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DISTRIBUTED BIOGROGRAPHY BASED OPTIMIZATION FOR 

MOBILE ROBOTS 

ARPIT SHAH 

ABSTRACT 

 I present hardware testing of an evolutionary algorithm (EA) known as distributed 

biogeography based optimization (DBBO). DBBO is an extended version of 

biogeography based optimization (BBO). Typically, EAs require a central computer to 

control the evaluation of candidate solutions to some optimization problem, and to 

control the sharing of information between those candidate solutions. DBBO, however, 

does not require a centralized unit to control individuals. Individuals independently run 

the EA and find a solution to a given optimization problem. Both BBO and DBBO are 

based on the theory of biogeography, which describes how organisms are distributed 

geographically in nature. I have compared the performance of BBO and DBBO by using 

fourteen benchmark functions that are commonly used to evaluate the performance of 

optimization algorithms. I perform both hardware and simulation experiments. Wall-

following robots are used as hardware to implement the DBBO algorithm. Robots use 

two different controllers to maintain a constant distance from the wall: one is a 

proportional integral derivative (PID) controller and the other is a fuzzy controller. 

DBBO optimizes the performance of the robots with respect to the control parameters. 

During simulation experiments I used different EA mutation rates; different staring points 

for the robots; and different wheel bases. I have also done T-tests to analyze the statistical 

significance of performance differences and robustness tests to analyze the performance 
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of the algorithms in the face of environmental changes. The results show that centralized 

BBO gives better optimization results than distributed BBO. DBBO gives less optimal 

solutions but it removes the necessity of centralized control. The results also show that 

the fuzzy controller performs better than the PID controller.  
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CHAPTER I 

INTRODUCTION 

 

 

 

1.1 Introduction to evolutionary algorithms 

 One of the main functions of engineers is to try to find different methods to 

optimize or solve very complex and difficult problems. The evolutionary algorithm (EA) 

is one of the most attractive methods to solve different problems, such as generating 

adaptive genetic operators [14], evolutionary path planning for autonomous under water 

vehicles [1], and smart highway systems to solve traffic problems [2]. The main 

advantage of EAs over analytical optimization algorithms is their flexibility and 

adaptability.  

 The EA is a robust search and optimization method. The idea of EAs originated in 

the 1950s based on research by Bremermann [4]; Friedberg [10], [9]; Box [3]; and others. 

At that time EAs were not used widely by scientists due to a lack of powerful computers. 

After a few decades, as computers became more available, more research was done in 
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this field. EA functionality is inspired by biological evolution, such as reproduction, 

mutation, recombination, and selection, as shown in Figure 1 [8].  

 

Figure 1: Block diagram of EA 

Figure 1 shows the basic block diagram of EAs. The first step is to initialize the 

population. Each individual in the population has a candidate solution to the problem. 

Then the central unit assesses these solutions by assigning fitness values to these 

solutions according to their effectiveness in solving the problem. A good solution has 

high fitness and a bad solution has low fitness. EAs will sort these individuals according 

to their fitness level. Evolution is done by various operators, like recombination and 

mutation, as I mentioned previously. Recombination is also known as crossover. 

Crossover exchanges the genes of the parent individuals to generate a new child. 

Mutation randomly selects new solutions within a given search space and generates a 

new child. At the end of each generation, the central unit sorts all these new solutions by 

their fitness values, and after several generations the EA evolves a better solution. EAs 
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are a subset of evolutionary computing (EC) and has mainly four approaches: evolution 

strategies (ES), evolutionary programming (EP), genetic algorithm (GA) and genetic 

programming (GP). I discuss these four approaches in the following paragraphs. 

The ES was proposed by three students who were working on the experiment of 

minimizing drag in wind tunnel [30], [40]. Their algorithm, also called “cybernetic 

solution path,” has two characteristics. The first is mutation, in which the system 

randomly changes the variables in each generation, and the second is selection, in which, 

if the new solution from these variable changes is not good, then the system will keep the 

old variables, and otherwise it will keep the new ones. 

Fogel introduced EP in his book Artificial Intelligence Through Simulated 

Evolution in 1962 [12], [11]. According to Fogel, artificial intelligence is the combined 

ability to predict the environment of any system, and to predict the response of that 

system for the predicted environment with respect to any specific independent variable. 

EP mutation is different from ES. During mutation EP does not change its variables, but 

instead regenerates new variables and selects the candidate according to fitness level. 

The third EA approach is the GA. In 1975 Holland published an article called 

Adaption in Natural and Artificial Systems [16]. The algorithm introduced by him was 

very helpful in the development of GAs. GA behavior is governed by a fundamental 

theorem called the schema theorem. In GA the candidate is referred as a chromosome, 

which is analogous to DNA. According to the schema theorem, the first step is single 

point crossover of individual chromosomes which are in the same class, and sorting these 

chromosomes by fitness. After several generations fitness will increase exponentially.   
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The last EA approach is GP. As I discussed, the previous EA approaches were 

used to get the solution of real world problems. GP is an approach to improve computer 

programs. GP was first introduced by Cramer in 1985 [5]. He generated an algorithm 

which develops simple sequential programs. He used GP to generate different functions 

which are well defined and have two inputs and one output. Another application of GP is 

in circuit design. After we set the requirements and list of components, GP generates the 

size, placement of component and routing of the circuit [18].  

In this thesis I am going to explain a new EA which is inspired from the science 

of biogeography and which is called biogeography based optimization (BBO). 

 1.2 Biogeography based optimization    

The term biogeography is the study of the geographical distribution of plants and 

animal life. It was first introduced by Charles Darwin in the nineteenth century [6]. In the 

1960s MacArthur and Edward Wilson created biogeography models from their studies of 

island biogeography [24]. Their main focus was to study the distribution of species 

among islands. They introduced mathematical models of the migration of species. These 

models explain how species migrate from one island to other, how new species come to 

islands, and how they become extinct. Here the word ‘island’ refers to a habitat, which is 

a geographically isolated region.  

BBO was developed as a mathematical model of biogeography to optimize 

solutions for different problems. It has been applied to satellite image classification [27], 

aircraft engine sensor selection [33], antenna design [39], optimization of different power 

system problems [28], [29], groundwater detection [17], mechanical gear train design 

[35] and neuro-fuzzy system training for biomedical applications [25].  Recent research 
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in the area of BBO has focused on putting it on a firm theoretical and mathematical 

foundation, including the derivation of dynamic system models [38] and Markov models 

[36, 37] that describe its behavior. 

1.3 Problem statement 

 In this thesis, I am going to explain BBO and extend it to distributed learning. It 

also gives experimental and simulation results. BBO and most other EAs use a central 

computer to gather data from each individual for the algorithm. But in the real world 

there are a few systems (for example peer to peer networking) in which it becomes very 

hard to have a central computer which communicates with all the individuals. So we have 

developed distributed BBO which does not require a central computer. DBBO’s control 

and communication is distributed between different BBO individuals rather than 

coordinated by a central computer.  

Distributed BBO is based on distributed learning. It is a theory which developed 

to explain how the human mind learns [44]. The research says that the human mental 

capability is not only centralized inside the mind, but outside social interaction also has 

an effect on human mental capability [7]. Distributed learning explains how 

environmental influences prompt humans to solve problems. For example, a human child 

who wants to learn how to walk does not learn only by himself. He looks around him and 

sees how other humans walk and learns better. In general, humans as a team perform 

tasks more accurately than alone.  For example, companies dealing with big projects 

usually choose a team of employees to work together rather than a single employee, so 

that each employee communicates, shares their ideas, and achieves the goal quickly and 

more accurately. I applied this distributed learning to a swarm of robots. Like humans, 
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these robots also perform tasks, learn, and solve problems by communicating with each 

other.  

This thesis also discusses fuzzy logic control (FLC) which is based on fuzzy 

logic. FLC has become a very interesting area for research. There are many applications 

of FLC, like elevator control [8], fuzzy memory devices [19], and water quality control 

[43],[45], which encourages the development of FLC. In this paper, I am going to 

compare the performance of FLC with traditional proportional-integral-derivative (PID) 

controller for mobile robot control. 

I used these two controllers in wall-following robots. The main objective of the 

robots is to maintain a constant distance from the wall. I am choosing two parameters for 

the PID controller, which is the proportional term and the derivative term, and fifteen 

(15) parameters for the fuzzy controller, to control a wall-following robot. I applied 

DBBO to these controller parameters to tune these parameters to get the best performance 

from the robots. 

1.4 Contribution of thesis 

As I discussed in the previous section, this thesis explains BBO and distributed 

BBO. The main contribution of this paper is the physical and simulation experiments for 

the DBBO algorithm. I have used four wall-following robots for the physical experiments 

and applied DBBO to improve their control performance. I have used two different 

controllers for the robots, and tuned them using DBBO and compared their performance. 

I have also done several simulations with different mutation rates, different starting 

points, and different wheel bases to tune the controllers using BBO and DBBO in order to 

compare their results. Moreover, I ran T-tests and robustness tests and discuss the results. 
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1.5 Structure of thesis  

Chapter II gives an overview of the BBO algorithm and explains BBO 

terminology. The first section explains the traditional centralized BBO in which a central 

unit gathers all the data from each individual component and applies BBO. The second 

section explains distributed BBO, which describes how each individual component 

independently applies BBO instead of through a central unit. Finally, the third section 

explains the definition of benchmark functions and the results of the BBO and DBBO 

applied to fourteen benchmark functions.  

Chapter III discusses fuzzy logic. The first section explains the definition of fuzzy 

logic. As the complexity of the system increases, it becomes very hard to make decisions 

regarding system behavior. So, Dr. Zadeh introduced a decision-making scheme known 

as the fuzzy logic controller (FLC) [47]. The last section explains two types of FLCs: the 

Mamdani model and the Takagi and Sugeno model.   

Chapter IV of this thesis explains the hardware and control systems used in the 

robots. The first section gives a brief introduction of the parts used by the wall-following 

robots and the reasons for choosing those components. The four wall-following robots’ 

main objective is to maintain a constant distance from the wall. The second section 

explains the robots’ sensing and implementation of the control. I used two control 

systems: the PID controller and the fuzzy controller. The third section explains the first 

controller, which is the PID controller. It uses the proportional and derivative term to 

reduce error. The fourth section explains the fuzzy controller and its membership 

functions. It uses five membership functions for each input and output. The controller 
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uses fuzzy if-then rules for decision making. The last section explains the software of the 

robot. It describes the flowchart of the whole cycle of the experiment. 

 Chapter V contains the results. I have done several experiments including T-tests 

and robustness tests. It explains the simulation experiments and their results for both the 

PID and fuzzy controllers, and also explains hardware experiment results for both 

controllers. It compares the results of BBO and DBBO with a different number of peers. 

It also compares the two controllers’ performances. 

Finally Chapter VI concludes the thesis and also suggests future work.  
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CHAPTER II 

BIOGEOGRAPHY-BASED OPTIMIZATION 

 

 

 

Chapter II gives a brief introduction about the evolutionary algorithm called bio-

geography-based optimization (BBO). As I discuss in Chapter I, BBO is based on 

biogeography. This chapter explains the different terms of biogeography. The first 

section explains the algorithm of centralized BBO. Then I introduce distributed BBO, and 

explain the differences between BBO and DBBO. Finally, the third section explains the 

benchmark functions and compares the results of the BBO and the DBBO algorithms. 

The BBO algorithm is created to optimize the solution of problems on the basis of 

the theory of biogeography. According to island biogeography, in nature species migrate 

from one island to another and create better habitats. Different islands have different 

environmental factors. These environmental factors are called suitability index variables 

(SIVs). A habitat that is more suitable for species has a high habitat suitability index 
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(HSI). Migration depends on the habitat’s HSI. High-HSI habitats have more species, so 

their emigration rates will increase and low-HSI habitats have fewer species, so their 

immigration rates will increase.  

BBO is the application of this concept to the engineering field. In an engineering 

field, an island is replaced with a candidate solution or an individual; HSI indicates the 

fitness or cost of individuals, and SIV indicates a solution feature or independent 

variable. Thus, an individual that has a good solution has a high fitness and a high 

emigration probability. An individual that has a low fitness has a high immigration 

probability, so it is more likely to accept a solution feature from surrounding individuals 

to try to better optimize the problem [33]. 

There are mainly three processes in BBO: migration, mutation, and elitism. These 

processes allow candidates to share information and save the best solution for the next 

generation. Migration is the most important process. Migration allows the candidates to 

emigrate or immigrate data from other candidates at each generation. Mutation is the 

same process used in other evolutionary algorithms. Each generation, each candidate 

randomly generates new solution features. Elitism finds the best solution at each 

generation, and replaces the worst solutions each generation with the best ones from the 

previous generation.  

2.1 Centralized BBO 

Centralized BBO is the original BBO algorithm. According to centralized BBO, 

each BBO individual sends information to a central unit. A central unit gets information, 

performs the BBO algorithm, sends back new solution features and creates better 

solutions. As explained above, migration depends on a habitat’s HSI. Here, habitat is 
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analogous to a solution and HSI is analogous to the fitness of the solution. The fitness of 

the solution determines the emigration rate (μ) and immigration rate (λ) as follows. 

    
               

                   
 (1) 

         (2) 

where       is the fitness of the i-th individual, and P represents the population size. As 

shown in Figure 2, the candidate with the worst solution has the lowest fitness, so it has 

both high immigration probability and low emigration probability. The candidate with the 

best solution has a high fitness level, so it has a high emigration probability and a low 

immigration probability. 

The migration rates are scaled between 0 and 1. Thus, for the best solution we set 

the immigration rate λi = 0 and emigration rate μi = 1, and for the worst solution 

emigration rate μi = 0 and immigration rate λi = 1. If all the individuals have the same 

fitness then according to Equation 1 the denominator becomes the zero and migration 

rates become infinite. So for this case we set both immigration rate and emigration rate 

equal to 0.5. 
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Figure 2: Migration rates as a function of BBO solution fitness  

The immigration of the solution feature of the individual x to the individual y is 

probabilistically selected from the rest of the population based on their emigration rates 

as follows. 

                                  
    

      
   

           (3) 

 where N is the total number of candidates in the population. 

After calculating the migration rates for the individual, BBO will perform 

mutation. According to the mutation probability BBO randomly generates new 

parameters from the search space. The population size and the mutation probability are 

user defined variables that depend on the problem. The user also has to define the number 

of generations in the BBO, or some other termination criteria for the optimization 

process. The last step is elitism in which the central unit will keep the best solutions from 
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the previous generation, and use them to replace the worst solutions of the current 

generation. The BBO algorithm is shown in Figure 3. 

Figure 3: Basic description of the BBO algorithm for one generation.  

For each candidate problem solution Pi 

 Calculate immigration probability λi and emigration probability μ i (see Figure 2) 

  μi  [0, 1] is proportional to the fitness of Pi, and λi = 1  μ i 

Next candidate solution: i  i+1 

For each candidate problem solution Pi 

For each solution variable v in Pi 

   Use immigration probability λi  to decide whether to immigrate to Pi  

   If immigrating to Pi 

    Use Equation 3 to select Pk for emigration 

    Pk emigrates data to Pi : Pi(v)  Pk(v) 

   End immigration 

  Next solution variable 

 Mutate Pi probabilistically based on mutation probability 

Next candidate solution: i  i+1 

 

2.2 Distributed BBO 

 Distributed BBO is an extension of the BBO algorithm. BBO uses a central 

control unit which collects data and applies the BBO algorithm. In contrast, DBBO does 

not use a central unit. Each individual in the system will independently apply the BBO 

algorithm. So the main advantage of this algorithm is that it does not require a central 

unit. Individuals (in our experiment, mobile robots) randomly select other individuals and 

start communication as shown in Figure 4. 
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Figure 4: Random robot communication   

In this thesis I use mobile robots to illustrate the DBBO algorithm. DBBO has 

similar characteristics to BBO. However, DBBO does not have elitism. In DBBO each 

individual randomly communicates with other ones. It is like peer to peer 

communication. Therefore an individual does not know the best solution of the entire 

population.  

Figure 5: Basic description of the DBBO algorithm for one generation [32].  

Select m peers {Pi} for communication with each other 
Revise each peer’s best and worst fitness estimates. For each i, 

MinEsti = mink  I {MinEstk} and MaxEsti = maxk  I {MaxEstk}, where 

I  is the set of all peers of robot i 

Calculate each peer’s likelihood to immigrate, , and emigrate,  : 

i  [0, 1] is proportional to the fitness of Pi relative to its peers, and i   = 1  i 

For each peer Pi 

     For each solution variable v 

  Use immigration probability i to decide whether to immigrate to Pi 

  If immigrating to Pi 
   Use Equation 3 to select Pk for emigration, where N is replaced with m 

   Pk emigrates data to Pi : Pi(v)  Pk(v) 

  End immigration 
    Next solution variable 

Mutate Pi according to mutation probability 

Next peer 
 

Robot 

Robot Robot 

Robot 

Robot Robot 
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The DBBO algorithm is shown in Figure 5. It seems the same as the BBO 

algorithm but there are some changes in the DBBO algorithm. For example in BBO the 

migration probability is given by whole population as indicated in Equation 1 but in 

DBBO it is determined by the members in the particular communicating group because 

an individual does not have the minimum and maximum fitness values of the population. 

So it uses the fitness values of those with whom it has already communicated to estimate 

the minimum and maximum fitness values of the entire population. Suppose we have a 

population indicated by the set P and the communicating group of individuals at a given 

time is denoted as C. Then C is the subset of P. The j-th individual’s estimated best and 

worst fitness values of the entire population are denoted by Bj and Wj (denoted as MinEstj 

and MaxEstj in Figure 5). Now the j-th individual communicates with other individuals in 

group C and updates its estimations as follows. 

                      (4) 

                       (5) 

where the minimization and maximization are taken over the j-th individual’s peer group. 

Now the migration probabilities of the j-th individual are calculated as follows: 

    
        

     
 (6) 

         (7) 

If the values of Bj and Wj are equal then the immigration and emigration rates are set 

equal to 0.5. After calculating the migration rates and performing migration, the DBBO 

individuals perform mutation, which is the same as in centralized BBO. In the next 
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generation individuals form different groups and communicate with different individuals 

of the population. 

 2.3 Benchmark functions 

 In the field of evolutionary computation, lots of algorithms exist. Now to compare 

the performance of these algorithms we have to apply these algorithms on some 

predefined problems. These problems are called benchmark functions. BBO was used for 

optimization for the first time in 2008. Dr. Simon applied BBO as well as other 

algorithms to fourteen benchmark functions to compare their results. The results show 

that BBO outperformed the other EAs on ten benchmark functions out of fourteen [33]. 

The details of these benchmark functions are given in Appendix C.  

Recall that Chapter II explained the two different versions of BBO. One is 

centralized and the other is distributed. It described how an individual calculates the 

migration rates, and performs mutation and elitism. The basic difference between these 

two is that in centralized BBO the central unit implements the BBO algorithm, while in 

distributed BBO each individual implements the BBO algorithm. The other difference is 

that DBBO does not implement elitism.  

 In this paper, I am going to compare the performance of the DBBO algorithm 

having a different number of peers (2, 4, and 6) with the BBO algorithm. I have used the 

same fourteen benchmark functions. To analyze the performance of the algorithms, I set 

the population size to 50, the function evolution limit to 500, the number of independent 

variables (problem dimension) to 10, and the mutation probability to 1%, and ran 100 

Monte Carlo simulations. Table 1 show the average cost values after 100 Monte Carlo 

runs and the standard deviation. 



17 
 

Table 1: Average cost values of benchmark functions and standard deviation. 

Benchmark 

Functions 
BBO DBBO/2 DBBO/4 DBBO/6 

Ackley 12.62±1.5 13.33±2.66 12.95±2.3 13.20±2.15 

Fletcher 3.5E+4±1.E4 1.2E+5±4.3E4 1.2E+5±4.1E4 1.2E+5±5.1E4 

Griewank 16.29±5.81 57.65±22.49 56.18±21.03 59.32±18.86 

Penalty #1 3.7E+5±4.8E+5 7.3E+6±7.5E+6 9.4E+6±8.1E+6 9.4E+6±10.7E+6 

Penalty #2 2.1E+6±2.3E+6 2.5E+7±2.1E+7 2.9E+7±2.0E+7 3.5E+7±2.5E+7 

Quartic 0.24±0.15 1.32±0.96 1.71±1.08 1.79±1.04 

Rastrigin 30.25±7.16 74.88±14.01 73.28±13.51 71.18±13.56 

Rosenbrook 119.90±43.50 4.0E+2±1.9E+2 4.2E+2±1.8E+2 4.4E+2±1.9E+2 

Schwefel 1.2 2.2E+3±7.7E2 4.0E+3±1.3E+3 4.8E+3±1.4E+3 4.7E+3±1.1E+3 

Schwefel 2.21 38.06±6.39 29.16±9.78 36.49±8.57 37.11±9.28 

Schwefel 2.22 6.30±1.81 44.81±52.34 88.49±2.56E2 130.14±5.1E2 

Schwefel 2.26 9.2E+2±2.2E+2 1.8E+3±3.5E+2 1.8E+3±3.3E+2 1.8E+3±3.0E+2 

Sphere 4.68±1.84 16.57±6.63 16.22±5.45 17.06±6.27 

Step 1.8E+3±7.0E+2 6.2E+3±2.4E3 6.4E+3±1.8E+3 6.0E+3±2.2E+3 

 

According to Table 1 BBO outperformed DBBO in thirteen out of fourteen benchmark 

functions. But DBBO performed good in one benchmark function. So, in general, BBO is 

better than DBBO, but DBBO does not require a central unit. 
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CHAPTER III 

FUZZY LOGIC 
 

 

 

Chapter III introduces fuzzy logic. It is different from traditional logic. The first 

section explains the concept of fuzzy logic and gives definitions. The second section 

explains the use of fuzzy logic in decision making schemes, and the basic structure of 

FLCs. The third section summarizes two FLC models, which are Mamdani and TSK, and 

gives a comparison of them. 

3.1 Concept of fuzzy logic 

 Robots use a fuzzy controller to maintain a constant distance from the wall. The 

fuzzy controller is based on fuzzy logic. Fuzzy logic is different from crisp logic. Sets in 

crisp logic are fixed and exact. In contrast, sets in fuzzy logic are approximate as shown 

in Figure 6. For example, set membership in binary logic contains only two values, either 

logic 1 or logic 0 (true or false), but set membership in fuzzy logic contains an infinite 

number of values between 0 and 1. 
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Figure 6: Representation of crisp sets and fuzzy sets 

Fuzzy logic describes partial truth which ranges between complete truth and complete 

falsehood. So, in general, fuzzy set A in the universe U having a membership function δA 

which take values in the interval [0,1] is defined as follows: 

                   (8) 
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Figure 7: Graphical representation of fuzzy height 

To explain fuzzy sets, I will use the example of men of differing heights and how 

those men can be classified. As shown in Figure 7, the heights of the men can be 

classified in three groups: short, medium, and tall. In this example, height is referred to as 

a linguistic variable, the universe have the values between the range [3 8] in units of feet, 

and the three groups are described by membership functions. So, as shown in Figure 7, 

men having height below 5 feet are 100% in the ‘short’ group, men having height 

between 5 feet to 6 feet are in both the short and the ‘medium’ group with different levels 

of membership, men between 6 feet and 7 feet are in both the ‘medium and the ‘tall’ 

group with different levels of membership, and men having height above 7 feet are 100% 

in the ‘tall’ group.  

3.2 Fuzzy logic controller 

 Zadeh introduced a fuzzy decision making scheme on the basis of fuzzy logic 

[47]. He mapped input and output variables by fuzzy adjectives to indicate values like 

‘high,’ ‘hot,’ and ‘small’. These adjectives are associated with membership functions. He 

uses these adjectives to relate different variables and make rules—for example, “If the 

short       medium      tall 

μheight 

1.0 

0.5 

0 

5 6 7 Height(feet) 
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temperature is high, turn on the compressor of the air conditioner.” The basic block 

diagram of the fuzzy logic controller is shown in Figure 8. 

 

 

Figure 8: Block diagram of fuzzy logic controller 

According to Figure 8, the FLC is divided into four basic components: 

fuzzification interface, knowledge base (KB), decision making logic, and defuzzification 

interface. The fuzzification interface includes the measurement of input values and by 

applying converts input values into linguistic variables. The knowledge base includes the 

knowledge of control goals and fuzzy rules. The decision making logic is the main part of 

FLC. It is like a human mind which also makes decisions according to fuzzy rules to 

obtain outputs. The last component is the defuzzification interface which gathers all the 

fuzzy outputs from the decision making logic component, combines them, and defuzzifes 

them to obtain a crisp, non-fuzzy, numerical control action [21]. 
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3.3 Different models of fuzzy logic controllers 

 The Mamdani Model 

Mamdani and Assilia used Zadeh’s decision-making scheme to control systems 

[47]. Their controller is divided mainly into steps: First we get the measurements or 

readings from the system. Second we apply those measurement values to predefined 

fuzzy if-then rules and generate fuzzy outputs. These outputs are useful for decision-

making but to control the system we need a crisp output, which leads us to the third step. 

The third step is to average all fuzzy outputs and defuzzify the average to obtain a crisp 

numerical output. Fuzzy if-than rules are some of the control parameters and are defined 

as follows. 

                                 

(9) 

          

where                and y are inputs and output respectively, and   

             and B are linguistic values, or fuzzy sets. Each system may have different 

fuzzy if-then rules [23]. An example of the practical application of this system is the 

temperature control of a freezer. The freezer’s temperature sensors will sense the 

temperatures inside the freezer, which are the inputs of the system. Then there are defined 

linguistic values like “too hot,” “hot,” “good,” “cool,” and “too cool.” According to the 

readings the fuzzy rules will apply and generate the output. In this case the output is how 

much time the compressor will stay on. Finally, we average all those fuzzy outputs to 

make one decision that will turn the compressor on or off. 

 This model provides a user-friendly representation of rules, but there are a few 

drawbacks of the Mamdani model. The first drawback is that when we use this model for 
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systems which have a high number of inputs and outputs it requires a lot of computation. 

The second drawback is that it is very hard to get optimal solutions for systems by using 

this model because there are so many tuning parameters. Another limitation is that if the 

model does not cover all input combinations, then it may not be able to find an optimum 

solution.    

The Takagi-Sugeno Model 

 To overcome these limitations, Takagi and Sugeno introduced a different fuzzy 

model [42], [34], call the Takagi-Sugeno model, the Takagi-Sugeno-Kang model, or the 

TSK model. They made a few changes in the fuzzy if-then rules. These are defined as 

follows: 

                                 

(10) 

                             

where xi, y, and Ai are the same as defined above for the Mamdani model, and ci are 

weighting parameters. This representation of the rule contains more information than the 

Mamdani model, and therefore it requires fewer rules. For complex and multi-

dimensional systems, Takagi and Sugeno’s fuzzy model is generally better than the 

Mamdani fuzzy model. The other advantage of Takagi and Sugeno’s fuzzy model is that 

it naturally combines the outputs of local models in a smooth way to get a combined 

output. This model provides more accurate solutions than the Mamdani model [41]. But 

for problems with fewer inputs and outputs, the Mamdani model is good because it is 

intuitive to define the rules. In this paper, for robot control we have used the Mamdani 

fuzzy model.  
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3.4 Summary 

 This chapter has given the definition of fuzzy logic and its terminology. It has 

also differentiated fuzzy logic from traditional crisp logic. The second section explained 

FLCs. The last section explained the Mamdani and TSK models and compared the 

models. To control systems having a smaller number of input and outputs, the Mamdani 

model is preferred; but for systems having more inputs and outputs, the TSK model is 

preferred. In general, fuzzy logic is often more robust than traditional and analytically 

obtained control systems; we can also adjust the fuzzy if-then rules to make the controller 

more accurate. 
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CHAPTER IV 

MOBILE ROBOT CONTROL 

 

 

 

Chapter IV gives a brief introduction of the overall control system of the wall-

following robots. It also explains the hardware and the software of the robots. The first 

section explains the PCB layout and the different parts of the robots. The second section 

explains how the robots detect the wall. I have used two different controllers, the PID and 

the fuzzy controller, to maintain a constant distance from the wall. The third and the 

fourth sections describe the different parameters and constants used for these two 

controllers. The last section describes the hardware experimentand how we use BBO to 

optimize the controllers. 
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4.1 Hardware 

The brain of the robot is the microcontroller PIC18F4520. It controls radio 

communication and synchronizes the sensors and motors. The PCB layout shown in 

Figure 9 is used in each robot.  

 

Figure 9: PCB layout used in robot [22] 

Each robot contains two infrared (IR) sensors to get the distance from the wall, 

and two DC motors, one for each of the two rear wheels. Initially I used ultrasonic 

sensors, but because the DC motors make more noise affecting the sensors, I switched to 

infrared sensors. The effective range of each sensor is 10 centimeters to 80 centimeters 

and the typical response time is 39 milliseconds. In this experiment robots try to maintain 

a distance of 60 centimeters from the wall, which is well with the IR sensors’ range. A 

photograph of the IR sensor is shown in Figure 10. 
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Figure 10: Photograph of IR sensor 

The robots also include a MaxStream 9Xtend wireless radio to communicate with 

other robots and with the computer. The maximum outdoor RF line-of-sight of this radio 

is advertised as 40 miles. The receiver sensitivity is around 110 dBM. It has up to 1 

Watt of power output, which is comparatively high for indoor use requirements. The 

9Xtend has two different data rates: one is 9600 bps and other is 115200 bps. I have used 

the 9600 bps data rate for this experiment. One advantage of this radio is that it has low 

power consumption. Figure 11 shows a photograph of the MaxStrem 9Xtend wireless 

radio. 
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Figure 11: Photograph of MaxStrem 9Xtend wireless radio 

There is one liquid crystal display (LCD) mounted on the robot, which will 

display robot status information. There are two packs of eight AA batteries; each 

provides 9 volts direct current (DC) supply, one for the motors and one for the digital 

electronics. There are two voltage regulators (7805). Each regulator generates a constant 

5 V for the motor, microcontroller, and the rest of the components. The output current 

from the microcontroller pin is not large enough to run the motors. Thus, we used the 

SN754410NE quad H bridge to drive the motors. The actual robot looks like the one 

shown in Figure 12.  
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Figure 12: Photograph of the robot. Two IR sensors are seen on the left and right 

sides of the robot. The wireless radio antenna is seen at the back right side of the 

photo. The large chip in the middle of the PCB is the PIC18 microcontroller. 

 

4.2 Implementation of control 

The main function of each robot is to detect the wall and maintain a constant 

distance from the wall. Figure 13 shows a block diagram of the system. In each cycle the 

robots measure the distance from the wall, subtract measured distance from desired 

distance, and apply the controller to determine the desired steering direction and run the 

motors. The control parameters are optimized by the DBBO algorithm. 
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Figure 13: Block diagram of the robot system 

The first step is to find the angle between wall and robot; in order to do so, the 

robot must find the distance from the difference of the readings of IR sensors (d2d1) and 

use that measurement as one of the legs of a right angle triangle as shown in Figure 14. 

Then the robot must take the constant known distance (db) between the two sensors as the 

second leg of the triangle. Next, by using the Pythagorean equation, the angle is found as 

follows: 

        
     

  
 (11) 
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Figure 14: Detection of wall [22] 

This angle shows which direction the robot is moving in. Then, the robot 

calculates the error as follows: 

            
     

 
        (12) 

where yref is the constant distance that the robot tries to maintain from the wall. Then, we 

approximate the derivative of the error by taking the difference between the previous 

error and current error. Now, the robot takes tracking errors and derivative errors as the 

input to the controller, and the motor voltage correction value as the controller output. 

This analog voltage is used to set the PWM duty cycles for the motors. The resolution of 

the PWM values is an 8-bit unsigned integer, which ranges from 0 to 255. Therefore, the 

PWM resolution is 1/255 of 5 V. According to the output and the analog voltage of the 

controller, the PWM duty cycles will set for the left and right motors, which will control 

their speeds.  

yref d1 d2 y 

error = yref - y 

error = yref – ((d1 + d2)/2)*cosθ 

Reference path 

d2 – d1 
θ 

Wall 

θ = arctan((d2 – d1)/db) 

db 
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 After finishing the wall-following task for a preset period of time (20 seconds in 

our case), each robot calculates a cost function depending on the tracking error as 

follows: 

 

 

                     (13) 

where k1 and k2 are two constants which are used as weighting parameters. The value of 

k1 = 1 and k2 = 5 (determined through experimental trial and error to balance the two 

components of Equation 13), and e(t) is the tracking error and r is the rise time. Rise time 

is defined as the time taken by the robot to reach 95% of the reference tracking distance. 

The lower limit of the integral is equal to the rise time. 

4.3 Proportional integral derivative controller 

PID is a very well-known algorithm for control systems. The block diagram of a 

PID controller is shown in Figure 15. There are mainly three parameters of the PID 

controller: proportional term kp, integral term ki, and derivative term kd. The proportional 

term determines the amount of output signal according to the current error. As the value 

of kp increases, the response time of the control system decreases. The integral term is 

proportional to both magnitude and time duration of the error. It speeds up the response 

and also reduces the steady state error. The last term of the PID controller is the 

derivative term kd, which decreases the overshoot caused by the kp and ki terms. 
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Figure 15: Block diagram of PID controller 

As mentioned above, the inputs of the controller are the error and the delta error, 

and the output is the voltage correction for the motors. For the PID controller, the motor 

voltages are calculated as follows: 

                                               

(14) 

                                               

where       and        are the PWM duty cycle values of the left and right motors 

respectively, and     is the reference PWM duty cycle, which is 240 for the reference 

speed of the motors. The range of values for the 8-bit unsigned integer is between 0 and 

255. The values    and    are the parameters of the PID controller, and          and      

represent the current and previous error values.  

In this experiment, I use only the proportional and derivative terms of the PID 

controller. Those two parameters are tuned by the DBBO algorithm. Each generation, 

each robot exchanges PID parameters with each other, applies the BBO algorithm, and 

generates new parameters, which decreases the error as well as the cost value of 

Equation 13. 

 

yref 

∆v 

vref 

- 

+ 
y 

Tracking  
Error 

KP 

KI/s 

 

KDs 

 

Σ Σ Robot Σ 



34 
 

4.4 Fuzzy controller 

The second controller is the fuzzy controller. As I mention in Chapter III, there 

are several models for the FLC. In this experiment, we use the Mamdani model. The first 

step for the FLC is to define membership functions. So for the robot control we have 

defined five triangular membership functions (MF) which are: large positive (LP), small 

positive (SP), zero (Z), small negative (SN), and large negative (LN) as shown in Figure 

16. So, each input and output of the system is mapped to five MFs. Now, according to the 

model, the system has n membership functions to describe each variable and therefore the 

fuzzy set description must have a total of n break points. So as we have defined five 

membership functions, each input and output variable has five break points as shown in 

Table 2. The DBBO algorithm will modify the shape of the MFs by modifying these 

break points. 

 

 

 

 

 

 

 

Figure 16: Representation of membership functions [22] 
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Table 2: Range of each fuzzy parameter 

DBBO domain 
Break Points 

LN SN Z SP LP 

Variables 

Error 
(mm) 

[1000,     

250] 
[250,   

0] 
[0,          
0] 

[0,         
250] 

[250,  
1000] 

∆Error 
(mm) 

[100,          

25] 
[25,     

0] 
[0,          
0] 

[0,           
25] 

[25,      
100] 

∆Motor 
voltage 

[100,       

25] 

[25,     
0] 

[0,          
0] 

[0,           
25] 

[25,      
100] 

 

The second step is to define fuzzy if-then rules for the FLC. We have used the 

maximum and minimum of the parameters to generate the fuzzy if-then rules. Each 

intersection between the pair of input MFs will represent one rule. As mentioned 

previously, there are two inputs, error and delta error, and one output, which is the delta 

voltage of the motor. There are a total of 25 fuzzy if-then rules for this system as shown 

in Table 3.  

To these fuzzy rules, we use minimum inference, which works as follows. FLC 

identifies the output MF γ and calculates its MF as the minimum of the input MFs. For 

example, suppose the error of the robot is between [1000, 250] so it belongs to the 

fuzzy set LN, which indicates the robot is far from the reference line, and ∆error is 

between [0, 25] so it belongs to the fuzzy set SP, which indicates that it is getting closer 

to the reference line. Then according to Table 3 the fuzzy rule for output motor voltage is 

SN which includes values that are between [25, 0], which indicates that the robot should 

maintain its direction with a slight decrease of motor voltage on the left wheel to try to 

reach to the reference line.  
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Table 3: Rule table for fuzzy if-then rules (LP = large positive, SP = small positive, Z 

= zero, SN = small negative, and LN = large negative) 

Rule Table 
Error 

LN SN Z SP LP 

∆Error 

LN LN LN LN SN Z 

SN LN LN SN Z SP 

Z LN SN Z SP LP 

SP SN Z SP LP LP 

LP Z SP LP LP LP 

 

The third step of the Mamdani FLC is to convert the fuzzy output into a crisp numerical 

output. So for example if error has a ‘small negative’ membership function and ∆error 

has a ‘zero’ membership function as shown in Figure 17, then the output voltage is 

assigned to the ‘small negative’ membership function with a membership that is equal to 

the minimum of the memberships of the error and ∆error. Now the robot finds all 

minimums of the output and calculates the centroid of the fuzzy output as follows [21]. 

                      
       

 

 

   

 (15) 

where αi represents the i-th MF of the error input, βi represents the i-th MF of the 

derivative error, and N is the total number of fuzzy rules. 
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Figure 17: Defuzzification of fuzzy output 

Now calculate the defuzzified output as shown below [21]. 

                    
        

            
 
   

 (16) 

Finally calculate the voltage for both motors as follows: 

              

(17) 

               

where D is the defuzzified output. So in general, for each sample time (0.1 seconds in our 

experiments) during wall following, robots use the algorithm shown in Figure 18 to 

Centroid 

Zero Zero Zero 

Error ∆Error Voltage 

Small Negative Zero Small Negative 

Error ∆Error Voltage 



38 
 

maintain a desired distance from the wall. DBBO is used to tune the break points of the 

fuzzy MFs and thus optimize the controller.  

Figure 18: Pseudo code for fuzzy logic controller 

 
 et input values 
 ap input values into     
                                        
 or each       combina on 
                     
       den    rule and              see  able   
end 
Calculate centroid    see e ua on    
Calculate de u  i ed output   see e ua on    

   

4.5       Experimental procedure 

This section explains how the wall following controller and the DBBO algorithm 

run in each robot. The whole experiment is controlled by the external desktop computer. 

The user gives commands from the computer using a radio and gets the resultant data 

from the robots. Each robot has its own unique robot id. The flow of the software that is 

programmed in each robot is shown in Figure 19. 
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Figure 19: Flowchart of the system 
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The experiment will start when the user sends the command “Begin Run” to the 

robots. All robots start running and following the wall according to their control 

algorithm. During every run, each robot will take 200 distance readings with the IR 

sensor. Each reading is taken every 1/10 second. After taking readings, the 

microcontroller calculates the angle and distance y from the wall. It also calculates the 

error and derivative of error. The controller determines the desired motor voltage 

variation as its output. After the 20-second wall following sequence, the robot goes in 

idle mode. Then the user has to press a switch on one of the robots to start the DBBO 

algorithm. 

As soon as the user presses a switch on any of the robots, they start to 

communicate with each other. As shown in Figure 19, first robot A, whose switch is 

pressed, generates a random robot ID, which we call robot B, and sends its own control 

parameters and its maximum cost estimate, minimum cost estimate, and most recent cost 

value to robot B. Then it waits for the response from robot B. As soon as robot B gets 

data from robot A, it sends its own control parameters, maximum cost estimate, minimum 

cost estimate, and most recent cost value back to robot A. Now both robots have data 

from each other. So both robots will perform the BBO algorithm independently and set 

their own new control parameters. Then robot B will generate a new robot ID other than 

its own and robot A’s, and send the list of the robot IDs which have already been used to 

the new robot ID. Then the receiver robot will perform the same sequence of operations 

as explained above. 

All robots communicate with each other according to the above description and 

perform the BBO algorithm independently. As soon as communication completes, the 
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user will send the “Get Data” command to each robot simultaneously from the desktop 

computer. Each robot will send its tracking data, its new control parameters, and its 

maximum estimated, minimum estimated, and most recent cost values to the computer. 

The MATLAB® application on the computer will create a new data sheet in Microsoft 

Excel and save all data. It also plots the tracking data and membership functions if the 

fuzzy controller is being used. After that, a new DBBO generation will start. 

The PIC® controller synchronizes all the components. I have used the Code 

Composer Studio™ compiler to program the PIC. The timer0 module of the PIC is used 

to take the sensor readings every 100 ms and find y and tracking error. Two serial ports 

are used: one is for the LCD connection and the other is for radio communication. Two 

PWM modules are used to generate the PWM signals for the two DC motors.  
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CHAPTER V 

RESULTS 

 

 

 

In this chapter, I am going to explain the results I obtained during my 

experiments. I have done simulation as well as hardware experiments to analyze the 

performance of the DBBO algorithm. The first section explains the results I obtained 

from the MATLAB simulation. It also compares the results from the PID and fuzzy 

controllers. The second section explains the hardware experiment results. As I mentioned 

in previous sections, I have used wall-following robots, applied DBBO to them, and 

analyzed the performance. I have used two different controllers (PID and fuzzy) and 

compared the results. 

5.1 Simulation results 

Simulation results were generated in MATLAB.  I wrote a robot program in 

MATLAB which simulates the robot’s function of maintaining a constant distance from 

the wall. I have set the population size at 50 and mutation rate at 1%. I ran BBO and 
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DBBO with 500 function evaluations (that is, a total of 500 robot simulations). I chose 

the simulation parameters as above to make the simulation similar to the robot hardware 

experiment. I have used two different controllers (PID and fuzzy) in my simulation 

experiment as explained below. 

5.1.1 DBBO using proportional integral derivative controller 

I have done 100 Monte Carlo simulations for DBBO using a PID controller. I ran 

DBBO using 2, 4 and 6 peers. The range of the kp and kd parameters is between [0 1] and 

[0 10] respectively, ranges were set empirically. During the first generation, the computer 

randomly generates the parameters from the given range. 

Table 4 shows the minimum, maximum, and average costs, and the standard 

deviation of the cost for the robots. The minimum is the best cost achieved over all 

generations after 100 Monte Carlo simulations, the maximum is the worst of the 100 best 

costs achieved by the 100 simulations, and the average is the mean of the best costs 

achieved by the 100 simulations. The readings show that there is not a big difference 

among the different algorithms; still the average cost of BBO is the lowest compared to 

DBBO with different numbers of peers, while DBBO/6 has the lowest minimum cost 

compared to the other algorithms. The standard deviation shows that the BBO algorithm 

has less fluctuation and is thus more consistent than the others. So overall BBO 

outperforms the DBBO, but DBBO still has good results.  

Table 4: 100 Monte Carlo simulation results for PID controller 

 BBO DBBO/2 DBBO/4 DBBO/6 

Minimum Cost 7.48 7.23 7.30 7.16 

Maximum Cost 7.99 8.12 8.07 8.10 

Average Cost 7.68 7.78 7.77 7.76 

Standard Deviation 0.119 0.169 0.147 0.193 
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The above result is not enough to numerically differentiate between the performance of 

the BBO and the DBBO algorithm, so I have used T-tests. I obtained T-test results for 

BBO and DBBO as shown in Table 5. The numbers in the table show the probabilities 

that the differences between two different experiments are due solely to random 

fluctuations, and are not due to fundamental differences between the algorithms. If the 

result is less than 0.05, then we conclude that those two algorithms are different, while if 

the result is greater than 0.05, then we conclude that there is not enough numerical 

evidence to conclude that those two algorithms are different. The results show that the 

BBO and the DBBO algorithms are different, but DBBO with different numbers of peers 

are not different.   

Table 5: T-test results (probabilities) for the PID controller 

 BBO DBBO/2 DBBO/4 DBBO/6 

BBO 1 1.25E06 2.68E06 0.00036 

DBBO/2 1.25E06 1 0.5971 0.4084 

DBBO/4 2.68E06 0.5971 1 0.7003 

DBBO/6 0.00036 0.4084 0.7003 1 
 

5.1.2 DBBO using fuzzy controller 

I have also done 100 Monte Carlo simulations for DBBO with different numbers 

of peers using the fuzzy controller. Similar to the PID controller, the fuzzy controller also 

randomly generates its control parameters during the first generation from the given 

range. The minimum values and maximum values for these parameters are shown in 

Table 6. These ranges were determined empirically. 
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Table 6: Minimum and maximum values of fuzzy membership function breakpoints 

used in mobile robots 

Input/Output 
Membership 

function 
Minimum 

value 
Maximum 

value 

Error (mm) 

Large negative (LN) 1000 500 

Small negative (SN) 500 0 

Zero(Z) 0.0001 0.0001 

Small positive (SP) 0 500 

Large positive (LP) 500 1000 

∆Error (mm) 

Large negative (LN) 100 25 

Small negative (SN) 25 0 

Zero(Z) 0.0001 0.0001 

Small positive (SP) 0 25 

Large positive (LP) 25 100 

∆Voltage 
(PWM 

counts) 

Large negative (LN) 100 25 

Small negative (SN) 25 0 

Zero(Z) 0.0001 0.0001 

Small positive (SP) 0 25 

Large positive (LP) 25 100 
 

Table 7 shows the results of the simulation experiments. The table shows that 

BBO has the lowest minimum cost and average cost compared to the DBBO algorithms, 

but DBBO/4 has the lowest standard deviation. Among DBBO algorithms, DBBO/6 has 

the lowest minimum cost and lowest average cost. The standard deviations for the fuzzy 

controller are higher than the PID controller.  

Table 7: 100 Monte Carlo simulation results using fuzzy controller 

 BBO DBBO2 DBBO4 DBBO6 

Minimum Cost 5.65 5.81 5.97 5.78 

Maximum Cost 7.74 9.19 7.94 8.48 

Average Cost 6.56 7.13 6.92 6.96 

Standard Deviation 0.48 0.75 0.43 0.55 
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I have performed T-tests on the fuzzy control tuning results. According to Table 8, there 

is a statistically significant difference between the results of the BBO algorithm and 

DBBO.    

Table 8: T-test results for the fuzzy controller 

 BBO DBBO/2 DBBO/4 DBBO/6 

BBO 1 1.96E-05 0.0001 0.0002 

DBBO/2 1.96E05 1 0.0926 0.2000 

DBBO/4 0.0001 0.0926 1 0.6995 

DBBO/6 0.0002 0.2000 0.6995 1 
 

 5.1.2(a) Different starting points 

I have done several additional simulation experiments on the fuzzy controller 

using BBO and DBBO with different number of peers. First, I have run each algorithm 

for 100 generations and collected the tracking error data. During this experiment, I have 

chosen several starting points. Figure 20 shows the tracking error responses of the best 

individual at the 1st generation and the best individual at the 100th generation when the 

robots start 200 mm from the wall, and Figure 21 shows the tracking error responses 

when the robots start 1000 mm from the wall. The graph shows that during the first 

generation the controller takes more time to reach the reference distance compared to the 

100th generation. This illustrates the effectiveness of BBO. 
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(a)                (b) 

Figure 20: Tracking error response of the fuzzy controller when the robots start 

point 200 mm from the wall. (a) best BBO individual at 1st generation (b) best BBO 

individual at 100th generation 

   

                       (a)          (b) 

Figure 21: Tracking error response of the fuzzy controller when the robots 

start 1000 mm from the wall. (a) best BBO individual at 1st generation 

(b) best BBO individual at 100th generation 
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Figure 22(a) shows the five membership functions of the best robot at the first 

generation, and Figure 22(b) shows the five membership functions at the 100th 

generation, when the starting point is 200 mm from the wall. Similarly, Figure 23 shows 

the five membership functions at the first and the 100th generation when the starting 

point is 1000 mm from the wall. From Figure 22 you can see that the 3rd membership 

function corresponds to positive error for the robot whose starting point is 200 mm, and 

the 3rd membership function corresponds to negative error for the robot whose starting 

point is 1000 mm. Figures 22 and 23 show how the membership functions change from 

the 1st to the 100th generation, which indicates that after every generation DBBO adjusts 

the controller in order to improve its response. 

  

(a)                                                                              (b) 

Figure 22: Fuzzy controller membership function of robots starting at 200 mm 

(a) best BBO individual at 1st generation (b) best BBO individual at 100th generation  
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(a)                                                                                (b)  

Figure 23: Fuzzy controller membership function of robots starting at 

1000 mm (a) best BBO individual at 1st generation (b) best BBO individual 

at 100th generation 

 

Figure 24 shows the average cost values of the robots at different starting points 

from the wall when different algorithms were used for optimization. The reference 

distance for the robots to maintain from the wall is 600 mm. I have used 200 mm, 400 

mm, 600 mm, 800 mm, and 1000 mm starting points to optimize the controllers and find 

the cost values. The cost value at the starting point 600 mm is close to zero because, as I 

mention above, the reference line which a robot has to follow is 600 mm. So, for this 

case, the robot is already on the reference line, therefore, it does not have to fluctuate. 

The graph shows that the cost values at starting points 200 mm and 1000 mm are similar 

to each other, and the cost values at starting points 400 mm and 800 mm are similar to 

each other. This implies that if the distance from the starting point to the reference line is 

equal, then the cost values will be equal, which indicates that the performance of the 

robots is symmetric. 
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Figure 24: Average cost values at different starting points 

 5.1.2(b) Different mutation rates 

Secondly, I have done experiments by using different mutation rates. Table 9 

shows the average cost values at 1% and 10% mutation rates for BBO and DBBO with 

different numbers of peers. The readings show that there is a difference in cost values for 

all algorithms as the mutation rate changes, but DBBO/2 has the highest change. So, from 

the readings, we can say that the mutation rate makes a significant difference in cost 

values for a small number of peers. According to the mutation rate, a candidate solution 

generates new random solutions and replaces them with the duplicate solutions during 

each generation. When we apply DBBO/2, only two candidates at a time communicate 

and exchange their controller parameters. So there is a greater probability of having 

duplicate solutions (that is, duplicate controllers) in the robot population. Now, as I 

mentioned earlier, as the mutation rate goes higher, the probability of replacing the 
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of the robot population. Algorithms other than DBBO/2 include more robots 

communicating with each other, which results in fewer duplicate solutions, so increasing 

the mutation rate for those algorithms does not make a significant change in performance. 

Table 9: Average cost at different mutation rates 

Mutation rate 1% 10% 

BBO 4.04 4.36 

DBBO/2 6.20 4.94 

DBBO/4 4.49 4.76 

DBBO/6 4.46 4.90 
   

 5.1.2(c) Different robot wheel base lengths 

Up to this point, I have used only one wheel base length for the robot simulations 

but to study the control algorithm in more detail, I have to use different wheel base 

lengths for the robots. Therefore, I have used different wheel base lengths of the robots 

and tuned the fuzzy controllers using different BBO and DBBO algorithms. For the 

previous experiments the wheel base was 185 mm. So for this experiment, I used wheel 

base lengths of 175 mm, 180 mm, 190 mm, 195 mm, and 200 mm. I have done 50 Monte 

Carlo simulations and obtained the average cost values of the best costs from 50 

simulations as shown in Table 10.  

Table 10: Average cost for different wheel base lengths 

Length (mm) BBO DBBO/2 DBBO/4 DBBO/6 

175 6.48 6.90 6.75 6.80 

180 6.53 6.96 6.75 6.74 

185 6.56 7.13 6.92 6.96 

190 6.65 7.28 6.96 6.94 

195 6.71 7.04 7.03 7.05 

200 6.90 7.30 7.23 7.19 
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The results of Table 10 indicate that as the robot wheel base increases the cost 

value also increases. The reason is that the mathematical model of the robot dynamics 

includes the following equation for the derivative of the robot angle:  

              (18) 

where    is the velocity of right wheel,    is the velocity of left wheel, and L is the length 

of the wheel base. According to Equation 18, as the robot wheel base length increases,    

decreases, which indicates that robots having a short wheel base can change their angle 

more rapidly compared to robots having a larger wheel base, and this makes the robot 

more controllable.  

5.1.2(d) Robustness tests 

I have also performed robustness tests for the BBO and the DBBO algorithms, 

where robustness is defined as follows: "The robustness/ruggedness of an analytical 

procedure is a measure of its capacity to remain unaffected by small, but deliberate 

variations in method parameters and provides an indication of its reliability during 

normal usage" [13]. We can divide robustness into two categories. The first is the degree 

of reproducibility when changing external conditions like analytical equipment, analyst, 

laboratory, etc. These are called inter-laboratory trials. The second is the degree of 

reproducibility when changing the experimental parameters like temperature, 

experimental time, etc. This is called an intra-laboratory study. In this thesis I use the 

second category of robustness. I vary experimental parameters [31]. 

As I mentioned in Chapter I, to apply the DBBO algorithm, I have used four wall-

following robots. So for robustness tests I have taken the wheel base of these robots as a 
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variable. I train the robot controller having a one wheel base, use these control parameters 

in other robots with different wheel bases, and examine the cost values for the robots. 

Figure 25, 26, 27, and 28 show the percentage cost deviations calculated as follows  

 

                         

  
                                                         

                           
     

 

(19) 

The horizontal axis represents the wheel bases for which the robot is trained; I then used 

the optimized control parameters on robots with different wheel bases and obtained the 

new cost values. The vertical axis represents the percentage difference between the cost 

values of the trained robot and the other robots with different wheel bases. I used BBO, 

DBBO/2, DBBO/4, and DBBO/6 for the robustness tests. The details of these tests are 

shown in Appendix A 

 

Figure 25: Robustness test variation in cost values of robots with different wheel 

bases using BBO. Each cluster of bars on the chart represents the percentage cost 

deviations when robots with different wheel bases use the control parameters that 

are optimized using the wheel base shown on the horizontal axis. 
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Figure 26: Robustness test variation in cost values of robots with different wheel 

bases using DBBO/2. Each cluster of bars on the chart represents the percentage 

cost deviations when robots with different wheel bases use the control parameters 

that are optimized using the wheel base shown on the horizontal axis. 

 

 

Figure 27: Robustness test variation in cost values of robots with different wheel 

bases using DBBO/4. Each cluster of bars on the chart represents the percentage 

cost deviations when robots with different wheel bases use the control parameters 

that are optimized using the wheel base shown on the horizontal axis. 
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Figure 28: Robustness test variation in cost values of robots with different wheel 

bases using DBBO/6. Each cluster of bars on the chart represents the percentage 

cost deviations when robots with different wheel bases use the control parameters 

that are optimized using the wheel base shown on the horizontal axis. 

 

Figure 25, 26, 27, and 28 indicate that there is no more than 10% variation in the 

performance of the robots when the wheel base changes in the range 175 mm to 200 mm. 

Among the four algorithms, the worst-case variation is the smallest for DBBO/2 (less 

than 6%), while the average variation is the smallest for BBO.As I mentioned previously, 

the cost value increases when the wheel base increases. Thus, when I trained a robot with 

a 185 mm wheel base, and use those parameters for a smaller wheel base, it gives me a 

positive difference. If I use the parameters for a larger wheel base it gives me negative 

difference. In general, DBBO is robust. I ran T-tests on the robustness results, and the 

results show that although the changes in robot cost values are small they are also 

statistically significant. The details of the T-test results are in Appendix B. 
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5.2 Experimental results 

I have used four wall-following robots and applied DBBO/2 to their control 

parameters to improve the performance of the robots. During each experimental cycle, 

the robots start 200 mm from the wall, follow the wall for 20 seconds, and then calculate 

the cost. For the hardware experiment, I have made a minor change in the definition of 

the cost function. During the simulation experiment, the cost value is calculated by taking 

the integral of error after the robot reaches the rise time (see Equation 13). During the 

hardware experiment the cost value is calculated by taking the integral of error from the 

starting point. Therefore, the cost value in the simulation result is small compared to the 

hardware results. After each BBO or DBBO generation, two robots randomly 

communicate with each other and exchange control parameters and cost values. As 

mentioned in the previous section, I have used two different controllers (PID and fuzzy) 

to maintain the reference distance from the wall.  

5.2.1 DBBO using proportional integral derivative controller 

At the start of the first generation, each robot randomly generates two PID control 

parameters kp and kd. (Recall that we are not using integral control in these experiments.) 

The range of the kp parameter is [0 1] and that of the kd parameter is [0 10]. Table 11 

shows the kp and kd values at the 1st and 8th generations of each robot. 

Table 11: PID parameters of the DBBO/2 optimized robots at the 1st and 8th 

generations 

 1st generation 8th generation 

Robot 1 kp= 0.93, kd = 4.26 kp= 0.82, kd = 9.03 

Robot 2 kp= 0.07, kd = 6.36 kp= 0.07, kd = 3.41 

Robot 3 kp= 0.18, kd = 2.45 kp= 0.67, kd = 4.32 

Robot 4 kp= 0.12, kd = 2.21 kp= 0.02, kd = 2.03 
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During every generation, each robot generates control parameters using DBBO, 

tracks the wall, and calculates the cost value. Then, two robots randomly communicate 

with each other, run one generation of DBBO, and adjust their controllers. Thus, as 

shown in Figure 29, after several generations the cost value decreases, which indicates 

that the tracking error also decreases. Figure 29 shows the best cost value among the four 

robots at each generation. 

 

 

Figure 29: Graph of experimental cost values vs. number of generations for DBBO/2 
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the 10th generation compared to the 1st generation, which indicates that the range of the 

membership function decreased. The reason is that as the amount of fluctuation of the 

robot path decreases, the error and ∆error decreases, decreasing the required voltage 

variation, and the robots more smoothly follow the wall. The input membership functions 

(error and ∆error) in Figures 30 and 31 have smaller changes compared to the output 

membership function (voltage), which indicates that the output membership function has 

a greater effect on robot performance than the input membership functions. Table 12 

shows the fuzzy parameters for the best robot at the 1st generation and at the 10th 

generation.  

 

(a)                                                                                (b)  

Figure 30: Fuzzy controller membership function of error (a) best DBBO/2 

individual at 1st generation (b) best DBBO/2 individual at 10th generation 
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(a)                                                                                (b)  

Figure 31: Fuzzy controller membership function of ∆error (a) best DBBO/2 

individual at 1st generation (b) best DBBO/2 individual at 10th generation 

 

  

(a)                                                                                (b)  

Figure 32: Fuzzy controller membership function of output delta voltage 

(a) best DBBO/2 individual at 1st generation (b) best DBBO/2 individual at 

10th generation 
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Table 12: Fuzzy parameters at 1st and 10th generations of DBBO/2 

  1st generation 10th generation 

Error 

Large negative (LN) 1000 1000 

Small negative (SN) 250 200 

Zero (Z) 0 0 

Small positive (SP) 1 1 

Large positive (LP) 250 184 

Error 

Large negative (LN) 100 96 

Small negative (SN) 10 10 

Zero (Z) 0 0 

Small positive (SP) 1 1 

Large positive (LP) 8 3 

Voltage 

Large negative (LN) 100 73 

Small negative (SN) 25 18 

Zero (Z) 0 0 

Small positive (SP) 1 1 

Large positive (LP) 100 62 
 

After every generation each robot exchanges its control parameters with other 

robots and applies the DBBO algorithm. As a result, after ten generations the fluctuation 

of the robots’ path is decreased. The minimum cost values and the average cost values are 

also decreased after several generations. Figure 33 shows the minimum cost values and 

average cost values for each generation. So by applying the DBBO algorithm, robots 

improve their performance and more smoothly follow the wall. 
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Figure 33: Graph of cost values vs. number of generations 

 Summary 

This section summarized different experiments and their results. I have done 

several simulation tests by using different starting points, different mutation rates, and 

different wheel bases. I have also performed T-tests and robustness tests. The results 

show that DBBO is symmetric and robust, that there is a statistically significant 

difference between BBO and DBBO, and that different mutation rates do not make a 

significant difference in BBO and DBBO performance except for DBBO with only two 

interacting peers. I have also done hardware testing by using wall-following robots and 

optimizing their controllers. The results show that for both the PID and the fuzzy 

controller the cost values of the robots decrease generation by generation. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

 

 

6.1 Conclusion 

 I have introduced a distributed BBO algorithm, which is an evolutionary 

optimization algorithm. I have applied DBBO to a group of wall-following robots. These 

robots maintain a constant distance from the wall using the PID and the fuzzy controller. 

They communicate with one another to exchange their parameters and apply the DBBO 

algorithm each generation. The results show that after several generations, the tracking 

error of the robots decrease, and they smoothly follow the wall. Thus, DBBO removes 

the necessity of a centralized computing unit for optimization, and individual robots 

improve their performance by communicating with one another. 
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 I have used fourteen benchmark functions and applied BBO and DBBO with 

different numbers of peers (2, 4, and 6). The results show that the BBO algorithm 

outperforms the DBBO algorithm in thirteen benchmark functions out of fourteen, but 

DBBO with 2 peers obtains the lowest average cost for the Schwefel 2.21 function.  

 I have performed simulation experiments using MATLAB. I have applied BBO 

and DBBO with different numbers of peers. The results show that BBO performs better 

than DBBO. Still, DBBO can be used for optimization because it does reduce the cost 

values after several generations. The main advantage of the DBBO is that it does not 

require a central unit to control the optimization process. 

 I have also used a fuzzy controller, which is based on fuzzy logic, and used BBO 

and DBBO algorithms to tune the fuzzy controller. The results compare with a traditional 

PID controller. The results show that a PID controller has a lower standard deviation 

compared to a fuzzy controller, while a fuzzy controller has lower minimum cost values 

compared to a PID controller. Fuzzy controllers can more quickly respond to system 

errors compared to PID controllers. The fuzzy controller is a very flexible controller. We 

can change the membership function parameters and if-then rules depending on our 

system.  

I have used different starting points for the robots on both sides of the reference 

line and tuned their controllers accordingly. The results show that the robots whose 

starting points are at an equal distance from the reference line have equal cost values. 

These results show that the robot controllers and the DBBO algorithm are symmetric.   

 I have also used different mutation rates for the BBO and DBBO algorithms. The 

results do not show a significant difference in the cost values for the BBO and DBBO 
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algorithms except for DBBO/2. The cost values obtained using DBBO/2 at mutation rates 

of 1% and 10% changed significantly. The reason is that in the DBBO/2 algorithm, only 

two candidates communicate at a time. So the mutation rate makes a significant 

difference compared to DBBO/4 and DBBO/6. Thus, as the number of peers increases, 

the effect of mutation rate decreases.   

6.2       Future work 

In future I want to continue this work by adding more robots. According to the 

DBBO algorithm, as the population size increases, more individuals can interact with one 

another. They can share their parameters and improve performance in fewer generations. 

I also want to increase the number of generations so that we can more clearly see the 

improvement due to DBBO. 

In this paper I have compared DBBO with BBO. I want to compare the results of 

DBBO with other evolutionary algorithms, such as a genetic algorithm or other 

distributed algorithms. It would also be interesting to use DBBO to optimize other real-

world systems such as a swarm of nuclear power reactors, peer-to-peer networking, and 

different constrained problems. I want to use theoretical Markov modeling and dynamic 

system modeling for DBBO. 

 I have discussed in this paper two different models of a fuzzy controller; one is 

Mamdani, and the second is Takagi and Sugeno model. I have used the Mamdani model 

of a fuzzy controller. For the next step, we can also use the Takagi and Sugeno model and 

compare the results of both models. 
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APPENDIX A 

Robustness test results 

This section gives detailed results of robustness test as I discussed in Chapter V. I 

have used the robot wheel base length as the independent variable. Table 12(a) shows the 

average cost values of robots for different wheel bases, where first column gives the 

wheel base for which the robot is trained, and the row gives the cost values of the trained 

robot when it has a different wheel base. Table 12(b) shows the percentage change of the 

cost value. Similarly, Table 13, Table 14, and Table 15 show the values when using 

DBBO/2, DBBO/4, and DBBO/6. The values indicate that the percentage change in the 

cost values of the robots having different wheel bases is not more that 10%, which 

indicates that the change in robot wheel base does not strongly affect its cost value. 

Therefore, the BBO and the DBBO algorithms are robust with respect to the robots’ 

wheel base length.  

Table 12 (a): Average cost values of robots with fuzzy controller using BBO for 

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the 

columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 5.58 5.59 5.61 5.70 5.79 5.88 

180 5.62 5.58 5.62 5.75 5.88 6.05 

185 5.63 5.67 5.71 5.78 5.83 5.88 

190 5.47 5.50 5.57 5.61 5.69 5.74 

195 5.53 5.58 5.62 5.64 5.72 5.75 

200 5.58 5.58 5.63 5.64 5.66 5.72 
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Table 12 (b): Percentage difference of cost value of robots with fuzzy controller 

using BBO for wheel base lengths 175200 mm. The rows show trained wheel base 

lengths and the columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 0 0.25 0.56 2.19 3.74 5.47 

180 0.77 0 0.69 3.09 5.26 8.40 

185 1.27 0.59 0 1.27 2.15 3.12 

190 2.49 2.00 0.80 0 1.37 2.29 

195 3.37 2.42 1.81 1.50 0 0.56 

200 2.39 2.33 1.45 1.26 0.91 0 

 

Table 13 (a): Average cost values of robot with fuzzy controller using DBBO/2 for 

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the 

columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 5.89 5.94 5.97 6.00 6.06 6.09 

180 5.98 6.05 6.09 6.14 6.21 6.26 

185 5.53 5.58 5.65 5.77 5.85 5.91 

190 5.51 5.61 5.66 5.72 5.82 5.87 

195 5.57 5.68 5.73 5.87 5.90 5.98 

200 5.46 5.38 5.42 5.43 5.52 5.59 

 

Table 13 (b): Percentage difference of cost value of robots with fuzzy controller 

using DBBO/2 for wheel base lengths 175200 mm. The rows show trained wheel 

base lengths and the columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 0 0.89 1.29 1.80 2.78 3.34 

180 1.10 0 0.69 1.44 2.74 3.53 

185 2.16 1.18 0 2.04 3.48 4.66 

190 3.66 1.89 1.08 0 1.77 2.67 

195 5.62 3.71 2.95 0.54 0 1.32 

200 2.39 3.70 3.14 2.85 1.29 0 
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Table 14 (a): Average cost values of robot with fuzzy controller using DBBO/4 for 

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the 

columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 5.94 6.07 6.16 6.24 6.34 6.49 

180 5.65 5.70 5.80 5.87 5.97 6.05 

185 6.15 6.17 6.12 6.14 6.11 6.11 

190 5.64 5.78 5.89 6.02 6.17 6.32 

195 6.16 6.16 6.17 6.18 6.22 6.23 

200 6.78 6.77 6.77 6.78 6.79 6.81 

 

Table 14 (b): Percentage difference of cost value of robots with fuzzy controller 

using DBBO/4 for wheel base lengths 175200 mm. The rows show trained wheel 

base lengths and the columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 0 2.18 3.59 5.03 6.64 9.23 

180 0.98 0 1.67 2.91 4.70 5.97 

185 0.47 0.73 0 0.30 0.16 0.12 

190 6.40 3.97 2.24 0 2.45 4.91 

195 0.96 0.93 0.78 0.59 0 0.25 

200 0.45 0.59 0.47 0.44 0.27 0 

 

Table 15 (a): Average cost values of robot with fuzzy controller using DBBO/6 for 

wheel base lengths 175200 mm. The rows show trained wheel base lengths and the 

columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 6.47 6.51 6.57 6.61 6.67 6.70 

180 6.67 6.76 6.79 6.87 6.92 7.12 

185 6.28 6.33 6.40 6.49 6.56 6.65 

190 6.94 7.08 7.21 7.36 7.54 7.70 

195 7.16 7.29 7.38 7.53 7.61 7.76 

200 7.04 7.17 7.37 7.51 7.71 7.85 
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Table 15 (b): Percentage difference of cost value of robots with fuzzy controller 

using DBBO/6 for wheel base lengths 175200 mm. The rows show trained wheel 

base lengths and the columns show experimental wheel base lengths 

  175 180 185 190 195 200 

175 0 0.52 1.57 2.09 3.14 3.60 

180 1.32 0 0.48 1.69 2.41 5.41 

185 1.92 1.13 0 1.42 2.52 3.95 

190 5.63 3.85 1.97 0 2.46 4.63 

195 5.95 4.15 2.99 1.03 0 1.94 

200 10.34 8.61 6.11 4.31 1.80 0 
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Appendix B 

T-test results 

The T-test method was invented by William Sealy Gosset in 1908 [20]. This 

method is also known as the Student’s T-test and is used to determine if there is a 

statistically significant difference between the results of two sets of experiments. 

According to this method we first calculate    and    as follows: 

 

   
 

  
    

  

   

 

   
 

  
    

  

   

 

(20) 

 

where    is the average value of the group 1 experimental results,    is the number of 

values in group 1,     is the i-th data point of group 1,    is the average value of the 

group 2 experimental results,    is the number of values in group 2, and     is the j-th 

data point of group 2. Then we calculate the standard deviations    and   , as follows.  

 

    
          

  
   

  
 

    
          

  
   

  
 

(21) 

Now calculate    as shown below. 

 
      

    
  (22) 

Finally the T-test value is calculated as follows: 
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 (23) 

Now we calculate the degree of freedom as 

                           (24) 

 

By using the degree of freedom and the T-test value we find the probability according to 

[15] that the difference between two sets of results are due solely to random variation. If 

this probability is more than 0.05 we conclude that there is not a statistically significant 

difference between the two groups, and if the probability is less than 0.05 we conclude 

that there is a statistically significant difference between the two groups. I have done the 

T-test for robustness test results and the resultss are shown in Table 5, 6, 7, and 8. The 

values in the tables are very low, which indicates that the difference between different 

wheel bases is not due to random fluctuation. The difference is rather due to the wheel 

base length.  

I have done the T-test on the results of the robustness tests as I mentioned in 

Chapter V. Table 16, 17, 18, and 19 show the T-test results. The numbers in the tables 

show the probabilities that two sets of results came from the same probability 

distribution. This is another way of saying that the differences between two sets of 

numbers are simply due to random variations rather than systematic differences between 

the underlying experiments. The values in the table are very small which indicates that 

there is a statistically significant difference between robots having different wheel bases, 

and this change is not due to random variation. 
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Table 16: T-test results for BBO (probabilities) for wheel base lengths 175200 mm. 

The rows show trained wheel base lengths and the columns show experimental 

wheel base lengths 

 
175 180 185 190 195 200 

175 1 1.01E11 6.66E13 2.37E27 2.82E31 5.46E39 

180 1.19E15 1 5.61E19 1.13E28 1.94E32 5.84E33 

185 6.53E21 8.90E15 1 8.41E23 2.42E23 1.05E21 

190 7.01E33 4.90E28 3.43E24 1 3.40E27 1.50E29 

195 2.20E16 1.28E16 8.38E19 1.05E12 1 2.24E12 

200 4.11E24 1.21E23 3.69E17 7.47E18 2.70E14 1 

 

Table 17: T-test results for DBBO/2 (probabilities) for wheel base lengths 175200 

mm. The rows show trained wheel base lengths and the columns show experimental 

wheel base lengths 

 
175 180 185 190 195 200 

175 1 5.82E30 6.41E27 4.36E36 1.93E31 5.87E41 

180 3.76E29 1 8.07E26 6.14E32 5.59E35 1.94E37 

185 3.87E26 1.79E22 1 9.51E27 1.47E27 3.07E28 

190 3.75E35 2.24E30 3.71E26 1 1.67E25 7.88E33 

195 3.93E29 3.94E24 3.10E22 4.87E10 1 9.42E19 

200 2.68E22 3.92E18 1.42E21 1.49E19 2.96E18 1 

 

Table 18: T-test results for DBBO/4 (probabilities) for wheel base lengths 175200 

mm. The rows show trained wheel base lengths and the columns show experimental 

wheel base lengths 

 
175 180 185 190 195 200 

175 1 9.09E36 1.20E35 4.81E29 1.89E44 1.14E43 

180 5.30E23 1 1.54E30 1.50E38 6.78E25 1.34E44 

185 7.04E07 2.51E08 1 8.06E06 5.37E03 2.45E02 

190 2.29E40 3.72E25 1.24E31 1 7.98E29 1.98E34 

195 5.89E23 5.76E22 1.00E21 1.66E18 1 6.60E10 

200 1.78E21 1.06E21 2.21E21 1.01E20 2.31E16 1 
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Table 19: T-test results for DBBO/6 (probabilities) for wheel base lengths 175200 

mm. The rows show trained wheel base lengths and the columns show experimental 

wheel base lengths 

 
175 180 185 190 195 200 

175 1 1.15E14 1.03E25 3.95E26 4.94E29 1.74E28 

180 4.42E20 1 1.06E23 2.83E26 1.18E28 1.33E31 

185 3.86E23 3.09E07 1 1.85E20 2.31E25 2.04E25 

190 8.08E34 2.11E35 2.01E26 1 7.00E33 1.12E37 

195 1.43E36 8.78E34 4.53E24 1.53E23 1 1.77E27 

200 1.05E41 4.39E38 2.98E37 2.22E32 1.36E27 1 
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Appendix C 

Benchmark functions 

I have used fourteen benchmark functions to compare the performance of the 

BBO and DBBO having different numbers of peers (2, 4, and 6) as I mentioned in 

Chapter II. Here I have given the details of those fourteen benchmark functions [46]. 

1. Ackley 

 Number of variables : n 

 Definition :              
 
 

 
 
 

 
   

  
      

 

 
           
 
    

 Search domain :                   

 Global minimum :        

2. Fletcher 

 Number of variables : n 

 U[c, d] = random number uniformly distributed on the domain [c, d] 

 Random numbers : aij, bij 

 Definition :  
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 Search domain :                 

 Global minimum :        

3. Griewank 

 Number of variables : n 

 Definition :       
  
 

    

 
         

  

  
  

      

 Search domain :                     

 Global minimum :        

4. Penalty #1 

 Number of variables : n 

 Definition : 

     
                                        

                                
  

     
      

 
 

        
 
    

                     

  
  

      
                   

  

   
     

 Search domain :                   

 Global minimum :        

5. Penalty #2 

 Number of variables : n 

 Definition : 
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 Search domain :                   

 Global minimum :        

6. Quartic 

 Number of variables : n 

 Definition :          
  

    

 Search domain :                       

 Global minimum :        

7. Rastrigin 

 Number of variables : n 

 Definition :              
               

 
    

 Search domain :                       

 Global minimum :        

8. Rosenbrock 

 Number of variables : n 

 Definition :                  
      

          
  

 Search domain :                         

 Global minimum :        

9. Schefel 1.2 

 Number of variables : n 
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 Definition :                    
 
    

 Search domain :                           

 Global minimum :        

10. Schefel 2.21 

 Number of variables : n 

 Definition :           
 
      

    

 Search domain :                     

 Global minimum :        

11. Schefel 2.22 

 Number of variables : n 

 Definition :           
 
         

 
    

 Search domain :                   

 Global minimum :        

12. Schefel 2.26 

 Number of variables : n 

 Definition :                 

 Search domain :                     

 Global minimum :        

13. Sphere 

 Number of variables : n 

 Definition :         
  

    

 Search domain :                       

 Global minimum :        
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14. Step 

 Number of variables : n 

 Definition :                   
    

 Search domain :                     

 Global minimum :        
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