

instead regenerates new variables and selects the candidate according to fitness level.

The third EA approach is the GA. In 1975 Holland published an article called

Adaption in Natural and Artificial Systems [16]. The algorithm introduced by him was

very helpful in the development of GAs. GA behavior is governed by a fundamental

theorem called the schema theorem. In GA the candidate is referred as a chromosome,

which is analogous to DNA. According to the schema theorem, the first step is single

point crossover of individual chromosomes which are in the same class, and sorting these

chromosomes by fitness. After several generations fitness will increase exponentially.

4

The last EA approach is GP. As I discussed, the previous EA approaches were

used to get the solution of real world problems. GP is an approach to improve computer

programs. GP was first introduced by Cramer in 1985 [5]. He generated an algorithm

which develops simple sequential programs. He used GP to generate different functions

which are well defined and have two inputs and one output. Another application of GP is

in circuit design. After we set the requirements and list of components, GP generates the

size, placement of component and routing of the circuit [18].

In this thesis I am going to explain a new EA which is inspired from the science

of biogeography and which is called biogeography based optimization (BBO).

 1.2 Biogeography based optimization

The term biogeography is the study of the geographical distribution of plants and

animal life. It was first introduced by Charles Darwin in the nineteenth century [6]. In the

1960s MacArthur and Edward Wilson created biogeography models from their studies of

island biogeography [24]. Their main focus was to study the distribution of species

among islands. They introduced mathematical models of the migration of species. These

models explain how species migrate from one island to other, how new species come to

islands, and how they become extinct. Here the word ‘island’ refers to a habitat, which is

a geographically isolated region.

BBO was developed as a mathematical model of biogeography to optimize

solutions for different problems. It has been applied to satellite image classification [27],

aircraft engine sensor selection [33], antenna design [39], optimization of different power

system problems [28], [29], groundwater detection [17], mechanical gear train design

[35] and neuro-fuzzy system training for biomedical applications [25]. Recent research

5

in the area of BBO has focused on putting it on a firm theoretical and mathematical

foundation, including the derivation of dynamic system models [38] and Markov models

[36, 37] that describe its behavior.

1.3 Problem statement

 In this thesis, I am going to explain BBO and extend it to distributed learning. It

also gives experimental and simulation results. BBO and most other EAs use a central

computer to gather data from each individual for the algorithm. But in the real world

there are a few systems (for example peer to peer networking) in which it becomes very

hard to have a central computer which communicates with all the individuals. So we have

developed distributed BBO which does not require a central computer. DBBO’s control

and communication is distributed between different BBO individuals rather than

coordinated by a central computer.

Distributed BBO is based on distributed learning. It is a theory which developed

to explain how the human mind learns [44]. The research says that the human mental

capability is not only centralized inside the mind, but outside social interaction also has

an effect on human mental capability [7]. Distributed learning explains how

environmental influences prompt humans to solve problems. For example, a human child

who wants to learn how to walk does not learn only by himself. He looks around him and

sees how other humans walk and learns better. In general, humans as a team perform

tasks more accurately than alone. For example, companies dealing with big projects

usually choose a team of employees to work together rather than a single employee, so

that each employee communicates, shares their ideas, and achieves the goal quickly and

more accurately. I applied this distributed learning to a swarm of robots. Like humans,

6

these robots also perform tasks, learn, and solve problems by communicating with each

other.

This thesis also discusses fuzzy logic control (FLC) which is based on fuzzy

logic. FLC has become a very interesting area for research. There are many applications

of FLC, like elevator control [8], fuzzy memory devices [19], and water quality control

[43],[45], which encourages the development of FLC. In this paper, I am going to

compare the performance of FLC with traditional proportional-integral-derivative (PID)

controller for mobile robot control.

I used these two controllers in wall-following robots. The main objective of the

robots is to maintain a constant distance from the wall. I am choosing two parameters for

the PID controller, which is the proportional term and the derivative term, and fifteen

(15) parameters for the fuzzy controller, to control a wall-following robot. I applied

DBBO to these controller parameters to tune these parameters to get the best performance

from the robots.

1.4 Contribution of thesis

As I discussed in the previous section, this thesis explains BBO and distributed

BBO. The main contribution of this paper is the physical and simulation experiments for

the DBBO algorithm. I have used four wall-following robots for the physical experiments

and applied DBBO to improve their control performance. I have used two different

controllers for the robots, and tuned them using DBBO and compared their performance.

I have also done several simulations with different mutation rates, different starting

points, and different wheel bases to tune the controllers using BBO and DBBO in order to

compare their results. Moreover, I ran T-tests and robustness tests and discuss the results.

7

1.5 Structure of thesis

Chapter II gives an overview of the BBO algorithm and explains BBO

terminology. The first section explains the traditional centralized BBO in which a central

unit gathers all the data from each individual component and applies BBO. The second

section explains distributed BBO, which describes how each individual component

independently applies BBO instead of through a central unit. Finally, the third section

explains the definition of benchmark functions and the results of the BBO and DBBO

applied to fourteen benchmark functions.

Chapter III discusses fuzzy logic. The first section explains the definition of fuzzy

logic. As the complexity of the system increases, it becomes very hard to make decisions

regarding system behavior. So, Dr. Zadeh introduced a decision-making scheme known

as the fuzzy logic controller (FLC) [47]. The last section explains two types of FLCs: the

Mamdani model and the Takagi and Sugeno model.

Chapter IV of this thesis explains the hardware and control systems used in the

robots. The first section gives a brief introduction of the parts used by the wall-following

robots and the reasons for choosing those components. The four wall-following robots’

main objective is to maintain a constant distance from the wall. The second section

explains the robots’ sensing and implementation of the control. I used two control

systems: the PID controller and the fuzzy controller. The third section explains the first

controller, which is the PID controller. It uses the proportional and derivative term to

reduce error. The fourth section explains the fuzzy controller and its membership

functions. It uses five membership functions for each input and output. The controller

8

uses fuzzy if-then rules for decision making. The last section explains the software of the

robot. It describes the flowchart of the whole cycle of the experiment.

 Chapter V contains the results. I have done several experiments including T-tests

and robustness tests. It explains the simulation experiments and their results for both the

PID and fuzzy controllers, and also explains hardware experiment results for both

controllers. It compares the results of BBO and DBBO with a different number of peers.

It also compares the two controllers’ performances.

Finally Chapter VI concludes the thesis and also suggests future work.

9

CHAPTER II

BIOGEOGRAPHY-BASED OPTIMIZATION

Chapter II gives a brief introduction about the evolutionary algorithm called bio-

geography-based optimization (BBO). As I discuss in Chapter I, BBO is based on

biogeography. This chapter explains the different terms of biogeography. The first

section explains the algorithm of centralized BBO. Then I introduce distributed BBO, and

explain the differences between BBO and DBBO. Finally, the third section explains the

benchmark functions and compares the results of the BBO and the DBBO algorithms.

The BBO algorithm is created to optimize the solution of problems on the basis of

the theory of biogeography. According to island biogeography, in nature species migrate

from one island to another and create better habitats. Different islands have different

environmental factors. These environmental factors are called suitability index variables

(SIVs). A habitat that is more suitable for species has a high habitat suitability index

10

(HSI). Migration depends on the habitat’s HSI. High-HSI habitats have more species, so

their emigration rates will increase and low-HSI habitats have fewer species, so their

immigration rates will increase.

BBO is the application of this concept to the engineering field. In an engineering

field, an island is replaced with a candidate solution or an individual; HSI indicates the

fitness or cost of individuals, and SIV indicates a solution feature or independent

variable. Thus, an individual that has a good solution has a high fitness and a high

emigration probability. An individual that has a low fitness has a high immigration

probability, so it is more likely to accept a solution feature from surrounding individuals

to try to better optimize the problem [33].

There are mainly three processes in BBO: migration, mutation, and elitism. These

processes allow candidates to share information and save the best solution for the next

generation. Migration is the most important process. Migration allows the candidates to

emigrate or immigrate data from other candidates at each generation. Mutation is the

same process used in other evolutionary algorithms. Each generation, each candidate

randomly generates new solution features. Elitism finds the best solution at each

generation, and replaces the worst solutions each generation with the best ones from the

previous generation.

2.1 Centralized BBO

Centralized BBO is the original BBO algorithm. According to centralized BBO,

each BBO individual sends information to a central unit. A central unit gets information,

performs the BBO algorithm, sends back new solution features and creates better

solutions. As explained above, migration depends on a habitat’s HSI. Here, habitat is

11

analogous to a solution and HSI is analogous to the fitness of the solution. The fitness of

the solution determines the emigration rate (μ) and immigration rate (λ) as follows.

 (1)

 (2)

where is the fitness of the i-th individual, and P represents the population size. As

shown in Figure 2, the candidate with the worst solution has the lowest fitness, so it has

both high immigration probability and low emigration probability. The candidate with the

best solution has a high fitness level, so it has a high emigration probability and a low

immigration probability.

The migration rates are scaled between 0 and 1. Thus, for the best solution we set

the immigration rate λi = 0 and emigration rate μi = 1, and for the worst solution

emigration rate μi = 0 and immigration rate λi = 1. If all the individuals have the same

fitness then according to Equation 1 the denominator becomes the zero and migration

rates become infinite. So for this case we set both immigration rate and emigration rate

equal to 0.5.

12

Figure 2: Migration rates as a function of BBO solution fitness

The immigration of the solution feature of the individual x to the individual y is

probabilistically selected from the rest of the population based on their emigration rates

as follows.

 (3)

 where N is the total number of candidates in the population.

After calculating the migration rates for the individual, BBO will perform

mutation. According to the mutation probability BBO randomly generates new

parameters from the search space. The population size and the mutation probability are

user defined variables that depend on the problem. The user also has to define the number

of generations in the BBO, or some other termination criteria for the optimization

process. The last step is elitism in which the central unit will keep the best solutions from

Emigration

rate (μ)

Immigration

rate (λ)

Solution sorted by fitness Worst solution Best solution

M
ig

ra
ti

o
n

 r
at

e

0

1

13

the previous generation, and use them to replace the worst solutions of the current

generation. The BBO algorithm is shown in Figure 3.

Figure 3: Basic description of the BBO algorithm for one generation.

For each candidate problem solution Pi

 Calculate immigration probability λi and emigration probability μ i (see Figure 2)

 μi [0, 1] is proportional to the fitness of Pi, and λi = 1 μ i

Next candidate solution: i i+1

For each candidate problem solution Pi

For each solution variable v in Pi

 Use immigration probability λi to decide whether to immigrate to Pi

 If immigrating to Pi

 Use Equation 3 to select Pk for emigration

 Pk emigrates data to Pi : Pi(v) Pk(v)

 End immigration

 Next solution variable

 Mutate Pi probabilistically based on mutation probability

Next candidate solution: i i+1

2.2 Distributed BBO

 Distributed BBO is an extension of the BBO algorithm. BBO uses a central

control unit which collects data and applies the BBO algorithm. In contrast, DBBO does

not use a central unit. Each individual in the system will independently apply the BBO

algorithm. So the main advantage of this algorithm is that it does not require a central

unit. Individuals (in our experiment, mobile robots) randomly select other individuals and

start communication as shown in Figure 4.

14

Figure 4: Random robot communication

In this thesis I use mobile robots to illustrate the DBBO algorithm. DBBO has

similar characteristics to BBO. However, DBBO does not have elitism. In DBBO each

individual randomly communicates with other ones. It is like peer to peer

communication. Therefore an individual does not know the best solution of the entire

population.

Figure 5: Basic description of the DBBO algorithm for one generation [32].

Select m peers {Pi} for communication with each other
Revise each peer’s best and worst fitness estimates. For each i,

MinEsti = mink I {MinEstk} and MaxEsti = maxk I {MaxEstk}, where

I is the set of all peers of robot i

Calculate each peer’s likelihood to immigrate, , and emigrate, :

i [0, 1] is proportional to the fitness of Pi relative to its peers, and i = 1 i

For each peer Pi

 For each solution variable v

 Use immigration probability i to decide whether to immigrate to Pi

 If immigrating to Pi
 Use Equation 3 to select Pk for emigration, where N is replaced with m

 Pk emigrates data to Pi : Pi(v) Pk(v)

 End immigration
 Next solution variable

Mutate Pi according to mutation probability

Next peer

Robot

Robot Robot

Robot

Robot Robot

15

The DBBO algorithm is shown in Figure 5. It seems the same as the BBO

algorithm but there are some changes in the DBBO algorithm. For example in BBO the

migration probability is given by whole population as indicated in Equation 1 but in

DBBO it is determined by the members in the particular communicating group because

an individual does not have the minimum and maximum fitness values of the population.

So it uses the fitness values of those with whom it has already communicated to estimate

the minimum and maximum fitness values of the entire population. Suppose we have a

population indicated by the set P and the communicating group of individuals at a given

time is denoted as C. Then C is the subset of P. The j-th individual’s estimated best and

worst fitness values of the entire population are denoted by Bj and Wj (denoted as MinEstj

and MaxEstj in Figure 5). Now the j-th individual communicates with other individuals in

group C and updates its estimations as follows.

 (4)

 (5)

where the minimization and maximization are taken over the j-th individual’s peer group.

Now the migration probabilities of the j-th individual are calculated as follows:

 (6)

 (7)

If the values of Bj and Wj are equal then the immigration and emigration rates are set

equal to 0.5. After calculating the migration rates and performing migration, the DBBO

individuals perform mutation, which is the same as in centralized BBO. In the next

16

generation individuals form different groups and communicate with different individuals

of the population.

 2.3 Benchmark functions

 In the field of evolutionary computation, lots of algorithms exist. Now to compare

the performance of these algorithms we have to apply these algorithms on some

predefined problems. These problems are called benchmark functions. BBO was used for

optimization for the first time in 2008. Dr. Simon applied BBO as well as other

algorithms to fourteen benchmark functions to compare their results. The results show

that BBO outperformed the other EAs on ten benchmark functions out of fourteen [33].

The details of these benchmark functions are given in Appendix C.

Recall that Chapter II explained the two different versions of BBO. One is

centralized and the other is distributed. It described how an individual calculates the

migration rates, and performs mutation and elitism. The basic difference between these

two is that in centralized BBO the central unit implements the BBO algorithm, while in

distributed BBO each individual implements the BBO algorithm. The other difference is

that DBBO does not implement elitism.

 In this paper, I am going to compare the performance of the DBBO algorithm

having a different number of peers (2, 4, and 6) with the BBO algorithm. I have used the

same fourteen benchmark functions. To analyze the performance of the algorithms, I set

the population size to 50, the function evolution limit to 500, the number of independent

variables (problem dimension) to 10, and the mutation probability to 1%, and ran 100

Monte Carlo simulations. Table 1 show the average cost values after 100 Monte Carlo

runs and the standard deviation.

17

Table 1: Average cost values of benchmark functions and standard deviation.

Benchmark

Functions
BBO DBBO/2 DBBO/4 DBBO/6

Ackley 12.62±1.5 13.33±2.66 12.95±2.3 13.20±2.15

Fletcher 3.5E+4±1.E4 1.2E+5±4.3E4 1.2E+5±4.1E4 1.2E+5±5.1E4

Griewank 16.29±5.81 57.65±22.49 56.18±21.03 59.32±18.86

Penalty #1 3.7E+5±4.8E+5 7.3E+6±7.5E+6 9.4E+6±8.1E+6 9.4E+6±10.7E+6

Penalty #2 2.1E+6±2.3E+6 2.5E+7±2.1E+7 2.9E+7±2.0E+7 3.5E+7±2.5E+7

Quartic 0.24±0.15 1.32±0.96 1.71±1.08 1.79±1.04

Rastrigin 30.25±7.16 74.88±14.01 73.28±13.51 71.18±13.56

Rosenbrook 119.90±43.50 4.0E+2±1.9E+2 4.2E+2±1.8E+2 4.4E+2±1.9E+2

Schwefel 1.2 2.2E+3±7.7E2 4.0E+3±1.3E+3 4.8E+3±1.4E+3 4.7E+3±1.1E+3

Schwefel 2.21 38.06±6.39 29.16±9.78 36.49±8.57 37.11±9.28

Schwefel 2.22 6.30±1.81 44.81±52.34 88.49±2.56E2 130.14±5.1E2

Schwefel 2.26 9.2E+2±2.2E+2 1.8E+3±3.5E+2 1.8E+3±3.3E+2 1.8E+3±3.0E+2

Sphere 4.68±1.84 16.57±6.63 16.22±5.45 17.06±6.27

Step 1.8E+3±7.0E+2 6.2E+3±2.4E3 6.4E+3±1.8E+3 6.0E+3±2.2E+3

According to Table 1 BBO outperformed DBBO in thirteen out of fourteen benchmark

functions. But DBBO performed good in one benchmark function. So, in general, BBO is

better than DBBO, but DBBO does not require a central unit.

18

CHAPTER III

FUZZY LOGIC

Chapter III introduces fuzzy logic. It is different from traditional logic. The first

section explains the concept of fuzzy logic and gives definitions. The second section

explains the use of fuzzy logic in decision making schemes, and the basic structure of

FLCs. The third section summarizes two FLC models, which are Mamdani and TSK, and

gives a comparison of them.

3.1 Concept of fuzzy logic

 Robots use a fuzzy controller to maintain a constant distance from the wall. The

fuzzy controller is based on fuzzy logic. Fuzzy logic is different from crisp logic. Sets in

crisp logic are fixed and exact. In contrast, sets in fuzzy logic are approximate as shown

in Figure 6. For example, set membership in binary logic contains only two values, either

logic 1 or logic 0 (true or false), but set membership in fuzzy logic contains an infinite

number of values between 0 and 1.

19

Figure 6: Representation of crisp sets and fuzzy sets

Fuzzy logic describes partial truth which ranges between complete truth and complete

falsehood. So, in general, fuzzy set A in the universe U having a membership function δA

which take values in the interval [0,1] is defined as follows:

 (8)

20

Figure 7: Graphical representation of fuzzy height

To explain fuzzy sets, I will use the example of men of differing heights and how

those men can be classified. As shown in Figure 7, the heights of the men can be

classified in three groups: short, medium, and tall. In this example, height is referred to as

a linguistic variable, the universe have the values between the range [3 8] in units of feet,

and the three groups are described by membership functions. So, as shown in Figure 7,

men having height below 5 feet are 100% in the ‘short’ group, men having height

between 5 feet to 6 feet are in both the short and the ‘medium’ group with different levels

of membership, men between 6 feet and 7 feet are in both the ‘medium and the ‘tall’

group with different levels of membership, and men having height above 7 feet are 100%

in the ‘tall’ group.

3.2 Fuzzy logic controller

 Zadeh introduced a fuzzy decision making scheme on the basis of fuzzy logic

[47]. He mapped input and output variables by fuzzy adjectives to indicate values like

‘high,’ ‘hot,’ and ‘small’. These adjectives are associated with membership functions. He

uses these adjectives to relate different variables and make rules—for example, “If the

short medium tall

μheight

1.0

0.5

0

5 6 7 Height(feet)

21

temperature is high, turn on the compressor of the air conditioner.” The basic block

diagram of the fuzzy logic controller is shown in Figure 8.

Figure 8: Block diagram of fuzzy logic controller

According to Figure 8, the FLC is divided into four basic components:

fuzzification interface, knowledge base (KB), decision making logic, and defuzzification

interface. The fuzzification interface includes the measurement of input values and by

applying converts input values into linguistic variables. The knowledge base includes the

knowledge of control goals and fuzzy rules. The decision making logic is the main part of

FLC. It is like a human mind which also makes decisions according to fuzzy rules to

obtain outputs. The last component is the defuzzification interface which gathers all the

fuzzy outputs from the decision making logic component, combines them, and defuzzifes

them to obtain a crisp, non-fuzzy, numerical control action [21].

Process output &

state
Control

Defuzzification

Interface

Fuzzification

Interface

Controlled

System

(Process)

Knowledge

Base

Decision

Making

Logic

22

3.3 Different models of fuzzy logic controllers

 The Mamdani Model

Mamdani and Assilia used Zadeh’s decision-making scheme to control systems

[47]. Their controller is divided mainly into steps: First we get the measurements or

readings from the system. Second we apply those measurement values to predefined

fuzzy if-then rules and generate fuzzy outputs. These outputs are useful for decision-

making but to control the system we need a crisp output, which leads us to the third step.

The third step is to average all fuzzy outputs and defuzzify the average to obtain a crisp

numerical output. Fuzzy if-than rules are some of the control parameters and are defined

as follows.

(9)

where and y are inputs and output respectively, and

 and B are linguistic values, or fuzzy sets. Each system may have different

fuzzy if-then rules [23]. An example of the practical application of this system is the

temperature control of a freezer. The freezer’s temperature sensors will sense the

temperatures inside the freezer, which are the inputs of the system. Then there are defined

linguistic values like “too hot,” “hot,” “good,” “cool,” and “too cool.” According to the

readings the fuzzy rules will apply and generate the output. In this case the output is how

much time the compressor will stay on. Finally, we average all those fuzzy outputs to

make one decision that will turn the compressor on or off.

 This model provides a user-friendly representation of rules, but there are a few

drawbacks of the Mamdani model. The first drawback is that when we use this model for

23

systems which have a high number of inputs and outputs it requires a lot of computation.

The second drawback is that it is very hard to get optimal solutions for systems by using

this model because there are so many tuning parameters. Another limitation is that if the

model does not cover all input combinations, then it may not be able to find an optimum

solution.

The Takagi-Sugeno Model

 To overcome these limitations, Takagi and Sugeno introduced a different fuzzy

model [42], [34], call the Takagi-Sugeno model, the Takagi-Sugeno-Kang model, or the

TSK model. They made a few changes in the fuzzy if-then rules. These are defined as

follows:

(10)

where xi, y, and Ai are the same as defined above for the Mamdani model, and ci are

weighting parameters. This representation of the rule contains more information than the

Mamdani model, and therefore it requires fewer rules. For complex and multi-

dimensional systems, Takagi and Sugeno’s fuzzy model is generally better than the

Mamdani fuzzy model. The other advantage of Takagi and Sugeno’s fuzzy model is that

it naturally combines the outputs of local models in a smooth way to get a combined

output. This model provides more accurate solutions than the Mamdani model [41]. But

for problems with fewer inputs and outputs, the Mamdani model is good because it is

intuitive to define the rules. In this paper, for robot control we have used the Mamdani

fuzzy model.

24

3.4 Summary

 This chapter has given the definition of fuzzy logic and its terminology. It has

also differentiated fuzzy logic from traditional crisp logic. The second section explained

FLCs. The last section explained the Mamdani and TSK models and compared the

models. To control systems having a smaller number of input and outputs, the Mamdani

model is preferred; but for systems having more inputs and outputs, the TSK model is

preferred. In general, fuzzy logic is often more robust than traditional and analytically

obtained control systems; we can also adjust the fuzzy if-then rules to make the controller

more accurate.

25

CHAPTER IV

MOBILE ROBOT CONTROL

Chapter IV gives a brief introduction of the overall control system of the wall-

following robots. It also explains the hardware and the software of the robots. The first

section explains the PCB layout and the different parts of the robots. The second section

explains how the robots detect the wall. I have used two different controllers, the PID and

the fuzzy controller, to maintain a constant distance from the wall. The third and the

fourth sections describe the different parameters and constants used for these two

controllers. The last section describes the hardware experimentand how we use BBO to

optimize the controllers.

26

4.1 Hardware

The brain of the robot is the microcontroller PIC18F4520. It controls radio

communication and synchronizes the sensors and motors. The PCB layout shown in

Figure 9 is used in each robot.

Figure 9: PCB layout used in robot [22]

Each robot contains two infrared (IR) sensors to get the distance from the wall,

and two DC motors, one for each of the two rear wheels. Initially I used ultrasonic

sensors, but because the DC motors make more noise affecting the sensors, I switched to

infrared sensors. The effective range of each sensor is 10 centimeters to 80 centimeters

and the typical response time is 39 milliseconds. In this experiment robots try to maintain

a distance of 60 centimeters from the wall, which is well with the IR sensors’ range. A

photograph of the IR sensor is shown in Figure 10.

27

Figure 10: Photograph of IR sensor

The robots also include a MaxStream 9Xtend wireless radio to communicate with

other robots and with the computer. The maximum outdoor RF line-of-sight of this radio

is advertised as 40 miles. The receiver sensitivity is around 110 dBM. It has up to 1

Watt of power output, which is comparatively high for indoor use requirements. The

9Xtend has two different data rates: one is 9600 bps and other is 115200 bps. I have used

the 9600 bps data rate for this experiment. One advantage of this radio is that it has low

power consumption. Figure 11 shows a photograph of the MaxStrem 9Xtend wireless

radio.

28

Figure 11: Photograph of MaxStrem 9Xtend wireless radio

There is one liquid crystal display (LCD) mounted on the robot, which will

display robot status information. There are two packs of eight AA batteries; each

provides 9 volts direct current (DC) supply, one for the motors and one for the digital

electronics. There are two voltage regulators (7805). Each regulator generates a constant

5 V for the motor, microcontroller, and the rest of the components. The output current

from the microcontroller pin is not large enough to run the motors. Thus, we used the

SN754410NE quad H bridge to drive the motors. The actual robot looks like the one

shown in Figure 12.

29

Figure 12: Photograph of the robot. Two IR sensors are seen on the left and right

sides of the robot. The wireless radio antenna is seen at the back right side of the

photo. The large chip in the middle of the PCB is the PIC18 microcontroller.

4.2 Implementation of control

The main function of each robot is to detect the wall and maintain a constant

distance from the wall. Figure 13 shows a block diagram of the system. In each cycle the

robots measure the distance from the wall, subtract measured distance from desired

distance, and apply the controller to determine the desired steering direction and run the

motors. The control parameters are optimized by the DBBO algorithm.

30

Figure 13: Block diagram of the robot system

The first step is to find the angle between wall and robot; in order to do so, the

robot must find the distance from the difference of the readings of IR sensors (d2d1) and

use that measurement as one of the legs of a right angle triangle as shown in Figure 14.

Then the robot must take the constant known distance (db) between the two sensors as the

second leg of the triangle. Next, by using the Pythagorean equation, the angle is found as

follows:

 (11)

31

Figure 14: Detection of wall [22]

This angle shows which direction the robot is moving in. Then, the robot

calculates the error as follows:

 (12)

where yref is the constant distance that the robot tries to maintain from the wall. Then, we

approximate the derivative of the error by taking the difference between the previous

error and current error. Now, the robot takes tracking errors and derivative errors as the

input to the controller, and the motor voltage correction value as the controller output.

This analog voltage is used to set the PWM duty cycles for the motors. The resolution of

the PWM values is an 8-bit unsigned integer, which ranges from 0 to 255. Therefore, the

PWM resolution is 1/255 of 5 V. According to the output and the analog voltage of the

controller, the PWM duty cycles will set for the left and right motors, which will control

their speeds.

yref d1 d2 y

error = yref - y

error = yref – ((d1 + d2)/2)*cosθ

Reference path

d2 – d1
θ

Wall

θ = arctan((d2 – d1)/db)

db

32

 After finishing the wall-following task for a preset period of time (20 seconds in

our case), each robot calculates a cost function depending on the tracking error as

follows:

 (13)

where k1 and k2 are two constants which are used as weighting parameters. The value of

k1 = 1 and k2 = 5 (determined through experimental trial and error to balance the two

components of Equation 13), and e(t) is the tracking error and r is the rise time. Rise time

is defined as the time taken by the robot to reach 95% of the reference tracking distance.

The lower limit of the integral is equal to the rise time.

4.3 Proportional integral derivative controller

PID is a very well-known algorithm for control systems. The block diagram of a

PID controller is shown in Figure 15. There are mainly three parameters of the PID

controller: proportional term kp, integral term ki, and derivative term kd. The proportional

term determines the amount of output signal according to the current error. As the value

of kp increases, the response time of the control system decreases. The integral term is

proportional to both magnitude and time duration of the error. It speeds up the response

and also reduces the steady state error. The last term of the PID controller is the

derivative term kd, which decreases the overshoot caused by the kp and ki terms.

33

Figure 15: Block diagram of PID controller

As mentioned above, the inputs of the controller are the error and the delta error,

and the output is the voltage correction for the motors. For the PID controller, the motor

voltages are calculated as follows:

(14)

where and are the PWM duty cycle values of the left and right motors

respectively, and is the reference PWM duty cycle, which is 240 for the reference

speed of the motors. The range of values for the 8-bit unsigned integer is between 0 and

255. The values and are the parameters of the PID controller, and and

represent the current and previous error values.

In this experiment, I use only the proportional and derivative terms of the PID

controller. Those two parameters are tuned by the DBBO algorithm. Each generation,

each robot exchanges PID parameters with each other, applies the BBO algorithm, and

generates new parameters, which decreases the error as well as the cost value of

Equation 13.

yref

∆v

vref

-

+
y

Tracking
Error

KP

KI/s

KDs

Σ Σ Robot Σ

34

4.4 Fuzzy controller

The second controller is the fuzzy controller. As I mention in Chapter III, there

are several models for the FLC. In this experiment, we use the Mamdani model. The first

step for the FLC is to define membership functions. So for the robot control we have

defined five triangular membership functions (MF) which are: large positive (LP), small

positive (SP), zero (Z), small negative (SN), and large negative (LN) as shown in Figure

16. So, each input and output of the system is mapped to five MFs. Now, according to the

model, the system has n membership functions to describe each variable and therefore the

fuzzy set description must have a total of n break points. So as we have defined five

membership functions, each input and output variable has five break points as shown in

Table 2. The DBBO algorithm will modify the shape of the MFs by modifying these

break points.

Figure 16: Representation of membership functions [22]

Error (mm)

M
em

b
er

sh
ip

 v
al

u
e

1

0

SN Z SP LP LN

35

Table 2: Range of each fuzzy parameter

DBBO domain
Break Points

LN SN Z SP LP

Variables

Error
(mm)

[1000,

250]
[250,

0]
[0,
0]

[0,
250]

[250,
1000]

∆Error
(mm)

[100,

25]
[25,

0]
[0,
0]

[0,
25]

[25,
100]

∆Motor
voltage

[100,

25]

[25,
0]

[0,
0]

[0,
25]

[25,
100]

The second step is to define fuzzy if-then rules for the FLC. We have used the

maximum and minimum of the parameters to generate the fuzzy if-then rules. Each

intersection between the pair of input MFs will represent one rule. As mentioned

previously, there are two inputs, error and delta error, and one output, which is the delta

voltage of the motor. There are a total of 25 fuzzy if-then rules for this system as shown

in Table 3.

To these fuzzy rules, we use minimum inference, which works as follows. FLC

identifies the output MF γ and calculates its MF as the minimum of the input MFs. For

example, suppose the error of the robot is between [1000, 250] so it belongs to the

fuzzy set LN, which indicates the robot is far from the reference line, and ∆error is

between [0, 25] so it belongs to the fuzzy set SP, which indicates that it is getting closer

to the reference line. Then according to Table 3 the fuzzy rule for output motor voltage is

SN which includes values that are between [25, 0], which indicates that the robot should

maintain its direction with a slight decrease of motor voltage on the left wheel to try to

reach to the reference line.

36

Table 3: Rule table for fuzzy if-then rules (LP = large positive, SP = small positive, Z

= zero, SN = small negative, and LN = large negative)

Rule Table
Error

LN SN Z SP LP

∆Error

LN LN LN LN SN Z

SN LN LN SN Z SP

Z LN SN Z SP LP

SP SN Z SP LP LP

LP Z SP LP LP LP

The third step of the Mamdani FLC is to convert the fuzzy output into a crisp numerical

output. So for example if error has a ‘small negative’ membership function and ∆error

has a ‘zero’ membership function as shown in Figure 17, then the output voltage is

assigned to the ‘small negative’ membership function with a membership that is equal to

the minimum of the memberships of the error and ∆error. Now the robot finds all

minimums of the output and calculates the centroid of the fuzzy output as follows [21].

 (15)

where αi represents the i-th MF of the error input, βi represents the i-th MF of the

derivative error, and N is the total number of fuzzy rules.

37

Figure 17: Defuzzification of fuzzy output

Now calculate the defuzzified output as shown below [21].

 (16)

Finally calculate the voltage for both motors as follows:

(17)

where D is the defuzzified output. So in general, for each sample time (0.1 seconds in our

experiments) during wall following, robots use the algorithm shown in Figure 18 to

Centroid

Zero Zero Zero

Error ∆Error Voltage

Small Negative Zero Small Negative

Error ∆Error Voltage

38

maintain a desired distance from the wall. DBBO is used to tune the break points of the

fuzzy MFs and thus optimize the controller.

Figure 18: Pseudo code for fuzzy logic controller

 et input values
 ap input values into

 or each combina on

 den rule and see able
end
Calculate centroid see e ua on
Calculate de u i ed output see e ua on

4.5 Experimental procedure

This section explains how the wall following controller and the DBBO algorithm

run in each robot. The whole experiment is controlled by the external desktop computer.

The user gives commands from the computer using a radio and gets the resultant data

from the robots. Each robot has its own unique robot id. The flow of the software that is

programmed in each robot is shown in Figure 19.

39

Figure 19: Flowchart of the system

no

no

Calculate angle and ‘ ’

value

Calculate error and set

new motor values

Stop motors, calculate

cost, determine Min

and Max cost values

Send data

to robot A

Run BBO

Generate

another robot ID

Last

Robot?

Last

Robot?

Generate robot ID

Run BBO

Incoming

Data type?
Receive GO command

Start motor timers

no

yes Switch
Pressed

?

Generate

random Robot ID

Send parameters to robot B

and wait for reply from robot B

Get Robot ID from

memory

start

no

100ms intervals run

sensors

Get distance from wall

Robot A data

Is Data a

Robot ID?

yes

yes

yes

40

The experiment will start when the user sends the command “Begin Run” to the

robots. All robots start running and following the wall according to their control

algorithm. During every run, each robot will take 200 distance readings with the IR

sensor. Each reading is taken every 1/10 second. After taking readings, the

microcontroller calculates the angle and distance y from the wall. It also calculates the

error and derivative of error. The controller determines the desired motor voltage

variation as its output. After the 20-second wall following sequence, the robot goes in

idle mode. Then the user has to press a switch on one of the robots to start the DBBO

algorithm.

As soon as the user presses a switch on any of the robots, they start to

communicate with each other. As shown in Figure 19, first robot A, whose switch is

pressed, generates a random robot ID, which we call robot B, and sends its own control

parameters and its maximum cost estimate, minimum cost estimate, and most recent cost

value to robot B. Then it waits for the response from robot B. As soon as robot B gets

data from robot A, it sends its own control parameters, maximum cost estimate, minimum

cost estimate, and most recent cost value back to robot A. Now both robots have data

from each other. So both robots will perform the BBO algorithm independently and set

their own new control parameters. Then robot B will generate a new robot ID other than

its own and robot A’s, and send the list of the robot IDs which have already been used to

the new robot ID. Then the receiver robot will perform the same sequence of operations

as explained above.

All robots communicate with each other according to the above description and

perform the BBO algorithm independently. As soon as communication completes, the

41

user will send the “Get Data” command to each robot simultaneously from the desktop

computer. Each robot will send its tracking data, its new control parameters, and its

maximum estimated, minimum estimated, and most recent cost values to the computer.

The MATLAB® application on the computer will create a new data sheet in Microsoft

Excel and save all data. It also plots the tracking data and membership functions if the

fuzzy controller is being used. After that, a new DBBO generation will start.

The PIC® controller synchronizes all the components. I have used the Code

Composer Studio™ compiler to program the PIC. The timer0 module of the PIC is used

to take the sensor readings every 100 ms and find y and tracking error. Two serial ports

are used: one is for the LCD connection and the other is for radio communication. Two

PWM modules are used to generate the PWM signals for the two DC motors.

42

CHAPTER V

RESULTS

In this chapter, I am going to explain the results I obtained during my

experiments. I have done simulation as well as hardware experiments to analyze the

performance of the DBBO algorithm. The first section explains the results I obtained

from the MATLAB simulation. It also compares the results from the PID and fuzzy

controllers. The second section explains the hardware experiment results. As I mentioned

in previous sections, I have used wall-following robots, applied DBBO to them, and

analyzed the performance. I have used two different controllers (PID and fuzzy) and

compared the results.

5.1 Simulation results

Simulation results were generated in MATLAB. I wrote a robot program in

MATLAB which simulates the robot’s function of maintaining a constant distance from

the wall. I have set the population size at 50 and mutation rate at 1%. I ran BBO and

43

DBBO with 500 function evaluations (that is, a total of 500 robot simulations). I chose

the simulation parameters as above to make the simulation similar to the robot hardware

experiment. I have used two different controllers (PID and fuzzy) in my simulation

experiment as explained below.

5.1.1 DBBO using proportional integral derivative controller

I have done 100 Monte Carlo simulations for DBBO using a PID controller. I ran

DBBO using 2, 4 and 6 peers. The range of the kp and kd parameters is between [0 1] and

[0 10] respectively, ranges were set empirically. During the first generation, the computer

randomly generates the parameters from the given range.

Table 4 shows the minimum, maximum, and average costs, and the standard

deviation of the cost for the robots. The minimum is the best cost achieved over all

generations after 100 Monte Carlo simulations, the maximum is the worst of the 100 best

costs achieved by the 100 simulations, and the average is the mean of the best costs

achieved by the 100 simulations. The readings show that there is not a big difference

among the different algorithms; still the average cost of BBO is the lowest compared to

DBBO with different numbers of peers, while DBBO/6 has the lowest minimum cost

compared to the other algorithms. The standard deviation shows that the BBO algorithm

has less fluctuation and is thus more consistent than the others. So overall BBO

outperforms the DBBO, but DBBO still has good results.

Table 4: 100 Monte Carlo simulation results for PID controller

 BBO DBBO/2 DBBO/4 DBBO/6

Minimum Cost 7.48 7.23 7.30 7.16

Maximum Cost 7.99 8.12 8.07 8.10

Average Cost 7.68 7.78 7.77 7.76

Standard Deviation 0.119 0.169 0.147 0.193

44

The above result is not enough to numerically differentiate between the performance of

the BBO and the DBBO algorithm, so I have used T-tests. I obtained T-test results for

BBO and DBBO as shown in Table 5. The numbers in the table show the probabilities

that the differences between two different experiments are due solely to random

fluctuations, and are not due to fundamental differences between the algorithms. If the

result is less than 0.05, then we conclude that those two algorithms are different, while if

the result is greater than 0.05, then we conclude that there is not enough numerical

evidence to conclude that those two algorithms are different. The results show that the

BBO and the DBBO algorithms are different, but DBBO with different numbers of peers

are not different.

Table 5: T-test results (probabilities) for the PID controller

 BBO DBBO/2 DBBO/4 DBBO/6

BBO 1 1.25E06 2.68E06 0.00036

DBBO/2 1.25E06 1 0.5971 0.4084

DBBO/4 2.68E06 0.5971 1 0.7003

DBBO/6 0.00036 0.4084 0.7003 1

5.1.2 DBBO using fuzzy controller

I have also done 100 Monte Carlo simulations for DBBO with different numbers

of peers using the fuzzy controller. Similar to the PID controller, the fuzzy controller also

randomly generates its control parameters during the first generation from the given

range. The minimum values and maximum values for these parameters are shown in

Table 6. These ranges were determined empirically.

45

Table 6: Minimum and maximum values of fuzzy membership function breakpoints

used in mobile robots

Input/Output
Membership

function
Minimum

value
Maximum

value

Error (mm)

Large negative (LN) 1000 500

Small negative (SN) 500 0

Zero(Z) 0.0001 0.0001

Small positive (SP) 0 500

Large positive (LP) 500 1000

∆Error (mm)

Large negative (LN) 100 25

Small negative (SN) 25 0

Zero(Z) 0.0001 0.0001

Small positive (SP) 0 25

Large positive (LP) 25 100

∆Voltage
(PWM

counts)

Large negative (LN) 100 25

Small negative (SN) 25 0

Zero(Z) 0.0001 0.0001

Small positive (SP) 0 25

Large positive (LP) 25 100

Table 7 shows the results of the simulation experiments. The table shows that

BBO has the lowest minimum cost and average cost compared to the DBBO algorithms,

but DBBO/4 has the lowest standard deviation. Among DBBO algorithms, DBBO/6 has

the lowest minimum cost and lowest average cost. The standard deviations for the fuzzy

controller are higher than the PID controller.

Table 7: 100 Monte Carlo simulation results using fuzzy controller

 BBO DBBO2 DBBO4 DBBO6

Minimum Cost 5.65 5.81 5.97 5.78

Maximum Cost 7.74 9.19 7.94 8.48

Average Cost 6.56 7.13 6.92 6.96

Standard Deviation 0.48 0.75 0.43 0.55

46

I have performed T-tests on the fuzzy control tuning results. According to Table 8, there

is a statistically significant difference between the results of the BBO algorithm and

DBBO.

Table 8: T-test results for the fuzzy controller

 BBO DBBO/2 DBBO/4 DBBO/6

BBO 1 1.96E-05 0.0001 0.0002

DBBO/2 1.96E05 1 0.0926 0.2000

DBBO/4 0.0001 0.0926 1 0.6995

DBBO/6 0.0002 0.2000 0.6995 1

 5.1.2(a) Different starting points

I have done several additional simulation experiments on the fuzzy controller

using BBO and DBBO with different number of peers. First, I have run each algorithm

for 100 generations and collected the tracking error data. During this experiment, I have

chosen several starting points. Figure 20 shows the tracking error responses of the best

individual at the 1st generation and the best individual at the 100th generation when the

robots start 200 mm from the wall, and Figure 21 shows the tracking error responses

when the robots start 1000 mm from the wall. The graph shows that during the first

generation the controller takes more time to reach the reference distance compared to the

100th generation. This illustrates the effectiveness of BBO.

47

(a) (b)

Figure 20: Tracking error response of the fuzzy controller when the robots start

point 200 mm from the wall. (a) best BBO individual at 1st generation (b) best BBO

individual at 100th generation

 (a) (b)

Figure 21: Tracking error response of the fuzzy controller when the robots

start 1000 mm from the wall. (a) best BBO individual at 1st generation

(b) best BBO individual at 100th generation

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
ra

c
k
in

g
 e

rr
o

r
(m

m
)

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
ra

c
k
in

g
 e

rr
o
r

(m
m

)

0 5 10 15 20
0

200

400

600

800

10001000

Time (s)

T
ra

c
k
in

g
 e

rr
o
r

(m
m

)

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
ra

c
k
in

g
 e

rr
o
r

(m
m

)

48

Figure 22(a) shows the five membership functions of the best robot at the first

generation, and Figure 22(b) shows the five membership functions at the 100th

generation, when the starting point is 200 mm from the wall. Similarly, Figure 23 shows

the five membership functions at the first and the 100th generation when the starting

point is 1000 mm from the wall. From Figure 22 you can see that the 3rd membership

function corresponds to positive error for the robot whose starting point is 200 mm, and

the 3rd membership function corresponds to negative error for the robot whose starting

point is 1000 mm. Figures 22 and 23 show how the membership functions change from

the 1st to the 100th generation, which indicates that after every generation DBBO adjusts

the controller in order to improve its response.

(a) (b)

Figure 22: Fuzzy controller membership function of robots starting at 200 mm

(a) best BBO individual at 1st generation (b) best BBO individual at 100th generation

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

error (mm)

m
e

m
b

e
rs

h
ip

 v
a

lu
e

y = 200

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

error (mm)

m
e
m

b
e
rs

h
ip

 v
a
lu

e y = 200

49

(a) (b)

Figure 23: Fuzzy controller membership function of robots starting at

1000 mm (a) best BBO individual at 1st generation (b) best BBO individual

at 100th generation

Figure 24 shows the average cost values of the robots at different starting points

from the wall when different algorithms were used for optimization. The reference

distance for the robots to maintain from the wall is 600 mm. I have used 200 mm, 400

mm, 600 mm, 800 mm, and 1000 mm starting points to optimize the controllers and find

the cost values. The cost value at the starting point 600 mm is close to zero because, as I

mention above, the reference line which a robot has to follow is 600 mm. So, for this

case, the robot is already on the reference line, therefore, it does not have to fluctuate.

The graph shows that the cost values at starting points 200 mm and 1000 mm are similar

to each other, and the cost values at starting points 400 mm and 800 mm are similar to

each other. This implies that if the distance from the starting point to the reference line is

equal, then the cost values will be equal, which indicates that the performance of the

robots is symmetric.

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

error (mm)

m
e

m
b

e
rs

h
ip

 v
a

lu
e

y = 1000

-1000 -500 0 500 1000
0

0.2

0.4

0.6

0.8

1

error (mm)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

y = 1000

50

Figure 24: Average cost values at different starting points

 5.1.2(b) Different mutation rates

Secondly, I have done experiments by using different mutation rates. Table 9

shows the average cost values at 1% and 10% mutation rates for BBO and DBBO with

different numbers of peers. The readings show that there is a difference in cost values for

all algorithms as the mutation rate changes, but DBBO/2 has the highest change. So, from

the readings, we can say that the mutation rate makes a significant difference in cost

values for a small number of peers. According to the mutation rate, a candidate solution

generates new random solutions and replaces them with the duplicate solutions during

each generation. When we apply DBBO/2, only two candidates at a time communicate

and exchange their controller parameters. So there is a greater probability of having

duplicate solutions (that is, duplicate controllers) in the robot population. Now, as I

mentioned earlier, as the mutation rate goes higher, the probability of replacing the

duplicate solutions with new solutions is high, so for a high mutation rate, the population

has fewer duplicate solutions, which provides the potential to reduce the best cost value

0

1

2

3

4

5

6

7

8

200 400 600 800 1000

C
o

st
 v

al
u

e

Starting point (mm)

BBO

DBBO/2

DBBO/4

DBBO/6

51

of the robot population. Algorithms other than DBBO/2 include more robots

communicating with each other, which results in fewer duplicate solutions, so increasing

the mutation rate for those algorithms does not make a significant change in performance.

Table 9: Average cost at different mutation rates

Mutation rate 1% 10%

BBO 4.04 4.36

DBBO/2 6.20 4.94

DBBO/4 4.49 4.76

DBBO/6 4.46 4.90

 5.1.2(c) Different robot wheel base lengths

Up to this point, I have used only one wheel base length for the robot simulations

but to study the control algorithm in more detail, I have to use different wheel base

lengths for the robots. Therefore, I have used different wheel base lengths of the robots

and tuned the fuzzy controllers using different BBO and DBBO algorithms. For the

previous experiments the wheel base was 185 mm. So for this experiment, I used wheel

base lengths of 175 mm, 180 mm, 190 mm, 195 mm, and 200 mm. I have done 50 Monte

Carlo simulations and obtained the average cost values of the best costs from 50

simulations as shown in Table 10.

Table 10: Average cost for different wheel base lengths

Length (mm) BBO DBBO/2 DBBO/4 DBBO/6

175 6.48 6.90 6.75 6.80

180 6.53 6.96 6.75 6.74

185 6.56 7.13 6.92 6.96

190 6.65 7.28 6.96 6.94

195 6.71 7.04 7.03 7.05

200 6.90 7.30 7.23 7.19

52

The results of Table 10 indicate that as the robot wheel base increases the cost

value also increases. The reason is that the mathematical model of the robot dynamics

includes the following equation for the derivative of the robot angle:

 (18)

where is the velocity of right wheel, is the velocity of left wheel, and L is the length

of the wheel base. According to Equation 18, as the robot wheel base length increases,

decreases, which indicates that robots having a short wheel base can change their angle

more rapidly compared to robots having a larger wheel base, and this makes the robot

more controllable.

5.1.2(d) Robustness tests

I have also performed robustness tests for the BBO and the DBBO algorithms,

where robustness is defined as follows: "The robustness/ruggedness of an analytical

procedure is a measure of its capacity to remain unaffected by small, but deliberate

variations in method parameters and provides an indication of its reliability during

normal usage" [13]. We can divide robustness into two categories. The first is the degree

of reproducibility when changing external conditions like analytical equipment, analyst,

laboratory, etc. These are called inter-laboratory trials. The second is the degree of

reproducibility when changing the experimental parameters like temperature,

experimental time, etc. This is called an intra-laboratory study. In this thesis I use the

second category of robustness. I vary experimental parameters [31].

As I mentioned in Chapter I, to apply the DBBO algorithm, I have used four wall-

following robots. So for robustness tests I have taken the wheel base of these robots as a

53

variable. I train the robot controller having a one wheel base, use these control parameters

in other robots with different wheel bases, and examine the cost values for the robots.

Figure 25, 26, 27, and 28 show the percentage cost deviations calculated as follows

(19)

The horizontal axis represents the wheel bases for which the robot is trained; I then used

the optimized control parameters on robots with different wheel bases and obtained the

new cost values. The vertical axis represents the percentage difference between the cost

values of the trained robot and the other robots with different wheel bases. I used BBO,

DBBO/2, DBBO/4, and DBBO/6 for the robustness tests. The details of these tests are

shown in Appendix A

Figure 25: Robustness test variation in cost values of robots with different wheel

bases using BBO. Each cluster of bars on the chart represents the percentage cost

deviations when robots with different wheel bases use the control parameters that

are optimized using the wheel base shown on the horizontal axis.

-10

-5

0

5

10

175 180 185 190 195 200

P
er

ce
n

ta
ge

 c
h

an
ge

 in
 c

o
st

 v
al

u
e

Trained Wheel base (mm)

BBO

175

180

185

190

195

200

54

Figure 26: Robustness test variation in cost values of robots with different wheel

bases using DBBO/2. Each cluster of bars on the chart represents the percentage

cost deviations when robots with different wheel bases use the control parameters

that are optimized using the wheel base shown on the horizontal axis.

Figure 27: Robustness test variation in cost values of robots with different wheel

bases using DBBO/4. Each cluster of bars on the chart represents the percentage

cost deviations when robots with different wheel bases use the control parameters

that are optimized using the wheel base shown on the horizontal axis.

-10

-5

0

5

10

175 180 185 190 195 200

P
er

ce
n

ta
ge

 c
h

an
ge

 in
 c

o
st

 v
al

u
e

Trained Wheel base (mm)

DBBO/2

175

180

185

190

195

200

-10

-5

0

5

10

175 180 185 190 195 200

P
er

ce
n

ta
ge

 c
h

an
ge

 in
 c

o
st

 v
al

u
e

Trained Wheel base (mm)

DBBO/4

175

180

185

190

195

200

55

Figure 28: Robustness test variation in cost values of robots with different wheel

bases using DBBO/6. Each cluster of bars on the chart represents the percentage

cost deviations when robots with different wheel bases use the control parameters

that are optimized using the wheel base shown on the horizontal axis.

Figure 25, 26, 27, and 28 indicate that there is no more than 10% variation in the

performance of the robots when the wheel base changes in the range 175 mm to 200 mm.

Among the four algorithms, the worst-case variation is the smallest for DBBO/2 (less

than 6%), while the average variation is the smallest for BBO.As I mentioned previously,

the cost value increases when the wheel base increases. Thus, when I trained a robot with

a 185 mm wheel base, and use those parameters for a smaller wheel base, it gives me a

positive difference. If I use the parameters for a larger wheel base it gives me negative

difference. In general, DBBO is robust. I ran T-tests on the robustness results, and the

results show that although the changes in robot cost values are small they are also

statistically significant. The details of the T-test results are in Appendix B.

-10

-5

0

5

10

175 180 185 190 195 200

P
er

ce
n

ta
ge

 c
h

an
ge

 in
 c

o
st

 v
al

u
e

Trained Wheel base (mm)

DBBO/6

175

180

185

190

195

200

56

5.2 Experimental results

I have used four wall-following robots and applied DBBO/2 to their control

parameters to improve the performance of the robots. During each experimental cycle,

the robots start 200 mm from the wall, follow the wall for 20 seconds, and then calculate

the cost. For the hardware experiment, I have made a minor change in the definition of

the cost function. During the simulation experiment, the cost value is calculated by taking

the integral of error after the robot reaches the rise time (see Equation 13). During the

hardware experiment the cost value is calculated by taking the integral of error from the

starting point. Therefore, the cost value in the simulation result is small compared to the

hardware results. After each BBO or DBBO generation, two robots randomly

communicate with each other and exchange control parameters and cost values. As

mentioned in the previous section, I have used two different controllers (PID and fuzzy)

to maintain the reference distance from the wall.

5.2.1 DBBO using proportional integral derivative controller

At the start of the first generation, each robot randomly generates two PID control

parameters kp and kd. (Recall that we are not using integral control in these experiments.)

The range of the kp parameter is [0 1] and that of the kd parameter is [0 10]. Table 11

shows the kp and kd values at the 1st and 8th generations of each robot.

Table 11: PID parameters of the DBBO/2 optimized robots at the 1st and 8th

generations

 1st generation 8th generation

Robot 1 kp= 0.93, kd = 4.26 kp= 0.82, kd = 9.03

Robot 2 kp= 0.07, kd = 6.36 kp= 0.07, kd = 3.41

Robot 3 kp= 0.18, kd = 2.45 kp= 0.67, kd = 4.32

Robot 4 kp= 0.12, kd = 2.21 kp= 0.02, kd = 2.03

57

During every generation, each robot generates control parameters using DBBO,

tracks the wall, and calculates the cost value. Then, two robots randomly communicate

with each other, run one generation of DBBO, and adjust their controllers. Thus, as

shown in Figure 29, after several generations the cost value decreases, which indicates

that the tracking error also decreases. Figure 29 shows the best cost value among the four

robots at each generation.

Figure 29: Graph of experimental cost values vs. number of generations for DBBO/2

5.2.2 DBBO using fuzzy controller

At the start of the first generation, each robot is assigned fifteen (15) random fuzzy

controller parameters and starts to follow the wall. Each input/output has five

membership functions. Figures 30, 31, and 32 show the plots of the membership

functions of the best controller at the 1st generation and at the 10th generation. According

to the plots, there is a change in the shape of the membership functions. Figure 32 shows

that the plots of the membership function of output delta voltage are more compressed in

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

C
o

st

Number of generations

Average cost

Mincost

58

the 10th generation compared to the 1st generation, which indicates that the range of the

membership function decreased. The reason is that as the amount of fluctuation of the

robot path decreases, the error and ∆error decreases, decreasing the required voltage

variation, and the robots more smoothly follow the wall. The input membership functions

(error and ∆error) in Figures 30 and 31 have smaller changes compared to the output

membership function (voltage), which indicates that the output membership function has

a greater effect on robot performance than the input membership functions. Table 12

shows the fuzzy parameters for the best robot at the 1st generation and at the 10th

generation.

(a) (b)

Figure 30: Fuzzy controller membership function of error (a) best DBBO/2

individual at 1st generation (b) best DBBO/2 individual at 10th generation

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error (mm)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

-1000 -500 0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error (mm)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

59

(a) (b)

Figure 31: Fuzzy controller membership function of ∆error (a) best DBBO/2

individual at 1st generation (b) best DBBO/2 individual at 10th generation

(a) (b)

Figure 32: Fuzzy controller membership function of output delta voltage

(a) best DBBO/2 individual at 1st generation (b) best DBBO/2 individual at

10th generation

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 error (mm/s)

m
e

m
b
e

rs
h

ip
 v

a
lu

e

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 error (mm/s)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

voltage(V)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

-100 -50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

voltage (V)

m
e
m

b
e
rs

h
ip

 v
a
lu

e

60

Table 12: Fuzzy parameters at 1st and 10th generations of DBBO/2

 1st generation 10th generation

Error

Large negative (LN) 1000 1000

Small negative (SN) 250 200

Zero (Z) 0 0

Small positive (SP) 1 1

Large positive (LP) 250 184

Error

Large negative (LN) 100 96

Small negative (SN) 10 10

Zero (Z) 0 0

Small positive (SP) 1 1

Large positive (LP) 8 3

Voltage

Large negative (LN) 100 73

Small negative (SN) 25 18

Zero (Z) 0 0

Small positive (SP) 1 1

Large positive (LP) 100 62

After every generation each robot exchanges its control parameters with other

robots and applies the DBBO algorithm. As a result, after ten generations the fluctuation

of the robots’ path is decreased. The minimum cost values and the average cost values are

also decreased after several generations. Figure 33 shows the minimum cost values and

average cost values for each generation. So by applying the DBBO algorithm, robots

improve their performance and more smoothly follow the wall.

61

Figure 33: Graph of cost values vs. number of generations

 Summary

This section summarized different experiments and their results. I have done

several simulation tests by using different starting points, different mutation rates, and

different wheel bases. I have also performed T-tests and robustness tests. The results

show that DBBO is symmetric and robust, that there is a statistically significant

difference between BBO and DBBO, and that different mutation rates do not make a

significant difference in BBO and DBBO performance except for DBBO with only two

interacting peers. I have also done hardware testing by using wall-following robots and

optimizing their controllers. The results show that for both the PID and the fuzzy

controller the cost values of the robots decrease generation by generation.

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10

C
o

st

Number of generations

Average cost

Minmum cost

62

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

 I have introduced a distributed BBO algorithm, which is an evolutionary

optimization algorithm. I have applied DBBO to a group of wall-following robots. These

robots maintain a constant distance from the wall using the PID and the fuzzy controller.

They communicate with one another to exchange their parameters and apply the DBBO

algorithm each generation. The results show that after several generations, the tracking

error of the robots decrease, and they smoothly follow the wall. Thus, DBBO removes

the necessity of a centralized computing unit for optimization, and individual robots

improve their performance by communicating with one another.

63

 I have used fourteen benchmark functions and applied BBO and DBBO with

different numbers of peers (2, 4, and 6). The results show that the BBO algorithm

outperforms the DBBO algorithm in thirteen benchmark functions out of fourteen, but

DBBO with 2 peers obtains the lowest average cost for the Schwefel 2.21 function.

 I have performed simulation experiments using MATLAB. I have applied BBO

and DBBO with different numbers of peers. The results show that BBO performs better

than DBBO. Still, DBBO can be used for optimization because it does reduce the cost

values after several generations. The main advantage of the DBBO is that it does not

require a central unit to control the optimization process.

 I have also used a fuzzy controller, which is based on fuzzy logic, and used BBO

and DBBO algorithms to tune the fuzzy controller. The results compare with a traditional

PID controller. The results show that a PID controller has a lower standard deviation

compared to a fuzzy controller, while a fuzzy controller has lower minimum cost values

compared to a PID controller. Fuzzy controllers can more quickly respond to system

errors compared to PID controllers. The fuzzy controller is a very flexible controller. We

can change the membership function parameters and if-then rules depending on our

system.

I have used different starting points for the robots on both sides of the reference

line and tuned their controllers accordingly. The results show that the robots whose

starting points are at an equal distance from the reference line have equal cost values.

These results show that the robot controllers and the DBBO algorithm are symmetric.

 I have also used different mutation rates for the BBO and DBBO algorithms. The

results do not show a significant difference in the cost values for the BBO and DBBO

64

algorithms except for DBBO/2. The cost values obtained using DBBO/2 at mutation rates

of 1% and 10% changed significantly. The reason is that in the DBBO/2 algorithm, only

two candidates communicate at a time. So the mutation rate makes a significant

difference compared to DBBO/4 and DBBO/6. Thus, as the number of peers increases,

the effect of mutation rate decreases.

6.2 Future work

In future I want to continue this work by adding more robots. According to the

DBBO algorithm, as the population size increases, more individuals can interact with one

another. They can share their parameters and improve performance in fewer generations.

I also want to increase the number of generations so that we can more clearly see the

improvement due to DBBO.

In this paper I have compared DBBO with BBO. I want to compare the results of

DBBO with other evolutionary algorithms, such as a genetic algorithm or other

distributed algorithms. It would also be interesting to use DBBO to optimize other real-

world systems such as a swarm of nuclear power reactors, peer-to-peer networking, and

different constrained problems. I want to use theoretical Markov modeling and dynamic

system modeling for DBBO.

 I have discussed in this paper two different models of a fuzzy controller; one is

Mamdani, and the second is Takagi and Sugeno model. I have used the Mamdani model

of a fuzzy controller. For the next step, we can also use the Takagi and Sugeno model and

compare the results of both models.

65

REFERENCES

[1] A. Alvarez, A. Caiti, and R. Onken, “Evolutionary Path Planning for Autonomous

Underwater Vehicles in a Variable Ocean,” IEEE Journal of Oceanic Engineering,

vol. 29, no. 2, pp. 418429, 2004.

[2] S. Baluja, R. Sukthankar, and J. Hancock, “Prototyping Intelligent Vehicle

Modules Using Evolutionary Algorithms,” Evolutionary Algorithms in Engineering

Applications, pp. 241258, New York, Springer, 2001.

[3] G. Box, “Evolutionary Operation: A Method for Increasing Industrial

Productivity,” Journal of the Royal Statistical Society, vol. 6, no. 2, pp. 81101, June

1957.

[4] H. Bremermann, “Optimization through Evolution and Recombination,” in Self-

Organizing Systems, Washington, DC: Spartan, 1962.

[5] N. Cramer, “A Representation for the Adaptive Generation of Simple Sequential

Programs,” in Proceedings of the First International Conference on Genetic Algorithms,

pp. 183187, 1985.

[6] C. Darwin, “The Origin of Species,” New York: Gramercy, 1995.

[7] G. Fischer, “Distributed Intelligence: Extending the Power of the Unaided,

Individual Human Mind,” Advance Visual Interfaces Conference pp. 714, 2006.

[8] P. Flaming, and R. Purshouse, “Evolutionary Algorithm in Control System

Engineering: A Survey,” Control Engineering Practice, vol. 10, pp. 12231241, 2002.

[9] R. Friedberg, B. Dunham, and J. H. North, “A Learning Machine: Part II,”

International Business Machines Journal, vol. 3, no. 7, pp. 282287, July 1959.

66

[10] R. Friedberg, “A Learning Machine: Part I,” International Business Machines

Journal, vol. 2, no. 1, pp. 213, Jan. 1958.

[11] L. Fogel, A. Owens, M. Walsh, Artificial intelligence through simulated

evolution, John Wiley & Sons, 1966.

[12] L. Fogel, “Autonomous Automata,” Industrial Research, vol. 4, no. 2, pp. 1419,

1962.

[13] Y. Heyden, A. Nijhuis, J. Smeyers-Verbeke, B. Vandeginste, and D. Massart,

“Guidance for Robustness/Ruggedness Tests in Method Validation,” Journal of

Pharmaceutical and Biomedical Analysis, vol. 24, no. 56, pp. 723753, March 2001.

[14] F. Herrera, and M. Lozano, “Adaptive Genetic Operators Based on Coevolution

with Fuzzy Behaviors,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 2,

pp. 149165, 2001.

[15] G. Hill, “Algorithm 395: Students T-distribution," Communications of the ACM,

vol. 13, pp. 617619, October 1970.

[16] J. Holland, Adaptation in Natural and Artificial Systems, The University of

Michigan Press, 1975.

[17] H. Kundra, A. Kaur, and V. Panchal, “An Integrated Approach to Biogeography

Based Optimization with Case Based Reasoning for Retrieving Groundwater Possibility,”

8th Annual Asian Conference and Exhibition on Geospatial Information, Technology,

and Applications, 2009.

[18] J. Koza, F. Bennett III, D. Andre, M. Keane, and F. Dunlap, “Automated

Synthesis of Analog Electrical Circuits by means of Genetic Programming,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 2, pp. 109128, 2002.

67

[19] M. Kinoshita, T. Fukuzaki, T. Satoh, and M. Miyake, “An Automatic Operation

Method for Control Rods in BWR Plants,” in Procedure Specialists’ Meeting on In-Core

Instrumentation and Reactor Core Assessment, Cadarache, France, 1988.

[20] J. Kennedy, and R. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers,

2001.

[21] C. Lee, “Fuzzy Logic in Control System: Fuzzy Logic Controller—Part I”, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 20, pp. 404418, March 1990.

[22] P. Lozovyy, G. Thomas, and D. Simon, “Biogeography-Based Optimization for

Robot Controller Tuning,” Computational Modeling and Simulation of Intellect: Current

State and Future Perspectives (B. Igelnik, editor) IGI Global, pp. 162181, 2011.

[23] H. Mamdani, and S. Assilian, “An Experiment in Linguistic Synthesis with a

Fuzzy Logic Controller,” International Journal of Man-Machine Studies, vol. 7, no. 1,

pp. 113, 1975.

[24] R. MacArthur, and E. Wilson, “The Theory of Biogeography,” Princeton, NJ:

Princeton Univ. Press, 1967.

[25] M. Ovreiu, and D. Simon, “Biogeography-Based Optimization of Neuro-Fuzzy

System Parameters for Diagnosis of Cardiac Disease,” Genetic and Evolutionary

Computation Conference, pp. 12351242, 2010.

[26] E. Parker, “Distributed Intelligence: Overview of the Field and its Application in

Multi-robot Systems,” Journal of Physical Agents, vol. 2, pp. 514, 2008.

68

[27] V. Panchal, P. Singh, N. Kaur, and H. Kundra, “Biogeography-Based Satellite

Image Classification,” International Journal of Computer Science and Information

Security, vol. 6, pp. 269274, 2009.

[28] R. Rarick, D. Simon, F. Villaseca, and B. Vyakaranam, “Biogeography-Based

Optimization and the Solution of the Power Flow Problem,” IEEE Conference on

Systems, Man, and Cybernetics, pp. 10031008, 2009.

[29] P. Roy, S. Ghoshal, and S. Thakur, “Biogeography-Based Optimization for

Economic Load Dispatch Problems,” Electric Power Components and Systems, vol. 38,

pp. 166181, 2010.

[30] I. Rechenberg, “Cybernetic Solution Path of an Experimental Problem,” Library

Translation, vol. 1122, 1964.

[31] L. Rodr´ıguez, R. Garc´ıa, A. Campan˜a, and J. Sendra, “A new Approach to a

Complete Robustness Test of Experimental Nominal Conditions of Chemical Testing

Procedures for Internal Analytical Quality Assessment,” Chemometrics and Intelligent

Laboratory Systems, vol. 41, no.1, pp. 5768, July 1998.

[32] C. Scheidegger, A. Shah, and D. Simon, “Distributed Learning with

Biogeography-Based Optimization,” Industrial, Engineering and Other Applications of

Applied Intelligent Systems Conference, Syracuse, New York, pp. 203215, 2011.

[33] D. Simon, ”Biogeography-Based Optimization,” IEEE Transactions on

Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008.

[34] M. Sugeno, and T. Yasukawa, “A Fuzzy-logic-Based Approach to Quantitative

Modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, 1993.

69

[35] V. Savsani, R. Rao, and D. Vakharia, “Discrete Optimization of a Gear Train

using Biogeography-Based Optimization Technique,” International Journal of Design

Engineering, vol. 2, pp. 205223, 2009.

[36] D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov Models for Biogeography-

Based Optimization,” IEEE Transactions on Systems, Man, and Cybernetics Part B:

Cybernetics, vol. 41, pp. 299306, 2011.

[37] D. Simon, M. Ergezer, and D. Du, “Population Distributions in Biogeography-

Based Optimization Algorithms with Elitism,” IEEE Conference on Systems, Man, and

Cybernetics, pp. 10171022, 2009.

[38] D. Simon, “A Dynamic System Model of Biogeography-Based Optimization”,

Applied Soft Computing, vol.11, no. 8, pp. 56525661, December 2011.

[39] U. Singh, H. Singla, and T. Kamal, “Design of Yagi-Uda Antenna using

Biogeography Based Optimization,” IEEE Transactions on Antennas and Propagation,

vol. 58, no. 10, pp. 33753379, 2010.

[40] H. Schwefel, “Kybernetische Evolution als Strategie der Experimentellen

Forschung in der Stromungstechnik,” Master’s thesis, 1965.

[41] M. Sugeno, and T. Yasukawa, “A Fuzzylogic Based Approach to Qualitative

Modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, pp. 729, 1993.

[42] T. Takagi, and M. Sugeno, “Fuzzy Identification of Systems and its Application

to Modeling and Control,” IEEE Transactions on Systems, Man and Cybernetics vol. 15,

pp. 116132, 1985.

70

[43] M. Togai, and S. Chiu, “A Fuzzy Accelerator and a Programming Environment

for Real-time Fuzzy Control,” in Interoperability for Enterprise Software and

Applications Conference, pp. 147151, Tokyo, Japan, 1987.

[44] K. Valavanis, G. Saridis, “Intelligent Robotic Systems: Theory, Design and

Application,” Kluwer Acadamic, Boston, 1992.

[45] O. Yagishita, O. Itoh, and M. Sugeno, “Application of Fuzzy Reasoning to the

Water Purification Process,” in Industrial Application of Fuzzy Control, M. Sugeno, Ed.

Amsterdam: North-Holland, pp. 1940, 1985.

[46] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming made Faster,” IEEE

Transactions Evolutionary Computation, vol. 3, pp. 82102, July 1999.

[47] L. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338353, June

1965.

71

APPENDICES

72

APPENDIX A

Robustness test results

This section gives detailed results of robustness test as I discussed in Chapter V. I

have used the robot wheel base length as the independent variable. Table 12(a) shows the

average cost values of robots for different wheel bases, where first column gives the

wheel base for which the robot is trained, and the row gives the cost values of the trained

robot when it has a different wheel base. Table 12(b) shows the percentage change of the

cost value. Similarly, Table 13, Table 14, and Table 15 show the values when using

DBBO/2, DBBO/4, and DBBO/6. The values indicate that the percentage change in the

cost values of the robots having different wheel bases is not more that 10%, which

indicates that the change in robot wheel base does not strongly affect its cost value.

Therefore, the BBO and the DBBO algorithms are robust with respect to the robots’

wheel base length.

Table 12 (a): Average cost values of robots with fuzzy controller using BBO for

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the

columns show experimental wheel base lengths

 175 180 185 190 195 200

175 5.58 5.59 5.61 5.70 5.79 5.88

180 5.62 5.58 5.62 5.75 5.88 6.05

185 5.63 5.67 5.71 5.78 5.83 5.88

190 5.47 5.50 5.57 5.61 5.69 5.74

195 5.53 5.58 5.62 5.64 5.72 5.75

200 5.58 5.58 5.63 5.64 5.66 5.72

73

Table 12 (b): Percentage difference of cost value of robots with fuzzy controller

using BBO for wheel base lengths 175200 mm. The rows show trained wheel base

lengths and the columns show experimental wheel base lengths

 175 180 185 190 195 200

175 0 0.25 0.56 2.19 3.74 5.47

180 0.77 0 0.69 3.09 5.26 8.40

185 1.27 0.59 0 1.27 2.15 3.12

190 2.49 2.00 0.80 0 1.37 2.29

195 3.37 2.42 1.81 1.50 0 0.56

200 2.39 2.33 1.45 1.26 0.91 0

Table 13 (a): Average cost values of robot with fuzzy controller using DBBO/2 for

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the

columns show experimental wheel base lengths

 175 180 185 190 195 200

175 5.89 5.94 5.97 6.00 6.06 6.09

180 5.98 6.05 6.09 6.14 6.21 6.26

185 5.53 5.58 5.65 5.77 5.85 5.91

190 5.51 5.61 5.66 5.72 5.82 5.87

195 5.57 5.68 5.73 5.87 5.90 5.98

200 5.46 5.38 5.42 5.43 5.52 5.59

Table 13 (b): Percentage difference of cost value of robots with fuzzy controller

using DBBO/2 for wheel base lengths 175200 mm. The rows show trained wheel

base lengths and the columns show experimental wheel base lengths

 175 180 185 190 195 200

175 0 0.89 1.29 1.80 2.78 3.34

180 1.10 0 0.69 1.44 2.74 3.53

185 2.16 1.18 0 2.04 3.48 4.66

190 3.66 1.89 1.08 0 1.77 2.67

195 5.62 3.71 2.95 0.54 0 1.32

200 2.39 3.70 3.14 2.85 1.29 0

74

Table 14 (a): Average cost values of robot with fuzzy controller using DBBO/4 for

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the

columns show experimental wheel base lengths

 175 180 185 190 195 200

175 5.94 6.07 6.16 6.24 6.34 6.49

180 5.65 5.70 5.80 5.87 5.97 6.05

185 6.15 6.17 6.12 6.14 6.11 6.11

190 5.64 5.78 5.89 6.02 6.17 6.32

195 6.16 6.16 6.17 6.18 6.22 6.23

200 6.78 6.77 6.77 6.78 6.79 6.81

Table 14 (b): Percentage difference of cost value of robots with fuzzy controller

using DBBO/4 for wheel base lengths 175200 mm. The rows show trained wheel

base lengths and the columns show experimental wheel base lengths

 175 180 185 190 195 200

175 0 2.18 3.59 5.03 6.64 9.23

180 0.98 0 1.67 2.91 4.70 5.97

185 0.47 0.73 0 0.30 0.16 0.12

190 6.40 3.97 2.24 0 2.45 4.91

195 0.96 0.93 0.78 0.59 0 0.25

200 0.45 0.59 0.47 0.44 0.27 0

Table 15 (a): Average cost values of robot with fuzzy controller using DBBO/6 for

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the

columns show experimental wheel base lengths

 175 180 185 190 195 200

175 6.47 6.51 6.57 6.61 6.67 6.70

180 6.67 6.76 6.79 6.87 6.92 7.12

185 6.28 6.33 6.40 6.49 6.56 6.65

190 6.94 7.08 7.21 7.36 7.54 7.70

195 7.16 7.29 7.38 7.53 7.61 7.76

200 7.04 7.17 7.37 7.51 7.71 7.85

75

Table 15 (b): Percentage difference of cost value of robots with fuzzy controller

using DBBO/6 for wheel base lengths 175200 mm. The rows show trained wheel

base lengths and the columns show experimental wheel base lengths

 175 180 185 190 195 200

175 0 0.52 1.57 2.09 3.14 3.60

180 1.32 0 0.48 1.69 2.41 5.41

185 1.92 1.13 0 1.42 2.52 3.95

190 5.63 3.85 1.97 0 2.46 4.63

195 5.95 4.15 2.99 1.03 0 1.94

200 10.34 8.61 6.11 4.31 1.80 0

76

Appendix B

T-test results

The T-test method was invented by William Sealy Gosset in 1908 [20]. This

method is also known as the Student’s T-test and is used to determine if there is a

statistically significant difference between the results of two sets of experiments.

According to this method we first calculate and as follows:

(20)

where is the average value of the group 1 experimental results, is the number of

values in group 1, is the i-th data point of group 1, is the average value of the

group 2 experimental results, is the number of values in group 2, and is the j-th

data point of group 2. Then we calculate the standard deviations and , as follows.

(21)

Now calculate as shown below.

 (22)

Finally the T-test value is calculated as follows:

77

 (23)

Now we calculate the degree of freedom as

 (24)

By using the degree of freedom and the T-test value we find the probability according to

[15] that the difference between two sets of results are due solely to random variation. If

this probability is more than 0.05 we conclude that there is not a statistically significant

difference between the two groups, and if the probability is less than 0.05 we conclude

that there is a statistically significant difference between the two groups. I have done the

T-test for robustness test results and the resultss are shown in Table 5, 6, 7, and 8. The

values in the tables are very low, which indicates that the difference between different

wheel bases is not due to random fluctuation. The difference is rather due to the wheel

base length.

I have done the T-test on the results of the robustness tests as I mentioned in

Chapter V. Table 16, 17, 18, and 19 show the T-test results. The numbers in the tables

show the probabilities that two sets of results came from the same probability

distribution. This is another way of saying that the differences between two sets of

numbers are simply due to random variations rather than systematic differences between

the underlying experiments. The values in the table are very small which indicates that

there is a statistically significant difference between robots having different wheel bases,

and this change is not due to random variation.

78

Table 16: T-test results for BBO (probabilities) for wheel base lengths 175200 mm.

The rows show trained wheel base lengths and the columns show experimental

wheel base lengths

175 180 185 190 195 200

175 1 1.01E11 6.66E13 2.37E27 2.82E31 5.46E39

180 1.19E15 1 5.61E19 1.13E28 1.94E32 5.84E33

185 6.53E21 8.90E15 1 8.41E23 2.42E23 1.05E21

190 7.01E33 4.90E28 3.43E24 1 3.40E27 1.50E29

195 2.20E16 1.28E16 8.38E19 1.05E12 1 2.24E12

200 4.11E24 1.21E23 3.69E17 7.47E18 2.70E14 1

Table 17: T-test results for DBBO/2 (probabilities) for wheel base lengths 175200

mm. The rows show trained wheel base lengths and the columns show experimental

wheel base lengths

175 180 185 190 195 200

175 1 5.82E30 6.41E27 4.36E36 1.93E31 5.87E41

180 3.76E29 1 8.07E26 6.14E32 5.59E35 1.94E37

185 3.87E26 1.79E22 1 9.51E27 1.47E27 3.07E28

190 3.75E35 2.24E30 3.71E26 1 1.67E25 7.88E33

195 3.93E29 3.94E24 3.10E22 4.87E10 1 9.42E19

200 2.68E22 3.92E18 1.42E21 1.49E19 2.96E18 1

Table 18: T-test results for DBBO/4 (probabilities) for wheel base lengths 175200

mm. The rows show trained wheel base lengths and the columns show experimental

wheel base lengths

175 180 185 190 195 200

175 1 9.09E36 1.20E35 4.81E29 1.89E44 1.14E43

180 5.30E23 1 1.54E30 1.50E38 6.78E25 1.34E44

185 7.04E07 2.51E08 1 8.06E06 5.37E03 2.45E02

190 2.29E40 3.72E25 1.24E31 1 7.98E29 1.98E34

195 5.89E23 5.76E22 1.00E21 1.66E18 1 6.60E10

200 1.78E21 1.06E21 2.21E21 1.01E20 2.31E16 1

79

Table 19: T-test results for DBBO/6 (probabilities) for wheel base lengths 175200

mm. The rows show trained wheel base lengths and the columns show experimental

wheel base lengths

175 180 185 190 195 200

175 1 1.15E14 1.03E25 3.95E26 4.94E29 1.74E28

180 4.42E20 1 1.06E23 2.83E26 1.18E28 1.33E31

185 3.86E23 3.09E07 1 1.85E20 2.31E25 2.04E25

190 8.08E34 2.11E35 2.01E26 1 7.00E33 1.12E37

195 1.43E36 8.78E34 4.53E24 1.53E23 1 1.77E27

200 1.05E41 4.39E38 2.98E37 2.22E32 1.36E27 1

80

Appendix C

Benchmark functions

I have used fourteen benchmark functions to compare the performance of the

BBO and DBBO having different numbers of peers (2, 4, and 6) as I mentioned in

Chapter II. Here I have given the details of those fourteen benchmark functions [46].

1. Ackley

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

2. Fletcher

 Number of variables : n

 U[c, d] = random number uniformly distributed on the domain [c, d]

 Random numbers : aij, bij

 Definition :

81

 Search domain :

 Global minimum :

3. Griewank

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

4. Penalty #1

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

5. Penalty #2

 Number of variables : n

 Definition :

82

 Search domain :

 Global minimum :

6. Quartic

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

7. Rastrigin

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

8. Rosenbrock

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

9. Schefel 1.2

 Number of variables : n

83

 Definition :

 Search domain :

 Global minimum :

10. Schefel 2.21

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

11. Schefel 2.22

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

12. Schefel 2.26

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

13. Sphere

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

84

14. Step

 Number of variables : n

 Definition :

 Search domain :

 Global minimum :

	Cleveland State University
	EngagedScholarship@CSU
	2012

	Distributed Biogeography Based Optimization for Mobile Robots
	Arpit Shah
	Recommended Citation

	tmp.1458054365.pdf.HG6SV

