
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2009

Performance Engineering of a Lightweight Fault
Tolerance Framework
Hua Chai
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Chai, Hua, "Performance Engineering of a Lightweight Fault Tolerance Framework" (2009). ETD Archive. 798.
https://engagedscholarship.csuohio.edu/etdarchive/798

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216946412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/798?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F798&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


PERFORMANCE ENGINEERING OF A LIGHTWEIGHT

FAULT TOLERANCE FRAMEWORK

HUA CHAI

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

Taiyuan University of Technology

July, 2005

MASTER OF SCIENCE IN COMPUTER SCIENCE

Taiyuan University of Technology

July, 2007

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December, 2009



This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Wenbing Zhao

Department/Date

Dr. Yongjian Fu

Department/Date

Dr. Lili Dong

Department/Date



To my loved mother and father



ACKNOWLEDGMENTS

I would like to thank the following people:

Dr. Wenbing Zhao for all his full-of-insight guidance as my supervisor, and

for the virtues I learned from him.

Dr. Yongjian Fu and Dr. Lili Dong for their patience to convey the

fundamental knowledge in the first semester.

Dr. Dan Simon, Dr. Nigamanth Sridhar, and Dr. Changsu Yu for their

elaborately prepared lectures which imparted knowledge to me, and their perspectives

of different things that enriched my view.

Robert Fiske for my improvement in English writing and better understand-

ing of American culture.

Honglei Zhang, Song Cui, Gang Tian, and Bo Chen for their kind help

and friendship.

I would also thank my mother. She supported me all the time.



PERFORMANCE ENGINEERING OF A LIGHTWEIGHT

FAULT TOLERANCE FRAMEWORK

HUA CHAI

ABSTRACT

It is well-known that the Paxos algorithm can be used to build provably correct

practical fault tolerant systems. In this thesis, a lightweight consensus framework -

Paxos-Based Fault Tolerance (PFT) framework and its practical implementation is

presented. It also includes how the system tolerates faults under practical condi-

tions where the replicas might not be strictly homogeneous due to the asynchrony

of their deployment environment. A comprehensive performance evaluation study

is performed on the PFT framework. The approaches that can optimize the fault

tolerance mechanisms under various practical scenarios are also discussed.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

NONMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACRONYM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Consensus Algorithm . . . . . . . . . . . . . . . . . . . . 6

2.1.3 State Machine Replication . . . . . . . . . . . . . . . . . 6

2.2 Paxos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

III. PFT FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Replication Protocol . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Data structures . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.4 State Log . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

IV. PFT UNDER CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



4.1 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.3 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Garbage Collection and Checkpoint . . . . . . . . . . . . . . . . 24

4.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.3 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Catch-Up Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 View Change Mechanism . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.3 Algorithm design . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.4 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . 36

4.4.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.6 State Transfer . . . . . . . . . . . . . . . . . . . . . . . . 38

V. PFT UNDER FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Basic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



5.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Catch-up mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 View change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

VI. SUMMARY AND FUTURE RESEARCH . . . . . . . . . . . . . . . . . 66

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



LIST OF TABLES

Table Page

I Average throughput and latency under batching(a). . . . . . . . . . . 51

II Average throughput and latency with batching(b). . . . . . . . . . . . 52

III Performance for MBQ and PBQ with 5 replicas involved. . . . . . . . 61

IV Performance for MBQ and PBQ with 7 replicas involved. . . . . . . . 61

ix



LIST OF FIGURES

Figure Page

1 Protocol execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The view change algorithm for the PFT framework. . . . . . . . . . . 32

3 State transfer optimization. . . . . . . . . . . . . . . . . . . . . . . . 39

4 The main components of the PFT framework. . . . . . . . . . . . . . 41

5 The interaction of the main components during normal operation. . . 44

6 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 48

7 End-to-end latency as a function of system throughput for different

batch sizes (with 30 concurrent clients). . . . . . . . . . . . . . . . . . 51

8 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 52

9 Fault scalability with and without batching. . . . . . . . . . . . . . . 53

10 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 54

11 Throughput as a function of number of concurrent clients. . . . . . . 55

12 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 58

13 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 60

14 Throughput vs. elapsed time around the view change. . . . . . . . . . 64

15 View change latency as a function of the number of accept records. . 65

16 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . 65

x



ACRONYM

PFT Paxos-Based Fault Tolerance

BFT Byzantine Fault Tolerance

PBFT Practical Byzantine Fault Tolerance

MBQ Multicasting-Based Query

PBQ Primary-Based Query

Q/U Query/Update

HQ Hybrid Quorum

xi



CHAPTER I

INTRODUCTION

In distributed multi-server systems, state machine replication is often used to

ensure consistent state changes and outputs in response to a set of inputs. However,

due to the existence of faults and failures, consensus is difficult and not always to be

reached. In practical environment, messages can be delivered out of order, delayed

for a long time, or lost during transmission; replicas may pause for a long period, fail

to execute, and possibly restart. In a fault tolerant system, it is essential to prevent a

fault from causing consensus failures, otherwise, it can lead to the divergence of state

and confusing outputs to the clients and other components.

Consensus algorithms play an important role in state machine replication. Until

now, a number of consensus algorithms and related fault tolerant frameworks have

been proposed. The ones having been widely studied are the family of Byzantine

Fault Tolerance (BFT) algorithms [1] and Paxos [2]. Due to the need to tolerate

Byzantine faults, BFT is very costly. Once a client request is received by the leader,

BFT protocols often involve two heavy communication steps. Paxos, however, incurs

much less overhead, although it tolerates only benign faults. Paxos is very efficient in

1



2

common case(normal execution) where all replicas agree with a unique leader and the

leader is not faulty. Due to its efficiency, Paxos has been used at Google’s distributed

Chubby locking service system [3].

Although the Paxos algorithm is well-described [4], it still requires system design-

ers to make certain protocol extensions to apply it to practical systems [5]. In real

world systems, the replicated servers might not be strictly homogeneous due to the

asynchrony of their deployment environment. In particular, practical issues such as

liveness and recovery must be addressed. For a practical fault tolerant system, how

to operate efficiently under various non-desirable conditions deserves a great deal

of attention. However, most research efforts on fault tolerant frameworks or con-

sensus algorithms focus on optimizing the runtime performance under well-behaved

system conditions. They mainly focus on analyzing and optimizing fault-free per-

formance [1, 6] with few implementation and evaluation details reported [7]. Even

though optimizing runtime performance for fault-free conditions is important, we be-

lieve that it is more crucial to design a fault tolerant system that operates gracefully

under various faults and undesirable conditions. Such system is designed to cope with

faults anyway.

In this thesis research, we focus on a number of important issues:

• How to select a new leader if the current leader fails.

• How to synchronize the state of a recovering replica.

• How to adjust the system parameters for optimal performance under various

conditions.

The decision to focus on these issues is out of the following considerations:

(1) A robust leader election algorithm is necessary for the system to make progress

under faulty conditions. According to Classic Paxos, the existence of a unique



3

leader is required to ensure liveness. If the leader crashes completely or cannot

be accessible, a new leader needs to be chosen.

(2) A complete and efficient recovery mechanism is needed to keep state consistency

among replicas. A replica missing order requests or client messages may result

in the divergence of state and inconsistent outputs to clients. To prevent this

risk, the system must help such a replica catch up and get state updated with no

apparent effect on the system performance.

(3) Different systems may need different configurations. A fault-tolerance system

should be able to get expected performance through selecting suitable parameters.

The research is carried on by implementing a lightweight fault tolerance frame-

work —Paxos-Based Fault Tolerance (PFT) framework that is designed according to

Classic Paxos [8]. The replicas can communicate with each other asynchronously and

maintain consensus by tolerating benign faults under various practical conditions.

A significant advantage of the PFT framework is lightweight. It is simple to design

because we choose not to tolerate Byzantine faults. It is unclear to us if we can achieve

effective fault isolation in the presence of malicious adversaries that are determined

to compromise the system. The other three important features of the replication

protocol are that it is agreement-based, it is efficient for wide area networks [9] and

it supports batching.

This thesis is organized as follows.

Chapter II provides background information and introduces related work. In par-

ticular, the suite of Classic Paxos algorithms are introduced. Chapter III describes

the PFT framework. In chapter IV, we identify a number of practical issues facing our

PFT framework. Two catch-up mechanisms and a novel view-change algorithm are

discussed. The proof of correctness for the view change algorithm is also presented.



4

In chapter V, we report experimental results of the PFT framework. Chapter VI

concludes the work for this thesis and provides future work.



CHAPTER II

BACKGROUND

2.1 Terminology

2.1.1 Consensus

To design a robust distributed fault-tolerant system, a fundamental problem to

be solved is for all non-faulty replicas to reach consensus. Consensus can be seen as a

process that requires a group of participants to agree on at most one single result. For

example, replicas in a distributed database system need to agree on an operation for

a given transaction; replicas in a file system need to maintain consistent file images;

replicas in a flight control system need to maintain consistent state for any flight.

This problem can be difficult to deal with when one or more participants are faulty

or their communication may experience failures [10]. If the systems mentioned above

encounter consensus failures, the consequence may be extremely serious, therefore, a

number of consensus algorithms have been proposed to ensure agreement among the

participants despite failures [11].

5



6

2.1.2 Consensus Algorithm

The consensus issue has been of perennial interest among researchers in the field

of distributed systems. Aiming to find the most optimal, provably correct solution

to the consensus problem, numerous algorithms have been proposed [11]. They are

designed for participants in a system to reach consensus with the presence of faults

and communication failures.

A consensus algorithm needs to ensure two important properties: safety and live-

ness. The safety property ensures that consensus can be reached for each algorithm

instance. The liveness property ensures progress of the system in the existence of

faults.

The well-known consensus algorithms are BFT algorithms [1, 12, 13] and Paxos

algorithms [2, 6, 14, 15, 16].

2.1.3 State Machine Replication

State machine replication [17] is a common approach to building fault tolerance

frameworks. The core component of a consensus framework is the consensus protocol.

A consensus protocol can be seen as the extension or application of a consensus

algorithm for specific environment.

State Machine Replication Approach

”State machine replication is a well-known fault tolerance technique for building

distributed services”[7, 17] and it is also a technique for converting a consensus al-

gorithm into a fault-tolerant, distributed implementation. It is a general method for

”implementing a fault-tolerant service by replicating servers and coordinating client

interactions with server replicas. The approach also provides a framework for un-

derstanding and designing replication management protocols. Many protocols that



7

involve replication of data or software –be it for masking failures or simply to facili-

tate cooperation without centralized control –can be derived using the state machine

approach[18].”

State machine replication can be designed according to the following rules [18, 19]:

1. Implement the same state machine on multiple, independent replicas.

2. Receive client requests and interpret them as inputs.

3. Choose an ordering sequence for the inputs and submit each input in an equivalent

order at each state machine.

4. Execute each input in the chosen order on each state machine.

5. Respond to the client with the output.

6. Monitor differences in state or output of each state machine.

State machine replication requires the application to be deterministic. If two

replicas start at the same state and receive identical sequences of inputs, they should

end at the same state and produce identical outputs. Consensus is fundamental to

state machine replication [17], so it is crucial to choose a robust consensus protocol.

Consensus Protocol

Consensus protocols are designed on the basis of consensus algorithms. Basically

consensus protocols can be classified into two classes: quorum-based protocols and

agreement-based protocols.

Quorum-based protocol

In the system with using such a protocol, only a quorum of replicated servers par-

ticipate in ordering messages. Replicas are not required to communicate with each



8

other directly. When one or more replicas in the quorum crash or become inacces-

sible, it is necessary to add extra replicas from the rest of the group to reconstruct

the quorum. Examples of quorum-based protocols are Query/Update (Q/U) [12] and

Hybrid Quorum (HQ) [20].

Agreement-based protocol

The agreement-based protocol requires all non-faulty replicas to participate in or-

dering messages. It is based on multicasting and replica-to-replica communication.

Such a protocol may become much less scalable than the quorum-based protocol as the

number of faults tolerated by the system (thus the number of replicas) increases [12].

Another difference between this type of protocol and a quorum-based protocol is that

the quorum-based protocol has the risk that the system can never expect when a

quorum might fail, which may need extra communication steps to guarantee consen-

sus; an agreement-based protocol forms its quorum dynamically during the ordering

process and the system does not need to expect a quorum’s failure as long as there

is enough non-faulty replicas in the system.

2.2 Paxos

The Paxos algorithm is proposed in 1978, described and named in 1990, and

published in 1998 [2]. This is an algorithm for solving consensus problem in tolerating

benign faults in distributed environment.

The consensus process described in Paxos is for a group of participants to choose

a single value. Paxos defines three roles for participants: proposers, acceptors and

learners. Proposers propose a value, acceptors choose the value, and learners learn

the value after the value has been chosen.

The assumption for the system to implement Paxos is that replicas can com-



9

municate with each other in asynchronous way. The system only needs to tolerant

non-Byzantine faults: replicas may work at arbitrary speed and they may fail and

restart; messages can be delivered arbitrarily long, can be lost, can be duplicated but

they are never corrupted [8].

Paxos needs to guarantee the following requirements:

Safety

• Only a proposed value can be chosen.

• For each algorithm instance, only a single value can be chosen.

• Only a chosen value can be learned by a learner.

The Paxos algorithm executes in two communication steps:

Phase 1 (Prepare)

a. A proposer selects a sequence number n for its proposal and requests all accep-

tors to accept its proposal.

b. If an acceptor gets the proposal with a sequence number n higher than that

of any proposal it has accepted, it accepts this proposal and promises that it

will not accept any future proposal with a sequence number less than n. If

an acceptor accepts this proposal, it responses to the proposer with the latest

chosen value of the highest-numbered proposal.

Phase 2 (Accept)

a. If the proposer is informed that majority of acceptors have accepted the proposal

with sequence number n, it picks a value for acceptors to choose. If the responses



10

from acceptors contain any chosen value, the proposer picks the value from the

proposal with the highest sequence number; otherwise, the proposer can pick

any value for acceptors to choose.

b. Upon receiving the proposed value for the accepted proposal with sequence

number n, an acceptor needs to choose this value. Once the value gets chosen,

it is informed to all learners. Because learners are not reliable, it may need any

learner that learns the chosen value broadcasts the value to inform all other

learners. A learner that misses to learn a chosen value needs to ask acceptors.

Paxos Family

To best apply Paxos in distributed environment, a family of algorithms based on

the Classic Paxos has been developed, such as Fast Paxos [14], Cheap Paxos [15] and

Fast Byzantine Paxos [6] Multicoordinated-Paxos [21] and Generalized Paxos [16].

Fast Paxos [14] is an optimized version of Classic Paxos in common case, which

only requires two communication steps for participants to reach consensus. Although

the optimized Paxos has fewer communication steps than Classic Paxos, it is not

always the best choice for all deployment cases. Fast Paxos may suffer from collision

problem which is not a concern for Classic Paxos. The performance will degrade

if collisions occur. Furthermore, Fast Paxos might not perform better than Classic

Paxos in wide area networks [9]. In wide area network, Classic Paxos has a significant

probability of having a lower latency than Fast Paxos. Besides, to tolerate identical

number of faults, Fast Paxos requires more replicas than Classic Paxos.

Disk Paxos is designed for implementing any fault-tolerant system composed of

connected processors and disks. Like Classic Paxos and Fast Paxos, it tolerates non-

Byzantine faults, but includes more detail on disk accessing. It claims that as long

as the system exists only one non-faulty processor that can read and write majority



11

disks, Disk Paxos can guarantee progress for the system [22].

Cheap Paxos tolerates f faults with f + 1 main processors executing the system

and f auxiliary processors only handling the failure of a main processor[15]. The

main processors perform Classic Paxos while the auxiliary processors only work when

a main processor fails. Cheap Paxos is implemented dynamically. When a main

processor fails, the auxiliary processors reconfigure the system, remove the failed

processor and reset quorums size in order to allow the remaining main processors

proceed. Because of dynamical reconfiguration, Cheap Paxos is also referred to as

Dynamic Paxos. After finishing the reconfiguration, the main processors resume

execution.

Fast Byzantine Paxos [6], also referred to as Byzantine Paxos protocol, is designed

for improving the common case performance while tolerating Byzantine faults. It

requires fewer steps than a general BFT protocol, therefore, it can be seen as an

improved BFT protocol.

2.3 Related Work

The Paxos algorithm [2] is the foundation of this thesis work. We adapted the

algorithm for state machine replication and made a number of optimizations not seen

in the original algorithm.

Google first uses Paxos at its distributed Chubby locking service system [3].

Chubby is a fault-tolerant system and has been used by several Google systems, such

as the Google File system and Bigtable which are also called Chubby clients. Like

Chubby, our framework also uses replication to tolerate faults and chooses a leader

among those replicas. Chubby helps clients to find the leader and it is the leader

to serve all client requests. In our framework, all replicas including the leader serve

all client requests and clients do not need find the leader. Requests from clients can



12

be guaranteed to reach the leader by multicasting-based communication. In other

word, the replication system is almost transparent to clients. If the leader fails, a

new leader is automatically elected. Chubby requires replicas to compete for a lock

to become the leader, while in our framework we use dynamic view change to solve

leader election problem. Chubby uses coarse-grained locks and claims that they im-

pose much less load on the lock server than fine-grained locks do. In this aspect, our

framework is also less load structure because it only replaces a leader as it fails. As

Chubby elects a new leader, it takes long Chubby outages, the availability of which

is hard to be improved due to its using coarse-grained locks. In our work, we try to

reduce heavy recoveries and use lightweight catching up instead.

Tushar Chandra [5] and his partners describe their experience in building a fault-

tolerant database system into Chubby using the Paxos consensus algorithm. Chubby

uses this database to store its state. Except the work mentioned in [3], they im-

plement a extra fault-tolerant log for their system in addition to the database log

which is distributed among replicas. The fault-tolerant log records all consensus pro-

tocol actions locally and persistently. Replicas can use this log to reconstruct state

information when they re-join and also use this log for lagging replicas to catch up

their state. They claim that it only needs a single disk write to each replica’s log

per protocol instance. Their fault-tolerant log is similar to the state log described in

this thesis, which is replicated over all replication servers. The difference is that the

state log records only state history for ordered messages(including ordering number,

ordering state and message information) not algorithm actions. To prevent critical log

writes from unexpected delays, in the implementation part we choose asynchronous

disk write to update our state log. Like the replication log in [5], replicas truncate

their state logs as a snapshot is informed but in our framework the snapshot is taken

by replicas not clients and there is no snapshot synchronization problem. In this



13

paper [5], they also demonstrate some engineering problems encountered including

disk corruption, leader status loss. For disk corruption, they use a marker to identify

if a replica has a corrupted disk. We use different recovery strategies from that used

in the article. In our framework, we combine view change and checkpoint algorithms

to help a rebuilding replica to determine its state. The only common aspect for this

part is that it allows a recovering replica to participate in Paxos as a non-voting

member. In our framework we deal with rebuilding or lagging replicas in the similar

way. In [5], if a leader lost its status, it cannot regain it again. This can be guaran-

teed by using a global epoch number. In our work, we use global view identification

and view change algorithm for our framework to solve this problem. A leader cannot

request other replicas to accept it in two different views. An amphibious leader will

be finally replaced by view change. The work in [5] contains runtime consistency

checking. However, it is more based on testing purpose. In our replication system,

we provide runtime consistency checking which not only guarantees the safety of the

system but works with catching up strategies. Our work also includes reducing leader

failovers and runtime overhead caused by software bugs which are also considered in

the Tushar’s work.

Other related work to this thesis is about catch-up mechanism and view-change

algorithm. They can be summarized as follows:

PBFT framework [1] uses a view change algorithm for leader choosing as well.

Different from PBFT, the view change algorithm used in PFT framework is optimized.

It costs less for installing a new view. As for dealing with recovery problems, PBFT [1,

23] mainly focuses on message retransmission and state transfer. It requires replicas

periodically share message information to get missing client messages back. Through

this approach, if a replica notices that other replicas may have lost messages, it

retransmits the missing messages to them. If a replica cannot get missing messages



14

retransmitted from other replicas, PBFT requires the replica to ask a retransmission

from the client. A replica that cannot get messages back by both ways needs a

state transfer to catch up. This work mostly focuses on client message loss and

retransmission instead of ordering messages.

Another relevant work is in Zyzzyva/Zyzzyva5 [13] that allows the replica finding

a hole in its ORDER−REQ message history to send a FILLHOLE message to the

primary. The FILLHOLE message is used to request the retransmission of missing

ORDER−REQ messages. After sending out a FILLHOLE message, if the replica

cannot receive the missing messages within a given period of time, it broadcasts

the FILLHOLE message to all replicas for retransmission of the missing messages.

However, it does not present much evaluation on the algorithm’s performance.

The Q/U protocol [12] uses its replica history to do recovery. The replica history

is used by replicas to retain operation-related information. Replicas are allowed to

share their latest replica histories with clients. If clients find that replicas reach to

different state by detecting replica histories, they need to bring the replicas into a

consistent state. However, this recovery approach is too tied to the client. In our

work, we don’t want the replication recovery to rely on any client and try to reduce

the dependency between the replica and the client.



CHAPTER III

PFT FRAMEWORK

3.1 Framework Design

In the PFT framework, an adapted version of Paxos protocol is used to implement

state machine replication. A state log is designed to record state information in each

state machine.

3.1.1 System Model

We assume that the applications running on the top of the PFT framework follow

the client-server interaction model where a client issues a request to the server repli-

cas and waits for the corresponding reply before it issues a new one. All processes

(including clients and server replicas) may be subject to non-malicious faults, and

the network may lose messages. We assume that there are 2f + 1 replicas available

to tolerate up to f faulty replicas. There is no restriction on the number of faulty

clients. One of the replicas is designated as the primary and the remaining ones as the

backups. Furthermore, we assume that the replicas execute deterministically. How to

15



16

properly handle replica nondeterminism is important, however, it is out of the scope

of this thesis research.

3.1.2 Replication Protocol

In the PFT framework [24], an adapted version of Paxos protocol is used. The

replication protocol executes in two-phases during normal operation. In this protocol,

the primary (the leader of the replicas) plays the role of the unique proposer. Why the

protocol allows the unique proposer instead of multiple proposers will be explained in

the next chapter. In a nutshell, the protocol works as follows. When the primary gets

a request message from a client, it assigns the request a total order with a sequence

number and prepares an ordering request for this message. Once a replica (including

the primary itself) gets an ordering request, it accepts the designated order in the

ordering request (acting as an acceptor). When the primary learns that the majority

of replicas (f + 1) have accepted the designated order, the primary notifies all other

replicas, which would act as learners, to commit to the designated order by sending

another ordering request. Once an order is committed, the corresponding request

message is ready to be executed by the application.

The detailed operations of the replication protocol are described below (assume

the primary will not crash).

Accept phase

a. When it receives a non-duplicate request from a client in the form

< REQUEST, c,m, data >, the primary sends an ACCEPT request

< ACCEPT, n, c,m > to all replicas, where c is the client identification number,

m is the client message number, and n is the sequence number representing the

total order of the request.



17

(a) Replication algorithm under normal oper-
ation.

(b) Replication algorithm with one faulty
replica.

Figure 1: Protocol execution.

b. Upon receiving an ACCEPT request < ACCEPT, n, c,m >, a replica ac-

cepts the order with the sequence number n if it has not accepted an order

with a higher sequence number than n and promises that it will never accept

any order with a lower sequence number than n. If the replica accepts this

order, it responds to the primary that it has accepted this order by sending

a ACCEPTACK message < ACCEPTACK, n, i >, where i is the replica

identification number.

Commit phase

After sending out a ACCEPT request < ACCEPT, n, c,m >, the primary

keeps collecting ACCEPTACK responses to the ACCEPT request. If the pri-

mary collects theACCEPTACK responses< ACCEPTACK, n, i >(including

the one the primary sent out) from the majority of replicas, it sends another

ordering request - a COMMIT request < COMMIT, n > to all replicas. On

receiving this COMMIT request, a replica needs to commit to this order. Once

the order is committed, the corresponding request message is ready to be exe-

cuted by the application.

Figure 1(a) and Figure 1(b) show the operations of the replication protocol with

and without faulty replica existing, separately. In the figures, there are three replicas



18

(2f + 1 = 3) available to tolerate up to one (f = 1) faulty replica. It requires

that there must be two replicas (f + 1 = 2) to form the quorum(a group composed

of the majority of replicas). At the accept phase of both figures, when the primary

(Replica0) receives a client request, it assigns the request a total order with a sequence

number and prepares an ACCEPT request for this message, then it broadcasts the

ACCEPT request to all replicas. Once a backup (Replica1 or Replica2) accepts

this order, it sends an ACCEPTACK response to the primary. If there is no faulty

replica (Figure 1(a)), the primary can form the quorum with any backup (Replica1

and Replica2). If there is a backup (Replica2 in Figure 1(b)) that crashed before the

quorum is formed, the primary still can form the quorum with Replica1 as long as

the primary can get the ACCEPTACK response from Replica1. Once the primary

learns that the majority replicas (the primary and Replica1) have accepted this order,

it sends a COMMIT request to notify all replicas to commit to this order. According

to the two figures, the same case is for the replication protocol to tolerate up to any

f faulty replicas. However, it must be based on the premise that the primary is alive

during the whole ordering process.

3.1.3 Data structures

Request queue: the data structure is used to store client requests. Once a replica

receives a client request, it inserts the request into the request queue. Certificate: the

data structure is used for the primary to record accept decision from replicas for a

total order. When the primary prepares a total order for a client message, it creates

a certificate for this order. When the primary gets an ACCEPTACK response, it

records the response in the certificate. The primary can learn if an order can be

committed or not by checking the corresponding certificate. Order table: the data

structure is used to store a set of order records. Each order record contains the basic



19

information for a total order: the sequence number and the corresponding request

message for the total order. Once a replica accepts an order, it constructs an order

record and inserts it into the order table. Response queue: the data structure is used

to store responses to clients. Once a replica executed a client request, it generates a

response to the request and inserts the response into the response queue. If later on

the replica receives this request again, it gets the corresponding response from the

response queue and resends it to the client.

3.1.4 State Log

The state log, built in each replica, is an important component of the PFT frame-

work. The log records ordering information and state information for orders. The

state for each order has two values: A and C. A represents that the corresponding

order has been accepted and C represents that the order has been committed.

In an ordering process, when a replica steps into another state, it first needs to log

the state for the order. According to our replication protocol, a complete ordering

process requires each replica to have at most two writes to its state log. Once a replica

accepts an order, it records the order’s information in its state log and denotes the

state of the order as A. Later on if the replica commits the order, it gets the order

in its state log and updates the state of the order as C.

An order’s state in a replica’s state log is recorded as C if and only if this replica

has committed this order. If an order in the state log is not recorded as C, the

replica may still participate in this ordering or give up this order before commitment.

It is very useful for fast tracing an ordering process and checking if there is any

uncommitted or missing order in a replica. As an important tool in fault tolerance,

a replica can use its state log for a recovery after restart from failure or use other

replicas’ state logs for a catch up after missing part ordering information. This will



20

be discussed in the next chapter in detail.

In the PFT framework, we use the state log to only serve the protocol. The state

log only records state information for orders instead of any information of applica-

tion. This is because we want to better separate the boundary of the protocol and

the application and allow the protocol to achieve simplification and efficiency. If the

application needs to maintain application related state, it can have a separate appli-

cation log. The separation of the protocol and the application level will be efficient

for the fault-tolerant framework design.

3.2 Features

A significant advantage of the PFT framework is being lightweight. It is simple to

design and does not need to tolerate complex faults, such as the BFT faults. The other

three important features of the replication protocol are that it is agreement-based, it

is efficient for wide area networks and it supports batching.

(1) In the PFT framework, the protocol is agreement-based. In such a protocol,

the communication is replica-to-replica broadcast and all non-faulty replicas are

required to be involved in all ordering process. Each replica decreases useful work

as the faults expected to tolerated increases [12]. However, compared with other

agreement-based protocols such as Practical Byzantine Fault Tolerance (PBFT),

our replication protocol can cause less overhead. The reason is that for common

case only the channels between the primary and backups are active while the

channels between backups are idle.

(2) The PFT framework is designed based on Classic Paxos that is more efficient

than the protocols with client → replica → client communication patten for

wide area networks [9]. The ordering latency of the PFT framework is determined



21

by the transmission time from the client to the primary while for the protocols

with client → replica → client communication patten, such as Fast Paxos, the

ordering latency is greatly determined by the transmission time from the client

to the slowest replica in the protocol’s quorum.

(3) The PFT framework allows the primary to collect a group of messages for an

order. With batching, the system can dramatically improves its throughput.



CHAPTER IV

PFT UNDER CONTROL

In this chapter, we identify a number of challenging scenarios in which the PFT

framework could be used. We analyze the technical issues involved with the scenarios

and provide our solutions.

4.1 Batching

4.1.1 Problem

Although the two-phase message ordering could be executed concurrently, starting

a new round message ordering process for each client request is still inefficient. As

one can envisage, if the framework could order a batch of requests at a time, the

throughput could be significantly increased.

4.1.2 Solution

To support matching, the primary uses a general buffer (referred to as the batch)

to log the requests to be ordered. When batching is enabled, the primary will order

22



23

the batch each time instead of a single request. The requests stored in a batch must be

independent of each other, which means that the messages in the same batch cannot

come from the same client. This policy helps achieve fairness.

Ideally, the primary should order a full batch of requests at a time. However,

insisting on collecting a full batch before starting the ordering process is not realistic

because the message transmission time is variant and some messages may arrive very

late at the primary. To avoid this problem, we introduce a batch timer. If the primary

cannot collect enough messages to fill the batch before the timer expires, it initiates

an ordering request for the requests collected in the batch so far and resets the timer.

4.1.3 Algorithm Design

Our replication protocol is modified in the following way to enable batching.

Accept phase

a. When it receives a non-duplicate request from a client in the form

< REQUEST, c,m, data >, the primary sends an ACCEPT request

< ACCEPT, n, S > to all replicas, where c is the client identification number,

m is the client message number, n is the sequence number representing the total

order of the request, and S is a set of independent messages stored in the batch.

b. Upon receiving an ACCEPT request < ACCEPT, n, S >, a replica accepts the

order with the sequence number n if it has not accepted an order with a higher

sequence number than n and promises that it will never accept any order with

a lower sequence number than n. If the replica accepts this order, it responds

to the primary that it has accepted this order by sending an ACCEPTACK

message< ACCEPTACK, n, i >, where i is the replica’s identification number.



24

Commit phase

After sending out an ACCEPT request < ACCEPT, n, S >, the primary

keeps collecting ACCEPTACK responses < ACCEPTACK, n, i >(including

the one the primary sent out) from different replicas until it learns that the

majority of replicas have accepted this order. Once the primary learns that

the majority of replicas have accepted this order, it broadcasts a COMMIT

request < COMMIT, n > to all replicas. On receiving this COMMIT request,

a replica commits to this order. Once the order is committed, the corresponding

request messages are ready to be executed by the application.

4.2 Garbage Collection and Checkpoint

4.2.1 Problem

Extensive execution of the PFT framework can cause enormous consumption of

resources and thereby degrading the system performance significantly. To prevent

the shortage of available resources and the heavy load on the system, it is necessary

to introduce garbage collection mechanism into our framework. Through garbage

collection, we can eliminate stored messages and other data structures. However,

when and how a replica carries out the garbage collection for stored messages and

data structures is non-trivial [24]. A replica cannot arbitrarily delete requests or

data structures stored for committed orders because they might be needed for a slow

replica to catch up or for a new replica to join the system.

4.2.2 Solution

The problem for garbage collection can be solved by the checkpoint mechanism

for the PFT framework [24]. A checkpoint of a replica contains both the snapshot



25

of the application state and that of the middleware state (i.e., the state maintained

for replication). The checkpoint can be taken after the execution of every application

request, however, doing so would be prohibitively expensive. Therefore, our frame

initiates a checkpoint periodically after a group of messages have been executed.

When a replica has ordered and executed a certain amount of messages, it takes a

checkpoint of both the application state and the middleware state.

The messages and data structures stored before this checkpoint can be garbage

collected if the replica learns that the majority of replicas have all taken such a

checkpoint. This checkpoint is referred to as a stable checkpoint. If a backup replica

fails to receive some ordering messages and the messages have been garbage collected

by other replicas, the replica can request the latest stable checkpoint from a correct

replica to roll forward to the state reflected in the checkpoint. The process of a replica

receives and installs a stable checkpoint from other replicas is referred to as a state

transfer.

4.2.3 Algorithm Design

In the PFT framework, a checkpoint is periodically taken after executing a cer-

tain amount of messages. The number of the messages should be determined by the

specific system. The algorithm for the checkpoint mechanism is described below.

When a replica gets a checkpoint, it broadcasts a CHECKPOINT message <

CHECKPOINT, l, i > to notify all other replicas about its latest state. In this

CHECKPOINT message, l is the sequence number representing the total order of

the request executed before the checkpoint is taken, also referred to as the checkpoint

number, and i is the replica’s identification number.

When a replica collects CHECKPOINT messages from the majority of replicas



26

with the same checkpoint number l, the replica considers the checkpoint l as a stable

checkpoint. When a replica learns about the stable checkpoint, it can discard the

collected messages and data structures up to this checkpoint. A slow replica could

also take this opportunity to catch up with other replicas by requesting a state transfer

and installing the latest checkpoint.

4.3 Catch-Up Mechanism

4.3.1 Problem

Due to the possibility of overload, message delay and message lost, some replicas

may lag behind the others. In this case, a lagging replica can catch up with other

replicas by requesting a state transfer. After installing a stable checkpoint, a replica’s

state may get much closer to that of the primary. However, an overload situation

may cause frequent state transfers. Because the state could be large, especially for

complicated applications, catching up via state transfer is not always recommended.

For some replicas, they may have temporarily missed a few client requests or ordering

messages. In these cases, designing a more efficient method to obtain the missing

information becomes important.

4.3.2 Solutions

Active Approach

Each replica periodically checks its state log. It shares ordering information with

other replicas. Once a replica finds a reporting replica that has missed ordering

requests, the receiver checks the sequence numbers of the missing requests and com-

pares them with its stable checkpoint number l. For those orders with higher sequence

number than l, the receiver constructs a set of state records and sends them to the



27

reporting replica. For those orders with lower sequence number than l, the replica,

if it is the primary, sends its latest stable checkpoint to the reporting replica. On

getting missing ordering information back, a replica updates its state log and keeps

processing messages.

Passive Approach

Unlike the active approach, replicas find missing ordering information not by pe-

riodically checking state logs and exchanging ordering information with each other.

A replica would realize that it has missed some ordering messages when it receives an

ordering request with higher sequence number than that it is expecting. In this case,

a hole is formed in the replica’s state log due to the missing ordering messages. When

the replica notices the existence of the hole, it will try to fill the hole by obtaining

the missing ordering information from the primary. Once the primary gets a request

from a reporting replica that has missed ordering messages, the primary checks the

sequence numbers of the missing messages and compares them with its latest stable

checkpoint number l. For those orders with higher sequence number than l, the pri-

mary constructs a set of state records and sends them to the reporting replica. If

those orders carry lower sequence number than l, the primary sends its latest stable

checkpoint to the reporting replica. On getting missing ordering information back, a

replica updates its state log and resumes executing messages.

4.3.3 Algorithm design

In the PFT framework, we design two catch up algorithms according to the ac-

tive and passive approaches, respectively. The one designed according to the active

approach is called Multicasting-Based Query (MBQ) while the other is referred to as

Primary-Based Query (PBQ).



28

MBQ

The MBQ algorithm is described below. Each replica periodically checks its state

log. If a replica notices that it may have missed one or more ordering messages

(ACCEPT or COMMIT ), it broadcasts a query order message to all replicas <

QUERY ORDERMulticast, nlower, nupper, i >, where nlower is the lower bound of the

sequence number of the missing requests, nupper is the upper bound of the sequence

number of the missing requests, and i is the replica identification number.

Sometimes, a replica might not know it has lost the most recent one or more

ordering messages. In this case, it is desirable to have a replica to still send a query

order message to other replica reporting its status. In the query order message, nupper

is set to the value of the latest accepted order’s sequence number, and nlower is set to

an invalid value.

When a replica receives a QUERY ORDERMulticast message, it first checks the

lower bound nlower. If nlower is an invalid value, the replica compares nupper with its

latest committed order’s sequence number ngid. If nupper is less than ngid by a certain

value (according to the message transmission and processing time), which means that

the reporting replica may have missed the ordering messages with sequence number

between nupper and ngid, it sets nlower to the value of nupper and nupper to the value of

ngid. The receiver then compares its stable checkpoint number l with nlower. There

are two situations:

(1) If nlower is a valid value and the value is larger than l, the receiver can only con-

struct state records corresponding to the orders with sequence numbers between

nlower and nupper, and then sends a response order message

< RESPONSEQRDER, i, S > to the reporting replica, where i is the sender’s

identification number, and S is a set of state records constructed according to

the order records with the sequence number ranging from nlower through nupper.



29

Each state record consists of a tuple < state, n, c,m >, where n is the sequence

number representing the total order of the request, and c and m uniquely identify

the client request for the order with sequence number n (If batching is enabled,

each state record should consist of a tuple < state, n,MS >, where MS is a set

of messages in the batch for the order with sequence number n).

(2) If nlower is a valid value but less than the receiver’s latest stable checkpoint number

l, the replica, if it is the primary, initiates a state transfer to the reporting replica,

and then sets nlower to l + 1. If nlower is less than or equal to nupper, the receiver

repeats step 1.

Once a replica gets a RESPONSEQRDER message with a set of state records, it

processes the received records, updates its state log and resumes executing messages.

PBQ

The PBQ algorithm is described below. If a replica receives an ordering message

(ACCEPT or COMMIT ) with higher sequence number than it expects, the replica

sends a query order request < QUERY ORDERPrimary, nexpected, nreceived, i > to the

primary, where nexpected is the sequence number of the next ordering message that the

replica expects to receive, nreceived is the sequence number of the most recent ordering

message that the replica received, and i is the replica’s identification number. When

the primary receives a QUERY ORDERPrimary message, it compares its latest stable

checkpoint number l with nexpected in the message. There are two situations:

(1) If nexpected is larger than the primary’s latest stable checkpoint number, the pri-

mary only constructs state records corresponding to the orders with sequence

numbers between nexpected and nreceived, and then sends a response order message

< RESPONSEQRDER, i, S > to the requester, where i is the sender’s iden-

tification number, and S is a set of state records constructed according to the



30

order records with the sequence number ranging from nexpected through nreceived.

Each state record consists of a tuple < state, n, c,m >, where n is the ordering

number, and c and m uniquely identify the client request for the order with se-

quence number n (If batching is enabled, each state record should consist of a

tuple < state, n,MS >, where MS is a set of requests in the batch for the order

with sequence number n).

(2) If nexpected is less than the primary’s latest stable checkpoint number l, the primary

initiates a state transfer for the requester, and then sets nexpected to l+1. If nexpected

is less than or equal to nreceived, the primary repeats step 1.

Once a replica gets a RESPONSEQRDER message with a set of state records, it

processes the received records, updates its state log and resumes executing messages.

4.4 View Change Mechanism

4.4.1 Problem

Just like other components in a fault tolerant system, the primary may fail as well.

To ensure continuous operation, it is essential to elect a new leader when the current

primary fails. This process is referred to as a view change, and it is the focus of this

section. The view change mechanism is instrumental to ensure the liveness property

of our replication protocol.

4.4.2 Solutions

For the Paxos algorithm, it is desirable to have a unique proposer to issue propos-

als [8]. This can prevent multiple proposers from issuing competing proposals at the

same time, which may result in the inability of choosing any value at all. However,



31

the unique leader constitutes a single point of failure. If the leader fails, it is necessary

to dynamically elect a new leader to ensure further progress.

Before presenting the view change approach, we first discuss how to identify the

leader. In designing the replication protocol introduced in the previous chapter, we

have assumed that there is a default unique leader (i.e., the primary) known to all

replicas in the system. If the primary fails, the rest of replicas must elect a new

primary. We adopt the approach introduced in [1], which uses a view to represent a

configuration with a unique leader. In this approach, the leader election is replaced

by a view change. When the group of replicas accept and install a new view, a

unique leader is naturally chosen. Each view is assigned a view number, which is

monotonically increasing. The leader in a view v is determined to be the replica with

an id i = vmodN , where N is the total number of replicas.

We extended the replication protocol by incorporating the support of view changes.

The main change involves with the ordering messages is the addition of a parame-

ter indicating the current view. For each view, the primary’s identity is implicitly

determined.

The view number is not only used for replicas to identify the primary but to protect

the safety of the protocol in the event of primary failures as well. If some replicas

agree on another replica as the primary, it may cause that different replicas decide on

different orders for a message request. It would lead the system to state inconsistency.

To prevent this situation from happening, the protocol requires replicas to exchange

ordering messages with their view numbers included. A replica is forbidden to accept

or commit to any order from a deferent view. In this case, a replica at a different view

cannot disturb the ordering process of the current view because its messages will not

be processed by the majority of replicas. A replica in an old or incorrect view must

be notified and brought up to date, however.



32

The primary could crash at any time. Once the primary crashes, the other replicas

must dynamically move to a new view (and hence elect a new primary). The view

change mechanism uses a timeout to trigger a view change. In our framework, if

a replica cannot commit to an order before a view change timeout, the replica will

initiate a view change. Different systems should have different values for the view

change timer, which cannot be too short or too long. If the timeout is set too short,

any backup experiencing a message delay or message loss can trigger a view change

even if the primary is still accessible. If the timeout is set too long, it might take too

long for a replica to detect the failure of the current primary, which will reduce the

system’s availability.

If one of the replicas initiates a view change, a voting procedure is conducted

among the replicas. The result of the voting is that a new primary eventually gets cho-

sen, i.e., a new view is installed. Figure 2 shows the view change procedure(Replica0

is the primary and cannot reachable), which consists of two phases described below.

Figure 2: The view change algorithm for the PFT framework.

Phase1

a. A replica that cannot commit an order on expiration of the view change timer

initiates a view change by broadcasting a view change request to all replicas.



33

b. Each replica receiving such a view change request also suspects the primary by

broadcasting a view change request, if it has not done so already.

Phase2

The primary in the new view has collected view change requests (including the

one it has sent out) from the majority of replicas, it installs the new view and

sends a new view request to notify all replicas to install the new view.

The view change mechanism requires that a replica only can execute view change,

new view requests and checkpoint messages during a view change process. The system

can resume normal execution only after the view change process has finished.

If a new primary gets chosen, it has to find out what application requests have

been ordered by the old primary and reissue ordering requests for them according to

the same order.

4.4.3 Algorithm design

With the view number included, the protocol is extended as follows:

Accept phase

a. When it receives a non-duplicate request from a client in the form

< REQUEST, c,m, data >, the primary sends an ACCEPT message in the

form < ACCEPT, v, n, c,m > (or < ACCEPT, v, n, S > if batching is enabled,

the same is true for all other messages and therefore this difference will be

omitted from now on) to all replicas, where c is the client identification number,

m is the client message number, v is the replica’s view number, and n is the

sequence number representing the total order of the request.



34

b. Upon receiving an ACCEPT message, a replica accepts the order with the

sequence number n if it has not accepted an order with a higher sequence

number than n. If the replica accepts this order, it responds to the primary

that it has accepted this order by sending a ACCEPTACK message in the

form < ACCEPTACK, n, i >, where i is the replica’s identification number.

Commit phase

After sending out the ACCEPT message for this order, the primary keeps

collecting ACCEPTACK responses from different replicas until it learns that

the majority of replicas (i.e., f + 1) (including itself) have accepted this or-

der in the same view v, then it sends a COMMIT message in the form

< COMMIT, v, n > to other replicas so that they can learn the chosen or-

der. On receiving the COMMIT message, a replica in the same view v is

required to commit this order with the sequence number n, after which the

message for this order can be executed.

In the extended protocol, the view change algorithm for the PFT framework is

described below.

View change

a. On expiration of the view-change timer, a backup replica broadcasts a

V IEWCHANGE message < V IEWCHANGE, v+1, n, l, P, i > to all replicas

and set its view change flag, where i is the backup’s identification number, v+1

is the new view number, n is the sequence number representing the total order

of the last committed request, l is the last stable checkpoint number, P is a set

of records on accepted or committed records. Each record consists of a tuple

< view, n, c,m, rt >, where view (<= v) is the view number of the record, c



35

is the client identification number, m is the message number, n is the sequence

number representing the total order of the request, and rt is a flag indicating if

it is an accepted or committed record.

b. Once a backup receives a V IEWCHANGE request and has not set its view

change flag, it sets the flag and broadcasts a V IEWCHANGE request to all

other replicas. Otherwise, it ignores the message.

c. The primary in view v + 1 records the V IEWCHANGE messages received.

View installation

If the primary in view v+1 can collect f+1 view change messages from different

replicas for the view v + 1, it installs the new view and notifies all backups by

broadcasting a NEWV IEW message in the form < NEWV IEW, v + 1, O >,

where O is a set of messages determined in the following way:

For each sequence number n between the largest stable checkpoint number lmax

and the largest reported committed sequence number nmax:

if the new primary has received a corresponding COMMIT message (i.e., one

with a sequence number n)

then it constructs a new COMMIT message < COMMIT, v + 1, n >;

elseif it has not received the corresponding COMMIT message

then it searches for the corresponding COMMIT message from the received

f + 1 V IEWCHANGE messages;

if such a COMMIT message is found

then it constructs a new COMMIT message < COMMIT, v + 1, n > in the

new view;

elseif a correspondingACCEPT message is found, it constructs a newACCEPT

message < ACCEPT, v + 1, n, c,m > in the new view.



36

else it constructs a null ACCEPT message. The execution of the null appli-

cation request is a no-op. Once a backup receives the NEWV IEW request, it

installs the new view and updates its ordering information.

During a view change, replicas includes their stable checkpoint number in their

view change requests. This checkpoint number tells the new primary if a replica needs

a state transfer. If a replica’s stable checkpoint number in its view change request

is lower than that stored for the new primary, the new primary will send its latest

stable checkpoint to the replica.

4.4.4 Proof of Correctness

We prove the correctness of the view change algorithm by contradiction. Assume

that replica i committed a message m with sequence number n in view v, but replica

j committed the same message with a different sequence number n’ != n in view u.

If v = u, the normal operation of our replication algorithm ensures n ’= n, which

contradicts the assumption. Without loss of generality, we assume v < u. The

commit message for sequence number n in view v might not have reached all non-

faulty replicas before the primary crashed. We consider two circumstances based on

if the primary of view u has received the commit message for sequence number n and

message m.

(1) The primary in view u received the commit message with sequence number n for

m while it was in view v, or it found a corresponding commit record in the view

change messages during the view change to u. According to our view change

algorithm, the primary in view u will reissue a commit message for m with the

same sequence number n. All non-faulty replicas would then execute m according

to the sequence number n. If replica j in fact committed m with sequence number



37

n′, it must have received a reissued commit message for m with sequence number

n′, which is impossible.

(2) The primary in view u never received the commit message with sequence number

n for m, and it did not find a corresponding commit record during the view change

to u. Because replica i committed m with sequence number n in view v, at least

a set R1 of f + 1 replicas must have received the accept message with sequence

number n and responded to the primary in view v. During the view change to

u, the primary in u must have collected f + 1 view change messages from a set

R2 replicas. Because there are total 2f + 1 replicas, R1 and R2 must intersect

in at least 1 replica. If replica j committed m in view u with a sequence number

n′, it implies that the primary reissued an accept request for m with a sequence

number n′. This is impossible because for this to happen, (1) either the replica

in the intersection did not pass the accept record for m with sequence number n

to the primary in view u, or (2) the primary in view u did not reissue an accept

message for m with the sequence number n. Neither would happen according to

our view change algorithm.

4.4.5 Optimization

According to our view change algorithm, if a backup fails to commit to an order,

it will trigger a view change and eventually replace the current primary for a new

one no matter whether the primary is alive or not. However, some view changes may

be caused by the loss of an ordering message issued by the primary (instead of a

primary failure). Obviously, this kind of view changes are not necessary and should

be avoided. Out of this concern, the view change timer is temporarily disabled when

a replica is engaging a state transfer or is in the process of catching up with other

replicas.



38

Because the primary largely controls the speed of message ordering, and hence

the system performance, it is desirable to proactively induce a view change when

the current primary exhibits poor performance before the expiration of the view

change timer at the backup. To implement this mechanism, the system throughput

is measured continuously by the replicas, if the throughput drops below a predefined

value, a backup will initiate a view change so that another replica could serve as the

primary in the new view.

4.4.6 State Transfer

The primary replica may receive a state transfer request at any point in time

between two successive checkpoints. If the request arrives soon after it has taken a

checkpoint, the primary transfers this latest checkpoint to the lagging replica. The

lagging replica may have a good chance to catch up with other replicas by applying

the checkpoint. However, if the state transfer request comes too late, the lagging

replica might not be able to fully catch up until the next checkpoint time (because

it has to process all queued application requests since the last checkpoint). It will be

more practical to delay responding to the state transfer request after the primary has

taken the next checkpoint. The two scenarios are illustrated in Figure 3.



39

�

�

�������

��		�
	�������

�
�������������
��
 �
�������������
��
��

�����������������
����

�������������
����

�

�

�������

��		�
	�������

�
�������������
��
 �
�������������
��
��

�����������������
����

�������������
����

���������
��������
����

���������
��������
����

�� 

�� 

Figure 3: State transfer optimization.



CHAPTER V

PFT UNDER FIRE

5.1 Implementation

The PFT framework was implemented using the Java programming language and

was built as a Java library for applications to use. The main components for the PFT

framework are shown in Figure 4.

• Multicast Sender(Client and Server): The Multicast Sender sends a message to

the intended targets using UDP multicast.

• Message Out Handler(Client): The Message Out Handler is for constructing

outgoing messages for the client. The constructed messages are then past to

the Multicast Sender to multicast to the server replicas.

• Message Receiver(Client): The Message Receiver is for handling all incoming

messages to the client. Upon receipt of a message, the Message Receiver carries

out the following operations in sequence: (1) drops the message if it is duplicated

or irrelevant, (2) dispatches the message to an appropriate handler based on the

40



41

Client Application

Multicast 

Sender

Msg

 Out Handler

Msg

Receiver

Server Application

Multicast 

Sender

Response

 Out Handler

Inorder

Invoker

Msg

 Receiver

Paxos Protocol

    Handlers

Client Msg 

Queue

Ordering 

Msg Queue

View 

Change 

Handlers

Catch-up 

Handlers

Inorder

Invoker

Deliver Deliver SenderSender

Response 

In Handler

Retransmission 

Handler

State 

Monitor

Msg In 

Handler

State 

Log

Figure 4: The main components of the PFT framework.

type of the message. If the message is a response to the previous request, it

passes the response to the Response In Handler. Once the Response In Handler

gets this message, it checks if it has received this message from majority of the

server replicas. If it does, the handler can make sure the response is ready to

be delivered to application and passes it to the Inorder Invoker component.

• Message Receiver(Server): It is responsible to preprocess all incoming messages

to the server side. The receiver processes more message types than the client

side. Generally, those messages could be that client requests, accept or commit

requests for ordering and accept responses. In exceptional cases, they could

also be view change or view install requests, catch-up requests and responses,

checkpoint messages, state transfer requests and responses. The receiver passes

messages to different handlers according to their message types.

• Message In Handler(Server): When the handler gets a new message, it first

checks if the message is a duplicate. If the message is not a duplicate, it stores

the message and notifies the Accept-request Out Handler (explained next) to

prepare for ordering this message.



42

• Paxos Protocol Handlers : These handlers are responsible for total ordering

client messages. They consist of Accept-Request In Handler, Accept-Request

Out Handler, Accept Response In Handler, Accept Response Out Handler,

Commit-Request In Handler and Commit-Request Out Hander. They get or-

dering messages from Message Receiver and process messages according to their

message types. In each ordering phase, the to be ordered message is assigned

a ordering number by the primary’s Accept-request Out Handler. The handler

constructs an accept request with the ordering number and gives it to the Multi-

cast Sender. When another server’s Accept-request In Handler gets the request

from its Message In Handler, it accepts the message’s order, picks the message

from client request queue and puts it into the ordering queue. As the server

accepts the message, its Accept-response Out Handler constructs an accept re-

sponse message and give it to its sender. The Accept-response In Handler of

the primary collects all accept responses. If the majority of the servers have

accepted the message’s order, the primary’s Commit-request Out Handler con-

structs a commit request for all replicas. When other replicas’ Commit-request

In Handlers get this commit request, the order is committed and they notify

their Inorder Invokers to deliver the ordered message.

• Inorder Invoker : It retrieves the ordered messages, and delivers them to the

application in total order.

• Response Out Handler(Server): The Response Out Handler is for constructing

out response messages for the server replicas. The constructed messages are

given to the Multicast Sender for multicasting the response messages to the

clients.

• View Change Handlers : These handlers are in charge of coordinating the view



43

change process. They are composed of View Change Request In Handler, View

Change Request Out Handler, View Change Commit In Handler and View

Change Commit Out Handler. The View Change Request In Handler gets view

change requests from its Message Receiver and the View Change Request Out

Handler constructs the view change request. When the primary in the new view

has collected view change requests from the majority server replicas, it installs

a new view and its request out handler constructs a view install message to

notify other server replicas.

• State Log : Each replica creates and maintains a state log in its local storage.

This state log is used for each replica to record the ordering information and

state information. A replica records the corresponding information whenever

it makes an accept or commit decision on an application request. This implies

that to order a request, two disk writes are involved. Because the random disk

I/O is too slow, which would make the overhead of request ordering excessive.

To improve the efficiency for accessing the state log, we write the state log

in memory instead of on disk and flush the data to the disk asynchronously

periodically. This optimization is implemented by using memory-mapped I/O

provided by the Java nio library.

• State Monitor : It periodically checks if there is any missing information from its

State Log. A server replica records information for each ordering in sequence.

If the State Monitor finds a hole existing in the State Log or incomplete infor-

mation for some orders, it invokes Catch-up handlers(will be discussed below)

to fetch missing information back.

• Catch-up Handlers : They are used to request missing information from other

server replicas. They are composed of Catch-up Request In Handler, Catch-up



44

Figure 5: The interaction of the main components during normal operation.

Request Out Handler, Catch-up Response In Handler and Catch-up Response

Out Handler. The Catch-up Out Handler constructs a catch-up request with

missing information or missing orders. The Catch-up Request In Handler of the

response server picks up the message and checks if it has the requested missing

information or orders. It also decides if the requested server replica needs a

state transfer. If it determines to respond, the Catch-up Request In Handler

gives it to the Catch-up Response Out Handler. The Catch-up Response Out

Handler constructs a response message with the needed information and gives

it to its sender. The Message Receiver of the requester may get the response

with or without a state-transfer and passes it to Catch-up Response In Handler

to update its ordering information.

In the following, we describe how the components work together during the process

of a request/response round trip during normal operation, as shown in Figure 5.

When application data is available. It is sent to the Message Out Handler. The

handler constructs a message request with the data as the payload and passes it to

the Multicast Sender. The sender multicasts the request to all server replicas.



45

Once the message receiver at a server replicas receives the message request from

the client, it passes the message to the Message In Handler. If the handler has

received this request before, it drops it; otherwise it stores the request in its client

message queue and notifies the Accept-request Out Handler to handle this application

message. If the replica is the primary, the Accept-request Out Handler assigns the

newly arrived message the next available sequence number, puts it into the handler’s

ordering queue, and prepares the accept request with the assigned sequence number

and other information pertinent to the application request being ordered. The out

handler then passes the accept request to the Multicast Sender for sending to other

replicas.

Once a backup’s Accept-request In Handler gets the accept request, it checks the

request queue to see if it has received and stored this application request being or-

dered. If not, it requests a retransmission of this message from the primary; otherwise

it puts the message into its ordering queue for accepting this order if it has never ac-

cepted an order with higher ordering number than the current one. If the in handler

can accept this order, it notifies the Accept-response In Handler to accept the request.

The Accept-response Out Handler then constructs an accept response and gives it to

the Multicast Sender.

The primary’s Accept-response In Handler counts the responses collected from

different replicas, including the one it would have sent. When it has collected re-

sponses from the majority of the replicas, the in handler notifies the Commit-request

Out Handler to prepare a commit request and gives it to the Multicast Sender.

Once a backup’s Commit-response In Handler gets the commit request, it retrieves

the corresponding application request from its ordering queue and gives it to the

Inorder Invoker component. The invoker then delivers the message to the server

application.



46

When the server finishes process the request, the response is passed to the server’s

Response Out Handler. The handler constructs a response message and gives it to

the Multicast Sender. The sender then sends the response to the client.

When the client receives the response message, it passes the message to its Re-

sponse In Handler. The Response In Handler counts the responses from different

server replicas, and when it has collected responses from the majority of the replicas,

the in handler gives the response to its Inorder Invoker component. The invoker then

delivers it to the client’s application.

5.2 Experimental setup

All the experiments are carried out on a local area network with 12 Dell SC440

servers connected by a 100 Mbps Ethernet switch. Each server is equipped with a

single Pentium D 2.8 GHz processors and 1 GB memory running SUSE 10.2 Linux.

A simple client-server application is used in our experiments. The server is repli-

cated across a number of server nodes. Each client sends requests to all server replicas

using UDP multicast. For each run, a client issues at least 1000 requests without any

think time consecutively. One server replica is designated as the primary, which per-

forms tasks of the unique proposer and also acts as both an acceptor and a learner.

The primary is in charge of leading the ordering process for application requests.

The remaining replicas are backups, playing the roles of acceptor and learner. In the

experiments, we vary the number of replicas with an upper-bound on the replication

degree of 9.

The PFT framework was evaluated by a wide variety of experiments under various

network conditions and different workloads (e.g., request sizes and request bursts).

Each experiment focuses on evaluating one aspect of the replication protocol design,

such as batching, catch up and view change mechanisms.



47

5.3 Basic evaluation

5.3.1 Procedure

For basic performance evaluation, we assess the runtime overhead of our PFT

framework during normal operation. The runtime overhead is determined by com-

paring the performance of the test application with our PFT framework and that

without replication under the same workload and network condition. The system

with replication is composed of 3 replicas and various number of clients. In this ex-

periment, the varying load is controlled by running different number of concurrent

clients. We vary the number of clients from 1 to 30. Each client, once started, con-

tinuously issues requests to the server without think time. Under each workload, we

measure the end-to-end latency at the client and the system throughput at the server.

5.3.2 Results

The experimental results are summarized in Figure 6. Figure 6(a) shows the

throughput measurement results with and without replication. In both measure-

ments, the throughput increases quickly when more concurrent clients are launched.

However, without replication, the system reaches the maximum throughput when the

number of concurrent clients is increased to about 10. Whereas when replication is

used, it takes a lot more clients for the system to reach maximum throughput. This

is expected because the system is side-tracked with the total ordering activities when

replication is used, which involves with multiple waiting-for-message operations.

The end-to-end latency as a function of system throughput for both measurements

is reported in Figure 6(b). As can be seen in Figure 6(b), when the load exerted

on to the server is close to its capacity, the latency quickly rises. When the load

keeps increasing, the throughput degrades. With replication, due to the cost of total



48

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

Number of Clients

T
h

ro
u

g
h

p
u

t(
n

r/
s
)

With replication

Without replication

(a) The throughput distribution vs the number of clients for the
replication and non-replication system.

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

Throughput(nr/s)

A
v
e
ra
g
e
 R
e
s
p
o
n
s
e
 T
im
e
(m
s
)

With replication

Without replication

(b) Latency vs throughput curves for the replication and non-
replication systems.

Figure 6: Performance comparison for the replication system and non-replication
system.



49

ordering, the maximum throughput is about half of that of a non-replicated system.

5.4 Batching

5.4.1 Procedure

In this section, we report the performance of the PFT framework with the batching

mechanism. First, we compare system performance with and without batching, then

we evaluate the system performance with batching under various conditions: different

batch sizes, different number of replicas and various workload. Accordingly, the

experiment is carried out in two steps. In the first step, we redo the measurements

on throughput and end-to-end latency under the same conditions as those without

batching. In the second step, a comprehensive evaluation is conducted under the

following conditions:

(1) Varying the batch size

We measure throughput under various batch sizes (from 1 to 40 requests) while

keeping the number of replicas fixed. A batching timer with 100 ms timeout

value is initiated at the primary. The primary keeps collecting requests from

clients until either the batching timer expires or there are enough number of

requests queued at the batching buffer. When it is ready to order a batch, the

primary resets the batching timer and initiates the total ordering process. We

use two different load conditions: with 30 concurrent clients, and the other with

50 concurrent clients. To accurately capture the dynamics of the system with

batching, we take periodic sampling of the throughput (once for every 100 requests

processed) at the replicas, and plot the distribution of the sampled throughput

in terms of probability density function (referred to as PDF in short) of the

throughput.



50

(2) Varying the number of replicas

We assess the fault scalability of the PFT framework with batching. For each

run, we keep the batch size fixed, and vary the number of replicas such that we

can tolerate different number of faults f (i.e., the total number of replicas needed

to tolerate f faults is 2f + 1). For comparison, we repeat the experiment on the

base PFT framework (without batching). We use 3 to 9 replicas to tolerate 1 to

4 faults.

(3) Varying workload

The objective of this experiment is to evaluate the system performance with

batching under different workloads. The different workloads are produced by

changing the request size (from 2 to 1024 bytes) and the number of concurrent

clients (from 1 to 60).

5.4.2 Results

From Figure 7, it can be observed that batching can greatly improve the through-

put of the PFT framework, and reduce the latency under the same throughput. The

performance enhancement is more significant when the load is high (i.e., when the

number of clients is large), which is instrumental in achieving better scalability.

Figure 8(a) shows the throughput distribution of the system with different batch

sizes. As can be seen in Figure 8(a), the peak throughput increases dramatically as

the batch size is increased from 1 to 5. As we keep increasing the batch size from 15 to

30, the peak throughput is increased with less probability density and the distribution

becomes less converged. Table I summarizes the average throughput and latency for

the system configured with different batch sizes. As can be seen from the table, when

the batch size increases, the throughput is improved and the end-to-end latency is

reduced.



51

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

Throughput(nr/s)

A
v
e
ra
g
e
 R
e
s
p
o
n
s
e
 T
im
e
(m
s
)

With replication only

With replication and batching

Without replication

Figure 7: End-to-end latency as a function of system throughput for different batch
sizes (with 30 concurrent clients).

Batch size Average throughput(ops/s) Average latency(ms)
1 5933 28.2
5 6457 16.1
15 6369 14.9
25 6584 14.6
30 6348 14.5

Table I: Average throughput and latency under batching(a).

The throughput distribution with 50 concurrent clients is similar, as shown in

Figure 8(b). The peak throughput increases dramatically as the batch size is changed

from 1 to 5. As we keep increasing the batch size from 25 to 40, the peak throughput is

increased with less probability density and the distribution becomes less converged.

Table II lists the average throughput and latency for the system configured with

different batch sizes.

Even though both and peak throughput and average throughput are significantly

better with batching is enabled, the throughput distribution measurement (as shown

in Figures 8(a) and 8(b)) reveals that there exist many samples with low throughput



52

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Throughput(nr/s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Batch Size 1

Batch Size 5

Batch Size 15

Batch Size 25

Batch Size 30

30 Clients

(a) Throughput distribution under different batch sizes (with 30
concurrent clients).

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Throughput(nr/s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Batch Size 1

Batch Size 5

Batch Size 15

Batch Size 25

Batch Size 30

Batch Size 40

50 Clients

(b) Throughput distribution under different batch sizes (with 50
concurrent clients).

Figure 8: Throughput distribution under different batch sizes.

Batch size Average throughput(ops/s) Average latency(ms)
1 4509 46.5
5 9900 44.8
15 11494 43.5
25 11780 32.7
30 11754 30.5
40 12399 28.8

Table II: Average throughput and latency with batching(b).



53

0 1 2 3 4 5
0

5000

10000

15000

Number of faults tolerated(f)

T
h

ro
u

g
h

p
u

t(
n

r/
s
)

Batch Size 1

Batch Size 20

Figure 9: Fault scalability with and without batching.

values. This is not surprising because the actual batch size is not always the maximum

batch size we set. Due to the asynchrony of the system, if the previous batch of

requests are not processed in time, the clients would not submit new requests (a

client issues requests synchronously), and hence, the actual batch size could be very

low for the new batch.

Figure 9 shows the system throughput with different number of faults tolerated,

with and without batching. It can be observed that the batching mechanism has

significantly increased the fault scalability. Without batching, the system through-

put degrades apparently as the number of replicas increases. It is because increasing

the replication degree will introduce more load to the system (both heavier commu-

nication cost and CPU processing overhead). However, with batching, the system

throughput is dropped only slightly when the number of replicas increases.

Figure 10(a) and Figure 10(b) show the measurement results with various request

sizes. Figure 10(a) shows the throughput results without batching (i.e., when the



54

2000 4000 6000 8000 10000 12000 14000

10
1

10
2

Throughput(nr/s)

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
(m

s
)

2bytes

128bytes

256bytes

512bytes

1024bytes

Batch Size 1

(a) Throughput as a function of request sizes (with the batch size
of 1).

2000 4000 6000 8000 10000 12000 14000

10
1

10
2

Throughput(nr/s)

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
(m

s
)

2bytes

128bytes

256bytes

512bytes

1024bytes

Batch Size 20

(b) Throughput as a function of request sizes (with the batch size
of 20).

Figure 10: Throughput as a function of request sizes.



55

0 10 20 30 40 50 60 70
0

5000

10000

15000

Number of Clients

T
h

ro
u

g
h

p
u

t(
n

r/
s
)

Batch Size 15

Batch Size 1

Figure 11: Throughput as a function of number of concurrent clients.

batch size is set to 1). Figure 10(b) shows the throughput results with a batch size of

20 under the same workload. In both cases, the throughput (in terms of the number

requests serviced per second) degrades as the request size increases. However, the

throughput degradation when batching is enabled is less severe. It again demonstrates

that batching improves the system scalability.

Next, we report the experimental results (with and without batching) obtained

by varying the number of concurrent clients. In Figure 11, as too many clients

are involved to produce load, the throughput without batching becomes dropping.

However, the peak throughput with batching is almost twice more than that without

batching due to the reduced overhead of message total ordering. It can be seen that

batching can improve the efficiency of total ordering.

The experimental results confirmed that batching indeed helps to achieve better

performance by amortizing the cost of total ordering over a batch of requests. The

throughput under heavy load is significantly increased, and the end-to-end latency



56

is reduced as well. As a result, both the fault scalability and load scalability are

improved.

5.5 Catch-up mechanism

5.5.1 Procedure

In this section, we study experimentally the effectiveness of two catch-up mecha-

nisms, namely, MBQ and PBQ. In the experiments, we first measure the time interval

when two consecutive message requests arrive at a replica without message loss. In

later text, we refer to the time interval as the message pick-up interval. The exper-

iments aim to capture the dynamic workload conditions on the replica for the two

catch-up mechanisms. The distribution of the interval can reflect the workload varia-

tion in the network environment and help us to evaluate the two catch-up mechanisms.

In addition, we profile other important factors on the system performance, such as

throughput and end-to-end latency. The workload is produced by running different

numbers of concurrent clients (ranging from 1 to 10). For each run, every client issues

10,000 concurrent message requests to the replicated server (with replication degree

of 5 and 7).

To study the effectiveness of the catch-up mechanisms, we have to induce the

overload situations in a controlled manner and without any catch-up mechanism

configured. When a replica is overloaded, it may start losing messages (due to input

buffer overflow). We create temporary overload at one of the replicas by creating

heavy CPU load for several times. Each time we keep the load running for nearly 5 s

until the replica has message loss, then we remove the load from the replica until it

stops losing messages. After study the message loss scenarios, we run the replication

system with the two catch-up mechanisms separately. We create temporary overload



57

at a replica and observe the message loss level for both mechanisms.

For the MBQ mechanism, the replicas periodically exchange ordering information.

A timer is used by each replica for this purpose. The timeout value used is initiated

to 100 ms. The timeout value is chosen this way so that it is not too short which

could lead to too many exchange messages, and yet it is not too large which could

render the mechanism ineffective.

5.5.2 Results

The distribution of the message pick-up interval without any catching up mecha-

nism is shown in Figure 12(a) and Figure 12(b). As can be seen from the experimental

results, the average message pick-up interval is 0.85 ms in the presence of a single

client, and the interval is shortened to 0.73 ms with two concurrent clients. Under

normal load condition, the interval is fairly constant. However, when message loss

occurs, the message pick-up interval is much larger than the normal value. As shown

in Figure 12(a), the message pick-up interval reaches to 183.958 ms, 22.659 ms and

98.218 ms at three message loss occasions. Similarly, as shown in Figure 12(b), the

message pick-up interval reaches to 23.796 ms and 26.322 ms when message losses

occur.

It is apparent that the large delay in picking up the next request by a replica is

caused by temporary overload (i.e., the replica was busy doing something else). In

the worse case, a message loss would occur due to buffer overflow. From the figures,

it also can be observed that after the overload is removed, the replica resumes picking

up messages from its buffer and the interval becomes much shorter than the average

value. This is expected because when the overload is removed, there are already a

batch of requests queued up at the buffer and they can get picked up immediately.

There is a gap between the normal value and the lowest value of the message pick-up



58

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Message number

M
e

s
s
a

g
e

 p
ic

k
−

u
p

 i
n

te
rv

a
l(
u

s
) 22659

98218

Found
msg loss

Found
msg loss

1203410604

183958

Found
msg loss

(a) Message lost scenario as one client is involved.

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Message number

M
e
s
s
a
g
e
 p

ic
k
−

u
p
 i
n
te

rv
a
l(
u
s
) 23790

8363

Found
msg loss

26322

Found
msg loss

(b) Message lost scenario as two clients are involved.

Figure 12: Message lost scenario with different number of clients involved.



59

interval. It is because under limited number of clients the round-trip time needs the

replica waiting for the message arrival. If there are more clients involved in sending

messages, the average gap will become smaller.

The effectiveness of the two catch-up mechanisms on handling overload situations

is first evaluated by profiling the distribution of the message pick-up intervals. For this

experiment, only a single client is involved to send message request. Figure 13(a)-

(c) shows the probability density function of the pick-up interval for normal load,

overload under MBQ, and overload under PBQ, respectively. Figure 13(d) shows

the distribution of the message pick-up interval without any catch-up mechanism

configured. From this figure, it can be observed that the replica encounters serious

overload and has much worse performance than the other three cases. Figure 13(a)

shows that the message pick-up interval under the normal load is narrowly converged

at 850 µs. From Figure 13(b), it can be observed that the distribution for PBQ is very

close to that for normal load, except for some small disturbance. The distribution

for MBQ (shown in Figure 13(c)) is much different. The distribution of the message

pick-up interval for MBQ is less converged and reflects larger variance. It is probably

due to the frequent ordering information exchanges the MBQ introduces. Under the

condition of this experiment (short state size), it appears that PBQ is more favorable

than MBQ to handle temporary overload conditions.

We further measure the throughput and latency of the system for both mechanisms

under similar controlled overload conditions. In addition, we profile the following

important statistics for each of the mechanisms:

• For each run, how many times an overloaded replica has to initiate the catching

up mechanism;

• How long it takes to complete the catching up operation;

• How many state transfers are involved in each run;



60

0 300 600 900 1200 1500
0

0.01

0.02

0.03

0.04

0.05

Message pick−up interval(us)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

850

(a) Message pick-up interval under no
message loss behavior.

0 300 600 900 1200 1500
0

0.01

0.02

0.03

0.04

0.05

Message pick−up interval(us)
P

ro
b
a
b
ili

ty
 D

e
n
s
it
y

850

(b) Message pick-up interval for PBQ un-
der message loss behavior.

0 300 600 900 1200 1500
0

0.01

0.02

0.03

0.04

0.05

Message pick−up interval(us)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y  673

 783

(c) Message pick-up interval for MBQ
under message loss behavior.

0 300 600 900 1200 1500
0

0.01

0.02

0.03

0.04

0.05

Message pick−up interval(us)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

875372161

(d) Message pick-up interval for no catch-
up strategy configured under message
loss behavior.

Figure 13: Performance comparison with using message pick-up interval.



61

• How many replicas lose messages in each run.

MBQ PBQ None
Lagging replicas 4 2 3
Catch-up occurring counts 6 10 0
Catch-up lasting time(ms) 3 16 0
State transfers 2 1 20
Throughput(ops/s) 1955 1595 731
Latency(ms) 4.3 4.6 7.1

Table III: Performance for MBQ and PBQ with 5 replicas involved.

MBQ PBQ None
Lagging replicas 6 3 4
Catch-up occurring counts 6 8 0
Catch-up lasting time(ms) 6 16 0
State transfers 5 2 20
Throughput(ops/s) 1388 1250 568
Latency(ms) 4.0 4.2 6.3

Table IV: Performance for MBQ and PBQ with 7 replicas involved.

Table III and Table IV show the performance for both mechanisms in terms of

the throughput and latency, the time it takes for a replica to catch up with other

replicas, the occurrence of the catch-up operations and the number of state transfers

with different replication sizes. From both tables, it can be observed that the time it

takes for a replica to catch up with other replicas using MBQ is shorter than that for

PBQ. Similarly, the throughput is higher when MBQ is used. Most importantly, the

performance of the system is much worse if no catch-up mechanism is used.

However, when MBQ is used, more replicas suffer from message losses (with a ratio

about 2 to 1) than that if PBQ is used. Similarly, more state transfers are observed

when MBQ is used. It is probably due to MBQ’s use of frequent multicasting among

replicas that cause the message loss propagate to other replicas. However, from both

tables, the throughput and latency for MBQ are both better than those for PBQ,



62

possibly because in many cases the lagging replicas for MBQ can pick up messages

faster than those for PBQ. According to the previous experiment, the message pick-

up interval becomes much shorter than normal when overload occurs and MBQ is

easier to have this scenario. If extreme overload lasts for long time, both mechanisms

could meet countless catching ups. In this situation, the catch-up mechanisms may

need to be removed.

In conclusion, through the experiment, it can be concluded that both catch-up

mechanisms can be used under temporary overload conditions. However, MBQ per-

forms better than PBQ due to higher throughput and lower latency. In this experi-

ment, we use small state size for our system. If the state size is large, we think PBQ

which has less state transfers may perform better.

5.6 View change

5.6.1 Procedure

The timeout value used in the view change timer has to be carefully determined. If

it is set too short, unnecessary view changes will be triggered by moderate temporary

overload at the primary. If it is set too large, it may take too long for reconfiguration

to take place, which reduce the system responsiveness. In the PFT framework, the

initial timeout value is set to 100 ms, the value is subsequently dynamically adjusted

during runtime based on the observed total ordering latency. The performance of our

view change mechanism is evaluated using our test application with 5 server replicas.

Each time the primary crashes, any backup can trigger the view change and a new

primary is chosen in the new view. The recovery time (since the primary is crashed

until a new view is installed) and the view change latency (i.e., the time it takes for

the view change to complete) are measured at each backup replica. Furthermore,



63

the time it takes to handle the accept records during the view change is profiled at

each replica. Finally, the impact of the batching on the view change latency is also

studied.

5.6.2 Results

Figure 14 shows the observed throughput values at the four backup replicas around

a triggered view change. When the primary is crashed, the throughput drops signifi-

cantly and when the view change completes, the throughput rise back to normal value.

Therefore, we can observe the total recovery time and the view change latency by

taking frequent samples of the throughput at each replica. As shown in Figure 14(a),

the primary (Replica0) is crashed at about 0.10 s. Replica1’s view change timer ex-

pires at 0.23 s. The actual elapsed time since the view timer was started is measured

to be 118 ms (this is the fault detection latency). Replica1 initiates the view change

by sending out a view change request. After collecting two view change requests from

other non-fault replicas, Replica1 installs a new view and becomes the new primary

at about 0.24 s. It takes Replica1 almost 7 ms to complete the remaining view change

process. The view change latency as observed by Replica1 is 7 + 2.4 = 9.4 ms. The

total recovery time is the sum of the fault detection time and the view change la-

tency, which is 118 + 9.4 = 127.4 ms. The recovery time can be also estimated at the

client by comparing the end-to-end latency during the view change and that during

normal operation. Under normal operation, the average end-to-end latency is 2.25

ms. However, the latency rises to 130 ms due to the view change. The extra delay

can be attributed to the failure recovery, which is about 130 − 2.25 = 127.75 ms.

This is consistent with the throughput-based measurement as shown in Figure 14(a).

The recovery time and view change latency as measured by the other three backup

replicas can be similarly determined by Figures 14(b),(c), and(d).



64

(a) Throughput vs. elapsed time around the view
change as observed by Replica 1.

(b) Throughput vs. elapsed time around the view
change as observed by Replica 2.

(c) Throughput vs. elapsed time around the view
change as observed by Replica 3.

(d) Throughput vs. elapsed time around the view
change as observed by Replica 4.

Figure 14: Throughput vs. elapsed time around the view change.



65

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

Number of accept records

P
ro

c
e

s
s
in

g
 t

im
e

(m
s
)

Figure 15: View change latency as a function of the number of accept records.

0 5 10 15
5

10

15

20

25

30

35

Batch size

V
ie

w
 c

h
a

n
g

e
 l
a

te
n

c
y
(m

s
)

(a) View change latency versus the batch size.

0 5 10 15
0

20

40

60

80

100

120

140

Batch size

N
u
m

b
e
r 

o
f 
a
c
c
e
p
t 
re

c
o
rd

s

(b) Number of accept records versus the batch size.

Figure 16: The impact of the batch size on the view change performance.

We further investigate the impact of the number of accept records included in the

new view message on the view change latency. The view change latency as a function

is shown in Figure 15. As can be seen, the view change latency can be increased

significantly when the number of accept records involved are large.

Because the larger batch size is used, the more accept records will be involved

during the view change. It is not surprising to see a similar dependency of the view

change latency, as shown in Figure 16.



CHAPTER VI

SUMMARY AND FUTURE RESEARCH

6.1 Conclusion

In this thesis, a lightweight fault tolerance framework (referred as PFT framework)

is presented. This framework is adapted from the Paxos algorithm with consideration

of practical issues such as good performance under normal operation and fast recovery.

A comprehensive performance evaluation for the PFT framework is also presented.

In particular, the effectiveness of various optimization mechanisms we introduced to

the PFT framework is assessed. In addition, the performance of the view change

mechanism is studied. The experiments show that PFT framework exhibit optimal

performance and is robust under various network and load conditions.

6.2 Future Work

In the future, we plan to investigate how to adapt our PFT framework for use in

wide-area networks. Such a framework would be useful to tolerate total site-failures.

66



67

We are also interested in exploring the use of PFT framework in high-availability

clusters for fault tolerant services such as totally ordered reliable multicast service,

health monitoring service, and membership service. Furthermore, we are planning to

open-source our PFT implementation, hoping to benefit the peers who are interested

in building highly available systems.



BIBLIOGRAPHY

[1] M. Castro, B. Liskov, ”Practical byzantine fault tolerance,” in Proceedings of the

Third ACM Symposium on Operating Systems Design and Implementation, pp.

173-186, 1999

[2] L. Lamport, ”The part-time parliament,” ACM Transactions on Computer Sys-

tems, Vol. 16(2), pp. 133-169, 1998

[3] M. Burrows, ”The Chubby lock service for loosely-coupled distributed systems,”

in Proceedings of the 7th USENIX Symposium on Operating Systems Design and

Implementation, pp. 335-350, 2006

[4] B. W. Lampson, ”How to build a highly available system using consensus,” in

Distributed Algorithms, ed. Babaoglu and Marzullo, Lecture Notes in Computer

Science 1151, Springer, pp. 1-17, 1996

[5] T. D. Chandra, R. Griesemer, J. Redstone, ”Paxos Made Live - An Engineering

Perspective,” PODC ’07: 26th ACM Symposium on Principles of Distributed

Computing, 2007

[6] J. P. Martin, L. Alvisi, ”Fast Byzantine Paxos,” Technical Report TR-04-07,

2004

[7] Y. Amir, J. Kirsch, ”Paxos for system builders,” in LADIS ’08: Proceedings of

Large-Scale Distributed Systems and Middleware, New York, September 2008

[8] L. Lamport, ”Paxos made simple,” ACM SIGACT News (Distributed Computing

Column), Vol. 32(4), pp. 18-25, Dec. 2001

68



69

[9] F. Junqueira, Y. Mao, K. Marzullo, ”Classic Paxos vs. Fast Paxos: Caveat Emp-

tor,” in Proceedings of USENIX Hot Topics in System Dependability (HotDep),

2007

[10] M. J. Fischer, ”The consensus problem in unreliable distributed systems,” 1983

[11] Y. Song, V. Renesse, R. Schneider, ”Evolution vs. Intelligent Design in Consensus

Protocols,” 2007

[12] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. Reiter, J. J. Wylie, ”Fault-

scalable Byzantine fault-tolerant services,” in Proceedings of ACM Symposium

on Operating System Principles (SOSP), 2005

[13] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, E. Wong, ”Zyzzyva, Speculative

Byzantine Fault Tolerance,” in Proceedings of ACM Symposium on Operating

System Principles (SOSP), 2007

[14] L. Lamport, ”Fast Paxos,” Distributed Computing, Vol. 19(2), pp. 79-103, 2006

[15] L. Lamport, M. Mike, ”Cheap Paxos,” in Proceedings of the International Con-

ference on Dependable Systems and Networks (DSN), 2004

[16] L. Lamport, ”Generalized Consensus and Paxos,”

http://research.microsoft.com/users/lamport/pubs/pubs.html, 2005

[17] L. Lamport, ”Time, clocks, and the ordering of events in a distributed system,”

Commun. ACM, Vol. 21(7), pp. 558-565, 1978

[18] F. Schneider, ”Implementing Fault-tolerant Services Using the State Machine

Approach: A tutorial,” Computing Surveys, Vol. 22(3), pp. 299-319, 1990

[19] L. Lamport, ”The Implementation of Reliable Distributed Multiprocess Sys-

tems,” Computer Networks, 1978



70

[20] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, L. Shrira, ”HQ Replication:

A Hybrid Quorum Protocol for Byzantine Fault Tolerance,” in Proceedings of

USENIX Operating System Design and Implementation (OSDI), 2006

[21] L. Camargos, R. Schmidt, F. Pedone, ”Multicoordinated Paxos,” 2006

[22] E. Gafni, L. Lamport, ”Disk Paxos,” International Symposium on Distributed

Computing, pp. 330-344, 2000

[23] A. Sing, T. Das, P. Maniatis, P. Druschel, T. Roscoe, ”Bft protocols under fire,”

in NSDI, 2008

[24] W. Zhao, ”A Lightweight Fault Tolerance Framework for Web Services,”

IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), pp.

542-548, 2007


	Cleveland State University
	EngagedScholarship@CSU
	2009

	Performance Engineering of a Lightweight Fault Tolerance Framework
	Hua Chai
	Recommended Citation


	tmp.1458054365.pdf.5_QhX

