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ABSTRACT 

 

A novel cascaded multilevel converter is proposed in this thesis.  The thesis 

proposes to produce more voltage levels from fewer H-bridges in a cascaded multilevel 

converter. The converter uses fewer H-bridges and the proposed switching scheme 

renders more voltage level in the staircase waveform with equal steps. Since the resulting 

voltage levels are equal, the angles are determined for the complete elimination of more 

unwanted harmonics. The implementation of the switching scheme, in single and three-

phase configurations were simulated with Ansoft  Simplorer
© 

and the frequency spectrum 

of the resulting waveform and its total harmonic distortion are shown to verify the results.  

The number of switches employed in the converter is halved. The impact of voltage 

magnitude variations on harmonic elimination is analyzed. Source and switch utilization 

is also evaluated.  
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CHAPTER I 

INTRODUCTION 

An inverter is a power electronic device that produces an alternating current (AC) 

from a direct current (DC) source. David Chandler Prince first reported the term inverter 

in a GE review ‘The Inverter’ [1]. According to Prince, the term inverter means any 

stationary or rotating apparatus that transforms alternating current to direct current. 

Early AC to DC converters employed an AC motor to drive a DC generator for 

rectification and was commonly referred to as mechanically rectified DC. The same 

motor-generator set was made to work backwards and this combination, produced AC 

from DC. This combination was commonly referred to as inverted converter. These 

mechanized power converters were later replaced by solid-state converters, which 

employed vacuum tubes or gas filled tubes.  

From the late nineteenth century to the middle twentieth century, vacuum tubes 

and gas-filled tubes were used as switches in the AC-DC and DC-AC converters. The 

thyratron was the most widely used device as the converter switch. In the year 1957, 

thyristors were introduced. The advent of thyristors was a breakthrough in solid-state 

switching devices.  
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Many different topologies for single and three phase inverters were introduced. 

One of the early inverter topologies introduced by Prince is shown in Figure 1. The 

inverter was realized with two solid-state switches and a center-tapped transformer. The 

center-tapped side of the transformer is the input side. One terminal of the DC source is 

connected to the center-tapped terminal of the transformer. The other two terminals of the 

transformer are connected to the solid-state switches. The AC voltage appears across the 

output terminals of the inverter. The positive half of the AC voltage is obtained when 

switch TH1 is turned on and switch TH2 remains in the off-state. The other half of the 

AC voltage results when switch TH2 is turned on and switch TH1 is turned off. The 

inverter topology is also known as a half-bridge inverter. The other basic topology of an 

inverter is the full-bridge inverter and it is the basic building block of a cascaded 

multilevel converter (MLC) [2].  

 

Figure 1: Prince’s inverter 
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1.1 Full-bridge inverter 

A full-bridge inverter consists of two half-bridge inverters. The corresponding 

circuit diagram is shown in Figure 2. 

 

Figure 2: Single-phase full-bridge inverter 

 

A single-phase full-bridge inverter is made up of four transistors and four diodes. 

The transistor can be replaced by other solid-state switches like thyristor, MOSFET, 

GTOs, and IGBTs etc. Solid-state switches are unidirectional switches i.e. they conduct 

in only one direction. A diode is connected anti-parallel to each transistor to realize a 

bidirectional switch. Due to the circuit’s close resemblance to the letter ‘H’, the full-

bridge inverter is also known as an H-bridge inverter.  

The operation of the H-bridge inverter is as follows. The set BJT1 and D1 is 

switch S1, BJT2 and D2 is S2 and so on. To produce the positive half cycle of the 

waveform, switches S1 and S4 are turned on. The current flows from the positive 
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terminal of the DC source through switch S1, load, and switch S4 to the negative terminal 

of the battery. To produce the negative half cycle of the voltage waveform, switches S1 

and S4 are turned off. Switches S2 and S3 are turned on, current flows from the positive 

terminal of the battery through switch S3, load, and switch S2, but the direction of the 

current is reversed to that in the previous case. Thus, an alternating staircase waveform is 

produced across the terminals of the AC load. The waveform is shown in Figure 3.  

 

Figure 3: Staircase waveform from an H-bridge inverter 

 

The switching table for the inverter is listed in Table I. In the switching table, one 

signifies on-state and zero signifies off-state. 
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Table I: Switching table for H-bridge inverter 

 

 

Switch 
Voltage 

S1 S2 S3 S4 

1 0 1 0 0 

1 0 0 1 +V 

0 1 1 0 –V 

0 1 0 1 0 

 

The output from the inverter is a periodically alternating staircase waveform, not a 

sinusoidal waveform as expected. The output waveform is far from an ideal sine 

waveform. The output waveform from the inverter contains harmonics. 

1.2 Harmonics 

Harmonics are undesired oscillations in a system and they oscillate at integer 

multiples of the fundamental frequency. The voltage and current waveform in an AC 

system should be sinusoidal with constant amplitude, constant and single frequency. The 

harmonics distort the waveform of the fundamental.  

A staircase wave can be decomposed into its fundamental component and its 

harmonic components using Fourier series and is pictorially represented in Figure 4. In 

Figure 4, only the fundamental, the third and the fifth harmonics are shown for 

simplicity. Mathematically, the waveform is a summation of an infinite series of 

harmonics. The magnitude of the harmonics, decrease with increase in the harmonic 
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number. Harmonics must always be limited below threshold levels prescribed by 

standards [5], both in their THD and individual magnitudes. 

 

Figure 4: A staircase wave decomposed into its fundamental and first few of its 

harmonics 

 

The amount of distortion in the voltage or current waveform is quantified by 

means of an index called the total harmonic distortion (THD). The performance of a 

power-electronic device is dependent on the harmonic content in the output waveform. 

The THD in the voltage or current waveform is mathematically defined as the ratio of 

distortion current to the fundamental current. The formula to compute THD is given in 

equation 1.  
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The THD of a system greatly affects the active power in the system. The apparent 

power in a system is the product of the rms values of the voltage and current and is given 

by equation 2. 

sIsVS =  (2) 

The real power in the system is the product of voltage, current and the cosine of 

the angle (φ) between the voltage and current and is expressed by equation 3. 

φcossIsVP =  (3) 

The cosine term in the above equation is defined as the power factor of the 

system. The phasor representation of the system voltage and the current (current lagging 

the voltage) is shown in Figure 5. 

 

Figure 5: Phasor representation of voltage and current 
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Displacement power factor is defined as the cosine of the phase angle between the 

voltage and fundamental current. In a system without harmonics, the displacement power 

factor (dpf) is equal to the system power factor. Assuming a perfectly sinusoidal voltage, 

the power factor (pf) of the system is obtained as follows. 

sIsV

sIsV

S

P
pf

1cos1, φ
==  

1cos

1cos
1,

φ

φ

=

=

dpf

sI

sI
pf

 

dpf

THD

pf .
21

1

+
=  (4) 

The harmonics present in the system thus decreases the power factor of the 

system.  

Harmonics, being high frequency components of the fundamental, the harmonic 

voltages and currents flow through the periphery of the conductor and decrease the cross-

sectional area of the conductor. This results in the increase in the equivalent resistance of 

the conductor. This induces overheating in the wiring of motors, transformers and other 

electrical devices. It results in premature breakdown of the insulating materials and the 

reduction in the lifetime of the electrical machines. Thus, harmonics reduce the reliability 

and efficiency of the system. In order to reduce or eliminate harmonics from the system, 

a thorough analysis of the harmonics present in the system is required. Fourier series is a 

very efficient tool to analyze any periodic function.  
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1.3 Periodic function 

A function that repeats itself after a time-period T is defined as a periodic 

function. Mathematically a periodic function is defined in equation 5. 

)()( Ttftf +=  (5) 

 A periodic function is classified based on the functionality of the waveform and 

the symmetry of the waveform. Based on the functionality, a periodic function f (t) can be 

an even function, an odd function, or an arbitrary function. An even function is 

mathematically defined in equation 6 and an odd function is mathematically defined in 

equation 7. 

)()( tftf −=  (6) 

)()( tftf −=  (7) 

An arbitrary function is neither odd nor even, and is mathematically represented 

in equation 8.  

)()()( toddftevenftf +=  (8) 

Based on the symmetry of the waveform, a waveform can exhibit half-wave 

symmetry, quarter-wave symmetry or hidden symmetry. A periodic function f (t) is half-

wave symmetric if it satisfies the property expressed mathematically in equation 9. 








 +−=
2

)(
T

tftf  (9) 
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A periodic function that is both half-wave symmetric and is an even or an odd 

function exhibits quarter-wave symmetry. If the periodic function f (t) is shifted in time 

by a constant, then the periodic function exhibits a hidden symmetry.  

A periodic wave from the inverter can be decomposed into a series of 

fundamental and harmonic terms using Fourier analysis.  

1.4 Fourier series analysis 

A periodic signal f (t) of period T can be expanded into a trigonometric Fourier 

series of the form, 

( ) ( )[ ]∑ ∞
= ++=

1
sincos0

2

1
)(

k
tkkbtkkaatf ωω  (10) 

where, 

∫
−

=
2

2

)(
2

T

T

dttf
T

oa  

( )dt

T

T

tktf
T

ka ∫
−

=
2

2

cos)(
2

ω  
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( )dt

T

T

tktf
T
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−

=
2
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2
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T

π
ω

2
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Equation 10 can also be written in the following form. 

∑ ∞
= ++=

1
)cos(0)(

k ktkkAAtf θω  (11) 

where, 

2

0
0

a
A =  

22
k

b
k

akA +=  









−=

ka

kb
k arctanθ  

A0 is the DC component of the wave; Ak is the magnitude of the k
th

 harmonic 

component and kθ is the angle of the k
th

 harmonic component. The knowledge of 

harmonics and Fourier analysis is important to analyze the performance of the inverter 

and to improve the power quality of the AC voltage. The summary of the waveform 

symmetry and their respective Fourier coefficients are listed in Table II. 
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Table II: Fourier table summary 

 

Waveform 

symmetry 
Definition 

Fourier 

coefficients 

Fourier 

coefficients equal 

to zero 

Even f(-t)=f(t) ak bk 

Odd f(–t)=-f(t) bk ak 

Half-wave f(t)=–f(t+T/2) a2k–1, b2k–1 a2k, b2k 

Even, Quarter - 

wave 

f(–t)=f(t)  

and  

f(t)=–f(t+T/2) 

a2k–1 a2k, bk 

Odd, quarter - wave 

f(–t)=–f(t)  

and 

 f(t)=–f(t+T/2) 

b2k–1 b2k, ak 

 

This thesis focuses on the improvement in the performance of a cascaded 

multilevel converter. The thesis employs Fourier series analysis as one of the tools of 

analysis. The improvement in power quality is achieved by reducing the THD. 
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1.5 Multilevel converter 

Multilevel converters emerged as a solution to produce a closer to sinusoidal 

output voltage and minimize the need for filtering. In addition, the multilevel converter 

operates at the fundamental switching frequency, which makes the multilevel converter 

suitable for high power applications [7]. Multilevel converters (MLC) commonly operate 

as inverters [2]. Multilevel converters include a string of semiconductor devices, fed by 

capacitor voltage sources or separate DC sources (SDCS) [8]. The term ‘level’ refers to 

the number of voltage steps (m) produced by an MLC in one-quarter of a cycle (between 

zero and ninety degrees of an electric cycle). Typically the number of levels in a cascaded 

MLC is computed by m =(s+1), where s is the number of DC sources. An MLC produces 

a staircase waveform from a single or multiple DC sources based on its topology.  

The switching frequency in a multilevel converter is equal to the fundamental 

frequency (50 or 60 Hz). Hence, the loss due to frequency of switching is less. The 

switching losses in a solid-state device are proportional to the switching frequency and 

the number of switches in the system. The attractive features of multilevel converters are: 

a. Low switching dv/dt 

b. Low switching frequency 

The concept of multilevel voltage switching is as follows. Consider two DC 

sources connected as shown in Figure 6. The DC sources can be separate DC sources 

such as batteries. The magnitudes of the DC sources are equal. Three switches S1, S2 and 

S3 connect the DC sources to the load. The DC source switch combination is analogous 
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to a multilevel converter system, a multiple input DC system controlled by multiple 

switches to generate voltage potentials at various magnitudes. 

   

Figure 6: Multilevel converter concept 

 

When switch S3 is turned on with the other two switches in the off-state, the 

voltage across the load is zero. When switch S2 is turned on with switches S3 and S1 off, 

the voltage across the load is E2 and when S1 is on with switches S3 and S2 turned off, 

the voltage across the load is E1+E2. Thus a multi-potential environment is created in the 

system and the potential reflects across the load. The switching scheme that produces the 

voltage is summarized in table. In the table value zero for the switch signifies an off-state 

and value one signifies an on-state.  

Table III: Multilevel voltage switching concept 

 

Switch Voltage across the load 

S1 S2 S3 Volts 

0 0 1 0 

0 1 0 E1 

1 0 0 E1+E2 
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There are three topologies of MLCs. They are, 

a. Diode clamped (neutral clamped) multilevel converter 

b. Flying capacitor (capacitor clamped) multilevel converter and 

c. Cascaded multilevel converter 

The diode clamped and the flying capacitor type MLCs are fed from a single DC 

source. The DC voltage is equally divided employing a string of capacitors. In the diode 

clamped MLC, diodes are employed to clamp the voltages to produce a staircase voltage, 

hence the name diode clamped MLC. A diode clamped MLC is also known as neutral-

clamped MLC. The voltage clamping to produce a staircase is achieved via capacitors in 

a flying capacitor type MLC. A flying-capacitor MLC is also known as capacitor-

clamped MLC.  

Due to the presence of a large number of capacitors in the flying capacitor MLC, 

the device is bulky and the operation and control of the device is complex. Hence, the 

diode clamped and cascaded MLC are the two topologies that are extensively employed 

for various applications.  

The THD of the output voltage from a converter is limited by standards 

specifications. The THD of the output voltage can be reduced by eliminating or filtering 

out the harmonics from the system. The harmonics in the system can be filtered by 

passive low pass filters or the harmonics can be eliminated by harmonic elimination 

technique. 

The harmonic elimination method involves solving complex trigonometric 

equations. The voltage magnitude of the DC sources impacts the elimination of 
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harmonics in the output voltage. Harmonic elimination is simple when the DC source 

voltage magnitudes are equal and constant. Several researches have been undertaken in 

the field of harmonic elimination.   

A control strategy to maintain the capacitor voltages of a diode clamped MLC at a 

constant magnitude [10] was proposed. In this research the authors propose a 

mathematical model for a three-level diode clamped MLC and propose to control the 

uneven capacitor voltage magnitudes by an adaptive control technique. The control 

strategy is applicable only to the proposed mathematical model of the converter.  

A method to solve the trigonometric equations for harmonic elimination using 

resultant theory [11] was proposed.  In this research, resultant theory is employed as a 

method to simplify the trigonometric equations and obtain solutions for the equations. 

The work was extended and employed to eliminate harmonics in cascaded MLC with 

non-equal DC sources and the work was reported [12]. 

An active harmonic elimination technique, in which an FPGA processor is 

employed to measure and compute the firing angles for the elimination of harmonics in a 

cascaded MLC, was proposed [13]. The processor is coded to compute the firing angles 

for harmonic elimination in real time using resultant theory in real time and the results 

were published [13]. Several other researches that involve hybrid topologies for MLC, 

control strategies were reported, diode clamped and cascaded MLC being the focus.  

This thesis proposes a novel cascaded multilevel converter which produces more 

voltage levels from the same number of H-bridges. The proposed cascaded multilevel 

converter does not modify the topology of the classical cascaded multilevel converter. 

The THD of the proposed converter is lesser than the classical converter. 
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Simulations performed to verify the functionality of the proposed switching 

scheme are furnished. The simulation was performed using Ansoft’s Simplorer
©

 program. 

The results of the simulation show the harmonic content in the simulated output and the 

THD of the system.  

1.6 Organization of the thesis 

This thesis is organized as follows. Chapter II is an overview of cascaded 

multilevel converter. The chapter explains the theory of the converter, construction and 

operation. The decomposition of the produced periodic waveform from the multilevel 

converter into its Fourier components is shown. The section discusses harmonic 

elimination technique 

Chapter III discusses the modified switching scheme for the multilevel converter. 

The supporting mathematical concepts are discussed. The chapter discusses both the 

integer multiple voltage magnitude case as well as the unequal voltage magnitude case. 

The concept of resultant theory and its application to find solutions for the Fourier 

transcendental equation is discussed. 

Chapter IV deals with the development of the simulation model. The simulated 

results are compared and the performance of the system is analyzed. The chapter also 

discusses the voltage sensitivity and its impact in harmonic elimination of the produced 

voltage.  
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Chapter V summarizes and concludes the work and is the prolegomenon to the 

future research areas in this technology. 
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CHAPTER II 

CASCADED MULTILEVEL CONVERTER 

A cascaded multilevel converter is realized by the series (cascaded) connection of 

H-bridge inverters. The functional building block of a cascaded multilevel converter is an 

H-bridge inverter. Each H-bridge in the converter is fed by an independent DC-source. 

An m-level cascaded MLC is made of m–1 H-bridges and fed by m–1 separate DC 

sources. The DC source can be batteries, solar arrays etc. The magnitudes of the 

independent DC sources are all equal. The rating of all the transistors and the diodes used 

in the switches are the same. A four-level, single-phase MLC is shown in Figure 7. The 

load is connected across the cascaded bridges as shown. All H-bridges are connected in 

series as shown in the Figure 7.  
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Figure 7: Four-level cascaded MLC 
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Like all the other topologies of the multilevel inverter, the cascaded multilevel 

inverter produces a staircase voltage across its output terminals. The step size in the 

output voltage is equal. The operation of the cascaded MLC is as follows. Each H-bridge 

in the cascaded MLC can produce a periodic staircase wave, independent of one another. 

These periodic staircase waves add up since the bridges are connected in series, 

producing a staircase voltage of equal step sizes. Consider an H-bridge cell of the 

cascaded MLC supplied by the DC source E1 in Figure 8. 

 

Figure 8: H-bridge cell 

 

Switches BJT1 and BJT4 are turned on and switches BJT2 and BJT3 are turned 

off to produce the positive voltage. Switches BJT2 and BJT3 are turned on while BJT1 

and BJT4 are turned off to produce the negative voltage. A similar switching scheme is 

employed in the other two H-bridges of the cascaded MLC. Similarly, the output voltage 

from each H-bridge is shown in Figure 9. 
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Figure 9: Produced output voltage from each H-bridge 

The summation of the periodic output voltages from each H-bridge inverter 

results in the required step voltage. The cascade connection of the H-bridge inverters 

results in the required staircase voltage. This is shown in Figure 10
†
.  

 

Figure 10: Output voltage based on the classical switching scheme 

† - Graph not drawn to scale 
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The H-bridge inverter fed by the sources E2 and E3 remains turned off for a finite 

time after the H-bridge fed by source E1 is turned on. During this delay there is no flow 

of current in through the switches and hence, no voltage appears across the output 

terminals of the multilevel converter. This difficulty is overcome by turning on the 

switches connected to the same source terminals. While synthesizing the positive half of 

the cycle, the BJTs connected to the positive terminals of the non-synthesizing H-bridge 

are turned on.  

For example, to produce a 100 V across the source, BJT1 and BJT4 are turned on. 

In the other two non-synthesizing H-bridges, BJT5, BJT7, BJT9 and BJT11 are turned 

on. The BJT5 and BJT9 conduct naturally. The BJT7 and BJT11 cannot conduct current 

in the opposite direction as they are uni-directional switches. BJT7 and BJT11 receive 

positive gate pulses and the voltage across the collector emitter junction is zero which 

short-circuits the diodes D7 and D11 respectively, thus providing a closed path for the 

flow of current for all voltage levels, at all times. The scheme is pictorially represented in 

Figure 11. 
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Figure 11: Current path illustration for 100 V case 
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The switching table for all the voltage levels and the switch combinations are 

listed in Table IV. In the switching table, one signifies an on-state and zero signifies an 

off-state. 

Table IV: Switching table for MLC 

Voltage 

(V) 

BJT

1 

BJT

2 

BJT

3 

BJT

4 

BJT

5 

BJT

6 

BJT

7 

BJT

8 

BJT

9 

BJT 

10 

BJT 

11 

BJT 

12 

100 1 0 0 1 1 0 1 0 1 0 1 0 

200 1 0 0 1 1 0 0 1 1 0 1 0 

300 1 0 0 1 1 0 0 1 1 0 0 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 

–100 0 1 1 0 0 1 0 1 0 1 0 1 

–200 0 1 1 0 0 1 1 0 0 1 0 1 

–300 0 1 1 0 0 1 1 0 0 1 1 0 

 

To summarize, an m-level cascaded multilevel inverter consists of m–1 number of 

H-bridges, m–1 number of separate DC sources and 4 (m–1) numbers of switches. 

The H-bridge inverter fed by DC source E3 conducts for shorter durations than 

the inverter fed by source E2 which in turn has a less conduction time than the inverter 

fed by source E1.  

The discharge rate of the DC sources is not equal in an electric-cycle. This 

difficulty is overcome by sequencing the H-bridges every cycle to even out the battery 

discharge rates.  
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2.1 Sequencing 

Sequencing is a method in which the conduction time of a DC source is varied. In 

a cascaded MLC, the conduction time of the DC sources are unequal. One DC source is 

discharged for a longer time-period than the other DC source. By sequencing the 

switching pattern is varied such that the discharge rate of the DC-sources is evened out 

over a period of time. The concept of sequencing is explained as follows. 

Consider two separate DC sources (A, B) of equal voltage magnitudes. Let the 

discharge of A be twice of that of B. 

BtAt 2=  

The voltage magnitudes of the two sources are equal. Hence in the second cycle 

the switching of the semi-conductors are varied such that the discharge rate of B is twice 

that of A.  

AtBt 2=  

Thus the discharge rates of the DC sources are even out every two cycles by 

sequencing. Sequencing is pictorially shown in Figure 12
†
.Similarly sequencing can be 

carried out in an m-level cascaded multilevel converter to obtain an equal DC voltage 

source discharge rate.  

† - Graph is not drawn to scale. 
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Figure 12: Sequencing 

2.2 Fourier analysis of output waveform 

The output voltage from the cascaded multilevel converter is decomposed in to its 

Fourier components to analyze the harmonics present in the voltage, their respective 

magnitudes. This information quantifies to provide information on the THD of the output 

voltage from the cascaded MLC. The output obtained from a four-level cascaded MLC is 

analyzed using Fourier series. The simulated voltage is shown in Figure 13.  
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Figure 13: Four-level output waveform and its decomposed fundamental wave 

The first step rise occurs at θ1 and the subsequent rises occur at θ2 and θ3 

respectively as shown in Figure 13. The step falls, by symmetry occur at π – θ1, π – θ2, and 

π – θ3 respectively.  

The analysis of the voltage function based on its periodicity is as follows.   

1. The function repeats itself after a time period T, hence the function is 

periodic 
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2. The function satisfies the condition, f (–t) = –f (t). Hence the function is an 

odd function. 

3. The function satisfies the property, f (t) = – f (t+T/2). Hence the function 

is half-wave symmetric. 

4. The function exhibits odd symmetry and half-wave symmetry. Hence the 

function is an odd, quarter-wave, symmetric function. 

A general case for the voltage steps is assumed. From the Fourier table summary ( 

Table II12), the Fourier coefficients present in the given voltage function will be 

the b2k–1 terms, where k = 1, 3, 5...∞. 

∫=−
2

0

)sin()(
4

12

π

ωω
π

tdtktvkb  (12) 

Substituting the function of the waveform in equation 12, 

( ) ( ) ( )





















++=− ∫∫∫
2

3

sin3

2

2

sin2

2

1

sin1
4

12

π

θ
ωω

π

θ
ωω

π

θ
ωω

π
tdtkVtdtkVtdtkVkb

 (13) 

Integrating equation 13, 

( )[ ] ( )[ ]

( )[ ] 





















+

+
−=−

2
3

cos3

2
2

cos2
2
1

cos14
12 π

θω

π

θω

π

θω

π

tkV

tkVtkV

kb  (14) 
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We know that, 

0
2

cos =






 πk
 

Substituting the lower and upper limits in equation 14, 

( ) ( ) ( )( )3cos32cos21cos1
4

12 θθθ
π

kVkVkVkb ++=−  (15) 

Substituting the Fourier coefficient we get the Fourier series of the given voltage 

function is as follows. 

( ) ( ) ( )( )

∞=

++= ∑

K5,3,1

)sin(3cos32cos21cos1
4

)(

k

tk

k

kVkVkVtv ωθθθ
π  (16) 

Under ideal conditions, the voltage magnitudes of each step are assumed equal, 

i.e. V1 = V2 = V3 = VDC.  

The harmonics lead to poor performance of electrical systems and deteriorate the 

life of electrical and electronic devices. The THD of the produced voltage is high and 

does not meet the standards specifications. The need for elimination of as many 

harmonics out of the system as possible becomes a priority. The harmonics can either be 

filtered out of the system by using a low pass filter or by employing harmonic elimination 

technique [9]. Filtering techniques need passive, low-pass filters. The elimination of 

harmonics without the need for filters is an economic choice.  
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2.3 Harmonic elimination technique 

Harmonic elimination technique is a method to get rid of harmonics by judicious 

selection of the firing angles of the inverter. The harmonics elimination technique 

eliminates the need for expensive low pass filters in the system. The harmonic 

elimination begins with the Fourier series of the produced voltage. From equation 16, the 

fundamental voltage of the produced output is given by, 

( ) ( ) ( )( ) ( )tVVVtv ωθθθ
π

sin3cos32cos21cos1
4

)(1 ++=  (17) 

The third, fifth and the seventh harmonic of the system are given by the following 

set of equations. 

( ) ( ) ( )( ) ( )tVVVtv ωθθθ
π

3sin33cos323cos213cos1
4

)(3 ++=  (18) 

( ) ( ) ( )( ) ( )tVVVtv ωθθθ
π

5sin35cos325cos215cos1
4

)(5 ++=  (19) 

( ) ( ) ( )( ) ( )tVVVtv ωθθθ
π

7sin37cos327cos217cos1
4

)(7 ++=  (20) 

Two different cases for the harmonic elimination technique are analyzed. The one 

in which step sizes in the staircase function are equal and the one in which the step sizes 

are unequal are considered. 
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2.3.1 Case I  

In this case the voltage steps in the output voltage are assumed to be equal. When 

the cascaded MLC is fed by a battery source the magnitude of the DC voltage are 

equal, but when it is fed by a capacitor based source like a solar array, the 

magnitudes are not exactly equal. Hence an equal voltage magnitude case is the 

ideal condition of operation of an MLC. When the voltage steps are equal, the set 

of transcendental equations are as follows.  

We know that,  

dcVVVV === 321  

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )tdcV
tv

tdcV
tv

tdcV
tv

tdcV
tv

ωθθθ
π

ωθθθ
π

ωθθθ
π

ωθθθ
π

7sin37cos27cos17cos
4

)(7

5sin35cos25cos15cos
4

)(5

3sin33cos23cos13cos
4

)(3

sin3cos2cos1cos
4

)(1

++=

++=

++=

++=

 (21) 

In a three phase system, the triplen harmonics cancel out each other. The 

phenomenon is mathematically proven as follows. Consider the third harmonic of 

the produced output.  

( ) ( ) ( )( ) ( )tdcV
tav ωθθθ

π
3sin33cos23cos13cos

4
)(3 ++=  

The voltages in the other two phases are shifted by 120 degrees each, and the 

equation is given as follows. 
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( )( )
( )( )
( )( )

( )

( ) ( ) ( )( ) ( )tdcV

tdcV
tbv

ωθθθ
π

ω

θ

θ

θ

π

3sin33cos23cos13cos
4

3sin

12033cos

12023cos

12013cos
4

)(3

++=

















+

++

++

=

 

and  

( )( )
( )( )
( )( )

( )

( ) ( ) ( )( ) ( )tdcV

tdcV
tcv

ωθθθ
π

ω

θ

θ

θ

π

3sin33cos23cos13cos
4

3sin

24033cos

24023cos

24013cos
4

)(3

++=

















+

++

++

=

 

Hence, 

)(3)(3)(3 tcvtbvtav ==  

In a three-phase system,  

0)(3)(3)(3 =−= tbvtavtabv  

Similarly, 

0)(3)(3 == tcavtbcv  (22)  

Similarly, the other triplen harmonics cancel out each other. Hence, in a three 

phase system, one has to deal only with the other odd number harmonics. The 

amplitudes of the harmonics present in the output of the voltage are as follows.  
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( ) ( ) ( )( )3cos2cos1cos
4

1
ˆ θθθ

π
++= dcV

V   

( ) ( ) ( )( )35cos25cos15cos
4

5
ˆ θθθ

π
++= dcV

V  

( ) ( ) ( )( )37cos27cos17cos
4

7
ˆ θθθ

π
++= dcV

V  

The fifth and seventh harmonic voltages are to be eliminated from the system. 

The number of harmonics that can be eliminated from the system depends on the 

number of levels in the output voltage of the MLC. In an m-level converter, m–2 

number of harmonics can be eliminated. Therefore, in the four-level converter in 

this discussion, two harmonics can be eliminated. The equations are written as 

follows. 

( ) ( ) ( )( ) ( )
dcV

V
t

4

1
ˆ

sin3cos2cos1cos
π

ωθθθ =++  

1V̂ is the desired peak value of the fundamental voltage. 

( ) ( ) ( )( ) ( ) 05sin35cos25cos15cos =++ tωθθθ  

( ) ( ) ( )( ) ( ) 07sin37cos27cos17cos =++ tωθθθ  (23) 

By solving the above transcendental equations, the fifth and the seventh harmonic 

voltages can be eliminated from the system. The more the number of levels in the 

system, the more harmonics eliminated from the system. 
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2.3.2 Case II  

In this case, the unequal step voltage size in the staircase voltage is considered. 

From equations (17) to (20), the amplitudes of the fundamental and the harmonics 

of the output voltage is given.   

( ) ( ) ( )( )3cos,32cos,21cos,1
4

1
ˆ θθθ

π dcVdcVdcVV ++=  

( ) ( ) ( )( )35cos,325cos,215cos,1
4

5
ˆ θθθ

π dcVdcVdcVV ++=  

( ) ( ) ( )( )37cos,327cos,217cos,1
4

7
ˆ θθθ

π dcVdcVdcVV ++=  

The equations are rewritten to eliminate the harmonics from the system as 

follows. 

( ) ( ) ( )( )
4

1
ˆ

3cos,32cos,21cos1,
π

θθθ
V

dcVdcVdcV =++  

( ) ( ) ( )( ) 035cos,325cos,215cos,1 =++ θθθ dcVdcVdcV  

( ) ( ) ( )( ) 037cos,327cos,217cos,1 =++ θθθ dcVdcVdcV  (24)  

Note:  

1V̂ is the peak of the output voltage. 

The set of transcendental equations in case II are more complex than the 

equations in case I. The solution for the transcendental equations is difficult to obtain 

even with the computational power available today.  
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To summarize, an m-level cascaded MLC requires (m–1) number of H-bridges, 

(m–1) number of SDCS and (m–2) number of harmonics can be eliminated from the 

output voltage.  
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CHAPTER III 

PROPOSED CASADED MLC 

A cascaded multilevel converter fed by unequal DC sources is proposed and 

considered in this section. The magnitudes of the SDCS that feed the H-bridges are not 

equal but integer multiples of one another, i.e. an arithmetic progression. The switching 

of the inverter based on the previously developed switching scheme will produce a 

staircase waveform with unequal voltage steps at the output terminals.  

A switching scheme is proposed to accommodate integer multiple magnitude 

voltage sources and to produce a staircase with equal step sizes. It will also be shown that 

the number of voltage levels of the staircase voltage waveform is increased for the same 

number of H-bridges and sources. Also, as a result of more levels, the THD in the 

resulting waveform is reduced since more harmonics can be eliminated.  
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3.1 Modified switching scheme 

The modified switching scheme can be best explained by an example. Consider a 

cascaded MLC supplied by unequal but integer multiple sources. Let their magnitudes be 

100 V, 200 V and 300 V respectively. The voltage sources are connected to three 

separate cascaded H-bridges as shown in Figure 14. 

 

Figure 14: A four-level MLC fed by unequal DC sources 
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The classical switching scheme can produce a four level output. The first step in 

the voltage is zero volts, the second step is 100 V, the third step is 300 V and the fourth is 

600 V.  

In the modified switching scheme, the H-bridges are turned on and off to produce 

a 100 V step at each step of the produced staircase voltage. The magnitudes of the SDCS 

are an arithmetic progression. The voltage source in the system with the smallest 

magnitude is the 100 V source. The voltages in the output of the MLC can be made equal 

at steps in the following way.  

When the H-bridge fed by source E3 is turned on, the voltage across the output 

will be 100 V. The semi-conductor switches in the other H-bridges are fired to provide a 

closed path for the flow of current from this bridge. In the next time instant the bridge is 

turned off and the bridge supplied by the source E2 is turned on. The semiconductor 

switches are turned on to provide a closed loop path. A 300 V step is produced by turning 

off the H-bridges supplied by sources E3 and E2, and turning on the H-bridge supplied by 

the source E1. To produce a 400 V step, H-bridges supplied by source E1 and E3 are 

turned on, while keeping the H-bridge supplied by the source E2 turned off. Likewise, a 

500 V step is produced by turning on the H-bridges supplied with sources E2 and E1 

while keeping the H-bridge with source E3 off. Finally, to produce the 600 V steps, all 

the H-bridges are turned on.  The current path for a 400 V case is shown in Figure 15. 
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Figure 15: Current path to produce 400 V 
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The same logic is employed for the rest of the cycle and for every subsequent 

cycle. Thus, equal voltage steps are produced from the cascaded MLC fed by unequal 

SDCS. The synthesis of the staircase voltage is graphically shown in Figure 16. In Figure 

16, the voltage synthesis for half cycle is shown. The firing angle θ for the voltage steps 

are obtained by solving the Fourier equations for harmonic elimination technique.  
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The switching table for the synthesis of the staircase voltage is listed in Table V. 

Table V: Switching table 

 

 The output voltage from the converter is a seven-level staircase voltage and is 

shown in Figure 17.  
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Figure 17: Seven level staircase voltage 

 

Applying Fourier analysis on the above waveform, we get the following equation. 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

∞=

















++

++++

+++

= ∑

K5,3,1

)sin(

6cos321

5cos324cos31

3cos32cos21cos1
4

)(

k

tk

k kVVV

kVVkVV

kVkVkV

tv ω

θ

θθ

θθθ

π  (25) 

dcVEV == 31  
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VdcV

dcVEV

dcVEV

100

313

222

=

==

==

 (26) 

The modified switching scheme thus produces a 100 V step with every rise and 

fall in the staircase voltage. The transcendental equation is given as follows.  

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ] 0617cos517cos417cos317cos217cos117cos

0613cos513cos413cos313cos213cos113cos

0611cos511cos411cos311cos211cos111cos

067cos57cos47cos37cos27cos17cos

065cos55cos45cos35cos25cos15cos

16cos5cos4cos3cos2cos1cos
.4

=+++++

=+++++

=+++++

=+++++

=+++++

=+++++

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ
π

VdcV

 

      (27) 

The value of V1 was assumed as 600 V. Solving (27) we get a set of values for the 

firing angles which will eliminate (m–2) odd harmonics from the system. In this system, 

we consider the elimination of the fifth, seventh, eleventh, thirteenth and the seventeenth 

harmonics from the system. The triplen harmonics are not solved under the assumption 

that the triplens cancel out each other in a balanced three phase network, as discussed 

earlier.  
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The above transcendental equations were solved using MAPLE
©

 software. The 

transcendental equations were solved using the fsolve command in the software. The 

resulting angles in radians were converted into degrees and are listed as follows. 

 63.185° = 53.253°, = 36.628°, = 

 24.5°, = 16.625° =  7.86°, = 

654

3,21

θθθ

θθθ
 (28) 

The angles computed above do not result in absolute zero magnitudes of the odd 

harmonics intended to be completely eliminated, although they are relatively small 

compared to the fundamental component. They are listed below. 

VVVV

VVVVVVVV

08.017
ˆ,94.013

,52.011
ˆ,8.17

ˆ,4.15
ˆ,78.5991

ˆ

−=−=

−====
)

 

The non-zero and negative amplitudes of the harmonics are due to the limits of 

computational precision.  As a result of processor clock speed, the hardware 

implementation will face similar limitations while programming the angles.  

3.2 Voltage sensitivity analysis 

Harmonic elimination discussed in section 2.3, shows that the harmonics depends 

on the magnitudes of the DC voltage sources and the firing angles obtained by solving 

the transcendental equations. The firing angles are pre-calculated and are preprogrammed 

in the firing control device (e.g. a microprocessor). Voltage sensitivity analysis is 

performed to measure the impact of change in voltage magnitude of the DC sources on 
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harmonic elimination. Rewriting the transcendental equations of the output voltage from 

equation (25), 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

∞=

















++

++++

+++

= ∑

K5,3,1

)sin(

6cos123

5cos124cos31

3cos12cos21cos3
4

)(

k

tk

k kEEE

kEEkEE

kEkEkE

tv ω

θ

θθ

θθθ

π  

E1 = 300 V, E2 = 200 V and E3 = 100 V. 

Consider a change in the magnitude of source E2. The impact of the change in 

magnitude of the source in the change in the peak values of the higher order harmonics is 

analyzed as follows.  

The Fourier equation for the magnitude of higher order harmonic is as follows. 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) 
















++

++++

+++

=

6cos123

5cos124cos31

3cos12cos21cos3
4ˆ

θ

θθ

θθθ

π
kEEE

kEEkEE

kEkEkE

kV  (29) 

k = 1, 5, 7, 11, 13, 17 

The voltage sensitivity is obtained by the partial differentiation of the above 

equation with respect to the voltage. Partial differentiation of equation 29 with respect to 

E2 yields, 

( ) ( ) ( )[ ]6cos5cos2cos
4

2

ˆ
θθθ

π
kkk

E

kV
++=

∂

∂
 (30) 

The initial values of the firing angles have been computed and are listed in 

equation (28).  

Evaluating the above equation at the initial values of theta, 
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( ) ( ) ( )[ ]kkk

ii
E

kV
×+×+×=

=
∂

∂
185.63cos253.53cos625.16cos

4

02

ˆ

πθθ
 (31) 
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ˆ

=
=
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ˆ

=
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∂

∂
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7
ˆ

=
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∂

∂

ii
E

V

θθ
,  

05.1
02

11
ˆ

−=
=

∂

∂

ii
E

V

θθ
,  

15.0
02

13
ˆ

−=
=

∂

∂

ii
E

V

θθ
,  

275.0
02
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ˆ

=
=

∂

∂

ii
E

V

θθ
 

Similarly, the impact of change in the voltage magnitudes of the other sources are 

evaluated and listed in Table VI. 
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Table VI: Sensitivity table 

DC source Sensitivity equation 

 

Harmonic 

 

1
st
 

 

5
th

 

 

7
th

 

 

11
th

 

 

13
th

 

 

17
th

 

E3 

( )
( )
( )
















+

+=
∂

∂

6cos

4cos

1cos
4

3

ˆ

θ

θ

θ

π
k

k

k

E

kV
 2.86 0.48 –0.5 0.05 0.01 2.11 

E2 

( )
( )
( )
















+

+=
∂

∂

6cos

5cos

2cos
4

2

ˆ

θ

θ

θ

π
k

k

k

E

kV
 2.56 0.98 0.80 –1.005 –0.15 0.275 

E1 

( )
( )
( )
( )


















+

+

+
=

∂

∂

6cos

5cos

4cos

3cos

4

1

ˆ

θ

θ

θ

θ

π

k

k

k

k

E

kV
 3.52 –1.12 –0.15 1.19 1.26 0.54 

 

Table VI gives us the information on the impact of variations in the DC source 

magnitude on harmonic elimination. The higher the value of the sensitivity number in the 

switching table, the more is the sensitivity of that particular harmonic.. The first harmonic 

is the most sensitive to the DC source voltage variations. The information will help us 

understand the impact of voltage variations and develop suitable controls to offset the 

effects of DC source voltage variations in harmonic elimination and to maintain a 

magnitude of the fundamental wave as a constant.  
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The voltage sensitivity for a classical cascaded multilevel converter is as follows. 

The transcendental equation for the classical cascaded multilevel converter is given in 

equation. 

( ) ( ) ( ) ( ) ( )( )3cos3212cos321cos3
4ˆ θθθ
π

kEEEkEEkEkV +++++= (32) 

k = 1, 5, 7, 11, 13, 17 

For a voltage magnitude variation in one of the sources (e.g. E2), the sensitivity 

equation is obtained by partial differentiation of equation 32. 

( ) ( )[ ]3cos2cos
4

2

ˆ
θθ

π
kk

E

kV
+=

∂

∂
 

The values of thetas for the classical cascaded multilevel converter were 

computed and the sensitivities at the initial values of thetas were evaluated. 

θ1 = 11.682 
o
, θ2 = 31.182 

o
, θ3 = 58.579 

o
 

,75.1
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1
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=
=

∂

∂

ii
E

V

θθ
 

,0
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5
ˆ

=
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∂

∂

ii
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0
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7
ˆ

=
=

∂

∂

ii
E

V

θθ
,  
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ˆ

=
=

∂

∂

ii
E

V

θθ
,  
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72.0
02

13
ˆ

=
=

∂

∂

ii
E

V

θθ
,  

33.2
02

17
ˆ

−=
=

∂

∂

ii
E

V

θθ
 

The sensitivity of the classical cascaded multilevel converter is listed in Table 

VII. 

Table VII: Sensitivity table (classical cascaded MLC) 

 

DC source Sensitivity equation 
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1
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5
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7
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ˆ
θ

π
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∂
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 0.66 0.49 0.82 0.32 0.95 0.13 

 

From the two sensitivity tables, it can be concluded that the proposed scheme is 

more sensitivity to dc source magnitude variations for the first three harmonics i.e. 1
st
, 5

th
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and 7
th

. The higher order harmonics in the classical scheme, which are not even 

eliminated, are more sensitive to the dc source magnitude variations which should have a 

larger impact in the THD.  

The negative values of some of the sensitivities are nonsensical, given that the 

amplitudes (always positive numbers) are ideally zero when eliminated.  However, as 

discussed earlier, the computational precision of the angles did not yield these ideal 

values but some negative ones too.  This could be interpreted as the introduction of phase 

shifts for these harmonics due to this lack of precision, and a negative sensitivity would 

indicate a further reduction of the amplitude from a negative value. 

For example, for a one volt change in the magnitude of source E2, the magnitude 

of the 11
th

 harmonic (sensitivity = –1.05) changes from –0.5 V to –1.52 V. 

3.3 Source and switch utilization 

Source utilization is the time period over which an electric source is employed. It 

is the time period a source conducts in a cycle. Source utilization provides us the 

information on the discharge rates of the DC sources employed in the cascaded multilevel 

converter. The source utilization has to be equal or as close as possible. The firing angles 

computed from the transcendental equations provide us the information on the turn on 

and turn off of the sources for harmonic elimination. The firing angles are listed in 

equation 28, and the source utilization is computed.  
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The source utilization for a 100 ohm load is as follows. During the second step of 

the staircase, the 100 volt source is turned ON which supplies 1 A of current for 0.41443 

ms. The current put by the sources are the same as they are connected in series. The 

ampere hours of each source is the product of current supplied by the source at each step 

of the staircase and its respective time. The current supplied by each source and their 

respective times over half a period are listed in Table VIII. 

 

Table VIII: Source utilization 

 

Current E1 E2 E3 

1 0 0 0.41443 

2 0 0.35643 0 

3 0 0.56197 0.56197 

4 0.76977 0 0.76977 

5 0.46004 0.46004 0 

6 2.4829 2.4829 2.4829 

 

Source utilization of source E3 is computed as an example. 

AmsEU

EU

15364.40
3

)64829.2()476977.0()356197.0()141443.0(2
3

=

×+×+×+××=
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The source utilization is 36.78182 Ams for 100 V source, 39.19274 Ams for the 

200 V source and 40.55336 Ams for the 300 V source. The source utilizations are not 

identical as in the classical cascaded multilevel converter, which has equal source 

utilization.  However, the source utilizations in the proposed cascaded multilevel 

converter are not that far apart and can be employed in photovoltaic applications where 

the dc source is continuously charged by photovoltaic arrays during the day time.  

Switch utilization is defined as the time period a switch conducts in one cycle. 

Semiconductor switches are turned on and off as per the desired switching pattern. The 

switch utilization is calculated to compute the conduction time of each switch. The 

conduction time of the switches need to be equal or as close as possible. This is to ensure 

that the wear and tear of the switches is equal, which will help in maintenance and 

replacement. The switch utilization is computed with the information listed in equation 

28.  The switch utilization is 8.33 ms for all the switches for a 60 Hz cycle. 

With the above information, analysis is performed to obtain an equal switch and 

source utilization. 
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CHAPTER IV 

SIMULATION 

The simulation of the cascaded MLC was performed using Ansoft’s Simplorer
©

 

software. The circuit was built in the software from the devices available in the 

software’s model library. The commutation of the transistor switches in the cascaded 

MLC was controlled with state machines. The 5
th

, 7
th

, 11
th

, 13
th

 and the 17
th

 harmonics 

were expected to be eliminated by applying harmonic elimination technique. Fourier 

analysis was obtained from the simulated waveform to verify the theory. The simulation 

also yielded THD of the resultant waveform. The simulation was first carried out for a 

single-phase inverter and then for a three phase wye-delta connected inverter. The 

frequency spectrum and the THD for both cases were verified. This section explains the 

model development, state machine programming and the analysis of the simulated output 

waveform.  
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4.1 State machine programming 

A state machine is a circuit with internal states [14]. A state specifies a unique 

internal condition of a system. There are two types of state machines. 

i. Open loop state machine and 

ii. Closed loop state machine 

An open loop state machine begins with an active state and stops at the end of the 

last state. An open loop state machine can be used for a non-repetitive event. An open 

loop state machine is shown in Figure 18.  

 

Figure 18: Open loop state machine 

 

A closed loop state machine begins with an active state and at the execution of the 

last state, it loops back to the first state or the active state. The closed loop state machine 

can be employed for a repetitive event. A closed loop state machine is shown in Figure 

19.  
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Figure 19: Closed loop state machine 

 

In Simplorer
® 

the state machine is based on Petri Net theory [15]. The state 

machine allows us to model and control event driven processes. The model allows the 

user to control and run event driven simulations. In the state machines shown in Figure 

18 and Figure 19, the states are the events. The transition (trans) identifies the condition 

for transfer from one event to the next.  

The cascaded MLC is controlled by the gate pulses to the transistors. The gate 

pulses to the converter are provided by programming a state machine. In order to control 

the transistor using a control variable, the device property has to be modified. Double 

clicking on the device opens the device property window. 

The control signal of the device is listed under the parameters tab of the property 

window. The property window of BJT5 is shown in Figure 20. The use of the pin option 

is unchecked and the name of the control variable is entered as shown in Figure 20. Thus 

the control signal for each of the transistors present in the model is set.  
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Figure 20: Device property window 

 

Double clicking on the state in the state machine opens up the state property 

window. The program of every state is entered in this window. The status of all the 

transistors in the model can be specified in the state program using the SET command. 

The SET command sets the value of a gate control variable. The syntax for the SET 

command is  

SET “variable name: = 0/1”. 

For example, SET g5:=1 will turn on the transistor and SET g5:=0 will turn the 

transistor off. The window for a state in the state machine is shown in Figure 21.  
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Figure 21: State program window 

 

The state machine controls all the switches in the simulation. The status of all the 

switches has to be mentioned in each state. The variables g1 to g12 controls the switching 

of the respective switch in the cascaded multilevel converter. 

The time for transition in the state machine from one state to the next is 

determined by the value of firing angles previously calculated. It is converted in to time 

in seconds using equation  
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( )
180

3333.81 ×−
= + nn

nt
θθ

 (32) 

In equation 33, the value 8.33 corresponds to the half cycle time period of a 60 Hz 

system and 180 is the cycle period in degrees.  

The DEL command delays the validation of a variable from false condition to the 

true condition for the time mentioned in its syntax (to the right of the ## symbol). The 

syntax for DEL command is  

DEL “variable name ## time” 

For example, ‘DEL d1 ## 0.1 m’ will delay the validation of the variable d1 from 

low to high state for one millisecond.  The DEL command works in conjunction with the 

transition in the state machine.  

The condition for transition from one state to next state is specified in the 

transition and the condition is controlled in the state program. For example, the DEL 

command delays the validation of the variable d1 by one millisecond. When the variable 

d1 is validated from a false condition to true condition at the end of one millisecond, the 

transition identifies the validation and moves from the current state to the next state. The 

variable for state transition has to be specified in the transition. Double clicking on the 

transition opens the transition property window, where the transition variable is specified. 

A transition property window is shown in Figure 22. In the window, the priority value is 

not changed as we are not prioritizing any state transitions and is set at the default value 

unaltered.  
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Figure 22: Transition property window 

 

Thus a state machine is constructed for the proposed cascaded MLC. Each voltage 

step in the staircase waveform of the cascaded MLC requires a state. Single-phase and 

three-phase cascaded MLC were designed and controlled using state machines.  
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4.2 Single-phase cascaded MLC 

The model of a cascaded MLC developed using the software is shown in Figure 

23. The magnitudes of the three voltage sources E1, E2 and E3 in the model are 300 V, 

200 V and 100 V respectively. The state machine for the single-phase model is shown in 

Figure 24.  

 

Figure 23: Single-phase cascaded MLC 
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Figure 24: State machine for single-phase cascaded MLC 

 

The active state in the state machine is marked with a dot at its center as shown in 

Figure 24. After the completion of one cycle, the state restarts from the first active state 

once more and it continues till the end of the specified simulation time. The simulated 

single-phase seven-level voltage waveform is shown in Figure 25.  

 

 



  
6
4
 

 

F
ig

u
r
e
 2

5
: 

S
im

u
la

te
d

 v
o

lt
a
g

e
 w

a
v

e
fo

rm
 



 

 65 

The Fourier analysis and the evaluation of the THD in the simulated waveform 

was performed using the ‘day-post-processor’ tool. The frequency spectrum of the 

simulated single-phase waveform is shown in Figure 26.  
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The frequency spectrum of the simulated voltage shows that the intended odd 

harmonics, i.e. the fifth, the seventh, the eleventh, the thirteenth and the seventeenth 

harmonics are indeed eliminated from the system. The triplen harmonics are still present 

in the output voltage which is undesirable and does not meet the standards. The THD in 

the voltage is computed using the day post processor. The THD of the produced voltage 

was found to be 5.69 % and is above the standard limitations of 5 %. The power window 

which displays the THD is shown in Figure 27.  

 

Figure 27: Power window with THD 

 

The simulation was also performed on an inductive and capacitive load. The 

frequency spectrum and the THD of the simulation were obtained. The frequency 

spectrum of the simulation with an inductive load is shown in Figure 28. The THD is 

shown in Figure 29. The frequency spectrum shows that the proposed harmonics are 

eliminated from the system. The THD of the inductive system is 1.69 % which is lesser 

than the resistive load.  
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Figure 28: Frequency spectrum for an inductive load 

 

Figure 29: THD of an inductive load 
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The frequency spectrum of the proposed cascaded MLC with a capacitive load is 

shown in figure. The THD is shown in figure. The proposed harmonics are eliminated 

from the system and the THD is 4.13 % and is lesser than the resistive system.  

 

Figure 30: Frequency spectrum for a capacitive load 
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Figure 31: THD of a capacitive load 

 

The harmonic elimination technique effectively eliminates the harmonics from the 

system regardless of the kind of load connected to it. The THD gets better with a 

capacitive and inductive load.  

As discussed in section 2.3.1, the triplen harmonics in the output voltage are 

automatically eliminated. Thus, no attempt was made to cancel them with the switching 

scheme. 
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4.2 Three-phase cascaded MLC 

In three-phase simulation, three single-phase cascaded MLCs are connected in 

wye and the load is connected in delta as shown in Figure 32. The model is controlled by 

three independent state machines. The simulation of the three-phase system was 

performed the line-to-line voltages were plotted as shown in Figure 33. The line-to-

neutral voltage and the resulting line-to-line voltage are tabulated in Table IX. 
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As expected, the three-phase configuration cancels out the triplen harmonics from 

the system and the odd harmonics in the line-to-line voltage of the system. The frequency 

spectrum of the line-to-line voltage is shown in Figure 34. The frequency spectrum shows 

that the triplens and the proposed odd harmonics are indeed eliminated from the system. 

The frequency data is also tabulated in Table X via the simulation software. 
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The power window displaying the THD of the system is shown in Figure 35. It 

shows that the line to line voltage THD is 4.53%. 

 

Figure 35: Power window for three-phase simulation 

 

The salient features of the proposed cascaded multilevel converter are: 

i. More voltage levels from the same number of H-bridges 

ii. More harmonics are eliminated using harmonic elimination 

iii. Lesser THD 

iv. Control of the switches is simpler 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

The topology of the converter is not changed to accommodate the switching 

scheme for the proposed cascaded MLC. This improves the modularity of the cascaded 

multilevel converter. Harmonic elimination, which is a salient feature in an MLC, is 

employed. The following are the improvements in the proposed topology as opposed to 

the classical cascaded multilevel converter.  

In the proposed m-level cascaded MLC, the number of H-bridges required is the 

same as that of the classical switching scheme. The proposed cascaded multilevel 

converter produces more voltage levels and the scheme eliminates more harmonics as 

opposed to the classical cascaded multilevel converter.  More harmonics are eliminated 

form the voltage and the THD as a result is reduced.  

The sensitivity analysis data furnishes the details on the sensitivity of the 

cascaded multilevel converter to changes in the magnitudes of the DC voltage sources. 

The impact of these DC source voltage variations are quantified to analyze its impact on 

harmonic elimination and also to maintain the magnitude of the fundamental a constant. 
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The data can be used to design suitable controls to obtain a constant fundamental and to 

eliminate the other harmonics from the system.  

The simulation results are summarized as follows. In the single-phase cascaded 

MLC, the THD of the output voltage is 5.69 % and frequency spectrum shows that the 

triplen harmonics are present. In the three phase simulation, the THD of the output 

voltage is 4.53 % and the triplens are cancelled out of the system. The source utilization 

from Table 7 is 40.9 Ah for 100 V source, 71.4 Ah for the 200 V source and 112.9 Ah for 

the 300 V source. The switch utilization is 8.33 ms for all the switches. Note that the 

source and switch utilization are calculated over one full cycle. The source and switch 

utilization were computed manually by adding the time over which the respective switch 

and source conducts in one full cycle. 

 

5.1  Contribution of the thesis 

The results of this work were presented in the 39
th

 North American Power 

Symposium (NAPS 2007) conference [16].  

The result of the work was also presented at Ansoft’s First Pass system success 

workshop (2007) [17].  
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5.2 Future work 

This work has opened up following potential areas of research. 

i. The prototyping and testing of the proposed cascaded multilevel converter 

is the primary area of the research.  

ii. The modified switching scheme can be extended to the other two types of 

multilevel converters, i.e. the diode clamped MLC and the flying capacitor 

MLC. This will reduce the number of switches in the multilevel converter.  

iii. The back to back operation of cascaded MLCs employing the proposed 

modification is yet to be analyzed. 

iv. Harmonic elimination technique is limited a few number of voltage steps. 

This is due to computational complexity involved in solving the 

transcendental equations. Methods to obtain solutions for the 

transcendental equations have to be explored. 

v. Based on the voltage sensitivity information suitable control techniques 

can be implemented to the converter, which will improve the robustness of 

the converter.  

vi. The sensitivity of the cascaded multilevel converter in harmonic 

elimination with respect to the firing angles is yet to be analyzed. 

vii. Real time computation of firing angles for harmonic elimination during 

dynamic voltage variations is yet to be explored. This will help implement 
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controls to maintain the magnitude of the fundamental voltage constant 

and eliminate harmonics. 
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