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EFFECT OF RIB TURBULATORS ON HEAT TRANSFER PERFORMANCE IN 

STATIONARY RIBBED CHANNELS 

 

ARAVIND ROHAN SAMPATH 

 

ABSTRACT 

 

The thermal performance was examined computationally for the stationary 

channels with rib turbulators oriented at 90 degrees. Ribs were placed on opposite walls 

and the heat transfer coefficients and frictional loss were calculated. Three stationary 

channels with aspect ratios (W/H) 1, 2 and 4 were considered for the analysis. The 

thermal performance was measured by calculating the Nusselt number and frictional 

losses. Square ribs      (w/e = 1) were considered as the baseline configuration. The rib 

width and rib spacing varies while the rib height is maintained constant. Rib spacing (P/e) 

of 10 and 20 and rib width to rib height ratios (w/e) ranging from 1/8 to 14 were 

considered. The heat transfer performance for all the channels were calculated for 

Reynolds numbers 10,000, 30,000 and 60,000. The code was validated by comparing the 

results for channels with square ribs (w/e =1) with the experimental results. The results 

obtained for all the channels with different rib configuration proved that the increase in 

rib width reduced the thermal performance of the channels. By combined effect of rib 

width, rib spacing and flow parameters, the optimal cooling configuration was obtained. 
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NOMENCLATURE 

 

AR:        Aspect ratio 

d:           Diameter of the channel, m 

D:          Characteristic length, m 

Dh:    Hydraulic diameter 

DNS:   Direct Numerical Study 

E:          Internal energy per unit mass, J/kg 

e:      Height of the rib, m 

f:            Friction factor 

fFD:         Friction factor for fully developed flow in smooth channel 

fnorm.:      Normalized friction factor 

G:           Mass flux, kg/m 

gc:          Conversion factor 

h:           Convective heat transfer coefficient, W/m
2 

K 

H:          Height of the channel, m 

k:           Thermal conductivity, W/m K 

L:          Length of the channel, m 

LES:     Large Eddy Simulations 

m:         Mass flow rate, kg/s 

n:          Constant for heating  

Nu:       Nusselt number 

NuFD:    Nusselt number for Fully Developed flow in smooth channel 

Nunorm.: Normalized Nusselt number 

P/e:        Rib spacing ratio 
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P:          Pitch of the rib, m 

PBC:     Periodic Boundary Condition 

PBC:     Periodic Boundary Condition 

Pr:         Prandtl number 

q/A:       Heat transfer per unit area, W/m
2
 

Re:         Reynolds number 

ReD:       Reynolds number based on Hydraulic diameter 

RKE:     Realizable k – ε turbulence model 

SKW:    Standard k – ω turbulence model 

Tb:         Local mean bulk temperature, K 

Tw:        Local wall temperature, K 

V:         Velocity of the flow, m/s 

w/e:       Rib width to rib height ratio 

W/H:     Channel aspect ratio 

w:          Width of the rib, m 

W:        Width of the channel, m 

ΔP:        Pressure drop across the domain, Pa 

 

Greek Letters: 

α:           Orientation of the rib, degrees 

Δ:          Laplacian operator   

ρ:           Density of the coolant, kg/m
3 

υ:          Kinematic viscosity, m
2
/s 
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CHAPTER I 

INTRODUCTION 

 

Gas turbine is a rotary engine that extracts power from the flow of combustion gases. 

Energy is extracted in the form of shaft power and thrust. The gas turbines are described 

thermodynamically by the Brayton cycle, in which air is compressed isentrophically, 

combustion occurs at constant pressure and expansion over the turbine occurs 

isentrophically back to the starting pressure. 

Gas turbines play a vital role in today’s world and as the demand of power increases, 

the thermal efficiency and power output of the engine should be optimized. One method 

of increasing both the power output and thermal efficiency is to increase the inlet 

temperature of the hot gases through the internal passages. 

In advanced gas turbines, the turbine inlet temperature of the gases is as high as 

1700° C – 2000° C. These temperatures exceed the melting point of the turbine 

components. Therefore it is very important to cool the turbine components so that they 

can withstand these extreme temperatures. With current cooling techniques the 

temperature is decreased to almost 1000° C, so that they can withstand this extreme 

environment.  



2 
 

There are several techniques such as jet impingement, film cooling, rib turbulators, 

shaped internal cooling passages, dimple cooling, shown in Figure 1, to cool a modern 

gas turbine blade. The jet impingement is used to cool the leading edge, pin fin cooling at 

the trailing edge and rib turbulators are used cool the internal passages. The present study 

focuses on the internal cooling turbine blades using rib turbulators or turbulence 

promoters. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Different cooling techniques employed in turbine blades. 

 

Rib turbulators are the most frequently used method to enhance the heat transfer 

in the cooling passages. The details of the internal cooling by rib turbulators are 

explained in chapter II. 
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1.1 Literature Review 

 

A number of traditional cooling concepts are used in various combinations to 

adequately cool the turbine vanes and blades. Gas turbine heat transfer and cooling 

technology by Han, J. C., et al. (2001) provides a detailed description of turbine blade 

heat transfer and cooling technology. The author compiled a comprehensive review of 

gas turbine cooling technology including techniques to enhance the heat transfer in 

internal cooling passages. The book also includes a numerous studies that have been 

conducted over the years on a wide range of rib configurations in various cooling 

channels using many experimental techniques.   

Early studies investigated cooling channels with orthogonal ribs. Han, J. C. 

(1988) has performed an experimental study on the ribbed channels with orthogonal 

square ribs. Three different ribbed channels with different aspect ratios were considered. 

Also the rib spacing and Reynolds number were taken into account. The work compiled a 

detailed study on the effect of rib spacing on the heat transfer performance of the ribbed 

channels. The author has also provided us with a heat transfer and friction correlation. 

This paper provides us with the experimental results which were compared with the 

numerical study obtained through the numerical analysis. 

Han, J. C., et.al. (1992) performed experiments on various channels now with 

angled ribs. The ribs were oriented at angles 30, 45, 60 and 90. The effect of rib 

orientation on the thermal performance is the main objective of the study. It is concluded 

that the angled ribs have higher heat transfer performance than the orthogonal ribs. The 

friction and heat transfer correlations are derived from their study.  
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Iacovides, H. (1998) performed the computation work on the ribbed rectangular 

passages. In his study both stationary and rotating rectangular passages were considered. 

The computation work was based on the orthogonal square ribs. The work mainly 

concentrated on the effect of turbulence model on the channel performance. A differential 

stress model was developed and it proved to yield better results than the standard k-e 

model. 

Bonhoff, B., et.al. (1999) performed an experimental and numerical study in 

coolant channels with 45 degree ribs. A stationary square channel is used in the study. 

Experimental results and the numerical results are obtained by using a Reynolds stress 

model. The results compared well. A cyclic boundary condition was used for the 

numerical study. Velocity and heat transfer distributions were recorded. 

Iacovides, H. and Raisee, M. (2000) performed a computational study on a rib 

roughened passage using low Reynolds number turbulence model. A standard k-e and 

standard k-w turbulence models were used. The periodic boundary condition was 

employed and the parameters such as Nusselt number are obtained. The differential stress 

model was also developed. The DSM model provided an improved heat transfer 

predictions after flow reattachment and over the ribs. However the model failed to predict 

the effect of Reynolds number. 

Lin, Y. L., et.al (2001) performed a numerical study of flow and heat transfer in a 

duct with 45 degree angled ribs. Both rotating and non rotating duct was considered. The 

analysis was performed on a three dimensional flow. With a 3D analysis, the secondary 

flow was predicted. These results also show how the nature of the fluid flow affects 

surface heat transfer. Also the secondary flow has pronounced effects on heat transfer. 
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Agarwal, P. (2001) performed a detailed study on the heat and flow transfer in 

serpentine cooling passages. The channel with aspect ratio 1:4 and 4:1 were constructed. 

The ribs at angle 90 and 45 degrees were used. Comparisons were made between the 

angle orientation and the effect of the channel aspect ratios. The angled ribs proved to 

have high heat transfer performance than the orthogonal ribs. Also the wider channels 

proved to be better than the narrow channel. 

Bredberg, J. (2002) performed an extensive study on the turbulence modeling on 

the internal cooling of gas turbine blades. Stationary and rotating channels were taken 

into consideration. He concluded that the standard k-w model results in an accurate 

method for simulating complex geometries. 

Wright, L. M. (2008) performed an experimental analysis on a 3:1 rectangular 

channel with angled ribs. The rib spacing of 10 and 20 are considered. Rib widths were 

altered and their effects on the performance were recorded. Also the effect of Reynolds 

number is taken into account. The study concludes that the angled ribbed channel has 

more heat transfer effect than the smooth channel. Heat transfer and friction correlations 

were obtained. 

Many researchers like Qahtani, A. M. (2002), Han, J. C. (2005) and Wright, L. M. 

(2008)   performed their works on the rotating channel with either orthogonal or angled 

ribs. These works were useful in studying the effect of rib spacing, rib width and the flow 

parameters on the heat transfer performance. The works gave an idea on how the heat 

transfer alters when the channel is roughened.  
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1.2 Objective of the Work 

 

 The objectives of the work are as follows: 

i. To study the channel aspect ratio effect (W/H = 1, 2 and 4) on the heat 

transfer for the ribbed channels at different Reynolds number. The 

Reynolds number is in range of 10,000 – 60,000. 

ii. To study the effect of the rib width to rib height aspect ratio (w/e = 1/8 – 

20) on the Nusselt number and friction factor for different Reynolds 

number. 

iii. To study the effect of the rib spacing, P/e = 10 and P/e = 20 on the heat 

transfer performance for different Reynolds number. 

The parametric study of the analysis is shown in Table 1. The work consists of the 

combined effect of the parameters: Channel aspect ratio, rib spacing, rib width to height 

ratio and Reynolds number. Each case is combination of either of these parameters. The 

ultimate goal is to pick out the optimum cooling configuration.  

Table 1: Parameters studied in the work 

Parameters Symbol Range of values 

Channel aspect 

ratio 

W/H                 1                     2                     4 

Rib spacing P/e 10                                   20 

Rib width to rib 

height ratio 

w/e 1/8       1       2       6       8       10       14      20 

Reynolds number Re 10,000                30,000               60,000 
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1.3 Organization of the Thesis 

 

 The thesis consists of eight chapters. 

In chapter I, an introduction of the problem and objective of the work are given. 

The contributions of various researches on the study of internally cooling passages with 

rib turbulators are reviewed.  

In chapter II, the data reduction procedure is described. The reduction method is 

based on the data provided in the literature. The procedure of normalizing the parameters 

is provided. 

In chapter III, the detailed study of the numerical method is provided. The 

boundary condition and thermal condition used in the analysis are described. The method 

to find the best turbulence model and simplified approach is also given. 

In chapter IV, the details of the grid independence study is discussed. Details of 

various grids and analysis are described and the results are provided.  

In chapter III, the analysis of smooth channel is performed. The code is validated 

by performing the case analysis on a known result. The results from the analysis are 

compared with the correlation value. The Nusselt number is calculated for various types 

of flow. 

In chapter VI, the effects of rib spacing in the stationary channels are provided. 

The comparison of numerical results with the experimental results is performed. Only the 

square ribs (w/e = 1) are used this chapter. The numerically data is acquired for three 

ribbed channels square channel, rectangular channel I and rectangular channel II. The 

local Nusselt number variation is obtained for various rib spacing. The normalized 
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Nusselt number and normalized friction factor are calculated for all the cases and are 

compared with the experiment results. The velocity contours are also provided to study 

the flow pattern. By this the CFD code is validated. 

In chapter VII, the analysis is performed for different rib widths. The combined 

effect of rib spacing, rib width and Reynolds number on the heat transfer performance is 

analyzed. Again, the normalized Nusselt number and normalized friction factor values 

are calculated and presented.  

In chapter VIII, the heat-transfer performance for the ribbed channels is analyzed. 

Finally we conclude with the best cooling configuration based on the combined effect of 

heat transfer, pressure loss and overall thermal performance. 
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CHAPTER II 

FLOW PHENOMENA IN TURBINE BLADES 

 

 The combination of a complex geometry and the imposed forces develop a 

complex flow structures within the internal passages of the turbine blades. The physical 

understanding of the flow pattern is necessary. In this chapter we discuss the various rib 

configurations modeled and the flow pattern caused by the placement of the ribs. Also the 

calculation procedure to normalize the results is discussed. 

2.1 Rib Turbulators 

 The purpose of introducing the ribs at regular intervals is to enhance the heat 

transfer rates. Ribs are manmade protrusions which are placed in a controlled way along 

the walls. The rib induces a separation in the flow and hence causes an increase in the 

frictional loss. The enhancement of the heat transfer has thus a drawback in the increased 

pressure drop, which sometimes can be several times larger than for a smooth channel. 
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The pressure drop and heat transfer are strongly connected to the height of the rib. 

Though the ribs can be placed at different orientation, our study focuses on the ribs 

placed orthogonally (at 90 degrees) to the mainstream flow. The size of the rib and the 

distance between the two successive ribs, the pitch has great importance.  

The heat transfer performance of the ribbed channel depends on the channel 

aspect ratio, rib configuration and Reynolds number of the coolant. When the coolant 

passes over the ribs, the flow separates and reattaches as shown in Figure 2. 

 

 Figure 2: Rib turbulators placed on opposite walls of the cooling passage 

showing flow separation and reattachment  

 

 This separated and reattached boundary layer results in the increased heat transfer 

coefficient of the ribbed channel. The rib induces secondary flow which further enhances 

the heat transfer from the wall to the coolant. The rib also induces turbulent mixing in the 

channels which increases the velocity of the flow.  

 

2.2 Rib Configuration 

The channel and rib configuration used in the numerical analysis were obtained 

from the experimental investigation performed by Han, J. C. (1988). The ranges of all the 
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parameters were discussed in Chapter I and are provided in Table 1. The experimental 

results for normalized Nusselt number and normalized fiction factor for all the channels 

with square ribs were obtained from this literature. The average Nusselt number has an 

experimental uncertainty of 8% and average friction factor has an uncertainty of 9%. The 

numerical results are then normalized and compared with the experimental results.  

 

w/e P/e = 10 P/e = 20 

1/8   

1   

2   

4   

6   

8 -  

10 -  

14 -  

 

Figure 3: Rib configuration for various rib width and rib spacing 

The analysis is performed for three basic channels, Square channel with AR 1:1, 

Rectangular channel with AR 2:1 and Rectangular channel II with AR 4:1. The values of 

the channel width and channel height will be discussed in further chapters. The ribs are 

placed at two different rib spacing P/e = 10 and 20. The experimental investigation is 

performed on these three channels and two rib spacing for only square ribs, w/e = 1. In 

this study the combined effect of rib width is also considered. The idea is to choose a 
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value for rib width to rib height ratio between 0 to 10 for P/e = 10 and 0 to 20 for P/e = 

20. The rib width ratios w/e = 0, 10 and 20 represents a straight smooth channel. The 

value of w/e =1/8 is selected as anything below this value is similar to a smooth channel. 

Similarly when the values reach beyond w/e =6 for P/e = 10 and w/e = 14 for P/e = 20, 

the channel becomes similar to straight channel. So the idea is to pick five to six values 

between these ranges. Figure 3 shows the rib configuration pattern for various cases. For 

the rib spacing, P/e = 10 five values are selected and for P/e = 20 eight values are 

selected. The ratio w/e = 1 is a square rib which was used in experimental investigation. 

Since P/e = 20 has a wider rib spacing, a wide range of w/e ratio was needed. The 

optimum rib width size lies between these ranges as the two extreme values represents 

smooth channels. The heat transfer coefficients and frictional loss are calculated. From 

the combined effect an optimum rib width size is selected. 

 

2.3 Calculation Procedure and Formulae  

 

The experimental investigation performed by Han, J. C. (1988) provides us with 

experimental results for Nusselt number and friction factor for channels with orthogonal 

square ribs. As explained above, these results are normalized by using a normalizing 

factor to compare with our computational results. The procedure of normalizing the 

parameters is discussed in the following sections.  
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2.3.1 Normalizing Nusselt number 

 

Nusselt number is a dimensionless number which is used to estimate the heat 

transfer component. It is the ratio of convective to conductive heat transfer coefficients 

across the boundary. The Nusselt number, Nu no. is given by equation (1). 

𝑁𝑢 =  𝑕𝐷 𝑘                     (1) 

where, 

h= heat transfer coefficient, W/m
2
K 

D = characteristic length, m 

k = thermal conductivity of the fluid, W/ m K 

The value of characteristic length depends on the type of the channel. The value 

of thermal conductivity of fluid, air in our case is 0.025 W/m K. 

The local heat transfer coefficient is calculated from the local net heat transfer 

rate per unit surface area from wall to cooling air; local wall temperature and local bulk 

mean temperature.  

𝑕 =
 
𝑞
𝐴  

 𝑇𝑤 − 𝑇𝑏 
                    (2) 

where, 

q/A = heat transfer per unit area, W/m
2
 

Tw = local wall temperature, K 

Tb = local bulk mean air temperature, K 

The bulk mean temperature entering and leaving the section is obtained. The local 

bulk mean temperature, Tb is calculated by assuming a linear rise along the stream-wise 
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flow. The local wall temperature, Tw is also obtained. From these results, the heat transfer 

coefficient is calculated by applying it in equation (2). 

The Nusselt number is calculated by applying the heat transfer coefficient values 

in equation (1). The obtained Nusselt number is now averaged.  The normalizing factor is 

provided by the correlation by Dittus – Boelter equation for Nusselt number for fully 

developed turbulent flow for smooth tubes provided in equation (3). 

 

𝑁𝑢𝐹𝐷 =  0.023 𝑅𝑒0.8𝑃𝑟𝑛                     (3) 

where, 

NuFD  = Nusselt number for fully developed turbulent flow 

Re = Reynolds number 

Pr = Prandtl number 

n = constant. The value for n = 0.4 for smooth tubes. 

The Dittus – Boelter equation is an explicit function to calculate the Nusselt 

number. It is easy to solve and is completely tailored for the smooth channels.  

The normalized Nusselt number is obtained by dividing the Nusselt number and 

the normalizing factor. 

𝑁𝑢 𝑛𝑜𝑟𝑚 . =  𝑁𝑢
𝑁𝑢𝐹𝐷
                     (4)  

2.3.2 Normalizing friction factor 

 

The friction factor estimates the pressure loss across the channel. To calculate the 

friction factor the pressure drop across the section is calculated and applied in the 

equation (5).   
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𝑓 =  ∆𝑃

 4 ∆𝐿 𝐷   𝐺
2

 2𝜌𝑔𝑐 
                       (5)

 
 

where, 

ΔP = pressure drop across the section, Pa 

G = mass flux, kg/m 

ρ = density, kg/m
3
 

gc = conversion factor, 1 for the analysis. 

The normalized factor for the friction factor for fully developed flow for smooth 

tubes was proposed by Blasius and is given in equation (6). 

𝑓𝐹𝐷 =   0.046 𝑅𝑒−0.2                                         (6) 

The friction factor is then normalized by dividing the friction factor obtained by 

computation and friction factor obtained by correlation. 

𝑓𝑛𝑜𝑟𝑚 . =
𝑓
𝑓𝐹𝐷
                                                     (7) 

2.4 Conclusion 

 

The normalized Nusselt number and friction factor are then compared with the 

normalized experimental results. Thus normalizing of results simplifies the calculation. 

The effects of ribs and Reynolds number on the pressure loss and heat transfer are easily 

correlated. 

 



16 
 

CHAPTER III 

NUMERICAL METHOD 

  

The CFD commercial code Fluent is used in this thesis. The computational 

simplification and geometrical configurations are addressed. 

3.1 Governing equations 

 The equations that govern the fluid motion and heat transfer are continuity, 

momentum and energy equations. The equations are called Navier Stokes equations. The 

fluid is assumed to be incompressible as the temperature rise of the fluid across the 

domain is minimal and the density of the fluid remains constant. 

 The continuity equation states the conservation of mass. For an incompressible 

fluid the continuity equation is  

𝛿𝜌

𝛿𝑡
+  

𝛿𝜌𝑈𝑖
𝛿𝑥𝑗

= 0                                                  (8) 

 

The momentum equation is give by Newton’s second law which states that the mass 

times the acceleration is equal to the imposed force. Assuming a Newtonian
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incompressible fluid, the momentum equation is described as 

𝛿𝑈𝑖
𝛿𝑡

+  𝑈𝑗
𝛿𝑈𝑖
𝛿𝑥𝑗

+
1

𝜌

𝛿𝜌

𝛿𝑥𝑖
=  𝜗∆𝑈𝑖                                          (9)  

 The first law of thermodynamics states that the exchange of energy for the system 

is the result of applied work and heat transfer through that region. The energy equation is 

given by 

𝛿𝐸

𝛿𝑡
+  𝑈𝑗

𝛿𝐸

𝛿𝑥𝑗
=  Φ +  

1

𝜌

𝛿

𝛿𝑥𝑗
 𝑘

𝛿𝑇

𝛿𝑥𝑗
                             (10) 

 where, 

  Δ – Laplacian operator   

E – Internal energy per unit mass, J/kg 

  Φ -  rate of dissipation of mechanical energy per unit mass, J/ kg s 

  υ – kinematic viscosity, m
2
/s 

3.2 Geometry 

 For a constant property fluid flowing with constant cross section area the velocity 

profile becomes independent on the stream-wise flow at some distance from the inlet. 

The flow will, after an entry length repeats itself in a periodic manner within each rib 

interval. In a section for which the ribs are located at specific intervals, the velocity 

components exhibit a periodic behavior in the stream-wise direction. 

U(x, y) = U(x + ΔL, y) 

V(x, y) = V(x + ΔL, y) 

 The pressure is also decomposed in a similar manner. If the pressure distribution 

is plotted for two different rib intervals, the plot will have identical shapes with little  
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change in their level. The change in level is because of the friction loss due to the 

presence of the ribs. The thermal equation may also be treated in the similar manner. 

The three dimensional geometry of the domain is shown in Figure 4. The aspect 

ratio of the channel is described as width to height, W/H. The channel height has a direct 

influence in the analysis. The domain is halved and a symmetry boundary condition is 

employed to simplify of the analysis. Since the analysis is two dimensional, the channel 

width has no direct influence in the analysis. But the mass flow rate is calculated only on 

the basis of hydraulic diameter and hence the channel width is taken into consideration. 

The mass flow rate increases as the channel width increases. This mass flow rate affects 

the velocity of the flow. Since there is a change in the velocity, the heat transfer 

coefficient may increase or decrease finally affecting the heat transfer performance.  

 

Figure 4: Three dimensional view of the computational domain with rib 

turbulators. 
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The two dimensional flow region of the ribbed channel is shown in Figure 5. The 

channel is roughened with ribs with height, e and width, w. The pitch, P determines the 

rib spacing. The variation in distance between the ribs and rib width may alter the heat 

transfer performance.  

 

Figure 5:  Two dimensional flow region of the ribbed channel. 

 

3.3 Boundary and Thermal Condition 

 

The boundary condition distinguishes how a fluid flow varies from one case to 

another. It is of paramount importance in numerical simulation. Improper boundary 

condition treatment may cause significant discrepancies in the predicted results. 

In this numerical simulation there exists wall, periodic and a symmetry boundary 

condition. The general geometry and boundary conditions are given in the Figure 6. 
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Figure 6: Periodic domain and the boundary conditions. 

  

For certain flow with periodic repeated geometries, the specification of inlet and 

outlet are given by the periodic boundary condition. The mass flow rate is applied at the 

inlet of the periodic flow. Also a mean bulk temperature of 298K is applied at the inlet. 

For the stationary wall the near wall behavior is governed by a no-slip condition. 

The thermal boundary condition is case dependent for all the analysis within this thesis. 

A constant heat flux is applied along the wall. The value of heat flux varies with different 

flow conditions. 

Since the ribs are placed on two opposite walls, a symmetry boundary condition is 

applied. This eventually minimizes the grid generation difficulties along the wall. The 

ribs are placed orthogonal to the flow. 
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3.4 Turbulence Model 

 

The selection of suitable turbulence model is very important in any computational 

analysis to predict the accurate results. The analysis consists of flow with low Reynolds 

number. The two turbulence models: standard k-w and realizable k-e model are generally 

used for low Reynolds number analysis.  

An analysis is performed on a 1:1 square channel with rib spacing, P/e 10 at 

Reynolds number 10,000 using both SKW and RKE turbulence models. All the input 

parameters such as wall heat flux (2500 W/m
2
), inlet bulk temperature (298K) is 

maintained constant for both the analysis. The local Nusselt number distribution along 

the channel is obtained and plotted in Figure 7.  

 

 

 

 

 

 

 

 

 

Figure 7: Local Nusselt number variation for different turbulence models. 

The normalized Nusselt number and normalized friction factor is also calculated 

and compared with the experimental data. The values are shown in Table 2. 
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Table 2: Normalized Nusselt number values for different turbulence models 

 RKE SKW Experimental 

Normalized Nusselt number 5.428 2.372 2.395 

Normalized friction factor 3.618 3.847 3.954 

 

It is clearly evident from the results that the SKW turbulence model is better than 

the RKE model. The reason for the difference in results is because the RKE model fails 

to predict the secondary flow across the channel. The presence of ribs causes a 

recirculation flow at inlet and also downstream the channel and hence the temperature of 

the wall is high. This increase in wall temperature decreases the Nusselt number. 

The percentage error is very high for RKE model. It is 12% for normalized 

Nusselt number and 8% for friction factor calculation. The percentage error is 0.8% and 

3% for Nusselt number and friction factor respectively for SKW turbulence model. The 

high percentage error hence eliminates the choice of RKE turbulence model for further 

analysis. The SKW model is always preferred for low Reynolds number flow analysis. 

The reason as mentioned earlier is the prediction of the separation flow. 

3.5 Sequential vs. Coupled Approach 

 

The analysis was first performed using a coupled method. In this approach all the 

governing equations, continuity, turbulence and energy equations are solved together. By 

this approach both the flow and temperature were made periodic which resulted in 
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erroneous results. To overcome the problem and to make only the flow periodic, a 

sequential method was approached. 

A sequential or segregated approach was used to perform the periodic heat 

transfer flow. The segregated approach solves the governing equations separately. The 

flow is made periodic by solving the continuity and turbulence equations and then the 

energy equation is solved for heat transfer. By this approach the flow is made periodic 

without affecting the temperature field. This is also an efficient method as it saves more 

time and memory size.  

The difference in the two approaches is illustrated with the local Nusselt number 

distribution along the flow channel. The case shown in Figure 8 is a square channel with 

an aspect ratio P/e 10 at Reynolds number 10,000.  

 

 

 

 

 

 

 

Figure 8: Local Nusselt number variation for different approach 
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Table 3:  Normalized Nusselt number values for different computational approach 

 

Coupled 

method 

Sequential 

method 

Experimental 

Normalized Nusselt number 2.362 2.372 2.395 

Normalized friction factor 3.626 3.847 3.954 

 

The values of normalized Nusselt number and normalized friction factor are 

compared for both the methods and shown in Table 3. The results obtained from the 

sequential approach are much closer to the experimental than the coupled method. The 

percentage error is 2% for normalized Nusselt number and 8% for friction factor in case 

of coupled method. The percentage error is 0.8% and 3% for Nusselt number and friction 

factor respectively in case of sequential method. The sequential approach has proved to 

be more efficient than the coupled approach. 

3.6 Conclusion 

 

In this chapter we discussed the boundary and thermal conditions. The values of 

initial conditions are given. The turbulence models are tested and the result for the 

standard k-ω model provides better results when compared with the experiment results. 

Next the approach for the analysis is studied. The sequential approach proved to be better 

in acquiring the results. Also the computation time is minimized as the governing 

equations are solved separately. By this approach only the velocity is maintained periodic 
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and the temperature is independent of the boundary condition. Now, the mesh has to be 

tested. A grid independence study is performed and is provided in the next chapter. 
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CHAPTER IV 

GRID INDEPENDENCE STUDY 

  

The grid generation plays a vital role in any analysis. A proper mesh provides us 

with approximate solutions to the partial differential equations. The mesh can be coarse 

or fine depending on the operating conditions specifically the Reynolds number. Since 

the present study consists of flow with separation and reattachment, a fine mesh is 

required along the wall to predict the recirculation zone. Moreover a fine mesh through 

the entire domain will increase the computation time. An extensive study is required so as 

to create an optimum mesh which will decrease the computation time with no loss in the 

accuracy of the results. The exclusive study of the grid independence is discussed in this 

chapter. Various grids are generated and the effects on the flow parameters are described. 

The results are obtained and compared with the experimental results. The grid that 

provides the valid results is used for further investigation. 
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4.1 Introduction 

The grid independence study is performed for the flow through a square channel 

(AR 1:1) with orthogonal ribs and rib spacing, P/e = 10. The details of the rib and 

channel geometries and flow parameters are provided in the Table 4.  

Table 4: Rib and channel geometries and flow parameters for the grid independence 

study 

W H W/H w e w/e P/e α Re 
 

0.051 0.051 1 0.0024 0.0024 1 10 90° 

10,000 

30,000 

60,000 

 

The square rib w/e = 1 is used as the baseline configuration. The height of the rib 

is 0.0024m. The Reynolds number of 10,000, 30,000 and 60,000 are considered for the 

analysis. A standard k-ω turbulence model is used. The normalized Nusselt number and 

normalized friction factor are calculated and compared with the experimental data. The 

wall y plus is also calculated for all the cases. Turbulent flows are significantly affected 

by the presence of the walls. The turbulence models require verification to make sure it is 

valid when used near walls. The near wall model is sensitive to the grid resolution which 

is assessed by the wall y plus. Hence it is required to consider the wall y plus when 

generated grid for flow involving turbulence or separation.  
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4.2 Details of the Grid 

The independence study was performed for several grids but in this study we 

discuss the four types of grids. The details of each grid and mesh parameters are 

described below. 

Grid-I is a basic coarse mesh. The computational view of the grid is shown in 

Figure 9. The edges are meshed first. The edges have an interval count of 40. Then the 

domain is meshed with a uniform mesh with an interval size of 0.4579 using mapping 

method. The near wall meshes are not refined. The main objective to generate a coarse 

mesh is to show how the near wall refinement affects the turbulent flow. Though we are 

aware that the standard k-ω turbulence model requires a fine mesh for a turbulent flow, 

the coarse mesh is included in this study to show how there is a significant variation in 

the results when compared with the experimental data. 

   

 

 

 

 

 

 

   

Figure 9: Computational View of Grid I – Coarse mesh 

In Grid II, the domain is meshed with the use of size functions. The size functions 

controls the size of the mesh element edges. Though similar to boundary layer, they differ 
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with respect to the manner by which they are specified and they control the mesh. The 

size functions control the maximum edge element length. The details of the values used 

in size functions are described in Table 5.  

A fixed type size function is used. The edges (source) are attached to the face 

(attachment). The source entity is the region where size function is applied and the 

attachment entity is the region that is affected by the size function. The start size is the 

mesh-element edge length in the region immediately adjacent to the source entity. The 

growth rate represents the increase in mesh-element edge length with each succeeding 

layer of elements. The size-limit specification represents the maximum allowable mesh-

element edge length for the attachment entity. 

Table 5:  Size functions specifications 

Factor Value 

Start Size 1 e-05 

Growth rate 1.15 

Max. size 0.001 

 

The computational view of the grid is shown in Figure 10. The near wall meshes 

are finely refined. The region is meshed by the pave method. The separation of the flow 

can be captured by the use of this fine mesh.   
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Figure 10: Computational View of Grid II – Fine mesh with size functions 

Grid III was generated with the use of both size functions and boundary layer. 

Though the near wall meshes are refined, the region around the ribs develops a high wall 

Y plus values. This is because of the sudden change in shape along the flow. Enhanced 

wall treatment enables us to predict friction drag, separation etc. Though size functions 

and boundary layer control the meshes in a similar manner, the boundary layers prescribe 

specific mesh patterns. The boundary layer specifications are given in Table 6. The 

specifications of the size functions are same as described in Table 5. 

Table 6: Boundary layer specifications 

Factor Value 

First row 1 e-07 

Growth factor 1.15 

Number of rows 16 
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Figure 11: Computational view of Grid III – Fine mesh with boundary layer and size 

function 

The computational view of the mesh is shown in Figure 11. The domain is 

meshed using the pave method. The number of elements is 49122. The region around the 

rib is finely meshed now. The internal continuity and wedge shape factor is enabled using 

the boundary layer option. By this, the sharp edges are removed and there is no sudden 

change in shape.  

Grid IV again was created with size functions and boundary layer. In this case the 

same value of boundary layer as discussed in Table 6 is maintained but the values of size 

functions are varied. The start size for the size function in this case is 1 e-06. The 

computational view of the grid is provided in Figure 12. The elements near the rib are 

more clustered. The total number of elements is 57074. 
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Figure 12: Computational view of Grid IV – Finer mesh with boundary layer and size 

function 

4.3 Results and Discussion 

The results for the normalized Nusselt number and normalized friction factor are 

provided only for the three grids. The Reynolds number of 10,000, 30,000 and 60,000 are 

used. The normalized Nusselt number and normalized friction factor are calculated. The 

calculated results are also compared with the experimental data. The Figure 13 shows a 

plot for normalized Nusselt number for various cases. The values are also tabulated and 

shown in Table 7.  
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Figure 13: Normalized Nusselt number for various meshes at different Re.  

 The plot clearly shows the effect of mesh refinement. The grid I values are very 

high when compared with the experimental results. As described above, the near wall 

meshes are coarse and hence it failed to predict the separation and reattachment of the 

flow.  

Table 7: Normalized Nusselt number for various meshes at various Re. 

Reynolds 

number 

Experimental 

data 

Grid I 

(1684) 

Grid II 

(23371) 

Grid III 

(49122) 

Grid IV 

(57074) 

10,000 
2.395 2.709 2.427 2.372 2.372 

30,000 
2.294 2.426 2.332 2.273 2.272 

60,000 
2.204 2.325 2.236 2.191 2.190 

 

The error is as high as 13% for low Reynolds number and 6% for higher Reynolds 

number. Grid II provides results that are reasonable when compared with the 



34 
 

experimental data. The percentage error is less than 2% for all the Reynolds number. Grid 

III also provides us with good results. The values compare well with the experimental 

results. The percentage error is less than 1% for all the Reynolds number. The selection 

of the mesh cannot be identified by comparing only the Nusselt number. The values 

obtained from the analysis using Grid IV did not have a significant effect. The values 

were same as produced by Grid III. There was no significant change in the result and 

hence the option of using Grid IV was eliminated. 

The velocity contours for all the meshes at Reynolds number is shown in the 

Figure 14.  

 

 

 

 

 

a 

 

 

 

 

 

 

b 
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Figure 14: Velocity Contours for various meshes at Reynolds number 60,000,  

a. Grid I, b. Grid II and c. Grid III 

The velocity profile for grid I clearly indicates that the coarse mesh failed to predict 

the separation and reattachment in the flow. The profile is not smooth around and behind 

the rib region. The grid II and III have a smooth profile providing details of a separation 

flow. But the profile at the region near the nose of the rib varies. A sharp edge in grid II 

predicts more random flow than the smooth meshes in grid III. The profile is more 

clustered and hence there is some change in the velocity of the flow. It will be clearly 

evident when we compare the normalized friction factor. The normalized friction factor is 

calculated for all the meshes at different Reynolds numbers of 10,000, 30,000 and 

60,000. The plot and values are provided in Figure 15 and Table 8 respectively. 
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Table 8: Normalized friction factor for various meshes at various Re. 

Reynolds 

number 

Experimental 

data 

Grid I 

(1684) 

Grid II 

(23371) 

Grid III 

(49122) 

Grid IV 

(57074) 

10,000 3.954 
1.657 3.274 

3.847 3.847 

30,000 4.229 
1.848 3.749 

4.077 4.079 

60,000 5.005 
1.985 4.287 

4.853 4.855 

 

 

  

 

 

 

 

 

Figure 15: Normalized friction factor for various meshes at different Reynolds number 

 

As described above, the value of pressure loss is very low in case of coarse mesh. The 

transition from laminar to turbulent is not recorded accurately and hence the low value in 

the friction factor. The comparison of friction factor for grid II and grid III with 

experimental results shows us a different pattern. The percentage error for grid II is as 
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high as 17% and the error for grid III is as low as 3%. Grid IV again had no significant 

effect on the results. The results clearly prove that enabling a smooth, integral continuity 

meshes predicts the recirculation better.  

Also the wall Y plus is calculated for all the meshes. The ranges of values are 

provided in Table 9. 

Table 9: Range of wall Y plus for various meshes at different Re.  

Reynolds number Grid I Grid II Grid III 

10,000 >10 <2 <1 

30,000 >25 >2.5 <1 

60,000 >50 >5 <1 

 

The value of wall Y plus for grid II is less than 1 throughout the wall except at the 

nose region of the rib. This is minimized in case of grid III. The value of wall Y plus is 

maintained below 1 even for higher Reynolds number. More compact, refined meshes are 

used in grid III and the effect is reflected in the results.  

4.4 Conclusion 

 

Three different meshes were generated for the study. Three parameters, Nusselt 

number, friction factor and wall Y plus are considered to study the effect of the grids. 

Grid I with coarse mesh failed to provide us with efficient results. The normalized 
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Nusselt number and normalized friction did not compare well with the experiment data 

and the wall Y plus was as high as 50. With the help of size functions, a refined grid II is 

created. Though the normalized Nusselt number values compared well, the normalized 

friction factor had more deviation when compared with the experiment data. The wall Y 

plus was controlled to a value less than 5 for high Reynolds number. The Grid III was 

generated with the help of both size functions and boundary layer. A well refined mesh 

was produced. The values of Nusselt number and friction factor agreed well with the 

experimental data. Grid IV again was generated with help of size functions and boundary 

layers. The results obtained with the help of Grid IV had no significant effect. The 

difference between the results from Grid III and Grid IV was almost zero. Also the 

computation time and cost increases due to the refinement of the meshes. Hence the 

option of Grid IV was ruled out. The wall Y plus values are maintained below 1 for all 

the Reynolds number. The refinement of mesh was concentrated only at the near wall 

region so as to decrease the computation time. The velocity contours are obtained and the 

pattern of the flow is observed. The grid III provides us with good results with a 

minimum error and hence is used for further investigation.  
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CHAPTER V 

ANALYSIS OF HEAT TRANSFER IN STATIONARY SMOOTH CHANNEL 

 

The main objective of the analysis is to validate the code to be used for further 

analysis. The heat transfer analysis for the smooth channel is performed with and without 

the periodic boundary condition for three types of flow: laminar, transition and turbulent. 

The Nusselt number is calculated for Reynolds numbers 600, 10,000, 30,000 and 60,000. 

The results are compared with the correlations used for flow through smooth tubes. The 

study also shows how the use of periodic boundary condition simplifies the 

computational work for analysis involving complex geometries.  

The analysis consists of two parts. A smooth, long channel, with length ten times 

greater than the diameter (L > 10d) is used to predict the heat transfer in a fully 

developed region. A small portion of the channel at the fully developed region is picked 

to perform the analysis using periodic boundary condition. The average Nusselt number 

at the fully developed region is constant for any flow parameters at the fully developed 

region. The Nusselt number is calculated and the values are compared for both the cases. 

If the values are close enough, the use of periodic boundary condition is validated. 
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5.1 Computational Domain 

As discussed before the analysis consists of two parts, Case a. Without periodic 

boundary condition and case b. With periodic boundary condition (PBC). The values of 

length and diameter for both the cases are provided in the Table 10.  

Table 10: Range of parameters used in the analysis of smooth channel. 

Case Diameter, d (meters) Length, L (meters) 

Without PBC 0.2 8 

With PBC 0.2 0.51 

 

The computational domains for both the cases are shown in Figure 16. The 

boundary layer and size functions are used to refine the near wall region. The domain is 

meshed using pave method. The use of boundary layer and size functions are explained in 

detail in chapter IV. 

5.2. Boundary Condition 

The boundary condition of the present analysis is described in this section. For the 

analysis of smooth channel with no periodic condition (case a), the velocity inlet is 

applied at the entrance region and pressure outlet boundary condition is applied at 

downstream. For the analysis using periodic condition (case b), the mass flow rate is 

applied as the inlet condition at the periodic sides. For both the cases, a constant heat flux 

is applied at the wall region at no slip condition. The symmetry boundary condition 

ensures a simplified computational domain. The value of velocity and mass flow rate 
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varies with the Reynolds number and are provided in the Table 11. The boundary 

conditions used are pictorially showed along with the computational domain in Figure 16. 

 

 

 

Case a 

 

 

 

 

Case b 

Figure 16: Computational domain for case a. without PBC and case b. with PBC  

Table 11: Mass flow rate and velocity for various flow parameters in the study 

Reynolds number Velocity, V (m/s) Mass flow rate, m (kg/s) 

600 0.088 0.0013 

10,000 1.461 0.021 

30,000 4.382 0.062 

60,000 8.764 0.125 

 

Periodic Periodic 

Velocity 

inlet 

Pressure 

outlet 

Wall 

Symmetry 
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5.3 Correlations 

The empirical correlations provide us with an easy approach in calculation. The 

Nusselt number and friction factor calculated using computation is compared with the 

correlations. The correlations for fully developed laminar and turbulent flow in a smooth 

channel are provided in equations 1, 8 & 9. Though there are many correlations available 

in literature, the Dittus – Boelter equation and Gnielinski correlation are used in this 

study.  

For fully developed flow in a circular tube subjected to a constant heat flux, the 

Nusselt number is a constant. There is no dependence in the Reynolds numbers. The 

value of Nusselt number is 4.36. 

For fully developed turbulent flow in smooth tubes, a simple correlation called the   

Dittus – Boelter equation is used. Due to its simple nature, the equation is used by 

researchers to compare their experimental results.    

The Nusselt number obtained from the previous correlation may give errors as 

high as 25 percent. The error can be reduced to as low as 5 percent by the use of 

Gnielinski correlation. Many literatures recommend us to use Gnielinski correlation as it 

is insensitive to the thermal condition applied at the surfaces. They can also be used to 

predict the friction loss and heat transfer coefficients for transition region with reasonable 

accuracy. 
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𝑁𝑢 =  

 
𝑓

8   𝑅𝑒𝐷 −  1000  𝑃𝑟

1.07 + 12.7  
𝑓

8  

0.5

 𝑃𝑟
2

3 −  1 

                 (11) 

The friction factor, f is calculated using the Petukhov correlation given by 

equation 9. 

𝑓 =   0.79 ln 𝑅𝑒𝐷 −  1.64 −2                                        (12) 

where, 

f = friction factor 

ReD = Hydraulic diameter Reynolds number. 

The values of Nusselt number for the fully developed turbulent flow is calculated 

using equations 1 and 8 and are provided in Table 12. As discussed, the Gnielinski 

correlation provides us with better results than the Dittus – Boelter equation. Since the 

values of Nusselt number is difficult to predict theoretically, the values calculated from 

both the correlations are compared with the computational results and the best correlation 

is picked based on the minimum percentage error. 
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Table 12: Nusselt number values calculated using correlations 

Reynolds number 

Nusselt number 

Dittus – Boelter equation Gnielinski correlation 

10,000 31.786 30.028 

30,000 76.547 70.822 

60,000 133.276 121.035 

 

5.4. Results and Discussion 

The heat transfer performance for flow through smooth channel is analyzed and 

the results are provided in this section. Many research works shows us that the laminar 

flow is easily predictable, but the analysis involving transition and turbulent flow are 

difficult to predict. The flow nature varies drastically once it shifts from laminar to 

turbulent.  

The results for analysis of channel without the periodic boundary condition (PBC) 

are discussed first. Figure 17 shows the velocity profile for flow through the smooth 

channel is provided at Reynolds number 10,000.  

The Figure 17 shows that the flow becomes periodic after the length of 4 meters, 

in the downstream region of the tube. This is the fully developed region and the flow 

parameters are constant in this region. The heat transfer calculations are performed in the 

fully developed region. The Nusselt number is calculated for various Reynolds number 

and is provided in Table 13.  
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Figure 17: Velocity profile for smooth channel without PBC at Re. no. 10,000 

Now, the analysis of the smooth channel with periodic boundary condition is 

discussed. A small portion in the fully developed region i.e. after the flow becomes 

periodic is picked and analysis is performed to calculate the Nusselt number. The results 

are provided in Table 13.  

Table 13: Comparison of Nusselt number values for analysis of smooth channel with and 

without PBC and correlation. 

Reynolds number 

Nusselt number 

Case a Without 

periodic condition 

Case b. With 

periodic condition 

Correlation 

600 4.36 4.362 4.36 

10,000 30.903 31.090 30.028 

30,000 72.831 73.131 70.822 

60,000 123.756 125.562 121.035 
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The computational results are compared with the Gnielinski correlation as it 

provides a much better result than the Dittus – Boelter equation. The Reynolds number 

600 compares well with the correlation for both the cases. As discussed before, the 

laminar flow has no flow discrepancies and hence a closer result is obtained. The 

percentage error is less than 0.5 for both the cases.  

The flow is in the transition region for Reynolds number 10,000 and 30,000. The 

results though difficult to predict, compares well with the correlation for both the cases. 

The error is less than 3 percent for all the cases. The Reynolds number 60,000 has an 

error of 2.2 and 3.7 percent for case a. and case b. respectively. Since the transition and 

turbulent flow are difficult to predict, the error of 2 to 4 is acceptable. 

5.5. Conclusion 

The analysis was performed with and without periodic condition. The analysis of 

smooth channel without periodic condition (case a) gave us a better result than the 

analysis with the periodic condition (case b). The percentage error when the case a. and 

case b. are compared is 0.6, 0.4 and 1.2 for Reynolds number 10,000, 30,000 and 60,000 

respectively. Though the case with periodic condition provides us with results with slight 

deviation, it is acceptable when the computation time and size of the domain are taken 

into consideration. Thus it is concluded that the use of periodic condition did not affect 

the results by a large margin and will have an error of ± 2 percent. 
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CHAPTER VI 

EFFECT OF RIB SPACING ON THE HEAT TRANSFER PERFORMANCE OF 

THE CHANNELS 

 

 With the turbulence model determined, the suitable approach for the analysis 

identified and the optimum grid picked out, the fluent code is validated now. The code is 

validated by comparing the acquired data with the experimental results. In this chapter, 

the numerically results are obtained for channels with square ribs and are compared with 

the experimental results. The velocity contours are obtained for various cases to study the 

details of the flow pattern. Normalized Nusselt number is obtained to the study the heat 

transfer performance and the normalized friction factor is obtained to study the pressure 

and friction loss. 

6.1 Effect of Rib Spacing in Square Channel 

 The computation analysis is performed in a 1:1 square channel with ribs. The ribs 

have a configuration of e/Dh = 0.048. The value of e/H = 0.048 and e/W = 0.048. The 

analysis was conducted for Reynolds number of 10,000, 30,000 and 60,000. 
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The rib geometries for the analysis for a square channel are shown in the       

Table 14. A constant heat flux of 2500 W/m
2
 is applied at the wall for the Reynolds 

number 10,000, 30,000 and 60,000 respectively. The inlet bulk temperature is 298K. 

Table 14: Rib geometries for the square channel with w/e = 1 

W H W/H e w P/e Re  α 

0.051 0.051 1 0.0024 0.0024 

10 

20 

10,000 

30,000 

60,000 

90° 

 

The local Nusselt number is obtained for the all the Reynolds number at rib 

spacing, P/e = 10. The values are calculated and plotted in Figure 18. 

 

Figure 18: Local Nusselt number variation for square channel with w/e = 1 and rib 

spacing, P/e = 10 at different Reynolds numbers. 
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The local Nusselt number increases as the flow separates decreases as the flow 

reattaches and again increases as it approaches the next rib. There is a drastic increase in 

Nusselt number due to the presence of the rib. The rib induces a turbulence flow which 

causes more heat transfer in the region. The Nusselt number almost doubles once it 

reaches the rib region. But as the flow reattaches, behind the rib is a void zone which 

causes a decrease in heat transfer. This is the reason for a decrease in the Nusselt number. 

The pattern remains the same for all the Reynolds numbers.  

Though the pattern remains the same, the values of the Nusselt number increases 

as the Reynolds number increases. The Nusselt number variation is different for the 

regions before and behind the ribs. The Nusselt number values are higher for high 

Reynolds number before the rib. But there is a slight variation in the values behind the 

rib. The values for Reynolds number 10,000 remains low. But the values for Reynolds 

number 60000 is slightly lower than the values for Reynolds number 30,000 just before 

the reattachment. The curve again increases after the reattachment. This is unique for the 

square channel with a rib spacing, P/e = 10. This reason is attributed to the combined 

effect of the narrow channel aspect ratio, Reynolds number and the placement of the rib.  

The thick boundary layer behind the rib causes the velocity to decrease. This 

decreases the heat transfer coefficient and hence the Nusselt number ratio. But as the 

flow reattaches, the heat transfer coefficient increases and hence high Nusselt number 

values.  
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The rib spacing has an effect on the Nusselt number and heat transfer. The local 

Nusselt number plot for a square channel with rib spacing, P/e = 20 is shown in       

Figure 19. The values are plotted for Reynolds number 10,000, 30,000 and 60,000.  

 

Figure 19: Local Nusselt number variation for square channel with w/e =1 and rib 

spacing, P/e = 20 at different Reynolds numbers. 

The Nusselt number pattern for rib spacing 20 is similar to that of P/e = 10, except 

that the values of the Nusselt number remains high for higher Reynolds number 

throughout the region. The reason is because of the wider rib spacing.  Also the values of 

Nusselt number is lower than the values for rib spacing, P/e = 10. It creates a thicker 

boundary layer after the flow reattaches between the ribs. The flow reattaches faster for 

P/e = 20 than P/e = 10. 

The wider rib spacing decreases the heat transfer performance of the ribbed 

channel. The analysis is performed using a periodic boundary condition and it is difficult 

to compare the local Nusselt number with the experiment data. The results are thus 
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averaged and compared with the experimental results. The normalized Nusselt number is 

calculated and compared with the experimental results to study the heat transfer 

performance. The values are plotted and are shown in Figure 20. The values are also 

tabulated and provided in Table 15. 

 

Figure 20: Normalized Nusselt number for square channel with w/e = 1 and rib spacing, 

P/e = 10 and P/e = 20 

The values of normalized Nusselt number decreases as the Reynolds number 

increases. Also the values are lower for P/e = 20 than P/e = 10. As discussed above, the 

decrease in values is because of the wider rib spacing and the influence of the adjacent 

periodic ribs.  
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Table 15: Normalized Nusselt number for square channel with w/e = 1 

Reynolds 

number 

P/e = 10, 

Exp. 

P/e = 10, 

CFD 

P/e = 20, 

Exp. 

P/e = 20, 

CFD 

10,000 2.396 2.372 2.241 2.248 

30,000 2.294 2.273 2.049 2.061 

60,000 2.204 2.191 1.988 1.985 
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Figure 21: Velocity contours showing separation and reattachment for square channel  

with w/e =1, P/e = 10 a) Reynolds number 10,000 b) Reynolds number 30,000 c) 

Reynolds number 60,000 and P/e = 20 d)Reynolds number 10,000 e) Reynolds number 

30,000 f) Reynolds number 60,000 

The computational results compare well with the experiment results. The 

percentage error is less than 2%. To explain the variation in the Nusselt number values 

the velocity contours are plotted and shown in Figure 21. 

The Figure 21 a, b and c shows the velocity contours for rib spacing, P/e = 10 and 

Figure 21 d, e and f shows the velocity contours for rib spacing, P/e = 20. The flow 

pattern is evident from these figures. As the rib spacing widens the flow reattaches faster 

before reaching the next rib. The flow is along the wall and this eventually causes a 

decrease in the velocity. The normalized Nusselt number values are calculated based on 

the Nusselt number for a smooth tube. The values for the smooth tubes doubles as the 

Reynolds number increases. But with the presence of the rib, the flow pattern changes 

creating a separation bubble. A boundary layer is formed creating a recirculation zone. 

This zone has a lower heat transfer rates. The higher Reynolds number creates a thicker 

boundary layer causing a lower heat transfer zone. The flow also reattaches at a faster 

rate as the Reynolds number increases.  
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 The values of average Nusselt number is provided for smooth channel and ribbed 

square channel. As mentioned before, the Nusselt number values increases as the 

Reynolds number increases. But the rate of increase in Nusselt number for the smooth 

channel is higher than the ribbed square channel. Nusselt number for the ribbed channel 

is then normalized using the values for smooth channel. Thus the values of normalized 

Nusselt number decrease as the Reynolds number increases. This is clearly shown in 

Figure 22.  

 

Figure 22: Rate of increase in average Nusselt number for Square channel. 

 As we can see from the plot that the ribbed channel produced a high heat transfer 

rate than the smooth channel. The average Nusselt number values are also tabulated in 

Table 16. The Nusselt number for the ribbed channel is two - three times higher than the 

smooth channel for respective Reynolds number.  
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 Also the average Nusselt number value for P/e = 10 is higher than P/e = 20. As 

mentioned before, the wide rib spacing creates a thick boundary layer and a wider 

recirculation zone. The heat transfer rates decrease and hence the values of the Nusselt 

number decrease.  

Table 16: Average Nusselt number values for Square channel at P/e = 10 & 20. 

Reynolds 

number 

Smooth channel 

Square Channel 

P/e = 10 P/e = 20 

10,000 
31.786 75.409 71.258 

30,000 
76.547 173.995 157.788 

60,000 
133.276 291.998 264.583 

 

The rate of increase in Nusselt number is high for smooth channel than the ribbed 

channel. The rate of increase of Nusselt number form Reynolds number 10,000 to 

Reynolds number 30,000 is 1.41 for smooth channel, 1.30 for square channel with        

P/e = 10 and 1.21 for square channel with P/e = 20. Thus the rate of increase in value is 

low for ribbed channel. Also the rate of increase of Nusselt number form Reynolds 

number 30,000 to Reynolds number 60,000 is 0.75 for smooth channel, 0.69 for square 

channel with P/e = 10 and 0.67 for square channel with P/e = 20. Thus as the Reynolds 

number increases the rate of increase is low and this is the reason why the values of the 

normalized results for square channel decrease as the Reynolds number increases.  
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The performance of the channel cannot be judged only with their heat transfer 

characteristics. The friction drag and pressure loss should also be taken into account. The 

normalized friction factor is plotted in the Figure 23. 

 

Figure 23: Normalized friction factor for square channel with w/e =1 and rib spacing,  

P/e = 10 and P/e = 20 

The values for the normalized friction factor are also tabulated and are provided 

in Table 17. 

Table 17:  Normalized friction factor for square channel w/e = 1 

Reynolds 

number 

P/e = 10, 

Exp. 

P/e = 10, 

CFD 

P/e = 20, 

Exp. 

P/e = 20, 

CFD 

10,000 3.954 3.847 3.675 3.680 

30,000 4.229 4.077 3.361 3.377 

60,000 5.005 4.853 3.987 4.006 
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The normalized friction factor shows a different trend. Unlike the normalized 

Nusselt number, the normalized friction factor values increase with increasing Reynolds 

number. The pattern remains the same with increasing rib spacing. The friction factor 

decreases with increasing rib spacing. The decrease in friction factor ratio is because of 

the lower pressure loss across the section. The flow reattachment is faster and there is no 

secondary flow in the case of larger rib spacing. Though the friction factor decreases, the 

heat transfer performance also decreases for wider rib spacing. 

There is one exception in the case of Reynolds number 30,000 for rib spacing P/e 

= 20. Unlike other profile, the normalized friction factor for square channel with rib 

spacing P/e = 20 at Reynolds number 30000 is lower than at Reynolds number 10,000 

and 60,000. This is because the flow reattaches at a distance smaller than for other 

Reynolds numbers. This can be viewed in the Figure 21. e. This case in interesting as the 

heat transfer is high with a less compensation in the friction loss. Before we conclude at 

any remarks, the other ribbed channels should also be studied.  

6.2. Effect of Rib Spacing in Rectangular Channel I 

The computation analysis is performed in a 2:1 rectangular channel I with ribs. 

The ribs have a configuration of e/Dh = 0.048. The value of e/H = 0.06275 and e/W = 

0.032. The analysis was conducted for Reynolds number of 10,000, 30,000 and 60,000 in 

order to examine the effect of aspect ratio. The height of the rib is maintained constant at 

0.0032m.  
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The rib geometries for the analysis for a rectangular channel-I is shown in the 

Table 18. A constant heat flux of 2500 W/m
2
 is applied at the wall for the Reynolds 

number 10,000, 30,000 and 60,000 respectively.  

Table 18: Rib geometries for Rectangular Channel I with w/e = 1 

W H W/H e w P/e Re  α 

0.102 0.051 2 0.0032 0.0032 

10 

20 

10,000 

30,000 

60,000 

90° 

 

 

Figure 24: Local Nusselt number variation for rectangular channel I with w/e =1          

rib spacing, P/e = 10 at different Reynolds numbers. 
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The local Nusselt number is obtained for the all the Reynolds number at rib 

spacing,    P/e = 10. The values are calculated and plotted in Figure 24. 

The local Nusselt number is plotted for Reynolds number 10,000, 30,000 and 

60,000. The pattern is the same as that for the square channel with P/e = 10. The Nusselt 

number increases as the flow separates decreases and again increases as the flow reaches 

the next rib. The value of the Nusselt number again is doubled as the Reynolds number 

increases. In this case, the Nusselt number remains high for higher Reynolds number 

throughout the domain. This again is because of the wider channel aspect ratio than the 

square channel.  

The rib spacing has an effect on the Nusselt number and heat transfer. The local 

Nusselt number plot for a square channel with rib spacing, P/e = 20 is shown in       

Figure 25. The values are plotted for Reynolds number 10,000, 30,000 and 60,000. 

 

Figure 25: Local Nusselt number variation for rectangular channel I with w/e = 1,        

rib spacing, P/e = 20 at different Reynolds numbers. 
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The plot follows the same trend as the Nusselt number variation for a square 

channel with P/e = 20. The Nusselt number pattern for rib spacing 20 is similar to that of 

P/e = 10. The values of Nusselt number is lower than the values for rib spacing, P/e = 10. 

The reason is the same as the flow reattaches faster for P/e = 20 than P/e = 10. 

 The wider rib spacing decreases the heat transfer performance of the ribbed 

channel. The results are averaged and compared with the experimental results for the 

reason mentioned above. The normalized Nusselt number is calculated and compared 

with the experimental results to study the heat transfer performance. The values are 

plotted and are shown in Figure 26.  

 

Figure 26: Normalized Nusselt number for rectangular channel I with w/e = 1, rib 

spacing, P/e = 10 and P/e = 20 

The plot gives a clear picture of the effect of Reynolds number and rib spacing on 

the heat transfer performance. The value of normalized Nusselt number decreases with 

increasing Reynolds number. Also as the rib spacing increases, the value of the 
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normalized Nusselt number decreases. The reason as already mentioned is the distance by 

which the flow separates and reattaches and the size of the separation region.  

The values are given in the Table 19. The numerical results compare well with the 

experimental data. The percentage error is just 1% with respect to the experiment values. 

Table 19: Normalized Nusselt number for rectangular channel-I w/e = 1 

Reynolds 

number 

P/e = 10, Exp. P/e = 10, CFD P/e = 20, Exp. 

P/e = 20, 

CFD 

10,000 
3.140 3.149 2.657 2.677 

30,000 
2.626 2.648 2.303 2.305 

60,000 
2.423 2.439 2.076 2.053 

 

 

   a       d 
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   b        e 

 

   c       f 

Figure 27: Velocity contours showing separation and reattachment for rectangular 

channel I with w/e = 1, P/e = 10 a) Reynolds number 10,000 b) Reynolds number 30,000 

c) Reynolds number 60,000 and P/e = 20 d)Reynolds number 10,000 e) Reynolds number 

30,000 f) Reynolds number 60,000 

The velocity contours are shown to provide details of the flow pattern and the 

effect of Reynolds number and rib spacing. The Figure 27 a, b and c shows the velocity 

contours for rib spacing, P/e = 10 and Figure 27 d, e and f shows the velocity contours for 

rib spacing, P/e = 20. The flow pattern is similar to that of the square channel. The details 

and the causes are already explained and discussed in detail in the previous section. 

However the value of Nusselt number changes. The values are higher when compared to 
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that for the square channel. In fact the rectangular channel I provide us with a higher heat 

transfer performance for any Reynolds number.  

The values of average Nusselt number is provided for smooth channel and ribbed 

rectangular channel I. The pattern is similar as explained for square channel. As 

mentioned before, the Nusselt number values increases as the Reynolds number 

increases. But the rate of increase in Nusselt number for the smooth channel is higher 

than the ribbed rectangular channel I. This is clearly shown in Figure 28.  

 

Figure 28: Rate of increase in average Nusselt number for Rectangular channel I 

 As we can see from the plot that the ribbed channel produced a high heat transfer 

rate than the smooth channel. The average Nusselt number values are also tabulated in 

Table 20. The Nusselt number for the ribbed channel is three times higher than the 

smooth channel for respective Reynolds number.  
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 Also the average Nusselt number value for P/e = 10 is higher than P/e = 20. The 

pattern is same as in case of square channel. As mentioned before, the wide rib spacing 

creates a thick boundary layer and a wider recirculation zone. The heat transfer rates 

decrease and hence the values of the Nusselt number decrease.  

Table 20: Average Nusselt number values for rectangular channel I at P/e = 10 & 20. 

Reynolds 

number 

Smooth channel 

Rectangular channel I 

P/e = 10 P/e = 20 

10,000 
31.786 100.092 85.093 

30,000 
76.547 202.748 176.437 

60,000 
133.276 325.031 273.753 

 

The rate of increase in Nusselt number is high for smooth channel than the ribbed 

channel. The rate of increase of Nusselt number form Reynolds number 10,000 to 

Reynolds number 30,000 is 1.41 for smooth channel, 1.02 for rectangular channel I with        

P/e = 10 and 1.07 for rectangular channel I with P/e = 20. Thus the rate of increase in 

value is low for ribbed channel. Also the rate of increase of Nusselt number form 

Reynolds number 30,000 to Reynolds number 60,000 is 0.75 for smooth channel, 0.61 for 

rectangular channel I with P/e = 10 and 0.55 for rectangular channel I with P/e = 20. Thus 

as the Reynolds number increases the rate of increase in Nusselt number is low. 
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The friction and pressure loss is also studied. The values for the normalized 

friction factor are given in the Table 21. 

Table 21: Normalized friction factor for rectangular channel I w/e = 1 

Reynolds number 

P/e = 10, 

Exp. 

P/e = 10, CFD 

P/e = 20, 

Exp. 

P/e = 20, 

CFD 

10,000 
5.209 5.178 4.111 4.105 

30,000 
6.784 6.725 5.313 5.285 

60,000 
7.943 7.788 6.919 6.858 

 

 

Figure 29: Normalized friction factor for rectangular channel I with w/e = 1,                 

rib spacing, P/e = 10 and P/e = 20 

The values are also plotted and are shown in Figure 29. The plot is similar to that 

of a square channel. The normalized friction factor increases as the Reynolds number 
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increases. The normalized friction factor also decreases as the rib spacing increases for 

the same Reynolds number.  

For the case P/e = 20 and Reynolds number 30,000, the normalized friction factor 

do not decrease as in the case of the square channel. The reason is because of a wider rib 

channel. The rib induces a secondary flow which causes more pressure loss across the 

section than the square channel. So the normalized friction factor increases as the channel 

width increases. The channel width influences the mass flow rate which in turn affects 

the pressure loss. 

The rectangular channel I not only provide high heat transfer performance but 

also have a high pressure loss ratio. Further investigation on channel aspect ratio is 

required so as to conclude with the final result. The rectangular channel II is studied in 

the next section. 

6.3. Effect of Rib Spacing in Rectangular Channel II 

The computation analysis is performed in a 4:1 rectangular channel II with ribs. 

The ribs have a configuration of e/Dh = 0.048. The value of e/H = 0.01255 and e/W = 

0.048. The analysis was conducted for Reynolds number of 10,000, 30,000 and 60,000 in 

order to examine the effect of aspect ratio. The height of the rib is maintained constant at 

0.0032m.  

The rib geometries for the analysis for a rectangular channel-II are shown in the 

Table 22. A constant heat flux of 2500 W/m
2
 is applied at the wall for the Reynolds 

number 10,000, 30,000 and 60,000 respectively.  
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Table 22: Rib geometries for Rectangular Channel II with w/e = 1 

W H W/H e w P/e Re  
α 

0.102 0.0255 4 0.0032 0.0032 

10 

20 

10,000 

30,000 

60,000 

90° 

 

The local Nusselt number is obtained for the all the Reynolds number at rib 

spacing,    P/e = 10. The values are calculated and plotted in Figure 30. The local Nusselt 

number is plotted for Reynolds number 10,000, 30,000 and 60,000. The pattern is the 

same as that for the square channel and rectangular channel I with P/e = 10. The Nusselt 

number increases as the flow separates decreases and again increases as the flow reaches 

the next rib. The value of the Nusselt number again is doubled as the Reynolds number 

increases. The Nusselt number remained high like that of the rectangular channel I for 

higher Reynolds number throughout the domain. This again is because of the wider 

channel aspect ratio than the square channel.  

The rib spacing has an effect on the Nusselt number and heat transfer. The local 

Nusselt number plot for a square channel with rib spacing, P/e = 20 is shown in       

Figure 31. The values are plotted for Reynolds number 10,000, 30,000 and 60,000. 
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Figure 30: Local Nusselt number variation for rectangular channel II with w/e = 1,        

rib spacing, P/e = 10 at different Reynolds numbers. 

The plot follows the same trend as the Nusselt number variation for a rectangular 

channel-I with P/e = 20. The values of Nusselt number is lower than the values for rib 

spacing, P/e = 10 for the same reason explained in the previous section. The wider rib 

spacing decreases the heat transfer performance of the ribbed channel.  

 

Figure 31: Local Nusselt number variation for rectangular channel II with w/e = 1,       

rib spacing, P/e = 20 at different Reynolds numbers. 
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The results are averaged and compared with the experimental results for the 

reason mentioned above. The normalized Nusselt number is calculated and compared 

with the experimental results to study the heat transfer performance. The values are 

plotted and are shown in Figure 32.  

 

Figure 32: Normalized Nusselt number for rectangular channel II with w/e =1,              

rib spacing, P/e = 10 and P/e = 20 

Figure 32 provides us with details of the effect of Reynolds number and rib 

spacing on the heat transfer performance. The value of normalized Nusselt number 

decreases with increasing Reynolds number. Also as the rib spacing increases, the value 

of the normalized Nusselt number decreases.  

The values are given in the Table 23. The numerical results compare well with the 

experimental data. The percentage error is just 1% with respect to the experiment values. 
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Table 23: Normalized Nusselt number for rectangular channel-II w/e = 1 

Reynolds 

number 

P/e = 10, 

Exp. 

P/e = 10, 

CFD 

P/e = 20, 

Exp. 

P/e = 20, 

CFD 

10,000 
2.908 2.906 2.549 2.569 

30,000 
2.693 2.684 2.521 2.534 

60,000 
2.441 2.439 2.429 2.439 

 

The values for the rectangular channel II are lower than the rectangular channel I, 

but are higher than the square channel. This gives us an idea that the narrow channels 

have a less heat transfer performance than the wider ribbed channels. The normalized 

friction factor is also plotted and shown in Figure 33. 

 

Figure 33: Normalized friction factor for rectangular channel II with w/e = 1,                

rib spacing, P/e = 10 and P/e = 20 
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   a       d 

 

   b       e 

 

    

 

 

 

    

   c       f 

Figure 34: Velocity contours showing separation and reattachment for rectangular 

channel II with w/e = 1, P/e = 10 a) Reynolds number 10,000 b) Reynolds number 30,000 

c) Reynolds number 60,000 and P/e = 20 d)Reynolds number 10,000 e) Reynolds number 

30,000 f) Reynolds number 60,000 
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The values of normalized friction factor are also tabulated and given in Table 24.  

Table 24:  Normalized friction factor for rectangular channel II with w/e = 1 

Reynolds 

number 

P/e = 10, 

Exp. 

P/e = 10, CFD 

P/e = 20, 

Exp. 

P/e = 20, 

CFD 

10,000 
12.496 12.581 8.686 8.703 

30,000 
15.879 15.933 10.977 10.997 

60,000 
19.636 19.666 13.508 13.697 

 

The values of normalized friction factor increases with Reynolds number. The 

normalized friction factor decreases with increasing rib spacing for the same Reynolds 

number. But the values of normalized friction factor are very high when compared to 

other ribbed channels. The pressure loss across the section is very high. Also there is no 

much increase in heat transfer for such a huge loss in friction. The rectangular channel II 

has the least heat transfer performance of all the channels. 

Figure 34 a, b and c shows the velocity contours for P/e = 10 and Figure 34 d, e 

and f shows the velocity contours for P/e = 20. The flow pattern is same as for that of the 

square channel and rectangular channel I. The rib spacing P/e = 10 has a less recirculation 

zone than the rib spacing P/e = 20.  
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The values of average Nusselt number is provided for smooth channel and ribbed 

rectangular channel II. The pattern is similar as explained for previous channels. The 

Nusselt number values increases as the Reynolds number increases. But the rate of 

increase in Nusselt number for the smooth channel is higher than the ribbed rectangular 

channel II. This is clearly shown in Figure 35.  

 

Figure 35: Rate of increase in average Nusselt number for Rectangular channel II 

 As we can see from the plot that the ribbed channel produced a high heat transfer 

rate than the smooth channel. The average Nusselt number values are also tabulated in 

Table 25. The Nusselt number for the ribbed channel is three times higher than the 

smooth channel for respective Reynolds number.  

 Also the average Nusselt number value for P/e = 10 is higher than P/e = 20. The 

pattern is same as in case of square channel. As mentioned before, the wide rib spacing 

creates a thick boundary layer and a wider recirculation zone. The heat transfer rates 

decrease and hence the values of the Nusselt number decrease.  
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Table 25: Average Nusselt number values for rectangular channel II at P/e = 10 & 20. 

Reynolds 

number 

Smooth channel 

Rectangular channel II 

P/e = 10 P/e = 20 

10,000 
31.786 100.092 85.093 

30,000 
76.547 202.748 176.437 

60,000 
133.276 325.031 273.753 

 

The rate of increase in Nusselt number is high for smooth channel than the ribbed 

channel. The rate of increase of Nusselt number form Reynolds number 10,000 to 

Reynolds number 30,000 is 1.41 for smooth channel, 1.2 for rectangular channel II with 

P/e = 10 and 1.37 for rectangular channel II with P/e = 20. Thus the rate of increase in 

value is low for ribbed channel. Also the rate of increase of Nusselt number form 

Reynolds number 30,000 to Reynolds number 60,000 is 0.58 for smooth channel, 0.67 for 

rectangular channel II with P/e = 10 and 0.55 for rectangular channel II with P/e = 20. 

Thus as the Reynolds number increases the rate of increase in Nusselt number is low. 

6.4. Conclusion 

 

 The normalized Nusselt number and normalized friction factor was calculated for 

various channels with square ribs. The local Nusselt number was also calculated for the 

channels.  
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 The local Nusselt number for all the channels follows the same pattern. The value 

of Nusselt number increases as the Reynolds number increases. The presence of ribs 

increases the velocity and hence the higher heat transfer rate. The flow separates before 

the flow hit the rib and reattaches behind the rib. So a recirculation zone is created and 

hence a low Nusselt number in the recirculation zone. The heat transfer rate over the rib 

is high. 

 The normalized Nusselt number values were calculated and plotted for all the 

channels. The value of normalized Nusselt number decreases as the Reynolds number 

increases. The increase in rib spacing causes the normalized Nusselt number to decrease. 

The value of normalized friction factor decreases as the rib spacing increases for the same 

Reynolds number. 

 Due to the wider rib spacing, the flow reattaches at a longer distance and hence 

has a high void zone. The flow reattaches the wall at a long distance before it hits the 

next rib causing the velocity to decrease. This eventually decreases the heat transfer rate.  

 But wider rib spacing causes a less blockage of the flow. Hence the pressure loss 

due to the presence of the flow disturbance is less. This is the reason for the less 

normalized friction factor values for wider ribs. 

 Also the wider ribs have a high heat transfer rate and also high pressure drop. The 

value of normalized Nusselt number is high for rectangular channel I than the square 

channel. Also the normalized friction factor value are as high as 20 for rectangular 

channel II. Though we cannot conclude which channel aspect ratio produces a good heat 

transfer performance without analyzing the effect of rib width, from this study we 
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conclude that the idea of wider rib spacing do not help in increase in the heat transfer 

performance. 

 The effect of rib width on all the ribbed channels is analyzed in chapter VII. 

  

 

 

 

 

 

 

 

 

 

 



77 
 

CHAPTER VII 

EFFECT OF RIB WIDTH ON THE HEAT TRANSFER PERFORMANCE OF 

THE CHANNELS 

 

In Chapter VI, the effect of rib spacing on the heat transfer performance of 

channels with square ribs was discussed. In this chapter the combined effect of rib 

spacing and rib width on the heat transfer performance of channels is analyzed. The range 

of rib width to rib height ratio (w/e) varies from 1/8 to 14. The analysis again is 

performed for channels with three different aspect ratios and different flow parameters. 

There are no experimental results to compare the results obtained by the computational 

work, but the fact that the code was validated in previous analysis proves that the results 

obtained are reliable. By studying the effect of rib width, the optimal cooling 

configuration for the internal cooling of the channels can be obtained. The results 

obtained are substantiated by studying the velocity contours and flow pattern. The 

normalized Nusselt number and normalized friction factor are obtained to study the heat 

transfer performance and frictional loss.  
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7.1 Effect of Rib Width in Square Channel  

The effect of rib width in a square channel with aspect ratio 1:1 is performed. The 

rib width, w is varied while the rib height, e is maintained constant. The analysis was 

performed for Reynolds number 10,000, 30,000 and 60,000. The channel and rib 

configuration used in the analysis of square channel is provided in Table 26. The initial 

condition includes a constant heat flux of 2500 W/m
2
 applied at the wall and an inlet bulk 

temperature of 298 K.  

Table 26: Parameters used in the analysis of square channel with various rib widths 

W/H 1 

e 0.0024 

P/e 10          20 

w/e 1/8      1      2     3     4     6     10     14 

Re 
 10,000        30,000        60,000 

 

The Nusselt number is calculated for the fully developed flow and the results are 

normalized using values obtained by the Dittus – Boelter equation. The rib spacing       

P/e = 10 and P/e = 20 are considered to study the combined effect on the heat transfer 

coefficient. The values of normalized Nusselt number at three Reynolds numbers for rib 

spacing P/e = 10 are provided in Table 27 and the values for rib spacing P/e = 20 are 

provided in Table 28. 
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Table 27: Normalized Nusselt number for square channel with various rib width for rib 

spacing P/e = 10 

w/e vs. Re 0.125 1 2 4 6 

10,000 1.976 2.372 2.288 2.125 1.985 

30,000 1.845 2.273 2.178 2.050 1.834 

60,000 1.724 2.191 2.125 1.984 1.795 

 

Table 28: Normalized Nusselt number for square channel with various rib width for rib 

spacing P/e = 20 

w/e vs. 

Re 
0.125 1 4 6 8 14 

10,000 1.302 2.248 2.103 1.625 1.462 1.403 

30,000 1.129 2.060 1.966 1.500 1.268 1.236 

60,000 1.118 1.985 1.674 1.389 1.161 1.148 

 

The results for normalized Nusselt number are also plotted in Figure 36. From the 

plot we can see that as the rib width increases the normalized Nusselt number decreases. 

Also as the rib spacing increases, the normalized Nusselt number value decreases for the 

same Reynolds number. The pattern is same as seen in chapter VI for channels with 

square ribs.  
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Figure 36: Normalized Nusselt number of square channel with various rib widths for 

different Reynolds number. 

For each case, the value reaches its peak for square ribs with w/e = 1 and then 

gradually decreases. The plot also shows that at lower Reynolds number, the change in 

rib width produce a normalized Nusselt number in a close range for both the rib spacing. 

For instance the w/e ratio of 4 for P/e = 10 and P/e = 20 has the normalized Nusselt 

number values of approximately 2.12 and 2.10 respectively. The increase in rib width is 

ineffective in case of high Reynolds numbers. For example, the value of normalized 

Nusselt number at w/e = 6 has a difference of almost 20 percent. Also the plot shows that 

the value of normalized Nusselt number for the case w/e = 14 with P/e = 20 at Reynolds 

number 60,000 is much closer to that of a smooth channel.  

The variation of the normalized Nusselt number values as the rib width changes 

can be explained with the help of flow pattern. The velocity contours for various cases 

are presented in Figure 37 – Figure 42. 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
o
rm

a
li

ze
d

 N
u

ss
el

t 
n

u
m

b
er

w/e

Normalized Nusselt number vs w/e for Square channel
Reynolds number 10000, P/e = 10 Reynolds number 10000, P/e = 20
Reynolds number 30000, P/e = 10 Reynolds number 30000, P/e = 20
Reynolds number 60000, P/e = 10 Reynolds  number 60000, P/e = 20



81 
 

 

 

       Case I          Case II 

 

 

 

 

 

 

Case III 

Figure 37: Velocity contours for square channel with rib spacing P/e = 10 for Reynolds 

number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4 and Case III: w/e = 6 

The flow pattern for various rib width cases at Reynolds number 10,000 is shown 

in Figure 37. The case I is a rib width to rib height ratio (w/e) of 1/8. The case is similar 

to that of a smooth channel as the rib width is much smaller than the rib height. In spite of 

a low w/e ratio, the normalized Nusselt number is high than expected. The reason is the 

high velocity values created by a small disturbance in the flow. The velocity value is     

1.5 m/s in case of smooth channel. The case I create a velocity value of 3 m/s and hence a 

high heat transfer rate. The square rib, w/e = 1 was already explained in chapter VI. As 
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the w/e ratio increases, the flow is parallel to the rib. For high w/e ratios as in case II and 

case III, the flow reattaches several times on the rib. This creates thick boundary layer 

over the rib. The velocity is decreased and the heat transfer rate is low. Thus the 

normalized Nusselt number value decreases as the rib width increases.  

 

 

 

 

 

 

 

Case I 

 

 

 

 

 

 

 

     Case II      Case III 

Figure 38: Velocity contours for square channel with rib spacing P/e = 10 for Reynolds 

number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4 and Case III: w/e = 6 
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        Case I       Case II 

 

 

 

 

       Case III 

Figure 39: Velocity contours for square channel with rib spacing P/e = 10 for Reynolds 

number 60,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4 and Case III: w/e = 6 

 Figure 38 show the velocity contours for Reynolds number 30,000. The velocity 

increases as the Reynolds number increases. The Nusselt number value is higher than the 

Reynolds number 10,000, but as we normalize the results, the values are low. Since the 

high w/e ratio creates more recirculation zone the variation in Nusselt number decreases. 

Thus when we normalize the variation is not high. The case w/e = 4 has a Nusselt number 

value close to that for case II for Reynolds number 10,000. The rib width has no effect on 

the normalized Nusselt number in this case. 
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 The velocity for Reynolds number 60,000 in Figure 39 also has the similar 

pattern. As the rib width increases, the normalized value of Nusselt number decreases.  

 

 

      Case I              Case II 

 

     Case III              Case IV 

Figure 40: Velocity contours for square channel with rib spacing P/e = 20 for Reynolds 

number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4, Case III: w/e = 6 and 

Case IV: w/e = 14 

 

 The velocity contours for rib spacing P/e = 20 for Reynolds number 10,000 for 

various rib width is provided in Figure 40. The values of normalized Nusselt number for 
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case I and case IV are 1.3 and 1.4 respectively. The case I with w/e = 1/8 is almost a 

smooth channel. With wide rib spacing, the rib has no effect and the value is close to the 

smooth channel. The case IV with w/e = 14 is also similar to the smooth channel. The 

case II with w/e = 4 and case III with w/e = 6 also produces Nusselt number values less 

than rib spacing P/e = 10. Since the ribs are widely spaced, the recirculation zone is high. 

The velocity decreases as the flow reaches the next rib. 

 

     Case I        Case II 

 

  Case III      Case IV 

Figure 41: Velocity contours for square channel with rib spacing P/e = 20 for Reynolds 

number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4 and Case III: w/e = 6 
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 Figure 41 and Figure 42 shows the velocity contours for rib spacing, P/e = 20 for 

Reynolds number 30,000 and 60,000. The normalized Nusselt number does not vary 

significantly as the rib width increases. The flow pattern remains the same as in previous 

cases. The value of normalized Nusselt number decreases as the rib width increases.   

 

 

 

 

        Case I               Case II 

 

 

 

        Case III              Case IV 

Figure 42: Velocity contours for square channel with rib spacing P/e = 20 for Reynolds 

number 60,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 4 and Case III: w/e = 6 

The normalized friction factor is calculated and plotted in Figure 43. The value of 

friction factor increase and then decreases as the rib width increases. The value reaches 

its peak for w/e = 2 for P/e = 10 and w/e = 4 for P/e = 20. 
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Table 29: Normalized friction factor for square channel with various rib width for rib 

spacing, P/e = 10 

w/e vs. Re 0.125 1 2 4 6 

10,000 1.851 3.847 4.387 3.152 2.515 

30,000 2.182 4.077 4.792 3.285 2.789 

60,000 2.570 4.853 5.504 3.565 3.269 

  

Table 30: Normalized friction factor for square channel with various rib width for rib 

spacing, P/e = 20 

w/e vs. 

Re 
0.125 1 4 6 8 14 

10,000 2.383 3.680 4.328 4.192 3.490 2.532 

30,000 2.194 3.377 3.998 3.863 3.127 2.229 

60,000 2.581 4.006 4.784 4.688 3.565 2.740 

 

 The plot in Figure 43 shows that as the rib spacing increases, the normalized 

friction factor values decreases. The high rib spacing causes a less flow blockage and 

hence the pressure loss is low. The frictional loss is high when the ribs are placed closer. 

The normalized friction factor is high for wider ribs. The value is high for rib width ratios 

w/e = 2 for P/e = 10 and w/e = 4 for case P/e = 10. The wide ribs create more frictional 

loss than other rib widths. 
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Figure 43: Normalized friction factor of square channel with various rib widths for 

different Reynolds number. 

7.2 Effect of Rib Width in Rectangular Channel I 

The effect of rib width in a rectangular channel I with aspect ratio 2:1 is 

performed. The rib width, w is varied while the rib height, e is maintained constant. The 

analysis was performed for Reynolds number 10,000, 30,000 and 60,000. The channel 

and rib configuration used in the analysis of rectangular channel I is provided in       

Table 31. The initial condition includes a constant heat flux of 2500 W/m
2
 applied at the 

wall and an inlet bulk temperature of 298 K.  
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Table 31: Parameters used in the analysis of rectangular channel I with various rib 

widths 

W/H 2 

e 0.0032 

P/e 10          20 

w/e 1/8      1      2     4     6     10     14 

Re 
 10,000        30,000        60,000 

 

 The heat transfer coefficients are calculated and the values of normalized Nusselt 

number are provided for case P/e = 10 and P/e = 20 in Table 32 and Table 33 

respectively. The values of normalized Nusselt number for P/e = 10 is high than P/e = 20. 

Also as the rib width increases, the normalized Nusselt number value decreases. 

Table 32: Normalized Nusselt number for rectangular channel I with various rib width 

for rib spacing P/e = 10 

w/e vs. Re 0.125 1 2 4 6 

10,000 2.117 3.149 2.570 2.323 2.208 

30,000 2.056 2.648 2.349 2.224 2.128 

60,000 1.987 2.439 2.221 2.023 1.900 
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Table 33: Normalized Nusselt number for rectangular channel I with various rib width 

for rib spacing P/e = 20 

w/e vs. 

Re 
0.125 1 2 4 6 10 14 

10,000 2.107 2.677 2.463 2.429 2.380 2.299 2.128 

30,000 1.882 2.305 2.192 2.158 2.114 2.054 1.894 

60,000 1.695 2.053 1.988 1.936 1.826 1.775 1.693 

 

 The values of normalized Nusselt number are plotted and are shown in Figure 44. 

The plot shows that the value is high for case P/e =10 at Reynolds number 10000. The 

values are close to 1.7 for case p/e = 20 at Reynolds number 60,000 showing that the 

wider rib spacing at high Reynolds number approaches the values of the smooth channel.  

 

Figure 44: Normalized Nusselt number of rectangular channel I with various rib widths 

for different Reynolds number. 
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 The values are higher than the square channel for respective Reynolds number. 

The velocity contours for all the cases are provided in Figure 45 through Figure 50. 

  

 

 

 

 

 

          Case I      Case II 

 

 

      Case III       Case IV 

Figure 45: Velocity contours for rectangular channel I with rib spacing P/e = 10 for 

Reynolds number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 4 and Case IV: w/e = 6 

The velocity pattern for case P/e = 10 for rectangular channel I at Reynolds 

number 10,000 is provided in Figure 45. The flow pattern is similar to that of the square 

channel. The rib width ratio w/e = 1/8 and w/e = 6 are similar to smooth channel. The 

flow separates before the rib and reattaches after the rib. The rib width w/e = 1/8 though 

low amplifies the velocity and hence produces a high Nusselt number than smooth 
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channel. The values of normalized Nusselt number decreases as the rib width ratio 

increases. This is because of wider recirculation zone in case w/e = 2. In case of w/e = 4 

and w/e = 6, the flow reattaches several times over the rib creating a thicker boundary 

layer. The velocity is decreased and hence the normalized Nusselt number decreases. 

 

 

      Case I        Case II 

 

                 Case III             Case IV 

Figure 46: Velocity contours for rectangular channel I with rib spacing P/e = 10 for 

Reynolds number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 4 and Case IV: w/e = 6 
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     Case I       Case II 

 

     Case III       Case IV 

Figure 47: Velocity contours for rectangular channel I with rib spacing P/e = 10 for 

Reynolds number 60000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: w/e 

= 4 and Case IV: w/e = 6 

 Figures 46 and Figure 47 provide the velocity pattern for Reynolds number 

30,000 and 60,000 respectively. The velocity of the flow increases as the Reynolds 

number increase. The flow pattern remains the same as in the case of Reynolds number 

10,000. The flow is similar to smooth channel in case w/e = 1/8 and the flow reattaches 

over the rib for high rib width ratios.  

 The velocity pattern for case P/e = 20 for various Reynolds number are provided 

in Figure 48 – Figure 50. 
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Case V 

Figure 48: Velocity contours for rectangular channel I with rib spacing P/e = 20 for 

Reynolds number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6, Case IV: w/e = 10 and Case V: w/e = 14 
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      Case I            Case II 

 

     Case III           Case IV 

 

 

 

 

 

Case V 

Figure 49: Velocity contours for rectangular channel I with rib spacing P/e = 20 for 

Reynolds number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6, Case IV: w/e = 10 and Case V: w/e = 14 
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Case I       Case II 

 

Case III      Case IV 

 

 

 

 

 

 

Case V 

Figure 50: Velocity contours for rectangular channel I with rib spacing P/e = 20 for 

Reynolds number 60,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6, Case IV: w/e = 10 and Case V: w/e = 14 
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 The velocity pattern for case P/e = 20 for all the cases shows that as the rib 

spacing widens the flow re attaches at a distance longer than the using case P/e = 10 

causing a wide void zone which decreases the heat transfer rate. The velocity increases as 

the Reynolds number increases.  

 The flow pattern remains the same for all the cases. The velocity is compared for 

case P/e = 10 and P/e = 20 for respective Reynolds number and the values decreases. This 

is attributed to the rib spacing. The wider rib spacing produces a less normalized Nusselt 

number value and this proves the remarks on effect of wider rib spacing provided in 

chapter 6. 

 The rib width has adverse effect on the Nusselt number. The values of the 

normalized Nusselt number decreases as the rib width increases. 

 The effect of rib width on the normalized friction factor is analyzed and the values 

for case P/e = 10 and P/e = 20 are provided in Table 34 and Table 35 respectively. 

Table 34: Normalized friction factor for rectangular channel I with various rib width for 

rib spacing P/e = 10 

w/e vs. Re 0.125 1 2 4 6 

10,000 3.133 5.178 5.449 4.605 4.331 

30,000 3.349 6.725 7.402 5.144 4.430 

60,000 3.647 7.788 8.229 6.184 4.979 
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Table 35: Normalized friction factor for rectangular channel I with various rib width for 

rib spacing P/e = 20 

w/e vs. 

Re 0.125 1 2 4 6 10 14 

10,000 2.706 4.105 5.973 5.239 4.638 3.519 2.162 

30,000 3.952 5.285 6.156 6.033 5.835 4.773 2.797 

60,000 4.586 6.858 7.931 7.527 7.150 5.870 3.324 

    

 The friction factor for case P/e = 10 and P/e = 20 shows a different pattern. The 

value of normalized friction factor decreases as the rib spacing increases. This is because 

of the spacing of the ribs in the channel. But the values are higher than the square channel 

for all the cases.  

 But the rib width has the similar effect on the friction factor. The value increases 

as the rib width ratio reaches 2 and starts to decrease as the rib width increase. Since the 

rib width ratio w/e = 1/8 and w/e = 14 represents a smooth channel, the normalized 

friction factor is less. But the rib width ratio w/e = 2 in each case has a higher value. The 

rib width creates a void zone and hence the pressure loss across the section is high. The 

values of square ribs has a less friction factor than the case w/e = 2.  

 The values of normalized friction factor for various rib spacing and rib width are 

clearly plotted in Figure 51. 
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Figure 51: Normalized friction factor of rectangular channel I with various rib widths for 

different Reynolds number. 

7.3 Effect of Rib Width in Rectangular Channel II 

The effect of rib width in a rectangular channel II with aspect ratio 4:1 is 

performed. The rib width, w is varied while the rib height, e is maintained constant. The 

analysis was performed for Reynolds number 10,000, 30,000 and 60,000. The channel 

and rib configuration used in the analysis of rectangular channel II is provided in      

Table 36. The initial condition includes a constant heat flux of 2500 W/m
2
 applied at the 

wall and an inlet bulk temperature of 298 K.  
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Table 36: Parameters used in the analysis of rectangular channel II with various rib 

widths 

W/H 4 

e 0.0032 

P/e 10          20 

w/e 1/8      1      2     3     4     6     14 

Re 
 10,000        30,000        60,000 

 

The heat transfer coefficients are calculated and the values of normalized Nusselt 

number are provided for case P/e = 10 and P/e = 20 in Table 37 and Table 38 

respectively. The values of normalized Nusselt number for P/e = 10 is high than P/e = 20. 

Also as the rib width increases, the normalized Nusselt number value decreases. 

Table 37: Normalized Nusselt number for rectangular channel II with various rib width 

for rib spacing P/e = 10 

w/e vs. 

Re 
0.125 1 2 3 4 6 

10,000 2.218 2.906 2.522 2.424 2.352 2.208 

30,000 2.056 2.684 2.449 2.368 2.292 2.128 

60,000 1.987 2.439 2.207 2.167 2.123 1.900 
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Table 38: Normalized Nusselt number for rectangular channel II with various rib width 

for rib spacing P/e = 20 

w/e vs. 

Re 
0.125 1 2 4 6 14 

10,000 1.949 2.569 2.385 2.287 2.244 2.126 

30,000 1.782 2.534 2.414 2.349 2.239 2.031 

60,000 1.643 2.439 2.355 2.259 2.187 1.800 

 

The values of normalized Nusselt number are plotted and are shown in Figure 52. 

The plot shows that the value is high for case P/e =10 at Reynolds number 10,000. The 

values are close to 1.8 for case P/e = 20 at Reynolds number 60,000 showing that the 

wider rib spacing at high Reynolds number approaches the values of the smooth channel.  

 

Figure 52: Normalized Nusselt number of rectangular channel II with various rib widths 

for different Reynolds number. 
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 The velocity contours for case P/e = 10 at Reynolds number 10,000 is provided in 

Figure 53. The flow pattern is similar as in other case. The flow becomes turbulent due to 

the presence of the rib. The rib causes a separation flow and hence creates a recirculation 

zone. The flow remains parallel to the wall in case w/e = 1/8 causing a low heat transfer 

rate. The case with w/e = 6 is similar to that of a smooth channel due to wider ribs. 

 

    

 

 

 Case I       Case II 

            Case I           Case II 

 

     Case III            Case IV 

Figure 53: Velocity contours for rectangular channel II with rib spacing P/e = 10 for 

Reynolds number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2,               

Case III: w/e = 4 and Case IV: w/e = 6  
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       Case I         Case II 

 

 

 

 

     Case III        Case IV 

Figure 54: Velocity contours for rectangular channel II with rib spacing P/e = 10 for 

Reynolds number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2,               

Case III: w/e = 4 and Case IV: w/e = 6  

 

 

       Case I         Case II 
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     Case III        Case IV 

Figure 55: Velocity contours for rectangular channel II with rib spacing P/e = 10 for 

Reynolds number 60,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2,               

Case III: w/e = 4 and Case IV: w/e = 6  

 Figure 54 and Figure 55 show the velocity contours for Reynolds number 30,000 

and 60,000 respectively. There is no variation in the flow pattern. Also the rib width ratio 

w/e = 1/8 and w/e = 6 shows the same pattern with an exception of high velocity values. 

The reason for variation in normalized Nusselt number is same as explained in case of 

rectangular channel I. The other reason for change in normalized Nusselt number is due 

to the channel aspect ratio. 

 The velocity contours for rib spacing, P/e = 20 for various Reynolds number is 

shown in Figure 56, Figure 57 and Figure 58. 

 

 

 

 

      Case I                Case II 
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    Case III                                                               Case IV 

Figure 56: Velocity contours for rectangular channel II with rib spacing P/e = 20 for 

Reynolds number 10,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6, Case IV: w/e = 10 and Case V: w/e = 14 

 

      Case I            Case II 

 

     Case III           Case IV 

Figure 57: Velocity contours for rectangular channel II with rib spacing, P/e = 20 for 

Reynolds number 30,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6 and Case IV: w/e = 14 
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Case I       Case II 

 

Case III      Case IV 

Figure 58: Velocity contours for rectangular channel II with rib spacing P/e = 20 for 

Reynolds number 60,000 with rib widths Case I: w/e = 1/8, Case II: w/e = 2, Case III: 

w/e = 6 and Case IV: w/e = 14 

The velocity contours for case P/e = 20 rectangular channel II does not vary much 

with case P/e = 20 for rectangular channel I. The flow pattern remains the same. Because 

of a wider aspect ratio than the rectangular channel I, the velocity values are low and 

hence the values of normalized Nusselt number decreases. Since the flow pattern is 

similar to the rectangular channel I, the case is not explained in detail. 

The values of normalized friction factor also follow the same pattern. The value is 

high for cases with rib spacing P/e = 10. Also the value for normalized friction factor 

increase when the rib width ratio reaches w/e = 2 and then starts to decrease for further 

wider rib widths. 
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The values of normalized friction factor for all the cases are provided in Table 39 

and Table 40 and the results are plotted in Figure 59. Due to a wider channel width, the 

rib causes a more pressure loss across the channel section. Due to a higher pressure loss, 

the friction loss is increased. The values of normalized friction factor is high than for 

other channel aspect ratios. 

Table 39: Normalized friction factor for rectangular channel II with various rib width for 

rib spacing P/e = 10 

w/e vs. 

Re 
0.125 1 2 3 4 6 

10,000 8.548 12.581 12.988 12.328 10.647 8.736 

30,000 9.748 15.933 16.275 15.892 13.454 9.847 

60,000 10.750 19.666 20.088 19.664 16.324 10.858 

 

Table 40: Normalized friction factor for rectangular channel II with various rib width for 

rib spacing P/e = 20 

w/e vs. 

Re 
0.125 1 2 4 6 14 

10,000 5.488 8.703 8.995 8.789 8.673 6.474 

30,000 5.987 10.997 11.344 11.154 11.098 6.944 

60,000 6.975 13.697 14.098 13.983 13.944 7.387 
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Figure 59: Normalized friction factor of rectangular channel II with various rib widths, 

for different Reynolds number. 

7.4 Conclusion 

 In this study, three channels are analyzed for various rib spacing and rib width. 

The rib spacing, P/e = 10 produces a better result for heat transfer rate than for rib 

spacing, P/e = 20. The wide rib spacing causes a decrease in velocity due to presence of 

wider recirculation zone. The flow pattern for all the cases remains the same with flow 

separation occurring before the rib and reattaching behind the rib. The rib spacing P/e = 

10 also produce a high normalized friction factor values for all the channel case. Though 

the values are high, it is compensated by a high heat transfer rates. 

 The effect of rib width is also analyzed in this study. The rib width ratio w/e = 1/8 

is similar to that of smooth channel for all the cases. The high rib width ratio also 

produces a value close to that of the smooth channel. The square ribs with w/e = 1 has the 
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high heat transfer rate for each channel. The presence of wider ribs causes the flow to 

reattach several times over the ribs before reattachment. This causes a thicker boundary 

layer. The values are lower for rib spacing P/e = 20 with wide ribs due to the same 

reason. So the idea of increasing the rib width is an ineffective method to increase the 

heat transfer rate. 

 Also the normalized friction factor is high for wide ribs. The normalized friction 

factor increases as the rib width increases, reaches a maximum value for w/e = 2 for P/e = 

10 and w/e =4 for P/e = 20 and then starts to decrease as the rib width ratio increases. So 

when a combined effect of rib width and rib spacing is considered, the square ribs 

produce a maximum heat transfer rate with minimal loss in pressure. 

 The study is performed for three different channels with the combined effect of 

rib spacing and rib width. From the study it is clear that the square ribs produces a 

maximum heat transfer rate with a less frictional loss. 

 The effect of channel aspect ratio on the heat transfer performance is analyzed 

and is explained in chapter VIII. 
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CHAPTER VIII 

 

HEAT TRANSFER PERFORMANCE OF THE CHANNELS 

 

 

The analysis was performed for various channel and rib configurations. In this chapter, 

the combined effect of rib spacing, rib width and Reynolds number was performed on 

three different channels with various aspect ratios. In previous chapters, the heat transfer 

rate and frictional loss was calculated for all the cases. Now, an optimum cooling 

configuration is to be obtained. The configuration that is selected should produce 

maximum heat transfer rate with a minimal pressure drop across the channel. The best 

way to pick an optimum cooling configuration by including the effect of all the 

parameters is to calculate the overall thermal performance. Before selecting the optimum 

cooling configuration, the effect of all the parameters on the heat transfer performance is 

discussed 

8.1 Effect of Reynolds Number 

 The effect of Reynolds number on the heat transfer and pressure drop is discussed 

in this section. As the Reynolds number increases, the average Nusselt number for the 



111 
 

channels increase. This is because of the increase in velocity which causes turbulence. 

But the rate of increase in average Nusselt number decrease as the Reynolds number 

increases. This was discussed in detail for each channel in Chapter VI. Since the rate of 

increase in Nusselt number is low, the normalized Nusselt number values have a negative 

slope as the Reynolds number increases. The value of normalized Nusselt 

numberdecrease as the Reynolds number increases. The pattern for normalized Nusselt 

number vs. Reynolds number follows the same trend for all the channels and all the rib 

spacing.  

 The friction factor follows a different pattern. As the Reynolds number increases, 

the friction factor decreases but the rate at which the friction factor decrease is lower than 

the smooth channel. Thus when we normalize, the friction factor values increase as the 

Reynolds number increases.  

 The values of all the results were plotted and were discussed in detail in Chapters 

VI and VII.  

8.2 Effect of Rib Spacing 

 In this study, two basic rib spacing ratios P/e = 10 and P/e = 20 were selected 

based on the experimental study. The values were selected based on previous 

experimental investigations on ribbed channels. The normalized Nusselt number and 

friction factor was calculated for both the rib spacing ratios. From the analysis, the 

normalized Nusselt number decreases as the rib spacing increases. The normalized 

friction factor also decreases as the rib spacing increases. The wider rib spacing has a 

longer recirculation zone than the closer rib spacing. In case of P/e = 10, the flow 
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reattaches at a shorter distance than P/e = 20. Hence a short recirculation zone ensures a 

minimal loss in heat transfer. The increase in heat transfer comes at the expense of a high 

pressure drop across the region. Since the rib spacing P/e = 10ad P/e = 20 has their own 

advantage and drawback, the correct rib spacing can be selected based only on the overall 

thermal performance which is discussed in section 8.5. 

8.3 Effect of Rib Width 

 The effect of rib width on the heat transfer performance is discussed in this 

section. The strategy of selecting the rib width ratios were discussed in Chapter II. The 

values range from w/e = 1/8 to w/e = 14.  From the analysis the change in rib width has 

no effect on the heat transfer rate. The values reaches a maximum peak for w/e = 1 and 

starts to decrease. The friction factor initially increases, reaches the maximum value at 

w/e =2 and then decrease as the rib width increases. So the increase in rib width has an 

adverse effect on the heat transfer performance. The square rib with w/e = 1 produced the 

best heat transfer performance. The effect of rib width on overall thermal performance is 

explained in section 8.5. 

8.4 Effect of Channel Aspect Ratio 

 The analysis is performed for three channels: Square channel with AR 1, 

Rectangular channel with AR 2 and Rectangular channel II with AR 4. For low Reynolds 

number 10,000, the rectangular channel I produce the high normalized Nusselt number 

value followed by rectangular channel II and square channel. But as the Reynolds number 

increases, the rectangular channel II with wide aspect ratio of 4:1 produce the maximum 

heat transfer rate followed by rectangular channel - I and square channel. 
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 Thus it is clear that irrespective of the flow parameters, the narrow channel has 

the low normalized Nusselt number values. The square channel with aspect ratio 1:1 

produces the minimum heat transfer rates and the wider channel has a high heat transfer 

rate.  

The friction factor should also be taken into account. The channel aspect ratio has 

an adverse effect on the normalized friction factor. The wider channels have a high 

normalized friction factor rate than the narrow channels for all the Reynolds number 

values.  

The normalized friction factor values are as high as 19.6 for rectangular channel II 

at Reynolds number 60,000 and as low as 3.3 for square channel at Reynolds number 

30,000. So an optimum cooling configuration is selected based on both normalized 

Nusselt number and normalized friction factor values.  

8.5 Overall Thermal Performance 

The overall thermal performance for each case is provided in Figure 60. The 

figure of merit which is an easy means of obtaining the required configuration is drawn 

between Nunorm/(fnorm)
1/3

 and w/e ratios. This overall heat transfer rate correlation was 

obtained from literature
 
by Wright, L. M. (2008). 

From the plot it is conclusive that the rectangular channel I with rib width ratio, 

w/e = 1 at Reynolds number 10000 provides us with best heat transfer rate and minimal  
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Figure 60: Heat transfer performance of the channels 
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frictional loss. The rectangular channel I with rib width ratio 14 and square channel with 

rib width ratio 0.125 have high values of 1.6 due to minimal friction rate. The heat 

transfer rate is minimal in these two cases.  

For all the combinations, the rectangular channel II has the highest friction factor 

values. Thus the rectangular channel II with aspect ratio 4:1 has a less overall thermal 

performance. 

The increase in rib width has a different pattern for each channel. The increase in 

rib width for square channel shows no improvement in the overall thermal performance. 

The values decrease as the rib spacing and rib width increases. Unlike the square channel, 

the rectangular channels I and II have a different pattern. The thermal performance of the 

channels increase for square ribs, decrease as the rib width reaches w/e = 6 and again 

increases. This shows that the rib width ratios w/e = 2, 4 and 6 produced values lower 

than smooth channel. This is because of the high frictional loss involved. 

The rib spacing has the same effect on all the channels. The wider the rib spacing, 

lower is the thermal performance. The rib spacing P/e = 10 seems to produce optimum 

results. 

As mentioned before, the wider channels have more heat transfer and frictional 

loss than the narrow channel. But the combined effect of rib spacing and rib width shows 

that the rectangular channel I with aspect ratio 2:1 has a good thermal performance 

followed by square channel and rectangular channel II.  

The rectangular channel II though have a good heat transfer rates produced a very 

high pressure loss. This high pressure loss is not acceptable. The square channel with a 
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minimal heat transfer and friction factor proved to be better than the wide channel with 

aspect ratio 4:1.  

Thus the rectangular channel I with rib spacing P/e = 10 and w/e = 1 has the 

optimum cooling configuration. 

8.6 Future Work 

  The work has opened up the following potential work research  

i. The heat transfer performance of other channels with aspect ratios 3:1, ½:1. 

ii. The rib shape can be changed to U, V and W and the effect of rib shapes can be 

studied. 

iii. The change in orientation of the rib can be adopted. The rib angles such as 30°, 

45° and 60° can be used in the analysis. The effect of rib orientation on the heat 

transfer performance can be studied.  

iv. The analysis can be extended to rotating channels and the rotation number can be 

varied for the analysis. 

v. Finally, effect of turbulence model on the internal cooling passages can be 

studied. Turbulence models such as DNS and LES produce reliable results.  
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