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HEAT TRANSFER IN A NANOFLUID FLOW PAST A PERMEABLE 

CONTINUOUS MOVING SURFACE 

 

 

 

SARVANG D SHAH 

 

 

ABSTRACT 

 

 The main purpose of this paper is to introduce a boundary layer analysis for the 

fluid flow and heat transfer characteristics of an incompressible nanofluid flowing over a 

permeable isothermal surface moving continuously. The resulting system of non-linear 

ordinary differential equations is solved numerically using Runge-Kutta method with 

shooting techniques. Numerical results are obtained for the velocity, temperature and 

concentration distributions, as well as the friction factor, local Nusselt number and local 

Sherwood number for several values of the parameters, namely the velocity ratio 

parameter, suction/injection parameter and nanofluid parameters. The obtained results are 

presented graphically and in tabular form and the physical aspects of the problem are 

discussed. 

Keywords: Suction/injection, moving surface, nanofluid 
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NOMENCLATURE 

DB  Brownian diffusion coefficient 

DT  thermophoretic diffusion coefficient  

f  reduced stream function 

g  gravitational acceleration  

km  effective thermal conductivity of the porous material 

K  permeability of porous medium 

Le  Lewis number 

Nb  Brownian motion parameters 

Nt  thermophoresis parameters 

Nu  Nusselt number 

p  pressure 

q  wall heat flux 

Re  Reynolds number 

T  temperature 

Tw  wall temperature of the vertical plate 

T∞  ambient temperature 

u∞  freestream velocity 

u, v  Darcy velocity components 

(x, y)  Cartesian coordinates 
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Greek Symbols 

αm  thermal diffusivity of porous medium 

η  dimensionless distance 

θ  dimensionless temperature 

μ  viscosity of fluid 

ρf  fluid density 

ρp  nano-particle mass density 

(ρc)f  heat capacity of the fluid 

(ρc)m  effective heat capacity of porous medium 

(ρc)p  effective heat capacity of nano-particle material 

τ  ratio between the effective heat capacity of the nano particle material   

  and that of the fluid 

   nano-particle volume fraction 

    nano-particle volume fraction at the wall of the plate 

    ambient nano-particle volume fraction 

ψ  stream function 

 

Subscript 

B  Blasius problem 

S  Sakiadis problem 

w  Refers to condition at wall 

∞  Refers to condition far from the wall 
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CHAPTER I 

 

INTRODUCTION  

 

 The study of convective heat transfer in nanofluids is gaining a lot of attention. 

The nanofluids have many applications in the industries since materials of nanometer size 

have unique physical and chemical properties. Nanofluids are solid-liquid composite 

materials consisting of solid nanoparticles or nanofibers with sizes typically of 1-100 nm 

suspended in liquid. Nanofluids have attracted great interest recently because of reports 

of greatly enhanced thermal properties. For example, a small amount (< 1% volume 

fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil is 

reported to increase the inherently poor thermal conductivity of the liquid by 40% and 

150% respectively [1, 2]. Conventional particle-liquid suspensions require high 

concentration (>10%) of particles to achieve such enhancement. However, problems of 

rheology and stability are amplified at high concentration, precluding the widespread use 



 

2 
 

of conventional slurries as heat transfer fluids. In some cases, the observed enhancement 

in thermal conductivity of nanofluids is orders of magnitude larger than predicted by 

well-established theories. Other perplexing results in this rapidly evolving field include a 

surprisingly strong temperature dependence of the thermal conductivity [3] and a three-

fold higher critical heat flux compared with the base fluids [4, 5]. These enhanced 

thermal properties are not merely of academic interest. If confirmed and found consistent, 

they would make nanofluids promising for application in thermal management. 

Furthermore, suspensions of metal nanoparticles are also being developed for other 

purposes, such as medical applications including cancer therapy. The interdisciplinary 

nature of nanofluid research presents a great opportunity for exploration and discovery at 

the frontiers of nanotechnology. 

 The characteristics of flow and heat transfer of a viscous and incompressible fluid 

over flexed or continuously moving flat surfaces in a moving or a quiescent fluid are well 

understood. These flows occur in many manufacturing processes in modern industry, 

such as hot rolling, hot extrusion, wire drawing and continuous casting. For example, in 

many metallurgical processes such as drawing of continuous filaments through quiescent 

fluids and annealing and tinning of copper wires, the properties of the end product 

depends greatly on the rare of cooling involved in these processes. Sakiadis [5] was the 

first one to analyze the boundary layer flow on continuous surfaces. Crane [6] obtained 

an exact solution the boundary layer flow of Newtonian fluid caused by the stretching of 

an elastic sheet moving in its own plane linearly. Tsou et al. [7] extended the research to 

the heat transfer phenomenon of the boundary layer flow on a continuous moving 

surface. Schowalter [8] applied the boundary layer theory into power law pseudoplastic 
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fluids and developed two and three dimensional boundary layer equations of the 

momentum transfer. Acrivos [9] analyzed the momentum and heat transfer of non-

Newtonian fluid past arbitrary external surfaces. Howell [10] and Rao [11] investigated 

momentum and heat transfer phenomena on a continuous moving surface in power law 

fluids. Magyari and Keller [12, 13] have studied the thermal boundary layer of moving 

surfaces. Wang [14] studied free convection from a vertical stretching surface. Gorla and 

Sidawi [15] studied the characteristics of flow and heat transfer from a continuous 

surface with suction and blowing. 

 We present here a similarity analysis for the problem of steady boundary-layer 

flow of a nanofluid on a continuous moving permeable isothermal surface. The 

development of the velocity, temperature and concentration distributions have been 

illustrated for several values of nanofluid parameters, Prandtl number, Lewis number, 

velocity ratio and suction/injection parameters. Normally, for heat transfer application 

nanofluid works best for volume fraction of nano particle to fluid less than 10%. If 

concentration is more than 10% then a problem of stability may occur. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 In recent time there are so many research work going on nanofluids about 

understanding their behavior so that they can be utilized where straight heat transfer 

enhancement is paramount as in many industrial applications. Described below are a few 

papers which show work done in the area of heat transfer in nanofluid. There are few 

papers also which describes earlier and recent work done for heat transfer in continuous 

moving surface for different types of fluid flow. Also, few papers are included here as 

they are somewhat relevant to the study area covered in this thesis report. 

 Kuznestov and Neild [16, 17] have studied the convective heat transfer in a 

nanofluid past a vertical plate. They have used a model in which Brownian motion and 

thermophoresis are accounted with the simplest possible boundary conditions, namely 

those in which both the temperature and the nanoparticle fraction are constant along the 
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wall. Using this they got solution which depends on five dimensionless parameters, 

namely a Prandtl number Pr, a Lewis number Le, a buoyancy-ratio parameter Nr, a 

Brownian motion parameter Nb, and a thermophoresis parameter Nt. They have explored 

the way in which the wall heat flux, represented by a Nusselt number Nu and then scaled 

in terms of    
   

 - local Rayleigh number define in paper to produce a reduced Nusselt 

number, depends on these five parameters.  They have also studied the Cheng–

Minkowycz problem of natural convection past a vertical plate analytically in a porous 

medium saturated by a nanofluid. The model used for the nanofluid incorporates the 

effects of Brownian motion and thermophoresis number. For the porous medium the 

Darcy model is used. In this study they have employed the Darcy model for the 

momentum equation and assumed boundary conditions in which both the temperature 

and the nanoparticle fraction are constant along the wall. This permits a solution which 

depends on four dimensionless parameters, namely a Lewis number Le, a buoyancy-ratio 

parameter Nr, a Brownian motion parameter Nb, and a thermophoresis parameter Nt. 

 Bachok, Ishak and Pop [18] have studied the steady boundary-layer flow of a 

nanofluid past a moving semi-infinite flat plate in a uniform free stream. They assumed 

that the plate is moving in the same or opposite directions to the free stream to define 

resulting system of nonlinear ordinary differential equations. They solved governing 

equation using the Kellerbox method. The results are obtained for the skin-friction 

coefficient, the local Nusselt number and the local Sherwood number as well as the 

velocity, temperature and the nanoparticle volume fraction profiles for the governing 

parameters, namely, the plate velocity parameter, Prandtl number, Lewis number, the 

Brownian motion parameter and the thermophoresis parameter. 
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 Khan and Pop [19] have studied the problem of laminar fluid flow which results 

from the stretching of a flat surface in a nanofluid and investigated it numerically. The 

model they used for the nanofluid incorporates the effects of Brownian motion and 

thermophoresis and found solution which depends on the Prandtl number Pr, Lewis 

number Le, Brownian motion number Nb and thermophoresis number Nt. They showed 

variation of the reduced Nusselt and reduced Sherwood numbers with Nb and Nt for 

various values of Pr and Le in tabular and graphical forms and conclude that reduced 

Nusselt number is a decreasing function while the reduced Sherwood number is and 

increasing function of each values of the parameters Pr, Le, Nb and Nt considered for 

study.  

 Ahmad and Pop [20] have studied steady mixed convection boundary layer flow 

past a vertical flat plate embedded in a porous medium filled with nanofluids.  They used 

different types of nanoparticles as Cu (cuprom), Al2O3 (aluminium) and TiO2 (titanium). 

The governing partial equations are reduced to an ordinary differential equation and 

solved numerically in matlab using shooting method for some values of the volume 

fraction and mixed convection parameters. The solution has positive or negative value for 

certain range of the parameters. The effects of these parameters on the velocity 

distribution are presented graphically. They also compare their work with the earlier 

work done by J. H. Merkin. 

 Polidori, Fohanno and Nguyen [21] have studied the problem of natural 

convection flow and heat transfer of Newtonian alumina–water nanofluids over a vertical 

semi-infinite plate from a theoretical viewpoint, for a range of nanoparticle volume 

fractions up to 4%. The analysis is based on a macroscopic modeling and under the 
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assumption of constant thermophysical nanofluid properties. They proposed Semi-

analytical formulas of heat transfer parameters for both the uniform wall temperature 

(UWT) and uniform heat flux (UHF) surface thermal conditions and found that natural 

convection heat transfer is not solely characterized by the nanofluid effective thermal 

conductivity and that the sensitivity to the viscosity model used seems undeniable and 

plays a key role in the heat transfer behavior. 

 Koo and Kleinstreuer [22] have studied steady laminar liquid nanofluid flow in 

microchannels for conduction-convection heat transfer for two different base fluids water 

and ethylene glycol  having  copper oxide nanospheres at low volume concentrations. 

They conjugate heat transfer problem for microheat-sinks solved numerically. They 

employed new models for the effective thermal conductivity and dynamic viscosity of 

nanofluids in light of aspect ratio, viscous dissipation and enhanced temperature effects 

for computation of the impact of nanoparticle concentrations in these two mixture flows 

on the microchannel pressure gradients, temperature profiles and Nusselt numbers. 

 Xuan and Li [23] have experimentally investigated flow and convective heat 

transfer characteristics for Cu–water based nanofluids through a straight tube with a 

constant heat flux at wall. Results showed that the nanofluids give substantial 

enhancement of heat transfer rate compared to pure water.  

 Khan and Sanjayanand [24] have studied viscoelastic boundary layer flow and 

heat transfer over an exponential stretching continuous sheet. In this study, they focused 

on approximate analytical similarity solution of the highly non-linear momentum 

equation and confluent hypergeometric similarity solution of the heat transfer equation. 

They verified accuracy of the analytical solution for stream function using Runge–Kutta 
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fourth order method with shooting method in Matlab. These obtained solutions involve 

prescribed boundary temperature and prescribed boundary heat flux on the flow 

directional coordinate for an exponential dependent of stretching velocity. The effects of 

various physical parameters like viscoelastic parameter, Prandtl number, Reynolds 

number, Nusselt number and Eckert number on various momentum and heat transfer 

characteristics are also discussed. 

 Arnold, Asir, Somasundaram and Christopher [25] have studied the viscoelastic 

fluid flow and heat transfer characteristics over a stretching sheet with frictional heating 

and internal heat generation or absorption. The heat transfer analysis has been carried out 

for the cases of prescribed surface temperature (PST) and prescribed surface heat flux 

(PHF). The momentum equation is decoupled from the energy equation for the present 

incompressible boundary layer flow problem with constant physical parameters. Exact 

solution for the velocity field and the skin-friction are obtained while solutions for the 

temperature and heat transfer characteristics are obtained in terms of Kummer’s function. 

The work due to deformation in energy equation, which is essential while formulating the 

viscoelastic boundary layer flow problems, is considered. In this paper they examines the 

effect of viscoelastic parameter, Eckert number, Prandtl number and non-uniform heat 

source/sink parameter on temperature distribution, wall temperature gradient for PST-

case and wall temperature for PHF-case. In the result they found that the magnitude of 

the non-dimensional surface velocity gradient is found to increase with increasing the 

viscoelastic parameter (k1) – a non-Newtonian parameter. They also found that 

magnitude of the non-dimensional surface temperature gradient increases with the Prandtl 
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number (Pr) and an increasing Pr causes reduction in the thickness of the thermal 

boundary layer. 

 Xu and Liao [26] have studied theoretical analysis of the laminar boundary-layer 

flow and heat transfer of power-law non-Newtonian fluids over a stretching sheet with 

the sheet velocity distribution of the form Uw = Cx
m

 and the wall temperature distribution 

of the form Tw = T∞ + Ax
γ
 is presented, where x denotes the distance from the slit from 

which the surface emerges and C and A are constants, m and γ denote, the sheet velocity 

exponent and the temperature exponent, respectively. The nonlinear boundary layer 

momentum equation and the energy equation are reduced to a set of ordinary differential 

equations by them within the framework of the boundary layer approximations. They 

found that when the velocity exponent m = 1/3 or the power-law index n = 1, the 

similarity solutions are in existence for both the momentum equation and the energy 

equation. They formulate the global self-similarity equations for the flow problem and the 

accurate analytical approximations are then obtained with the help of the homotopy 

analysis method.   

 Y  r  soy [27] has studied Flow of a thin fluid film of a power-law caused by 

stretching of surface. He used a similarity transformation for reducing the unsteady 

boundary layer equations to a non-linear ordinary differential equation system. Numerical 

solutions of out coming nonlinear differential equations are found by using a combination 

a Runge–Kutta algorithm and shooting technique. He explored Boundary layer thickness 

numerically for different values of power-law index. In result he presented similarity 

solutions the shear-thinning and shear thickening power-law fluids and a comparison 

made with the Newtonian solutions. 
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 Ishak, Nazar and Pop [28] have studied the analysis of the boundary-layer flow of 

a micropolar fluid on a fixed or continuously moving permeable surface. They considered 

both parallel and reverse moving surfaces to the free stream. The resulting system of non-

linear ordinary differential equations is solved numerically using the Keller-box method 

and numerical results are obtained for the skin friction coefficient and the local Nusselt 

number for some values of the parameters, namely the velocity ratio parameter, 

suction/injection parameter and material parameter, while the Prandtl number is fixed to 

be unity. Their results indicate that dual solutions exist when the plate and the free stream 

move in opposite directions and they also observed that micropolar fluids show drag 

reduction characteristic compared to classical Newtonian fluids, and the boundary-layer 

separation is delayed for micropolar fluids or by introducing suction. 

 Ishak, Nazar and Pop [29] have also worked on steady boundary layer flow and 

heat transfer of a micropolar fluid on an isothermal continuously moving plane surface. 

They assumed that the microinertia density is variable and not constant and  the viscous 

dissipation effect took into account. They used the Keller-box method for solving 

reduced to a system of nonlinear ordinary differential equations numerically to obtain 

result for the skin friction coefficient, local Nusselt number, as well as velocity, 

temperature and microrotation profiles. They also discussed  effects of material 

parameter, Prandtl number and Eckert number (Ec) on the flow and heat transfer 

characteristics. 

 Hassanien [30] has studied the Boundary layer solutions to investigate the steady 

flow and heat transfer characteristics of a continuous flat surface moving in a parallel free 

stream of power-law fluid. He used similatity transformations for equations of motion to 
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reduce to nonlinear ordinary differential equations. These equations are solved 

numerically with double precision, using a procedure based on finite difference 

approximations. The results are presented for the distribution of velocity and temperature 

profiles within the boundary layer. He also studied the effects of the power-law index of 

fluid on the shear stress at the wall and the rate of heat transfer. He stated in the paper 

that the solutions of the problems of flow past a moving continuous flat surface depend 

not only on the velocity difference but also on the velocity ratio.  He shows numerical 

results for the fluid flow and heat transfer characteristics. He presented the missing wall 

values of the velocity and temperature function for a range of power-law index of the 

fluid. In the results he found that for the same values of the normalized velocity 

difference, power-law index, Re, and Pr, the case representing uw > u∞ yields a larger 

surface friction factor and surface heat transfer rate when compared with the case where 

uw < u∞. 

 Hassanien, Abdullah and Gorla [31] have studied the boundary layer analysis for 

the problem of flow and heat transfer from a power-law fluid to a continuous stretching 

sheet with variable wall temperature. They applied similarity transformation to reduce the 

Navier-Stokes and energy equations. The resulting system of nonlinear ordinary 

differential equations is by solved using the expansion of Chebyshev polynomials. They 

also performed parametric studies to investigate the effects of non-Newtonian flow index, 

generalized Prandtl number, power-law surface temperature and surface mass transfer 

rate. They have plotted velocity profiles for different power law index n, temperature 

profile for Prandtl number, velocity ratio and power law index keeping other parameter 
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fixed for skin friction coefficient and heat transfer rate and results exhibit that these both 

depends on fluid parameters. 

 Gorla and Reddy [32] have studied the boundary layer solution for the steady 

flow and heat transfer characteristics forma continuous flat surface moving in a parallel 

free stream of micropolar fluid. They presented numerical results for the distribution of 

velocity, mico-rotation and temperature profile within the boundary layer. They have 

used a similarity solution method to reduce the governing mass, energy and momentum 

equation into a non-linear ordinary differential equation. They have used fourth order 

Rugne-Kutta method of numerical integration to solve the equations. Missing wall values 

of velocity, angular velocity and temperature functions are tabulated for range of 

dimensionless groupings of material parameters of fluid. They founded that for the same 

values of normalized velocity difference, Re and Pr, the case representing Uw > U∞ yields 

larger surface friction factor and surface heat transfer rate compared to case when Uw < 

U∞. 

 Olajuwon [33] has studied the flow and convection heat transfer in a 

pseudoplastic power law fluid past a vertical plate with heat generation. In his study he 

used similarity transformation to transform governing non – linear partial differential 

equations which describes the flow and heat transfer problem into non –linear ordinary 

differential equation. The resulting problem after similarity transformation is solved 

numerically using Runge – Kutta shooting method. The power law exponents used by 

him for study is between 0 and 1. The analysis of results obtained showed that the heat 

generation parameter has significant influence on the flow and heat transfer and conclude 

that a pseudoplastic power law fluid with the power law exponent 0 < n < 1/2 gives a 
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higher heat transfer coefficient than the pseudoplastic power law fluid with power law 

exponent 1/2 < n < 1. 

 Ahmad, Siddiqui and Mishra [34] have studied the boundary layer flow of viscous 

incompressible fluid over a stretching plate for heat flow problem with variable thermal 

conductivity. They obtained velocity components using similarity transformation. The 

heat flow problem has been considered in two ways: (i) Prescribed surface temperature 

(PST), and (ii) Prescribed stretching plate heat flux (PHF) for variable thermal 

conductivity case. In their result they plot graphs for temperature profile for mean 

temperature and temperature profile induced due to variable thermal conductivity.  
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CHAPTER III 

 

ANALYSIS 

 

 Consider a flat surface moving at a constant velocity uw in a parallel direction to a 

free stream of a nanofluid of uniform velocity u∞. Either the surface velocity or the free-

stream velocity may be zero but not both at the same time. The physical properties of the 

fluid are assumed to be constant. Under such condition, the governing equations of the 

steady, laminar boundary-layer flow on the moving surface are given by: 
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The boundary conditions are given by, 

y = 0:  u = uw, v = vw (x), T = Tw, c = Cw 

y →∞:  u = u∞, T = T∞, c = C∞       (6) 

The boundary condition of u = uw in (6) represents the case of a plane surface moving in 

parallel to the free stream.  

 

 

Figure 1 Physical Model and Co-Ordinates System  

 

To analyze the effect of both the moving and the free stream on the boundary-layer flow, 

we propose a new similarly coordinate and a dimensionless stream function 
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which are the combinations of the traditional ones: 
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for the Blasius problem (stationary wall and uniform freestream velocity) and    
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from the Sakiadis (uniformly moving wall with stagnant freestream) problem.  

The Reynolds numbers are defined as: 

    
   

 
 ,      
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A velocity ratio parameter γ is defined as  

γ  
  

     ∞ 
    

 ∞

  
 
  

    
  ∞

   
 
  

 ,     (11) 

Note that form the Blasius problem,      therefore γ   . On the other hand, for the 

Sakiadis problem,  ∞    and thus γ   . In addition, we also define dimensionless 

temperature and concentration function as 
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Using the transformation variables defined in equations (7) – (13), the governing 

transformed equations may be written as 
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The transformed boundary conditions are given by  

       ,         ,        ,         

         ,       ,            (17) 
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where prime denote differentiation with respect to η and the four parameters are defined 

by 

   
 

 
,    

 

  
,     

              

       
, 

   
              

         
         (18) 

Here, Pr, Le, Nb and Nt denote the Prandtl number, the Lewis number, the Brownian 

motion parameter and the thermophoresis parameter respectively. It is important to note 

that this boundary value problem reduces to the classical problem of flow and heat and 

mass transfer due to a stretching surface in a viscous fluid when Nb and Nt are zero. 

 The quantities of practical interest, in this study, are the Nusselt number Nu and 

the Sherwood number Sh which are defined as  

Friction Factor, 
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The local heat transfer rate (Local Nusselt number) is given by 

    
   

        
           

 

             (20) 

Similarly the local Sherwood number is given by 

    
   

         
           

 

             (21) 

where qw and qm are wall heat and mass flux rates, respectively.  
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CHAPTER IV 

 

RESULTS AND DISCUSSIONS 

 

  The nonlinear ordinary differential equations (14)-(16), satisfying the 

boundary conditions (17) were integrated numerically by using the fourth-order Runge-

Kutta scheme along with the shooting method for several values of the governing 

parameters, namely, Prandtl number (Pr), Lewis number (Le), Brownian motion 

parameter (Nb) and thermophoresis parameter (Nt).  In order to assess the accuracy of the 

present results, we obtained results for the reduced Nusselt number        by ignoring 

the effects of Nb and Nt. These results are shown in Table 1. A comparison of our results 

with literature values indicates excellent agreement and therefore our results are highly 

accurate. 
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Table 1 Comparison of results for        for the Sakiadis problem (Nt = Nb = 0;    ) 

 

Pr Present results Wang [14] Gorla and Sidawi [15] 

0.07 0.0656 0.0656 0.0656 

0.20 0.1691 0.1691 0.1691 

0.70 0.4539 0.4539 0.4539 

7.00 1.8907 1.8954 1.8905 

20.00 3.3539 3.3539 3.3539 

70.00 6.4622 6.4622 6.4622 

 

 

 Tables 2 and 3 display the resulting values of velocity gradient )0(f  , the sheet 

surface heat transfer rate - )0('  and the mass transfer rate )0(' , which are 

proportional to the friction factor, Nusselt number and Sherwood number  respectively, 

for both the cases of the velocity ratio   boundary layer flow over a stationary surface 

with a uniform free stream velocity ( 0 ) and uniformly moving plane surface moving 

in a stagnant free stream ( 1 ). The results in Tables 2 and 3 indicate that effect of 

increasing Nb or Nt is to decrease the heat and mass transfer rates from the surface. 
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Table 2 Variations of Nu and Sh with Nb and Nt for various values of Pr and  at Le = 1 

and fw = 0 

 

 Pr Nt 

)0(   (0)  

Nb=.1 Nb=.2 Nb=.3 Nb=.1 Nb=.2 Nb=.3 

0.0 0.7 0.1 0.9365 .9033 .8709 1.0648 1.0547 1.0510 

  0.2 .9037 .8713 .8397 1.1835 1.1298 1.1113 

  0.3 .8717 .8401 .8093 1.3651 1.2355 1.1915 

 7.0 0.1 .5525 .3634 .2309 1.4468 1.3233 1.2634 

  0.2 .3656 .2324 .1433 2.2543 1.7657 1.5737 

  0.3 .2340 .1443 .0866 3.2695 2.2750 1.9117 

 10.0 0.1 .4231 .2249 .1124 1.5755 1.3922 1.3028 

  0.2 .2271 .1135 .0539 2.5300 1.8843 1.6334 

  0.3 .1147 .0545 .0248 3.6266 2.4101 1.9744 

1.0 0.7 0.1 .9724 .9377 .9039 1.0942 1.0932 1.0895 

  0.2 .9387 .9048 .8719 1.1847 1.1574 1.1477 

  0.3 .9058 .8728 .8406 1.3453 1.2534 1.2220 

 7.0 0.1 .7537 .5104 .3332 1.3072 1.3070 1.2855 

  0.2 .5162 .3370 .2126 2.0312 1.7286 1.5915 

  0.3 .3408 .2150 .1316 3.0503 2.2497 1.9408 

 10.0 0.1 .6664 .3757 .1974 1.3937 1.3749 1.3315 

  0.2 .3820 .2007 .0992 2.3010 1.8673 1.6699 

  0.3 .2040 .1008 .0473 3.4681 2.4275 2.0308 
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Table 3 Variations of Nu and Sh with Nb and Nt for various values of Le and  at  

Pr = 1 and fw= 0 

 

 Le Nt 

)0(   (0)  

Nb=.1 Nb=.2 Nb=.3 Nb=.1 Nb=.2 Nb=.3 

0.0 5.0 0.1 .9209 .8720 .8251 1.1816 1.1668 1.1612 

  0.2 .8748 .8278 .7827 1.3489 1.2725 1.2459 

  0.3 .8305 .7853 .7419 1.6012 1.4191 1.3566 

 10.0 0.1 .9184 .8673 .8184 1.2819 1.2674 1.2618 

  0.2 .8726 .8235 .7765 1.4471 1.3724 1.3462 

  0.3 .8287 .7815 .7363 1.6946 1.5169 1.4556 

 20.0 0.1 .9143 .8595 .8073 1.4659 1.4517 1.4462 

  0.2 .8690 .8164 .7664 1.6263 1.5547 1.5293 

  0.3 .8256 .7752 .7272 1.8638 1.6944 1.6356 

1.0 5.0 0.1 .9557 .9023 .8513 1.3687 1.3676 1.3622 

  0.2 .9086 .8573 .8081 1.5006 1.4618 1.4474 

  0.3 .8633 .8139 .7666 1.7298 1.5995 1.5539 

 10.0 0.1 .9501 .8919 .8365 1.7011 1.7001 1. 6944 

  0.2 .9035 .8476 .7944 1.8351 1.7970 1.7826 

  0.3 .8587 .8050 .7540 2.0657 1.9368 1.8914 

 20.0 0.1 .9420 .8767 .8154 2. 3311 2.3304 2. 3249 

  0.2 .8961 .8337 .7749 2.4640 2.4275 2.4130 

  0.3 .8522 .7924 .7363 2.6889 2.5652 2.5207 
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 Figures 2 and 3 display results for the variation of temperature and concentration 

within the boundary layer. As Nt increases, the temperature increases whereas the 

concentration decreases. As Nb increases, the temperature decreases whereas the 

concentration increases. The thickness of the boundary layer for concentration is smaller 

than the thermal boundary layer thickness. 

 

Figure – 2 Temperature and Concentration Profiles 

 

Figure – 3 Temperature and Concentration Profiles 
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 Figure 4 shows the concentration distribution as the Lewis number increases. As 

Le increases, we observe that the concentration decreases and the concentration boundary 

layer thickness decreases. This in turn increases the surface mass transfer rates as Le 

increases.   
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Figure – 4 Concentration Profiles 

 

Figure 5 shows the temperature distribution as the Prandtl number increases. As 

Pr increases, we observe that the temperature decreases and the thermal boundary layer 

thickness decreases. This in turn increases the surface heat transfer rates as Pr increases.   

 

Figure 6 shows the effect of surface mass transfer on temperature and 

concentration distributions. As the surface mass transfer parameter fw increases, the 

temperature and concentration decrease and their surface gradients increase. Therefore, s 

surface mass transfer increases heat and mass transfer rates.  
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Figure – 5 Temperature Profiles 
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Figure – 6 Temperature and Concentration Profiles 
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Figure 7 shows the velocity distribution within the boundary layer for several 

values of the velocity ratio parameter . A value of zero for the velocity parameter 

describes the Blasius problem whereas  = 1 describes the Sakiadis problem. 
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Figure – 7 Velocity Profiles 
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Figure – 8 Temperature and Concentration Profiles 
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 Figure 8 shows the temperature and concentration distribution within the 

boundary layer for several values of the velocity ratio parameter  . As   increases, the 

temperature and concentration values decrease whereas their surface gradients increase. 

This indicates that increasing values of   will augment heat and mass transfer rates.   

 

Figures 9 – 16 show the variation of heat and mass transfer rates versus Nb and Nt 

with Pr, Le and    chosen as prescribable parameters. The heat transfer rates decrease as 

Nb or Nt increase. The mass transfer rates increase with Nt and decrease with Nb. The heat 

transfer rate increases as the Prandtl number Pr increases. At higher values of Pr, the 

thermal diffusivity decreases and therefore the heat transfer rate increases.  Similarly, as 

Le increases, the surface mass transfer rates increase.  
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Figure – 9 Reduced Local Nusselt Number Vs Nt 
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Figure – 10 Reduced Local Sherwood Number Vs Nt 
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Figure – 11 Reduced Local Nusselt Number Vs Nt 
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Figure – 12 Reduced Local Sherwood Number Vs Nt 
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Figure – 13 Reduced Local Nusselt Number Vs Nt 
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Figure – 14 Reduced Local Sherwood Number Vs Nt 
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Figure – 15 Reduced Local Nusselt Number Vs Nt 
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Figure – 16 Reduced Local Sherwood Number Vs Nt 
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CHAPTER V 

 

CONCLUDING REMARKS 

 

In this work, we have studied the problem of the steady boundary-layer flow of a 

nanofluid on a permeable continuous moving isothermal surface moving in parallel to a 

free stream. The governing boundary layer equations are solved numerically using the 

fourth-order Runge-Kutta scheme along with the shooting method. The development of 

the Nusselt number and Sherwood number as well as the temperature, concentration and 

velocity distributions for various values of the velocity ratio, suction/injection and 

nanofluid parameters has been discussed and illustrated in tabular forms and graphs. The 

results indicate that the suction/injection parameter is found to reduce the Nusselt 

number, friction factor and mass transfer. The effect of the nanofluid parameters on the 

temperature and concentration distributions as well as the friction factor and heat and 
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mass transfer depends on the ratio of the velocity of the plate and the free stream fluid 

velocity. 
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