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EXTERNAL CONTROL INTERFACE, DYNAMIC MODELING AND

PARAMETER ESTIMATION OF A RESEARCH TREADMILL

Omer Sirin

ABSTRACT

Treadmills providing linear continuous movement are used for robotic testing of

prostheses in order to study their operating characteristics. However, traditional

exercise treadmills are not able to simulate various conditions such as avoiding an

obstacle, climbing, descending, reversing direction, or stopping instantly. The focus

of this thesis is to examine control algorithms (position, speed and force) for the drive

mechanism of a research treadmill to fulfill the gap in the situations described above.

The system consists of a power supply, a computer with Matlab, and the treadmill

that includes a DC motor, a pulley and belt. Also, an external encoder is installed

on the motor to measure the position of the belt. The bond graph method is used

to model the system to find the symbolic transfer function. Simultaneously, system

identification techniques are used to estimate a numeric transfer function. Some

parameters of the model are experimentally measured, and the rest are extracted by

matching two transfer functions. Control algorithms such as proportional-integral-

derivative and sliding mode are implemented in the system for simulation and real-

time operation. The results demonstrate that this system is suitable for producing

motion paths that traditional treadmills cannot, and it can handle difficult-to-model

situations such as the synchronized movement of the treadmill with a prosthesis-

testing robot.
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CHAPTER I

INTRODUCTION

This chapter provides information about the motivation for this thesis and a review

of the literature. It also discusses current research treadmill technologies and their

limitations. The aim of this project is discussed in the objective section. Likewise,

the thesis structure is provided.

1.1 Motivation and Literature Review

When it comes to walking, running or other continuous motions performed by hu-

mans, the routine locomotion of daily ambulation is a continuous acceleration and

deceleration with movement along curvilinear paths. Even when making an attempt

to move at a nearly constant speed and on a linear walkway in situations of a prolonged

gait, humans tend to display an unsteady progression in speed and direction. If this

anomaly is to be studied in a viable fashion to understand mechanical, metabolic, neu-

romuscular and psychological determinants of such random fluctuations in speed and

other factors, test treadmills must not be restricted to move at a constant speed [12].

Traditional exercise treadmills are not capable of simulating other than a constant

speed. This was the motivation to implement a controller for the treadmill used for

robotic testing of prostheses.
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Human body-effort limit tests for mobility rehabilitation, and regenerative

medicine have been successful in tandem with treadmills that were usually intended

for use in sports and recreational aims, but studied further for the aforementioned

medical uses in a study done by Stavar et al. [18]. These tests illustrate that a person

who has locomotion dysfunction can benefit from a treadmill that can adapt gradu-

ally to assist in the needs of the subjects rehabilitation. When the motion velocity

and system accelerations are monitored and parameters are controlled precisely, the

system can respond to the users’ locomotion and assist them in a free, unrestricted

manner [18]. This was a motivation to implement PID controller and a robust control

called sliding mode control in order to get an opportunity to provide different motion

pathways such as acceleration.

Another consideration to this widely expanding experimental field can be observed

in the aspects of robotics as evidenced by a study done by Von Zitzewitz et al. [20].

This study suggests that robot-aided treadmills can be a useful treatment method

for patients with locomotive dysfunctions. Currently, treadmills for rehabilitation

purpose perform constant speeds or speeds adjusted manually by therapists. They

provide a controller that allow patient cooperation and also it can be extended to

simulate different walking conditions, such as inclined or declined directional ambula-

tion [20]. As a motivation, a controller can be introduced to overcome the limitation

of commercial treadmills. This controller can provide an option to adjust their own

gait speed by the user.

The control of treadmill can be a valuable tool for variety of research studies. It

can be used in a research for avoiding inertial force due to the acceleration [4]. In

research about gait rehabilitation robots, a constant speed treadmill was a limitation

[7] and a controlled treadmill would provide other pathways to the research. A con-

trolled treadmill can be used in research for training to reduce falls in Parkinson’s

disease [13]. A controlled treadmill can provide forward, backward drive and instant

2



stop to disturb the subject’s standing balance. A treadmill speed can be synchronized

with virtual environments for gait training of poststroke [9]. The treadmill can be

also controlled to provide smooth and gradual changes in velocity and acceleration

[16]. Electromyography activity of a leg can be examined while a treadmill moves

sinusoidal fashion backward and forward, with a subject standing on it. Different fre-

quencies between 0.5 Hz and 0.3 Hz can be applied [5]. Treadmill can be controlled

to use in virtual environments [10]. In our project, these research topics were the

motivation, because of the fact that many motion profiles can be simulated with a

treadmill.

Robotic testing of prosthesis is an important tool in extracting dynamic character-

istics of prosthetic body implants such as knees. It can protect human subjects from

hazardous conditions and provide useful data gathering due to ease of repeatability

[15]. In order to examine the characteristics, different walking speeds, accelerations,

decelerations and pathways are required. For example, the robotic leg and tread-

mill are fixed to the ground and if it is desired to examine backwards walking, the

treadmill belt needs to be driven backwards.

Some literature and technology reviews were collected for this thesis research.

Different approaches have been provided by researchers in order to bring a solution

for simulating alternative gait pathways that traditional treadmills cannot.

In the experiment conducted by Minetti et al., the acceleration or deceleration of

the subject are captured by a sensor and collected data is processed to drive treadmill

in real time. Self-selected speeds of walking or running are estimated by the system.

Test errors caused by bias are minimized by feedback system. In this research, one

of the conclusions was that the treadmill with control system triggers the subjects to

use slightly higher speeds than in a experiment on a walkway [12]. In our system, the

improved control will contribute to smoother walking experiences that will minimize

tracking errors. In addition, obstacle avoidance conditions can be included to the

3



research and the response of the subjects can be examined by controlling the belt

position.

Stavar et al. introduced an aproach to reconfigure a classic treadmill to simulate

different conditions such as backward and forward with alternative speeds, accelera-

tions, and inertial moments. In this research, the initial control system is overridden

and an adaptive control system was implemented to estimate direction and speed.

Also a tracking system is integrated into the control system. The treadmill motor

was controlled using a PID controller which was tuned by empirical methods. Finally,

in their experiment, they tested their controller without load [18]. Compared to their

work, a finer speed control can be accomplished in this thesis due to the fact that an

optical encoder is used measure the speed. In contrast, this thesis uses model-based

approach where the model is obtained from a combination of bond graph and sys-

tem identification techniques. Also, the tests were conducted with a subject in our

system. Finally, the overall intention was to research and develop a complete virtual

locomotion system with application in actual and future of interest as our goal.

Zitzewitz et al. used a treadmill that included a hardware-implemented PID

speed controller. In that research, system identification was performed to determine

the dynamics of the PID-controlled treadmill. The transfer function of the PID-

controlled treadmill was found to be approximately [20]:

G(s) =
v(actual(s))

v(desired(s))
= e−0.08 1

0.1s+1

In our project system identification toolbox of Matlab is used in order to find transfer

function from data that was obtained by applying a swept sinewave (chirp) signal to

the system. As a result, a good approximation of transfer function for the system

is obtained by choosing two poles and three zeros. Our system is more specific in

terms of finding transfer function, so we might have better results. In addition, in

our system, sliding mode controller is applied that provided better results than the

PID controller.

4



1.2 Objective and Methods

The main objective of this thesis is to utilize engineering principles in order to pro-

vide the simulation of different motion paths that include various conditions such

as: avoiding an obstacle, acceleration, deceleration, reversing direction, or stopping

instantly. Feasibility tests can be examined by human subjects and robot operated

prostheses.

Symbolic transfer functions of the drive mechanism are obtained with bond graphs

with the aid of the 20-Sim program [1]. Bond graphs are domain-independent graph-

ical descriptions of the dynamic behavior of physical systems. The systems from

different domains (electrical, mechanical, hydraulic, acoustic, thermodynamic, ma-

terial) are described in the same way. The basis is that bond graphs are based on

energy and energy exchange. In addition, system identification toolbox of Matlab is

used to supplement direct parameter measurements. A chirp signal was applied to

the current servo amplifiers and the resulting velocity recorded. The Matlab System

Identification Toolbox is used to subsequently determine a transfer function between

control input and belt speed.

Another aspect of this thesis is the estimation of parameters. Some parameters

are measured directly. Since the numerical transfer function is available from system

identification, parameter matching can be used to find parameters that were not

measured directly. A Simulink program is built to implement the PID and sliding

mode control.

As a conclusion, the tests are examined and the results are compared.

1.3 Composition of Thesis

This thesis is organized as follows. The experimental setup and block diagram are

presented in Chapter 2. The system identification and parameter estimation explained

5



in Chapter 3. Controller design including simulation of PID and sliding mode control

are provided in Chapter 4. Real time experiments are shown in Chapter 5. Finally,

conclusion and recommendations are presented in Chapter 6.

6



CHAPTER II

EXPERIMENTAL SETUP

This chapter gives an overview of the elements involved in the experimental setup

and relationship with each other. The function of each element is explained and a

block diagram of the system is provided.

2.1 Block Diagram of the System

Figure 2.1 shows the connection between each element in the system. The rotational

speed of the cylinder in the motor is read by the encoder attached to the motor.

The signal is transmitted from the encoder to computer throughout data acquisition

board and the belt speed is calculated. The speed data is processed in a Simulink

real-time interface and the control signal is sent to the power amplifier, which drives

the DC motor.

7



Figure 2.1: Block diagram of the system

2.2 Elements of the System

Figure 2.2 shows the complete system. The system basically consist of a power

amplifier, a computer with Matlab, data acquisition board and the treadmill that

includes a DC motor, a pulley and belt. Also an external encoder is installed on

the motor to measure the position of the belt. Each element in the system will be

discussed in following sections individualy in detail.
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Figure 2.2: Picture of the complete system

2.2.1 Power Amplifier

Figure 2.3 shows the amplifier used in the system to drive motor. Kepco bipolar

operational power supply/amplifier is a high-speed power operational amplifier that

can be used to provide control voltages for tests and final operation. It is capable of

supplying +/- 40 volts at +/- 6 amps.

Figure 2.3: Kepco bipolar operational power supply/amplifier.
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2.2.2 Data Acquisition Board and the Connector

Figure 2.4 shows the data acquisition board used in the system. The National Instru-

ments PCI-6259 is a high-speed multifunction M Series data acquisition (DAQ) board

optimized for superior accuracy at fast sampling rates. It provides 32 analog inputs

at 16 bits, 1MS/s(Mega Samples per second)(Multichannel),1.25 MS/s(1-channel); 4

anolog output at 16 bits, 2.8 MS/s; 48 digital I/O;and 32-bit counters. It has also

NI-MCal calibration technology for increased measurement accuracy. Connection for

DAQ board is provided by the BNC-2110 connector provides connection of analog

signals, some digital signals, and two user-defined connections. It is shown in Figure

2.5.

Figure 2.4: Data acquisition board: The National Instruments PCI-6259

Figure 2.5: The BNC-2110 connector
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2.2.3 Treadmill Drive System

Figure 2.6 shows treadmill drive mechanism inludes a motor, two pulleys and a belt.

Tewei Engines C8APB1 is the DC motor used in the treadmill. It is rated at 90

volts, 8 amps, 4200 rpm, and 1.5 H.P. A pulley with 1 inch diameter is attached to

the motor shaft and it is connected to the pulley whose diameter is 4 inches. The

treadmill belt is driven by the bigger pulley with help of a roller mounted in the

center of the pulley.

Figure 2.6: Treadmill drive system

2.2.4 Encoder

Figure 2.7 shows the encoder used in the system to measure rotational speed of

the cylinder in the motor. Enc1j d28 L00128L is an rotary optical encoder whose

resolution is 128 cycles per revolution.
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Figure 2.7: Rotary optical encoder: Enc1j d28 L00128L

An aluminum block is bent into its proper shape. The two sides of the block are

cut off same wide with diameter of the screws on the motor. The encoder is attached

to the aluminum, and then it is fastened to the motor shaft. After encoder mounting,

the input of the encoder needs to be introduced to the computer by converting counts

to meters to find displacement. A 38 inch length field on the belt is marked, the belt

was driven manually and the counts were recorded. The gain that converts counts to

meter is found as 3.1055× 10−4m/count. The calibration equation is shown below.

Displacement =
counts× 38 inch× 0.0254 m/inch

3108 counts
= 3.1055× 10−4 m/count

(2.1)

2.2.5 Computer and Matlab

Computer with Pentium 4, CPU at 3 GHz, 1 Gb of ram is used for Matlab and

Simulink program version 2006b. For real-time experiments a software application

called WinCon is used. It was developed by Quanser Consulting Inc. It provides ease

and efficient way to run Simulink models in real-time. It is used to read encoder and

to run controller model in our project. It allows user to plot real-time data and save

it into Matlab.
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2.2.6 Leg Prosthesis Test Robot

Prosthetic leg with robotic hip simulator is a device designed for simulating swing and

stance trajectories of human gait. It also provides researchers with an opportunity to

examine operating characteristics. It is restricted to two degrees of freedom, which

are hip vertical displacement and hip swing, in order to repeat two-dimensional gait

patterns. It provides a hip displacement amplitudes of up to 50 mm, with a maximum

velocity of 1 m/s. Overall machine dimensions are 48
′′ × 61

′′ × 26
′′
. The device is

shown in Figure 2.8.

Figure 2.8: Prosthetic leg with robotic hip simulator
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CHAPTER III

SYSTEM MODELING AND

PARAMETER ESTIMATION

This chapter describes the system modeling process in detail. It explains how system

parameters are found. The bond graph method is introduced and it is used in order

to find symbolic transfer functions. Simultaneously, Matlab’s system identification

toolbox is used to find a numeric transfer function of the system. Some of the pa-

rameters of the symbolic TF are measured and the rest are found by equalizing two

transfer functions. Finally, a step response of the system is genereated to adjust some

model gains. The system schematic is shown in figure 3.1.

Figure 3.1: System schematic
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3.1 System Identification

System identification is a process that uses methods to generate mathematical models

of dynamic systems from measured data. The behavior of a real-time systems can be

predicted by relating input and output data. It can be useful for estimating unknown

parameters of the system.

System identification toolbox of Matlab program provides the user with an op-

portunity to build mathematical models of a dynamic system from measured input-

output data. The toolbox allows the user to adjust parameters such as number of

poles and zeros, in order to find maximum likelihood model of the system. There are

several basic steps to estimate the model [11].

1. An experiment is conducted and input-output data is recorded to use it in

toolbox.

2. After data is imported into toolbox, desired process such as removing means,

filtering noise are applied.

3. The candidate models are found by changing the parameters (number of poles,

number of zeros, error term)

4. The best model is chosen from data fit results. [11]

A chirp is a constant-amplitude signal in which the frequency changes with time.

It is fed to the system in order to collect system response data for use in system

identification. Its basic parameters are set as: initial frequency (0.1 Hz), target time

(20), and frequency at target time (10Hz). The input of the system was voltage and

the output was velocity of the belt. First of all, the data set is introduced to the

toolbox, and then the mean is removed. The resulting data is fed as working data

for the next operation. Low-pass filtering is then applied to limit the bandwidth of

the estimated model. Figure 3.2 shows the input and output signals and processed
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signals. Two alternatives were tried for the system: first order TF and second order

TF. For the first order TF, the parameters are set as: number of pole (1), number

of zeros (1), error term (0). The resulting estimation gave a 55.9% match. For the

second order TF, the orders are set as: number of poles (2), number of zeros (2), error

term (0). The resulting estimation gave 85.53% match. It was decided to use second

order system due to better prediction. The TF of the system from input voltage to

output belt velocity was extracted, and it is shown below.

TF =
30.28744

s2 + 27.14s+ 174.9

(
m

V s

)
(3.1)

Figure 3.2: The input and the output signals.The blue line represents pure signal,

the green line represents the signal after removing mean, and the red line represents

the final signal after it was filtered.

3.2 Motor Dynamics

In this section, the dynamics of a DC motor is analyzed in some detail. The DC motor

simply consists of a stator and rotor. A current carrying conductor in a magnetic

field provides a force F = iΦ, where Φ is the magnetic flux and i is the current in the

conductor. When the stator produces a radial magnetic flux and the current in the
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armature, then this creates a torque on the rotor causing it to rotate. This results in

the equation:

τm = αia (3.2)

where τm is the motor torque (N-m), α is the torque constant, and ia is the armature

current (amperes).

When a conductor turns in a magnetic field, a voltage Vb is created, called back emf.

Vb = αwm (3.3)

where Vb is the back emf (volts), wm is the angular velocity of the rotor (rad/sec),

and α is the same used in the torque equation.

The parameters that will be useful while creating a bond graph of the system are

listed below [17].

• V: armature voltage

• L: armature inductance

• R: armature resistance

• Vb: back-emf

• ia:armature current

• τm:generated torque [17]

3.3 Bond Graph Method

In this section, the bond graph method is briefly described. The implementation of

the bond graph in the system is shown.

Bond graphs depict the dynamic behavior of physical systems that have different

domains such as electrical, mechanical, hydraulic etc. The bond graph method is
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a powerful tool based on energy and energy exchange for modeling an engineering

system [3].

3.3.1 Bonds and Ports

Two elements of a system are connected with a single line called bond. This bond

shows a power flow which enters on one side and leaves at the other one between the

two connected elements. The product of two variables such as voltage and current

creates the physical dimension of power. In each physical domain, there is such a

combination of variables. For example, in mechanical systems, they are force and ve-

locity for translation, and torque and angular velocity for rotation, and in hydraulics,

it is pressure and volume flow, and in thermodynamic systems, they are temperature

and rate of change of entropy [3].

3.3.2 Bond Graph Elements

Bond graph elements are symbolized with letter combinations that designate the type

of element. The bond graph elements are listed as [3]:

• C is the storage element of q-type variable, for example a capacitor that stores

charge, and a spring which stores displacement.

• I is the storage element of a p-type variable, for example an inductor which

stores flux linkage,and a mass that stores momentum.

• R indicates a resistor which dissipating free energy, for example an electric

resistor, and mechanical friction.

• Se and Sf are sources, for example voltage source in electric system, force source

as gravity, and flow source such as pump.

• TF is transformer, e.g. an electric transformer, pulleys.
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• GY is gyrator, e.g. electromotor, centrifugal pump.

• 0 and 1 are junctions, for connecting two or more elements.

3.3.3 Bond Graph of the System

The 20-Sim program [1] is used to draw the bond graph shown in Figure 3.3 and

obtain relevant transfer functions in symbolic form.

Figure 3.3: Bond graph of the system

• Se1: Source of effort (Voltage)

• Ra: armature resistance

• La: armature inductance

• r: torque constant

• b1: motor damping

• J1: moment of inertia of the rotor

• m1: ratio of two pulleys= r1/r2

• b2: damping of roller connected to the bigger pulley

• J2: moment of inertia of roller connected to the bigger pulley

• m2: radius of bigger pulley (transforms rotational to linear)
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• Se1: Source of effort (Force caused by leg)

• m3: inverse of radius of bigger pulley (transforms linear to rotational)

• b3: damping of the free turning roller

• J3: moment of inertia of the free turning roller

A TF for the system is generated by choosing input as Se (volts) and output as flow

(belt velocity) at the Se1 junction. The second order TF is found as:

TF =
αm1m2

as2 + bs+ c
(3.4)

where

a = Iaj1 + Iaj2m
2
1 + Iaj3m

2
1 + Iaj3m

2
1m

2
2m

2
3

b = Iab1 +Raj1 + Iab2m
2
1 +Raj2m

2
1 + Iab3m

2
1m

2
2m

2
3 +Raj3m

2
1m

2
2m

2
3

c = α2 +Rab1 +Rab2m
2
1 +Rab3m

2
1m

2
2m

2
3

3.3.4 Parameter Estimation

The radius of the pulleys are measured directly, so that m1 and m2 can be calculated.

The torque constant (α) was measured by correlating the speed of the belt to the DC

machine terminal voltage when operating in generator mode. The armature resistance

(Ra) and the armature inductance (La) are measured by multimeter. After finding

these individual parameters, the other parameters such as a,b,c are extracted by

equalizing the second order transfer function found from system identification toolbox

to that obtained from the bond graph method.

• r1 = 0.5 inch (0.0127 m)

• r2 = 2 inches (0.0508 m)

• m1 = 1
4

= 0.25
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• m2 = 0.0508 m

• r = α = V
w

= 0.031 Nm
A
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Figure 3.4: Estimation of torque constant

• Ra = 3.3 Ω

• La = 3.13 mH

• a = 2.846406953× 10−7 Nms3

A

• b = 4.416894495× 10−6 Nms2

A

• c = 1.627448229× 10−5 Nms
A

3.3.5 TF From Disturbance Force to Belt Velocity

Although system identification alone gives a numeric transfer function that can be

used for control design, the effect of load disturbance is given by Eq (3.5). This TF
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could not be measured using system identification with the available instrumentation.

The bond graph method was used to extract TF from disturbance force caused by

the leg to belt velocity. This results in the following TF:

TF =
m2

1m
2
2(Ra + Ias)

as2 + bs+ c
(3.5)

where

a = Iaj1 + Iaj2m
2
1 + Iaj3m

2
1 + Iaj3m

2
1m

2
2m

2
3

b = Iab1 +Raj1 + Iab2m
2
1 +Raj2m

2
1 + Iab3m

2
1m

2
2m

2
3 +Raj3m

2
1m

2
2m

2
3

c = α2 +Rab1 +Rab2m
2
1 +Rab3m

2
1m

2
2m

2
3
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CHAPTER IV

CONTROLLER DESIGN

In this chapter controller design is discussed. Two types of controller are used in

this project. First of all, PID controller which is a well known controller is described

briefly. The second approach which is a more advanced method called sliding mode

controller is outlined and applied to the treadmill system.

4.1 PID Controller

Proportional-integral-derivative (PID) controller is a widely-used tool in industry due

to its good performance and simplicity [6]. The tree parameters define control action:

the proportional term provides an action according to error magnitude, which means

the bigger error, the bigger the correction. The integral term provides correction

according to error persistence, which means the longer error continues, the bigger the

correction. Finally, the derivative term produces an action according to the change

of error with respect to time, which means the faster error is changing, the bigger the

correction. P, PI, PD, or PID can be used in a control system as desired [2]. The

transfer function of PID controller is as following:

Gc(s) = Kp +
Ki

s
+KDs (4.1)
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PID gains may be determined by manual tuning based on observation and experience

and by other methods. The Ziegler-Nichols method is a popular way to tune PID

gains [14]. For various industrial systems, the effects of the PID gains on system

response are summarized in Table 4.1.

PID Gain Percent Overshoot Settling Time Steady-State Error

Increasing KP Increases Minimal effect Decreases

Increasing KI Increases Increases Zero steady-state error

Increasing KD Decreases Decreases No impact

Table 4.1: Effects of the PID Gains on the Step Response

A Simulink model of system for the treadmill with PID controller is shown in

Figure 4.1. A step input is fed into the system and the PID gains are tuned manually

as: proportional (100), integral (0.18), derivative (0). The step response of system

shown in Figure 4.2.

Figure 4.1: Model of the system with PID controller

24



Figure 4.2: Step response of PID simulation

4.2 Sliding Mode Control

Sliding mode control (SMC) is recently one of the most important tools with appli-

cations in different areas of control engineering. The most important applications

that we can mention for sliding mode control are in power electronics, robotics and

motion control. SMC is a control method that changes the dynamics of a system

by forcing the system state to “slide” along a surface defined by a function of the

state variables. It can switch from one continuous structure to another based on the

current position in the state space. Hence, sliding mode control is a variable structure

control method [19].

Sometimes the trajectory of the system moves to a region with different control

structure so the control law which was working for one region is not working for

another. In some applications like the ones that they need a robot operating in inter-

action with an environment with alternative features, robot needs to follow different

trajectories as environment changes, so we need to have different controls on different
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trajectories, another word control law is entering different regions of controls. By

using sliding mode control, the control will slide along the boundaries of the differ-

ent regions. The motion of the system as it slides along these boundaries is called

a sliding mode and the geometrical locus consisting of the boundaries is called the

sliding (hyper) surface. In robot application using sliding mode control, choosing an

appropriate sliding surface is important since using an inappropriate sliding surface

can lead to chatter, energy loss, plant damage, and excitation of unmodeled dynamics

with higher frequencies [8].

The main features of sliding mode control are:

• Reduction in the order of the system while on the sliding mode

• Robustness property against certain disturbances.

The main benefit of SMC is the independence from uncertainties and disturbances

while the system is in sliding mode. The state trajectory remains near the sliding

surface and even by going from one region of control to another one by switching of the

control law, the state trajectory tends toward the sliding surface. While modeling a

plant there will always be a difference between the actual model and the mathematical

model so by using sliding mode control exploiting its robustness property we can

overcome modelling errors [8].

Sliding mode controllers can be used in different applications with different pur-

poses. One of sliding mode controllers application is controlling of electric drives

equipped with switching power converters. Since there is the discontinuous operation

mode for power converters need to defining a discontinuous sliding mode controller

is vital for the system. Sliding mode control also can be used in designing of state

observers. By using sliding mode control in designing sliding mode observers, we are

able to reduce the order of the system [8].
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4.2.1 SMC Example

An example is provided for better understanding the concept. A second order system

is defined by the following equation;

mẍ+ bẋ+ kx = u (4.2)

The objective is the system to follow desired motion trajectory;

Objective x→ xd(xdesired)

The error is found by subtracting xd from x;

e = x− xd (4.3)

The sliding function is chosen to be as following;

s = ė+ λe = ẋ− ẋd + λ(x− xd) (4.4)

suppose s=0 is maintained. Then

ė+ λe = 0; (4.5)

which implies that e→ 0 asymptotically.

To achieve convergence to s=0, s and its derivative are enforced to have opposite

signs, defines the following reaching condition:

ṡ = −ηsgn(s) (4.6)

Instead of using the sgn fuction, saturation function is used in simulation with upper

limit (1) and lower limit (-1).

The control input is found by solving ṡ = 0 for u;

ṡ = ẍ− ẍd + λ(ẋ− ẋd) = −ηsgn(s) (4.7)

1

m
(u− bẋ− kx) = ẍd − ηsgn(s)− λė (4.8)
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u =
1

n
(−mηsgn(s) +mẍd −mλẋ−mλẋd + bẋ+ cx) (4.9)

For the simulation; desired function is chosen as sin(t) and the parameters are chosen

as:

• m=1.7

• b=12

• k=1

• c=0

• n=1.25

The control gains λ, η, and φ were tuned in the simulation and decided as:

• λ = 10

• φ = 1

• η = 5

The model of the example sytem is shown in Figure 4.3 and the result is shown in

Figure 4.4. Also phase portrait is provided in Figure 4.5 and SMC function surface

is shown in Figure 4.6.
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Figure 4.3: Sliding Mode Example
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Figure 4.4: SMC example output

Figure 4.5: SMC phase protrait of the system
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Figure 4.6: SMC function surface

4.3 Sliding Mode Velocity Control of the Tread-

mill

The symbolic equation of the system is solved to find the input used in the sliding

mode control simulation. The same steps are applied to to find input as it is described

in section 4.2.1.

mẍ+ bẋ+ cx = nu

where x represents belt velocity and u is input voltage.

Objective x→ xd(xdesired)

e = x− xd

Sliding function surface=s=ė+ λe = ẋ− ẋd + λ(x− xd)

Reaching condition= ṡ = −ηsgn(s)
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ṡ = ë+ λė = ẍ− ẍd + λ(ẋ− ẋd) = ηsgn(s)

ẍ = n
m
u− b

m
ẋ− c

m
x

ẍ = −ηsgn(s) + ẍd − λẋ+ λẋd

u = 1
n
(m(−ηsgn(s) + ẍd − λẋ+ λẋd) + bẋ+ cx)

u = 1
n
(−mηsgn(s) +mẍd −mλẋ−mλẋd + bẋ+ cx)

4.3.1 Observer Design

For a feedback system design, all states might not be available for feedback in a

real-time experiment. Additional sensors would be required to measure all states and

make them available for feedback. However, when the number of sensors is increased,

the cost would increase and also the system would be more complex. The states that

are not directly measured can be estimated when the sytem is observable. A full-state

observer for a system with equations ẋ = Ax+Bu, and y = Cx+Du is defined as:

˙̂x = Ax̂+Bu+ L(y − Cx̂) (4.10)

where x̂ indicates estimation of the state x. L is the observer gain matrix that will

be discussed later.

The observer estimation error is calculated as:

e(t) = x(t)− x̂(t) (4.11)

By taking the time derivative of the error and implementing the observer, the following

equation is obtained:

ė(t) = (A− LC)e(t) (4.12)

L is found by defining the characteristic equation. For a second order system it

can be defined as following:

det(λI − (A− LC)) = 2 + 2ζωnλ+ ωn
2 (4.13)

where ζ and ωn are selected according to desired setling time.
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4.3.2 Observer Design for the System

For real time experiment of our system, the acceleration cannot be measured. In

order to have this state it is needed to design an observer. First of all the state-space

representation of TF Eq (4.14) is:

mẍ+ bẋ+ cx = nu (4.14)

where x represents belt velocity and u is input voltage.

x1 = x

x2 = ẋ

ẋ1 = x2

ẋ2 = n
m
u− b

m
x2 − c

m
x1

y = x1

A =

 0 1

− c
m
− b

m



B =

 0

− n
m


C =

[
1 0

]
D =

[
0

]
where m = 5, b = 24.14, and c = 174.9

For the next step, the observability of the system is checked. Since det(Po) = 1 6=

0, the system is observable.

Po =

 C

CA


The L matrix is found by equating the coefficients in the equation:

det(λI − (A− LC)) = λ2 + 2ζωn + ωn
2
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where ζ and ωn are chosen 0.8 and 10 respectively to have settling time less than 0.5

seconds.

L1 = −8.14

L2 = −1043.9

The model of the system is shown in Figure 4.7. The results are shown Figures

4.8 and 4.9. As a conclusion, observer design provided a good estimation of the states

that will be used in the real system.
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Figure 4.7: Model of the system with SMC
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Figure 4.8: Velocity output of the model with ramp input
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Figure 4.9: Acceleration output of the system with ramp input
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CHAPTER V

REAL TIME EXPERIMENTS

Real time experiments involving accelerations, decelerations, constant speeds and

sinusoidal movement of the belt are conducted. Tests were also conducted with a

subject and a prosthesis attached to a robotic hip simulator. In addition, alternative

conditions such as waved and backward walking are provided.

5.1 Constant Speed Tests

Commercial treadmills operate at constant speed. The PID and SMC controllers were

implemented in the system under controlled constant speed. Tests are conducted

while a human subject is walking and running at different speeds. The results of the

two controllers and the original controller built into the treadmill are compared.

5.1.1 Real Time Interface

For PID and SMC, a step input is fed into each system to test control performance.

For the original controller, the output is recorded. Figures 5.1, 5.2 and 5.3 show

the real-time interfaces used for the original controller, the PID controller and the

SMC, respectively.

37



Encoder Input

National Instruments
NIM ENC

Counts to meters

3.1055e−004

Belt Velocity

Belt Position1

Belt Position

Approx. Derivative

s

0.08s+1

Figure 5.1: Interface for system with original controller

display

Step Input

Step Saturation
=/−2

PID Controller

PID

G

0.025

Encoder Input

National Instruments
NIM ENC

Counts to meters

3.1055e−004

Control Input needed Control Input

Belt Velocity

Belt Position1

Belt Position

Approx. Derivative

s

0.08s+1

Analog Output

National Instruments
NIM DAC
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Figure 5.3: Interface for the system with SMC controller
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5.1.2 Constant-speed Results

Different constant speed tests were conducted with a range between 1 mile/h (0.44

m/s) and 2.2 mile/h (0.98 m/s) due to power supply limitations. Tests are done in

both directions, forward and backward. In one case with the subject walking back-

wards, only PID and the SMC controllers are compared, since the original controller

does not have this option. PID gains are tuned as 300, 950, and 0 respectively. SMC

gains are chosen as: λ = 90, η = 160, and φ = 0.8. The original controller is also in-

cluded for comparison while the subject is moving forward. Figures 5.4 and 5.7 show

the test results with speeds of 1.3 mile/h (0.58 m/s) and 2.1 mile/h (0.93 m/s) with

the subject moving backwards. Figures 5.5 and 5.5 show test results with speeds

of 1.3 mile/h (0.58 m/s) and 2.1 mile/h (0.93 m/s) with the subject moving forward.

The tests are conducted with a subject whose weight is 88 kg. The subject started

to walk at the 4th second and stepped down at the 14th second. Both controllers

showed good tracking under no-load conditions. However, when the subject was on

treadmill, the responses were slightly different. With the PID controller, belt speed

oscillated above and below the reference with each step. With SMC, belt speed was

slightly lower than the reference during foot contact, but no overshoot was observed

after each step. Both controllers were better than the original controller, which also

had offset error.
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Figure 5.4: Constant speed test results with a speed of 1.3 mile/h with the subject

moving backwards.
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Figure 5.5: Constant speed test results with a speed of 1.3 mile/h with the subject

moving forward.
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Figure 5.6: Constant speed test results with a speed of 2.1 mile/h with the subject

moving backwards.
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Figure 5.7: Constant speed test results with a speed of 2.1 mile/h with the subject

moving forward.
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Voltage limitations were the main obstacle to the achievement of higher tracking

accuracy. At lower speeds, the supplied voltages were sufficient; however, with the

required voltage exceeded saturation limits for higher speeds. In the models, the

saturation block is used to bound control voltage between 40 V and -40 V which are

the limits of the power amplifier. In addition, the required voltage while subject was

moving backwards was more than the voltage while subject was moving backwards

when foot contact. It is concluded that the subject applied more force on the treadmill

while moving backwards. Figures 5.8 and 5.12 show the required and supplied control

voltages for the PID controller and Figures 5.9 and 5.13 show the voltages for the

SMC controller with the subject moving backwards. Figures 5.10 and 5.14 show the

required and supplied control voltages for the PID controller and Figures 5.11 and

5.15 show the voltages for the SMC controller with the subject moving forward.
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Figure 5.8: Controller voltage at a speed of 1.3 mile/h for the PID with the subject

moving backwards
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Figure 5.9: Controller voltage at a speed of 1.3 mile/h for the SMC with the subject

moving backwards
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Figure 5.10: Controller voltage at a speed of 1.3 mile/h for the PID with the subject

moving forward.
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Figure 5.11: Controller voltage at a speed of 1.3 mile/h for the SMC with the subject

moving forward.
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Figure 5.12: Controller voltage at a speed of 2.1 mile/h for the PID with the subject

moving backwards
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Figure 5.13: Controller voltage at a speed of 2.1 mile/h for the SMC with the subject

moving backwards
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Figure 5.14: Controller voltage at a speed of 2.1 mile/h for the PID with the subject

moving forward.
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Figure 5.15: Controller voltage at a speed of 2.1 mile/h for the SMC with the subject

moving forward.

5.2 Acceleration and Deceleration Tests

Acceleration and deceleration are involved in normal walking and running activities.

Traditional treadmills are not capable of simulate these movements, since they are

generally used for training in a constant speed mode. In this section a PID controller

and sliding mode controller are fed by a ramp input with different slopes. The results

of the two controllers are compared.

5.2.1 Results

The acceleration and deceleration test are done along both directions, forward and

backward. The experiments were conducted with a subject whose weight is 88 kg.

The highest slope used was 0.9 m/s2 due to power restrictions. PID gains are tuned

as 600, 950, and 0 respectively. SMC gains are chosen as: λ = 10, η = 70, and
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φ = 0.5. PID and SMC showed similar results in both directions. Figures 5.16, 5.17,

and 5.18 show the test results with slopes of 0.3 m/s2, 0.45 m/s2, and 0.9 m/s2

respectively, with the subject moving backwards. Only one leg is used due to the fact

that it was diffucult for subject to maintain balance. Figures 5.19, 5.20, and 5.21

show the test results with slopes of 0.3 m/s2, 0.45 m/s2, and 0.9 m/s2, respectively,

with the subject moving forward. Both legs were used in this test. Both controllers

provided good tracking with low slopes; however, the SMC showed better tracking

when the slope increased.

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

B
el

t S
pe

ed
 (

m
/s

)

 

 
Reference Input
PID
SMC

Figure 5.16: Acceleration and deceleration test results with slope of 0.3 m/s2 , with

the subject moving backwards.
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Figure 5.17: Acceleration and deceleration test results with slope of 0.45 m/s2, with

the subject moving backwards.
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Figure 5.18: Acceleration and deceleration test results with slope of 0.9 m/s2, with

the subject moving backwards.
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Figure 5.19: Acceleration and deceleration test results with slope of 0.3 m/s2 , with

the subject moving forward.

0 2 4 6 8 10 12
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

B
el

t S
pe

ed
 (

m
/s

)

 

 

Reference Input
PID
SMC

Figure 5.20: Acceleration and deceleration test resultswith slope of 0.45 m/s2, with

the subject moving forward.

50



0 2 4 6 8 10
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

B
el

t S
pe

ed
 (

m
/s

)

 

 

Reference Input
PID
SMC

Figure 5.21: Acceleration and deceleration test results with slope of 0.9 m/s2, with

the subject moving forward.

5.3 Tests with Different Walking Conditions

People confront many different factors such as wind that affect their walking experi-

ence outdoors. Also, specific walking patterns are needed for rehabilitation purposes.

In this section, various tests are conducted to simulate the situations described above.

5.3.1 Simulating Windy Weather

With implementing a controller into treadmill system, different walkways can be

simulated by changing the reference input. The signal builder block available in

the real-time interface was used to create a biased sinewave. Both PID and SMC

controller showed good results. Forward and backward directions were used. PID

gains were tuned as 300, 950, and 0 respectively. SMC gains were chosen as: λ = 90,

η = 160, and φ = 0.8. Frequency was kept under 12 Hertz due to power amplifier
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restrictions.

Results

The test are conducted by same person whose weight is 88 kg. The step input was

used to provide a bias to the sinewave, and it was always 0.7 m/s. For the sinusoidal

signal, the amplitude was always 0.1 m/s and the frequencies changed from 5 Hz to

12 Hz. Both controllers showed good tracking.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

B
el

t S
pe

ed
 (

m
/s

)

 

 
Reference Input
PID

Figure 5.22: Test results at 5 Hz with PID, with the subject moving backwards.
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Figure 5.23: Test results at 5 Hz with SMC, with the subject moving backwards.
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Figure 5.24: Test results at 5 Hz with PID, with the subject moving forward.
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Figure 5.25: Test results at 5 Hz with SMC, with the subject moving forward.
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Figure 5.26: Test results at 7 Hz with PID, with the subject moving backwards.
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Figure 5.27: Test results at 7 Hz with SMC, with the subject moving backwards.
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Figure 5.28: Test results at 7 Hz with PID, with the subject moving forward.
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Figure 5.29: Test results at 7 Hz with SMC, with the subject moving forward.
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Figure 5.30: Test results at 9 Hz with PID, with the subject moving backwards.
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Figure 5.31: Test results at 9 Hz with SMC, with the subject moving backwards.
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Figure 5.32: Test results at 9 Hz with PID, with the subject moving forward.
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Figure 5.33: Test results at 9 Hz with SMC, with the subject moving forward.
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Figure 5.34: Test results at 12 Hz with PID, with the subject moving backwards.
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Figure 5.35: Test results at 12 Hz with SMC, with the subject moving backwards.
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Figure 5.36: Test resultsat 12 Hz with PID, with the subject moving forward.
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Figure 5.37: Test results at 12 Hz with SMC, with the subject moving forward.

5.3.2 Low Speed Tests

The treadmill available in the lab has a lowest selectable speed of 1 mile/hour (0.447

m/s). Lower speeds may be necessary for rehabilitation purposes. Step inputs from

0.05 m/s to 0.4m/s were fed into system. PID gains are tuned as 300, 950, and 0

respectively. SMC gains are chosen as: λ = 75, η = 300, and φ = 5.

Results

The subject started walking at the 4th second and stepped down at 14th second. The

performance with disturbance and without disturbance can be seen in the figures.

Figure 5.38 show the results with speeds of 0.05 m/s, 0.1 m/s, 0.15 m/s, and 0.2

m/s with the subject moving forward, and Figure 5.38 show results with speeds of

0.25 m/s, 0.3 m/s, 0.35 m/s, and 0.4 m/s with the subject moving forward. The

performance of both controllers were good because of the fact that the amplifier did

not reach saturation.
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Figure 5.38: Low speed tests with the subject moving forward.
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Figure 5.39: Low speed tests with the subject moving forward
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5.3.3 Position Control

Belt position control is desired for specialized studies involving prosthetic leap and a

robotic hip simulator. An obstacle can be mounted on the belt, which can be driven

to a desired position. Only PID controller performance is tested in this experiment

because of the fact that a new controller design was required for SMC. PID gains are

tuned as 200, 1, and 0 respectively. The interface of the system shown in Figure 5.40.
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Belt Velocity

Belt Position1

Belt Position

Approx. Derivative

s

0.08s+1

Analog Output

National Instruments
NIM DAC

Figure 5.40: Interface of the position control system

Results

A square wave was fed into system in order to simulate movement of an obstacle back-

ward and forward between desired points. The steady state error was always 5 mm

or less. Figures 5.41, 5.42, 5.43, 5.44, 5.45 show the test results with displacements

of 0.4 m, 0.5 m, 0.6 m, 0.7 m, and 0.8 m respectively.
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Figure 5.41: Position control test: 0.4m displacement
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Figure 5.42: Position control test: 0.5m displacement
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Figure 5.43: Position control test: 0.6m displacement
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Figure 5.44: Position control test: 0.7m displacement
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Figure 5.45: Position control test: 0.8m displacement

5.4 Tests with Prosthetic Leg and Robotic Hip

Simulator

One of the main objectives of this thesis was to control treadmill speed during tests

involving a prosthetic leg and a robotic hip simulator. First of all, step input is fed

into system and the treadmill started running, then the hip simulator started running

and the prosthetic leg stepped up treadmill. For original controller, the same speed

chosen from its own interface. Performances of the controllers is tested while the leg

walks on the treadmill.

5.4.1 Results

All tree controllers (PID, SMC, and original conroller) were tested at a speed of 0.84

m/s (1.9 miles/h). The PID gains were tuned as 300, 950, and 0 respectively. The
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SMC gains were chosen as: λ = 90, η = 160, and φ = 0.8. Figures 5.46, 5.47, and

5.48 show the test results with the PID, SMC, and original controllers respectively.

Both PID and SMC had better performance than the original. Figures 5.49, 5.50,

and 5.51 show the errors with the PID, SMC, and original controllers respectively.

The maximum error was 21×10−3 m/s or less for PID controller when the leg applied

force on treadmill. It was 16 × 10−3 m/s or less with the SMC controller. And it

was 13 × 10−2 m/s for original controller which including 4 × 10−2 m/s offset error.

Also, Figures 5.52, 5.53, and 5.54 show thigh angle during tests with prosthethic leg

with the PID, SMC, and original controllers respectively. Figures 5.55, 5.56, and 5.57

show knee angle during tests with prosthetic leg with the PID, SMC, and original

controllers respectively.
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Figure 5.46: PID controller test with prosthetic leg and robot at speed of 0.84 m/s
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Figure 5.47: SMC controller test with prosthetic leg and robot at speed of 0.84 m/s
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Figure 5.48: Original controller test with prosthetic leg and robot at speed of 0.84

m/s
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Figure 5.49: Error of PID controller
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Figure 5.50: Error of SMC controller
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Figure 5.51: Error of original controller
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Figure 5.52: Thigh angle during test with prosthethic leg with PID
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Figure 5.53: Thigh angle during test with prosthethic leg with SMC
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Figure 5.54: Thigh angle during test with prosthethic leg with original controller
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Figure 5.55: Knee angle during test with prosthethic leg with PID
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Figure 5.56: Knee angle during test with prosthethic leg with SMC
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Figure 5.57: Knee angle during test with prosthethic leg with original controller

5.4.2 Root Mean Square of the Error

Root mean square (rms) of the error is calculated by using Eq (5.1) for constant

speed, acceleration and deceleration tests in both direction. Table 5.1 shows the rms

results for the PID and the SMC.

erms =

√∑
e2(t)

T
(5.1)
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Test PID SMC

Constant speed test with a speed of 1.5 mile/h

with the subject moving forward
0.0291 0.0626

Constant speed test with a speed of 1.5 mile/h

with the subject moving backwards
0.0477 0.0532

Acceleration and deceleration test results with

slope of 0.45 m/s2, with the subject moving forward
0.0091 0.0098

Acceleration and deceleration test results with

slope of 0.45 m/s2, with the subject moving backwards
0.0163 0.0109

Table 5.1: RMS of the error with PID and SMC for constant speed, acceleration and

deceleration tests
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CHAPTER VI

CONCLUSION AND

RECOMMENDATIONS

The main objective of this thesis was to extend the capabilities of a conventional

exercise treadmill by providing an external controller. A bond graph-based symbolic

model and system identification were combined to estimate relevant transfer func-

tions. Two different control algorithms, namely proportional-integral-derivative and

sliding mode, were implemented in the system. Real-time experiments for different

conditions such as constant speed, accelerations and decelerations, walking with dis-

turbance like wind, lower speeds for rehabilitation purposes, position control, and test

with a prosthethic leg were conducted. Based on simulations and test results, both

controllers were adequate for low-power conditions. However, when power require-

ments were higher due to higher speeds or loads, performance was reduced. Both PID

and SMC were better than the original controller in all cases, not only with the pros-

thesis. There was a slight difference between PID and SMC. The results were more

chattering with the PID. For example, in constant speed tests, belt speed oscillated

above and below the reference with each step with the the PID controller. However,

belt speed was slightly lower than the reference during foot contact, but no overshoot

was observed after each step with the SMC. The system with SMC showed better
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tracking in some cases such as acceleration and deceleration test. Implementing PID

was easier than SMC because of the fact that more calculations were involved with

SMC.

6.1 Recommendations

This thesis provides a good viewpoint about controlling a treadmill and it can be

implemented on other treadmills. The only restriction was insufficient power for this

project. A better power supply can be used for future tests. Also, the controllers

can be included in prosthetic leg and robotic hip simulator to provide synchronized

movement of treadmill with the leg. An obstacle can also be mounted on the belt,

and it can be synchronized with the hip simulator to examine its performance. Also,

a sensor may be implemented to estimate the force applied by the leg on the treadmill

and the disturbance can be avoided to reduce the error during foot contact.
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