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ABSTRACT 

  Talin is a cytosolic protein which is known to be one of the key players involved 

in integrin mediated cell adhesion dependent processes, including blood coagulation, 

tissue redmodeling. It connects the extracellular matrix with the actin cytoskeleton.  Talin 

comprises of a head domain (talin-H) and a rod domain (talin-R). Talin-H is further 

subdivided in F0, F1, F2 and F3 domains. Talin-R contains 13 contiguous helical bundle 

domains (R1-R13) followed by an actin binding dimerization domain (DD). The F3 

domain contains a key integrin binding site that regulates integrin activation. In our 

previous studies, we have shown that  cytosolic talin exists in an  autoinhibited state 

where the integrin binding site in F3 domain  is self-masked by R9 domain. The 

autoinhibited talin is randomly distributed in the cytosol but upon activation, talin is 

rapidly localized to membrane and it binds and activates integrin. The main focus of the 

present study was to understand the mechanism of  plasma membrane localization and 

activation of talin. Since talin has long been known to also bind to actin, we also 

investigated the actin binding sites in talin and how they are conformationaly regulated. 
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The crystal structure of autoinhibited talin F2F3-R9 complex, previously 

determined in our lab, revealed a stretch of negatively charged residues on R9 which is 

located on the same side as the positively charged surface on talin H. This leads to two 

hypotheses: (I) Electrostatic repulsion between the negatively charged  talin-R9 surface 

and membrane promotes the cytosolic retention of autoinhibited talin; (II) upon 

enrichment of membrane with negatively charged phosphatidylinositol-4,5-bisphosphate 

(PIP2), PIP2 strongly pulls the positively charged surface on talin-H towards membrane 

and simultaneously repels the negatively charged surface on R9, thus promoting the 

membrane localization and activation of autoinhibited talin via a “pull-push” mechanism. 

To test the hypothesis I, we made a triple mutant (H1711E, T1812E, N1815E) on the 

talin-R9 (talin-3E mutant) to make it more negatively charged. Our cosedimentation 

experiment demonstrates that the talin mutant has significantly reduced ability to 

associate with membrane as compared to the WT talin, thus supporting the hypothesis I. 

To test the hypothesis II, we made a triple mutant (D1676R, E1770K, M319A) to weaken 

the talin-F3/R9 autoinhibitory interaction (talin-activation mutant). The co-sedimentation 

experiment demonstrates that the talin-activation mutant had substantially increased 

capacity to bind to membrane as compared to WT talin, indicating that the relief of the 

autoinhibition promoted the “pulling” of talin-H to membrane and “pushing” away of 

talin-R from membrane. Consistently, the talin-activation mutant had increased integrin-

binding, leading to significantly enhanced talin-mediated integrin activation as compared 

to WT talin. 

Consistent with previous studies, we found the presence of three actin binding 

sites on talin. Interestingly, full length talin has little binding to actin, suggesting that the 
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full length talin adopts a conformation that not only prevents integrin binding but also the 

actin binding. Disruption of the autoinhibitory interface that masks the integrin binding 

increased the talin binding to integrin but not to actin, suggesting that the two binding 

events are regulated by different conformational activation mechanisms. 
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NOMENCLATURE 

 

PIP2: Phosphatidylinositol-4,5-bisphosphate 

POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphor-L-serine] 

POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

MLV: Multilamellar vesicle 

CHO: Chinese Hamster ovary 

NMR: Nuclear Magnetic Resonance 

HSQC: Heteronuclear Single Quantum Correlation 

PTB:   Phosphotyrosine Binding domain  

DD:    Dimerization domain 

FERM: 4.1 protein, Ezrin, Radixin, Moesin domain  

EGFP: Enhanced Green Fluorescent protein 

cDNA: complementary DNA 

CT  : Cytoplasmic tail 

FL :  Full length 
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CHAPTER I 

INTRODUCTION 

1.1 Integrins 

     Integrins are heterodimeric transmembrane glycoprotein receptors comprising two 

subunits α and β which are noncovalently associated with each other. Integrins serve as a 

mode of interaction of cells with the extracelluar matrix. These receptors play a vital role 

in cell adhesion and migration. Till date 18α and 8β subunits are known in vertebrates 

which form 24 distinct integrin receptors which possess different binding properties and 

are differentially expressed in various tissues (Johnson et al, 2009). For instance, αııb 

subunit pairs up with subunit β₃ to form a heterodimeric receptor αııbβ₃ in platelets 

which recognizes Arg-Gly-Asp (RGD) peptides in extracellular matrix molecules such as 

fibrinogen and vitronectin.  

     Both α and β subunits contain a large extracellular domain, a single membrane 

spanning transmembrane domain and cytoplasmic tail (figure 1). The extracellular 

domain of α subunit comprises of inserted domain or von Willebrand factor A domain 
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(Lee at al.,1995), β propeller domain (Springer et al.,1997) and leg or stalk comprising of 

thigh domain and calf1 and calf 2 domains (Xiong et al.,2001; Zhu et al.,2008). 

 

Figure 1 Integrin αııbβ₃  : Integrins are heterodimeric receptors comprising of α and β subunits. The 

extracellular domain of αııb comprises of β-propeller domain, the thigh domain , calf-1 and calf-2 

domains. The extracellular portion of β₃ subunit comprises of βA domain, hybrid domain, PSI 

(plexin/semaphorin/integrin) domain, four EGF domains (Epidermal growth factor-like domains) 

and a β TD domain. The figure shows the ‘bent’ or inactive form of integrin and ‘extended’ or active 

form of integrin which is capable of binding to it’s ligand (adapted from Ma et al., 2007) 

 

     The inserted domain contains α helices contains a dinucleotide binding or Rossmann 

fold and it also contains a metal ion dependent adhesion site (MIDAS) which is important 

for binding to ligand. The β propeller domain forms an interface with the β subunit. The 

bent or low affinity state of integrins has been suggested to undergo a conformational 

rearrangement and extension with a switch blade like motion upon inside out signaling 

and binding binding to a ligand (Takagi et al., 2002; Xiong et al., 2002; Luo et al.,2007; 

Xiao et al.,2004). The ‘genu’ or the key point where switchblade like rearrangement 
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occurs in α subunit is formed by a calcium ion binding loop present between thigh and 

calf 1 domains of α subunit.  

     The extracellular domain of β subunit comprises of inserted domain or βA domain, 

hybrid domain, Plexin/semaphorin/integrin (PSI) domain and leg or stalk which contains 

integrin epidermal growth factor like domain (IEGF) and β ankle and αβ tail domain (Shi 

et al., 2005). The inserted domain of β subunit forms an interface with β propeller of α 

subunit and like inserted domain of α subunit, it also contains MIDAS which binds 

magnesium ion and an additional metal ion binding site known as Synergistic metal ion 

binding site which binds calcium ion (Huang et al., 2000). The ‘genu’ or bent in the β 

subunit has been suggested to occur between I-EGF domains 1 and 2. The structure of the 

extracellular domain of αııbβ₃ in the ligand bound state and inserted domain of β subunit 

of αᵥβ₃ in absence of ligand suggests that rearrangement of extracellular domain from 

closed to open conformation occurs following disruption of the interface between 

inserted domain of β subunit and hybrid domain. The rearrangement of residues in 

MIDAS and axial displacement of α7 helix of inserted domain leads to swinging out of 

hybrid domain of β subunit thereby disrupting it’s interface with inserted domain. 

     As revealed in the structure of integrin αııbβ₃, there is an association between 

transmembrane domains of αııb GXXXG motif and β₃ subunit in bent conformation 

(Xiong et al., 2001; Zhu et al., 2009). Also, the studies on cytoplasmic domains of α and 

β subunits using FRET (Fluorescence Resonance Energy transfer) have suggested that in 

resting state the cytoplasmic tails are close to each other and show spatial separation upon 

binding of talin head domain or phorbol ester (Kim et al., 2003). The disruption of the 

association of transmembrane and cytoplasmic domains of α and β subunits by making 
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mutations in specific residues has been shown to activate integrins (Luo et al., 2004; 

Partridge et al., 2005; Luo et al., 2005).  

     Integrins have been shown to work as bidirectional signalling receptors (Hynes et al., 

2002). Agonist stimulation leads to signalling response within cells and recruitment of 

signaling proteins onto the integrin α and β cytoplasmic tails which in turn results in 

activation of integrins. This process is known as inside-out signalling. The formation of a 

large signaling complex known as focal adhesion takes place in response to binding of a 

ligand to intgerins. The focal adhesion complex comprises of integrins clustered within 

the plasma membrane and signaling molecules assembled onto the cytoplasmic tails of 

integrins. This process is referred to as outside-in signalling (Abram et al., 2009). 

 

1.2 Talin 

     Talin was initially identified as a cytoskeletal protein which localises in adhesion 

plaques in ruffling membranes of fibroblasts (Burridge et al., 1983), myotendinous 

junctions of skeletal muscles (Tidball et al., 1986) and in platelets (Fox et al., 1985). 

Later studies identified integrins and vinculin as binding partners of talin in cells 

(Burridge et al., 1984). Talin comprises of  N-terminal FERM (protein 4.1, Ezrin, radixin  
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and moesin) domain-like talin head domain and C-terminal  rod domain (figure 2). The 

head domain is further subdivided into F0, F1, F2 and F3 domains. The talin rod domain 

is composed of a series of helical bundle subdomains followed by a carboxyl terminal 

dimerization domain (DD) (figure 2). 

 

Figure 2 Talin comprises of a head domain and a rod domain. The head domain is subdivided into 

F0, F1, F2 and F3 subdomians. The rod domain is further subdivided into 13 helical bundle 

subdomains R1 (482-655), R2 (656-786), R3 (787-911), R4 (913-1044), R5 (1045-1206), R6 (1206-

1357), R7 (1358-1653), R8 (1461-1580), R9 (1654-1822), R10 (1823-1973), R11 (1974-2140), R12 

(2141-2294), R13 (2300-2482) and DD (2494-2541) followed by carboxyl terminal dimerization 

domain (DD). The F3 subdomain contains the integrin binding site (IBS 1) which is responsible for 

activating integrins. F2 and F3 subdomains also contain binding sites for PIPKIγ, Layilin, Focal 

adhesion kinase (FAK) and actin. The rod domain contains binding sites for actin and vinculin (VBS; 

vinculin binding sites), α-Synemin and second integrin binding site (IBS2). 
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     The F3 subdomain has a Phosphotyrosine binding fold (PTB) which binds to 

membrane proximal NPXY motif in the cytoplasmic tails of β subunit of integrin (figure 

3, 4). Both F2 and F3 domains of talin have been shown to bind β₃ tail in in-vitro studies 

using Surface Plasmon Resonance (SPR). Talin F3 binds integrin β₃ tail with much 

higher affinity (Kd 130 ± 10nm) as compared to F2 domain (Kd 540 ± 40 nm).  

 

 

 

Figure 3 The F3 subdomain of activated talin head domain activates integrin by binding to the 

cytoplasmic tail   (CT) of β subunit of integrin. 

 

 

Figure 4 Talin binds to NPXY motif (shown in red) in β₃ CT  of integrin αııbβ₃. 

	

	



 

 

7 

 

     The binding affinity of talin head domain (Kd 91 nm) is similar to that of the F3 

domain. Talin has been shown to bind β₃, β₁D tails and also weakly to β₁ A tail 

(Calderwood et al., 1999; Calderwood et al., 2002). In previous NMR studies, the 

residues 732-750 corresponding to NPXY motif showed largest spectral changes in full 

length integrin β₃ tail in presence of talin fragment encompassing F2 and F3 domains 

(Vinogradova et al., 2002; Vinogradova et al., 2004; Ulmer et al., 2003).    

     Upon cotransfection with talin 1-1071 fragment cDNA, Chinese hamster ovary (CHO) 

cells expressing integrin showed increased activation of integrin as monitored by 

activation specific monoclonal antibody PAC1. On the other hand cotransfection of these 

cells with talin fragment (434-1071) lacking head domain could not activate integrin. 

Also, the expression of talin (1-1071) in CHO cells expressing integrin αııbβ₃ lacking C-

terminal 35 amino acids of β₃ tail fails to activate integrin and cause cell spreading and 

formation of focal adhesions (Calderwood et al., 2002; Calderwood et al., 1999). The 

interaction of talin with integrin is also disrupted by point mutation of tyrosine (Y) in the 

NPXY motif to alanine (A). 

     The binding of talin to membrane phosphoinositides facilitates its interaction with 

integrin β cytoplasmic tails (Martel et al., 2001). The FERM domain of talin           

contains a stretch of positively charged residues which aids interaction of talin with 

negatively charged phosphoinosites in membrane (Kalli et al., 2013). PIPKIγ, which 

locally enriches membrane with PIP2, also binds to FERM domain of talin and is 

recruited to membrane by talin (Ling et al., 2002; Paolo et al., 2002). PIP2 has been 

shown to activate talin (Goksoy et al., 2008). Previous studies have suggested that 
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binding of PIP2 to talin sterically induces conformational change in talin and leads to its 

activation (Martel et al., 2001). 

     Talin acts as linker between extracellular matrix and actin cytoskeleton. Disruption of 

both talin alleles in mouse embryonic stem cells leads to inability to complete 

gastrulation and embryonic lethality in mice (Monkley et al., 2000). The defects in talin 

deficient mouse embryos have been suggested to occur due to defects in assembly of 

focal adhesions and cell spreading (Priddle et al., 1998). Also, downregulation of 

expression of talin in HeLa cells using antisense RNA strategy leads to decrease in 

number of stress fibers and reduced rate of cell spreading (Albiges-Rizo et al., 1995). 

     Fusion proteins spanning the residues 102-497, 951-1327 and 2269-2541 of talin have 

been shown to bind F-actin in in vitro cosedimentation assay (Hemmings et al., 1996). 

These studies suggest the presence of atleast three distinct actin binding sites on talin. F2 

and F3 subdomains of talin head domain have been shown to colocalize with actin stress 

fibers in COS cells and cosediment with F-actin in invitro studies (Lee et al., 2004). 

These findings suggest that the FERM domain of talin head contains the actin binding 

site and both F2 and F3 subdomains of actin contribute to binding to actin. The 

interaction of talin with actin has been shown to be affected by change in pH and ionic 

strength and temperature (Schmidt et al., 1999).  Also, using high resolution electron 

microscopy the binding site of talin FERM domain has been mapped to subdomain 4 of 

an actin monomer (Gingras et al., 2008). 

     The structure of COOH-terminal actin binding domain shows resemblance to HIP1R  

THATCH (talin/ HIP1R/ Sla2p actin tethering C-terminal homology) core domain or 

I/LWEQ motif (Brett et al., 2006; Gingras et al.,2008; McCann et al., 1997). The core of 
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this domain is formed by five helix bundle spanning the residues 2300-2482. The bundle 

is linked to helix 6 which forms an antiparallel dimer. The dimerisation helix is required 

for binding of talin to F-actin. The helix 1 which lies on the opposite side of the five helix 

bundle negatively regulates binding to F-actin. The N terminal and C terminal actin 

binding sites of talin have been suggested to exhibit different characteristics (Hemmings 

et al., 1996). Upon microinjection into chicken embryo fibroblasts talin GST fusion 

protein spanning residues 102-497 and 1646-2541 caused disruption of actin stress fibers. 

The fusion protein containing the C terminal actin binding site spanning residues 1646-

2541 could not disrupt actin stress fibers (Bolton et al., 1997). 

 

1.3 Binding Partners of Talin 

     Talin contains an integrin binding site on FERM domain (figure 2) as well as on the 

rod domain (Calderwood et al., 2002; Moes et al., 2007). The integrin binding site on the 

head domain of talin is responsible for activating integrin. The head domain also binds to 

a splice variant of phosphatidylinositol-4-phosphate 5 kinase (PIPKIγ90) (Paolo et al., 

2002) and membrane phospholipids (Martel et al., 2001; Kalli et al., 2013). Talin has 

been shown to contain three vinculin binding sites VBS1 (498-636), VBS2 (727-965) and 

VBS3 (1943-2157) in the rod domain (Bass et al., 2002). The crystal structure of talin 

482-789 has been determined. A five helix bundle formed by residues 482-655 forms a 
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hydrophobic interface with four helix bundle formed by residues 656-789. The 

hydrophobic residues L608, A612, L615, V619 and L623 form vinculin binding site in 

talin rod domain. Mutations that disrupt the hydrophobic core have been shown to expose 

vinculin binding site in talin. These studies suggest that talin 482-655 requires activation 

in order to bind vinculin.   

     A 48 amino acid sequence spanning the residues 965-1012 in the carboxyl domain of 

Focal adhesion kinase (FAK) has been shown to bind talin in NIH3T3 cells. The binding 

site of FAK on talin comprises of residues 225-357 within talin’s FERM domain (Chen et 

al., 1995; Borowsky et al., 1998). The binding of cytoplasmic domain of integrin to talin 

has been suggested to lead to the activation of FAK and tyrosine phosphorylation. Layilin 

has also been identified as a binding partner of talin in yeast two hybrid screen. It has 

been named Layilin due to the sequence LAYILI in it’s transmembrane domain. Layilin 

has a 130 amino acid domain which is homologous to C-type lectin carbohydrate 

recognition domain. The amino acids 280-435 constitute the binding site for Layilin on 

Talin (Borowsky et al., 1998). Another binding partner of talin, α Synemin is a member 

of the intermediate filament protein family. Synemin colocalizes with talin in mammalian 

muscle cells at sites of focal adhesion. α Synemin contains a 312 amino acid insert (SNT 

III) which binds to  rod domain of talin (Sun et al., 2008). Talin has been shown to bind 

actin (Hemmings et al., 1996; Lee et al., 2004). 
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                                                       1.4 Aim of the Project 

     The head domain of talin (Talin-H) activates integrin by separating a key cytoplasmic 

clasp of integrin α and β subunits (Kim et al., 2003). The stretches of positively charged 

surfaces on talin-H have been suggested to facilitate interaction of talin-H with integrin β 

cytoplasmic tail by promoting binding of talin to plasma membrane (Kalli et al., 2013). 

We found that rod domain of talin specifically talin-R9 sterically blocks the integrin 

membrane proximal β cytoplasmic tail site on talin-F3 (Goksoy et al,2008). This finding 

explains how conformational regulation of talin in turn regulates talin mediated integrin 

activation. However, the following questions still remain unaddressed:   

1. How is talin retained in the cytoplasm? Talin has long been known to be 

randomly distributed in cytosol in resting cells. However, the mechanism which 

determines the cytosolic retention of talin so that it is incapable of binding to 

integrin is unknown. 

2. How is talin localized to the membrane and activated to bind integrin? PIPKIγ 

kinase, recruited by talin to the membrane enriches membrane with PIP2. PIP2 

has been shown to promote talin mediated integrin activation (Goksoy et al., 

2008). However, how does PIP2 help in localization of talin to the membrane and 

it’s activation is not well understood (Song et al., 2012). 
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3. How is the interaction of talin with actin regulated? Talin has long been known to 

act as a linker between extracellular matrix and actin cytoskeleton at sites of cell 

adhesion to substrate. Previous studies have indicated the presence of multiple 

sites on talin. However, the mechanism which regulates the interaction of talin 

with actin and which of the previously reported actin binding sites in 

autoinhibited talin are available to bind to actin  in resting cells remains unclear.   

     Our crystal structure of Talin F2F3/R9 autoinhibitory complex (figure 4; Song et al., 

2012) revealed a stretch of negatively charged residues on rod domain of talin which is 

located on the same side as the stretch of positively charged residues on talin F2F3. 

Based on this finding I propose the following studies to address the above questions. 

1. Test the hypothesis that electrostatic repulsion between the negatively charged 

talin-R9 surface and membrane promotes the cytosolic retention of autoinhibited 

talin. We will use lipid cosedimentation assay to compare the binding abilities of 

purified talin fragments F2F3, F2DD , FL talin and FL mutant (H1711E, T1812E, 

N1815E), R1-R9, R9 (figure 2) to MLVs (multilamellar vesicles) enriched with 

lipids found on the inner surface of plasma membrane such as PIP2 

(Phosphatidylinositol-4,5-bisphosphate), POPS (1-palmitoyl-2-oleoyl-sn-glycero-

3-[phosphor-L-serine]) and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- 

phosphocholine). To determine whether localization of FL talin and FL talin 

mutant (T1767L, E1770K, M319A)  to membrane also affects  the  ability of 

these proteins to activate integrin, we will use integrin activation assay in CHO 

cells. The integrin activation assay is based on analyzing the binding of the 
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monoclonal antibody PAC1 which specifically binds to activated integrins using 

FACS (Fluorescence activated cell sorting). 

2. Test the hypothesis that upon enrichment of membrane with negatively charged 

PIP2, PIP2 strongly pulls the positively charged surface on talin-H towards 

membrane and simultaneously repels the negatively charged surface on R9, thus 

promoting the membrane localization and activation of autoinhibited talin via a 

”pull-push” mechanism. We will use lipid cosedimentation assay to compare the 

binding ability of purified talin fragments F2R9 and F2R9 mutant (D1676R, 

E1770K, M319A)  to MLVs enriched in varying concentrations of PIP2 (5-20%). 

The assay will help us determine how the weakening of autoinhibitory F2F3/R9 

interface in talin F2R9 (D1676R, E1770K, M319A) affects it’s ability to bind to 

MLVs as compared to wild type F2R9. 

3. Weakening of the Talin F2F3/Talin R9 autoinhibitory interface leads to talin 

mediated integrin activation. We will use NMR to determine the chemical shift 

perturbation of labeled integrin β₃ cytoplasmic tail in presence of F2F3, F2R9 

wild type , F2R9 mutant (D1676R, M319A, E1770K) and FL talin. We will also 

determine the integrin αııbβ₃ activation caused by talin FL and talin FL mutant 

(T1767L, E177K, M319A) in CHO cells. The talin FL mutant (T1767L, E1770K, 

M319A) bears three mutations in it’s F2F3/R9 autoinhibitory interface which help 

to weaken the autoinhbitory interaction in talin.                 

4. Investigate the reported actin binding sites in talin and examine how they may 

also be autoinhibited in full length talin. We will use purified talin fragments 

F2F3, R1-R9, R13, R13-DD, F2R9, F2R10, F2R12, F2DD, FL and FL mutant 
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(T1767L, E1770K, M319A) in the F-actin cosedimentation assay to determine the 

actin binding sites in talin and to compare the ability of different talin fragments 

to bind to F-actin.                                                                                                                            
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CHAPTER II 

MATERIALS AND METHODS 

2.1 Protein Preparation and Purification 

    Talin fragments F2R9 (206-1848), F2R10 (206-1973), F2R12 (206-2294), F2DD (206-

2541), R1R9 (486-1848) and F0DD (1-2541) (figure 2) were subcloned into the parallel 

His-1 vector pET 28t containing a N-terminal His- tag. The talin fragments were 

expressed in E.coli strain BL21 (DE3) and the cells were lysed using 10 mg/ml lysozyme. 

All the talin fragments were purified on nickel affinity column as described previously 

(Begona et al., 2003). Briefly, the proteins were eluted with 250mM imidazole in the 

elution buffer (20mM Tris-HCl, 500mM NaCl, 1mM DTT, pH 8.0). The eluted proteins 

were dialyzed against the dialysis buffer (20mM Tris-HCl, 150mM NaCl, 1mM DTT, 

pH7.4). The proteins were further purified by size exclusion chromatography. Superdex-

200 (Amersham Biosciences) was used for F2R9, F2R10 and F2R12 and Superose-6 was 

used for other talin fragments. Talin F2F3 (206-405) and R9 (1654-1848) were prepared 

as described previously (Goksoy et al., 2008). Triple mutation of talin F2R9 (D1676R, 
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E1770K, M319A) FL (H1711E, T1812E, N1815E) and FL(T1767L, M319A, E1770K) 

were made using QuickChange Site-Directed mutagenesis (Stratagene) and prepared in 

the same way as wild type. 

 2.2. Lipid Vesicle Preparation and Lipid Cosedimentation Assay 

     The phospholipids such as POPC, POPS, PIP2 (figure 8) used to make multilamellar 

vesicles (MLV) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). The 

lipids were dissolved together in chloroform in a vial. The chloroform was removed 

under a stream of nitrogen followed by lyophilization. The lipids formed a film inside the 

vials. The lipid film was then hydrated in the phosphate buffer (50 mM  

Na2HPO4/NaH2PO4, 50 mM NaCl, 2mM NaN3, and pH 6.8) followed by homogenization 

with repeated freeze thaw cycles to form MLVs. The MLVs were mixed with purified 

talin fragments F2F3 (206-405), F2R9 (206-1848), FL (1-2541), F2DD (206-2541), FL 

mutant (H1711E, T1812E, N1815E) and F2R9 mutant (D1676R, E1770K, M319A) in 

separate centrifuge tubes in molar ratio of 1:20 on a shaker at room temperature for 20 

minutes followed by centrifugation at 14000 rpm for 30 minutes. The lipids formed a 

pellet at the bottom of the centrifuge tubes. The pellets were resuspended in 40 μl 1X 

SDS and 10μl of 4X SDS was added to supernatant from all the samples. 
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2.3 Actin Cosedimentation Assay 

     Actin purified from rabbit skeletal muscle was purchased from Cytoskeleton. Actin 

and purified talin fragments F2F3 (206-405), F2R9 (206-1848), F2R10 (206-1973), 

F2R12 (206-2294), F2DD (206-2541), FL (1-2541), R13-DD (2300-2541), R13 (2300-

2482) and FL mutant (M319A, E1770K, T1767L)  were mixed in separate centrifuge 

tubes in a molar ratio of 1:2 in a total volume of 50 μl of F-actin buffer (10mM tris-Hcl 

pH 8.0, 0.2mM ATP, 0.2 mM DTT, 0.2mM CaCl2 and 100 mM NaCl). The samples 

were then incubated at room temperature for 20 minutes and centrifuged at 63000 rpm at 

24 C for 90 minutes. The supernatant was removed in separate tubes and pellets were 

washed carefully with F-actin buffer. The pellets were resuspended in 60 μl of 1X SDS. 

10μl of 4X SDS was added to supernatant from all the samples. Equal volumes of pellet 

and supernatant were loaded onto 4-20% Tris-glycine gels and protein content of the 

samples was resolved by SDS-PAGE. The gels were stained by Coomassie blue and the 

intensity of bands on gel was analysed using Image J. 

2.4      NMR Spectroscopy 

     The heteronuclear NMR experiments were performed at 25 °C on Bruker Avance 600 

MHz spectrometers equipped with cryogenic triple resonance probes and shielded z-

gradient units as described previously (Song et al, 2012). The HSQC experiments to 

determine the interaction between talin and integrin β3 cytoplasmic tail (CT) were 

performed with ¹5N-labeled β3 CT and unlabeled talin F2F3, F2R9, F2R9 mutant 
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(D1676R, E1770K, M319A) and  full length in phosphate buffer (50 mM  

Na2HPO4/NaH2PO4, 50 mM NaCl, 2mM NaN3, and pH 6.8). The weighted chemical 

shift changes of amide proton and nitrogen were calculated using the equation: 

Δδobs[HN,N]=([ΔδHNWHN]2+[ΔδNWN]2)1/2, where WHN (1.0) and WN (0.154) are weighting 

factors based on the gyromagnetic ratios of 1H and 15N. NMR data was processed and 

analyzed using nmrPipe (Delaglio et al., 1995), PIPP (Garrett et al., 1991) and Sparky 

(Lee et al., 2009). 

2.5      Integrin αııbβ3 Activation Assay 

     Chinese hamster ovary (CHO) cells stably expressing integrin αııbβ3 were transfected 

with EGFP vector alone, full length talin wild type and full length talin mutant (T1767L, 

M319A, E1770K). The effects of full length talin and and talin mutant on integrin were 

evaluated with PAC1, a monoclonal antibody which specifically recognizes active αııbβ3 

as described previously (Ma et al., 2008; Goksoy et al., 2008). Briefly, 24 hours after 

transfection, the cells were harvested and stained with PAC1 followed by Alexa Fluor 

633 goat anti-mouse IgM conjugate. The cells were then washed, fixed and analyzed by 

Flow Cytometry, gating only on the EGFP positive cells. Mean Fluorescence intensities 

(MFI) of PAC1 bound to EGFP-talin or EGFP-talin mutant expressing cells were 

compared with MFI of PAC1 bound to the CHO cells expressing EGFP vector alone. 

Three independent experiments were performed, and the T-student test was used for 

statistical analysis. 
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CHAPTER III 

RESULTS AND DISCUSSION 

3.1 Results 

3.1.1 PIP2 regulates membrane localization and activation of talin 

     Talin F2F3 contains stretch of positively charged residues which enables talin to bind 

membrane and mediate integrin activation by binding to cytoplasmic tails of integrin’s β 

subunit (Kalli et al., 2013; Song et al., 2012). Also, Talin recruits PIPKIγ kinase which in 

turn enriches membrane with lipid phosphatidylinositol-4, 5-bisphosphate (PIP2) (Paolo 

et al., 2002). PIP2 helps to activate autoinhibited talin (Goksoy et al., 2008). The 

structure of talin F3-R9 autoinhibitory complex (Figure 5, 6), showed a stretch of 

negatively charged residues on talin R9 which is located on the same side as stretch of 

positively charged residues on F2F3 (Song et al., 2012). 
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Figure 5 Crystal structure of talin-F2F3-R9 autoinhibitory complex. The talin head subdomains F2 

and F2 are shown in green and talin rod subdomain R9 is shown in blue (adapted from Song et al ., 

2012). 

 

 

 

Figure 6 The positive charge enriched region is shown in blue and negative charge enriched region is 

shown in red. A stretch of positive charged residues on talin F2F3  is located on the same side as a 

stretch of negatively charged residues on talin R9 (adapted from Song et al., 2012) 

 

     We found that binding of free F2F3 to R9 was disrupted by addition of multilamellar 

vesicles (MLV) containing PIP2 to the F2F3-R9 complex using NMR based competition 

experiments. Also, PIP2 was shown to bind F2F3 bivalently.  
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     In the present study, we used MLVs (multilamellar vesicles) in lipid cosedimentation 

assay to simulate the plasma membrane in vitro. We used the lipids PIP2, POPS and 

POPC to prepare the MLVS, all of which are found on the inner surface of plasma 

membrane (Figure 7-9).  

 

Figure 7  Chemical structure of PIP2(Phosphatidylinositol-4,5-bisphosphate) 

 

   

Figure 8 Chemical structure of POPS (palmitoyl-2-oleoyl-sn-glycero-3-[phosphor-L-serine]) 

 

Figure 9 Chemical structure of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 

 

     For the lipid cosedimentation assay, we prepared MLVs containing only POPC as well 

as MLVs of mixed lipids (20% POPS; 80% POPC and 20% PIP2; 20% POPS, 60% 

POPC). To study the effect of negatively charged surface on rod domain of talin on the 

membrane binding ability of talin, we mixed together purified talin fragments F2F3, 
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F2DD, R1-R9, R9 and FL talin in separate centrifuge tubes along with MLVs. Upon 

centrifugation of all the samples at 13000 rpm at room temperature for 30 minutes, the 

MLVs formed a pellet at the bottom of the centrifuge tubes. We resolved the amount of 

protein present in the pellet and supernatant of all the samples by SDS-PAGE. 

     We found that F2F3 showed strong binding to membrane with most of it pelleting 

down along with the MLVs at 20% PIP2 (figure 10, 14). MLVs containing 20% PIP2 

showed stronger binding to talin F2F3 as compared to MLVs containing 20% POPS and 

POPC due to the presence of higher negative charge on the head group (inositol-1,4,5-

trisphosphate) of PIP2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Lipid cosedimentation assay: In presence of MLVs enriched in 20% PIP2 whole of the 

talin F2F3 was found bound to MLVs in the pellet. Talin F2F3 shows significantly increased binding 

to MLVs containing 20 % PIP2 as compared to MLVs containing 20% POPS and POPC due to 

higher negative charge on head group of PIP2 as compared to POPS and POPC.   
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F2DD and FL talin showed lesser binding to membrane with most of the protein 

remaining in the supernatant at 20% PIP2 (Figure 11,13,14). R9 and R1-R9 showed no 

binding to membrane (Figure 12).  

 

 

                                                                                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Lipid cosedimentation assay : Talin F2DD (206-2541) and FL(1-2541) did not pellet down 

in absence of MLVs.  In presence of MLVs containing 20 % PIP2, talin F2DD and FL showed little 

binding to MLVs. 
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Figure 12 Lipid cosedimentation assay: Talin R1-R9 (486-1848) and R9 (1654-1848) showed no 

binding to MLVs containing 20% PIP2. 

 

 

Figure 13 Image J was used to quantify the amount of protein in Figure 10, 11 and 12. The amount of 

talin is expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3). 

N.S., not significant, p>0.05; *, p=0.01-0.05; **, p=0.001-0.01. Talin F2F3 (206-405) showed 

significantly higher  binding to MLVs containing 20 % PIP2 as compared to F2DD (206-2541) and 
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FL talin (1-2541). Talin R1-R9 (486-1848) and R9 (1654-1848) showed no binding to MLVs 

containing 20% PIP2. 

 

 

 

Figure 14 Image J was used to quantify the amount of protein in figure 10, 11. The amount of talin is 

expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3). N.S., 

not significant, p>0.05; *, p=0.01-0.05; **, p=0.001-0.01;***, p<0.001.  Talin F2F3 (206-405) and FL 

talin showed significantly higher binding to MLVs containing 20 % PIP2 as compared to MLVs 

containing 20% POPS. 

 

     An increase in the concentration of NaCl in the buffer (20 mM Tris-HCl, 300mM 

NaCl, 1mM DTT, pH 8.0) used for the lipid cosedimentation assay resulted in 

impairment of electrostatic interaction between MLVs containing 20% PIP2 and the rod 

domain of talin and most of the talin F2R9 was found bound to the MLVs in pellet 

(figure 15). 

 

 

 

0

20

40

60

80

100

120

FL Talin 206-2541 206-405

%
 o

f 
to

ta
l 

in
 P

el
le

t
 POPC

20%

POPS

20%

PIP2

*

n.s

***



 

 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

Figure 15    Lipid cosedimentation assay: Most of Talin F2R9 (206-1848) protein pelleted 

down along with MLVs containing 20% PIP2  due to an increase in the concentration of 

NaCl in buffer (20mM  Tris-HCl,   300mM NaCL, 1mM DTT, pH 8.0) used for the assay. 

The higher concentration of NaCl impaired  the electrostatic interaction between the 

MLVs and negatively charged R9.  

 

 

     We prepared  MLVs enriched in varying concentrations of PIP2 and POPC and kept 

the concentration of POPS (20%) constant. We used these MLVs enriched with 1% PIP2, 

5% PIP2, 10% PIP2, 20% PIP2 and 50% PIP2 to find out whether gradual increase in 

concentration of PIP2 would increase the amount of talin bound to membrane.  As shown 

in Figure 16, 17, talin F2F3 showed gradual increase in amount of protein cosedimenting 

with MLVs in pellet with increase in concentration of PIP2 in MLVs and whole of F2F3 

was found in pellet at 20% PIP2. 
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Figure 16 Lipid cosedimentation assay: The amount of Talin F2F3 (206-405) pelleting down with 

MLVs gradually  increased with increase in the percentage of PIP2 (1-20%) in MLVs.   

 

 

 

Figure 17  Image J was used to quantify the amount of protein in Figure 16. The amount of talin is 

expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3). N.S., 

not significant, p>0.05; ***, p<0.001. Talin F2F3 (206-405) shows strong binding to MLVs enriched 

in 20% PIP2. 
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     At 50% PIP2 more than half of the total FL wild type talin was found in pellet (Figure 

18, 19). In order to further increase the repulsion between R9 and membrane we mutated 

three residues in the R9 domain to make talin 3E mutant (H1711E, T1812E, N1815E).  

As shown in figure 18, 19,  at 20% PIP2 almost whole of  the 3E mutant was in the 

supernatant and at 50% PIP2 the amount of 3E mutant which  pelleted down was 

significantly less as compared to wild type FL talin. These findings suggest that the 

electrostatic repulsion between the negatively charged surface on R9 and membrane 

prevents membrane localization of  autoinhibited  talin. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Lipid cosedimentation assay: The amount of wild type FL talin which pellets down with 

MLVs gradually increases with increase in percentage of PIP2 in MLVs. At 50% PIP2 

approximately 60% of total FL talin goes to pellet along with MLVs. FL 3E mutant (H1711E, 

T1812E, N1815E) shows significantly reduced binding to MLVs containing 20% PIP2 and 50% PIP2 

as compared to wild type FL talin. The increased repulsion between the rod domain of talin 3E 

mutant and MLVs containing 20% PIP2 and 50% PIP2 results in reduced binding of FL 3E mutant 

to MLVs. 
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Figure 19 Image J was used to quantify the amount of protein in figure 18. The amount of talin is 

expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3). N.S., 

not significant, **, p=0.001-0.01. Talin 3E mutant (H1711E, T1812E, N1815E) showed significantly 

reduced binding to MLVs containing 20% PIP2 and 50% PIP2 as compared to wild type FL talin. 

 

     Next we wanted to test the hypothesis that enrichment of membrane with negatively 

charged phospholipid PIP2 strongly attracts positively charged surface on talin-H and 

simultaneously repels negatively charged talin R9 and therefore promotes membrane 

localization and activation of autoinhibited talin. Based on the crystal structure of 

F2F3/R9 autoinhibitory complex (figure 20-21), we made a talin F2R9 (206-1848) triple 

mutant (D1676 R, E1770K, M319A) to weaken the autoinhibitory interaction of talin 

F2F3 and R9. 
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Figure 20  Close-up view of talin F2F3/ R9 interface shows the amino acid side chains of residues 

(K318-K324) (adapted from Song et al., 2012). 

 

                                                                                          

 

 

 

 

 

 

 

 

Figure 21 Close-up view of talin F2F3/ R9 interface shows the amino acid side chains of residues 

(D369-Y377) (adapted from Song et al., 2012). 

 

     The F2R9 triple mutant showed an increased binding to membrane even at 5% PIP2 as 

compared to wild type F2R9 (Figure 22, 23). At 50% PIP2, the F2R9 active mutant 

completely cosedimented with MLVs in pellet. 
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Figure 22       Lipid    cosedimentation assay:  Approximately 35% of total Talin F2R9 (206-1848) 

wild type pellets down with MLVs containing 20% PIP2 and 50% PIP2 due to pulling of positively 

charged F2F3 towards MLVs and pushing away of negatively charged R9 from MLVs. Weakening of 

the autoinhibitory interface in F2R9 (206-1848) mutant (D1676R, E1770K, M319A) causes 

significantly increased binding of the F2R9 mutant to MLVs  lower percentage (5%) of PIP2 as well 

as at higher (50%) of PIP2 as compared to wild type F2R9.                                                                                           

 

Figure 23 Image J was used to quantify the amount of protein in figure 22. The amount of talin is 

expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3). N.S., 
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not significant, p>0.05;  **, p=0.001-0.01;***, p<0.001. Due to weakening of the F2F3/R9 

autoinhibitory interface, talin F2R9 (206-1848) mutant (D1676R, E1770K, M319A) showed 

significantly increased binding to MLVs containing 20%POPS, 5%PIP2, 20% PIP2 and 50% PIP2 

as compared to wild type F2R9. 

 

     The above findings suggest that electrostatic repulsion between negatively charged 

membrane (MLVs) and the rod domain of talin significantly reduced the amount of FL 

and F2DD talin which bound to MLVs enriched in 20% PIP2. On the other hand whole 

of talin F2F3 could bind to the pellet containing MLVs enriched in 20% PIP2 due to the 

absence of negatively charged talin rod domain. An increase in the percentage of PIP2 in 

MLVs to 50% led to  strong  pulling of the positively charged talin F2F3 towards 

membrane and pushing of R9 away from the membrane which in turn resulted in 

increased amount of FL talin pelleting down along with  MLVs.  Due to further increase  

in repulsion between the rod domain of FL 3E mutant (H1711E, T1812E, N1815E) and 

MLVs, the amount of FL 3E mutant which bound to MLVs at 20% PIP2 and 50% PIP2 

was significantly reduced as compared to wild type FL talin. The weakening of 

talinF3/R9 autoinhibitory interaction in F2R9 mutant (D1676R, E1770K, E1770K) 

promoted the pulling of F2F3 towards membrane and pushing away of R9 away from the 

the membrane. Therefore, F2R9 mutant (D1676R, E1770K, E1770K) showed 

significantly enhanced binding to membrane as compared to wild type F2R9. This 

finding supports the hypothesis that enrichment of membrane with PIP2 promotes 

membrane localization and activation of talin via a “pull-push” mechanism.  
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3.1.2 Disruption of F2F3-R9 autoinhibitory interface of talin leads to integrin 

activation 

     Extensive cell based, genetic and biochemical studies have shown that talin is required 

for integrin activation. In our previous studies, we have shown that talin R9  self-masks 

the integrin binding site in F3 domain and competes with integrin β-MP-CT for binding 

to it (Goksoy et al., 2008). This implies that disruption of Talin F2F3-R9 interface is 

required for activation of cytosolic talin in cells. We used 2D 1H -15N HSQC 

(heteronuclear single quantum correlation) to study the interaction between 15N-labeled 

integrin β₃ cytoplasmic tail and unlabeled Talin F2F3, wild type Talin F2R9 and F2R9 

triple mutant (D1676R, E1770K, M319A) and FL talin (Figure 24). All the proteins were 

well folded as determined by its chemical shift dispersion pattern. We found that F2R9 

wild type had little effect on the HSQC spectrum of integrin β₃ CT as compared to talin 

F2F3 which caused chemical shift perturbation in the membrane proximal region of β₃ 

CT. F2R9 wt showed some perturbation particularly in the membrane distal region of 

integrin. On the other hand the triple mutant of F2R9 showed enhanced binding to β₃ CT 

as compared to F2R9 wild type and caused perturbation in the membrane proximal region 

of integrin-β₃ CT.  
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Figure 24 Chemical shift perturbation profiles for integrin β₃  CT upon binding to Talin F2F3, F2R9, 

F2R9 (M319A E1770K T1767L) and FL talin (Tln). The residues in membrane proximal region of 

w/HF2F3

w/HF2R9

w/HF2R9-M3

w/HTln

w/HF2F3

w/HF2R9

w/HF2R9-M3

w/HTln
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integrin β₃  CT were significantly perturbed by Talin F2F3 and F2R9 mutant (T1767L M319A 

E1770K). F2R9 caused some chemical shift changes in membrane distal region. (Residues whose 

signals were diminished due to severe line- broadening are indicated by *) 

     We transfected Chinese hamster ovary (CHO) cell line stably expressing integrin 

αІІbβ₃ with FL talin wild type and FL talin triple mutant (M319A, E1770K, T1767L)  

EGFP constructs. We used a mAb (PAC1) which specifically recognizes activated αІІbβ₃ 

integrin to determine the activation state of αІІbβ₃ in these cells by FACS. The data in 

figure 25 from three independent experiments shows that the FL talin triple mutant could 

bind and activate αІІbβ₃ integrin significantly better than FL talin wild type in CHO cells. 

These results are consistent with those obtained from HSQC experiments (figure 24). 

 

Figure 25 Comparison of the activation of integrin αııbβ₃ by  Full length (FL) wild type  talin and FL 

talin mutant (T1767L M319A E1770K). As described previously (Ma et al., 2008), the effects of  FL 

wild type talin and talin mutant (T1767L M319A E1770K) on integrin activation were analyzed using 

CHO cells stably expressing integrin αııbβ₃ and an activation specific mAb (PAC 1). The weakening 

of the F2F3/R9 autoinhibitory interface in FL talin mutant (T1767L M319A E1770K) significantly 

enhanced it’s ability to activate integrin αııbβ₃ in CHO cells as compared to  wild type FL talin. The 

data are representative of three independent experiments  (means±SE). (n≥3) p>0.05; * indicates 

p<0.05. 
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3.1.3 FL Talin is Conformationaly Restricted to Bind Actin 

     Talin is known to act as a linker between integrins and actin cytoskeleton. Talin has 

been suggested to contain atleast three actin binding sites. It has been shown to be able to 

bind both G-actin and F-actin in cosedimentation assay (Muguruma et al., 1990). In the 

presence of MgCl2 and KCl, Talin stimulates the rate of polymerization of G-actin. 

However, Talin has not been shown to affect final viscosity of F-actin and was therefore 

suggested to lack the ability to cross-link or bundle actin filaments. 

     In the present study we used talin F2F3 (206-405), F2R9 (206-1848), F2R10 (206-

1973), F2R12 (206-2294), F2DD (206-2541), FL, R13DD (2300-2541), R13 (2300-2482) 

and R9 (1654-1848) to investigate the reported actin binding sites in talin. The 

monomeric form of actin (Globular actin) and purified talin fragments were mixed 

together in separate centrifuge tubes in a molar ratio of 1:2 in F-actin buffer (10mM tris-

Hcl pH 8.0, 0.2mM ATP, 0.2 mM DTT, 0.2mM CaCl2 and 100 mM NaCl) which 

allowed G-actin to polymerize in to F-actin. The samples were then centrifuged at 63000 

rpm at 24°C to separate F-actin from G-actin by differential sedimentation. The F-actin 

formed a pellet at the bottom of the centrifuge tubes. 

     We found that talin fragments F2F3,  R1-R9 and R13-DD  cosedimented with F-actin 

in pellet (Figure 26). This finding indicates the presence of an actin binding site on talin 
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F2F3, R1-R9 as well as R13-DD. Consistent with previous studies, Talin R13 (2300-

2482) showed no binding to F-actin which indicates that DD (2494-2541)  

contributes to the F- actin binding site on R13-DD (Gingras et al., 2008). Talin F2R9, 

F2R10 and F2R12 showed significantly enhanced binding to F-actin as compared to 

F2F3, R1-R9, FL, R13-DD and F2DD (figure 26, 27). This finding suggests that FL talin 

is conformationaly restricted to bind to F-actin.  

 

 

 

 

 

 

 

 

 

 

Figure 26 F-actin cosedimentation assay: F-actin (43 KDa) pelleted down at the bottom of the tubes 

following centrifugation at 63000 rpm at 24°C for 90 minutes. Talin F2F3, Talin R1-R9 (486-1848) 

and R13-DD (2300-2541) showed binding to F-actin in pellet which indicates the presence of an F-

actin binding site on these talin fragments. Talin F2R9 (206-1848), F2R10 (206-1973) and F2R12 

(206-2294) showed significantly enhanced binding to F-actin in pellet as compared to Talin F2F3 and 

R1-R9 which indicates the presence of an additional F-actin-binding site on the rod domain of talin. 

However, Talin F2DD and FL showed significantly reduced binding to F-actin as compared to F2R9, 

F2R10 and F2R12 which suggests that FL talin and F2DD are conformationaly restricted to bind to 

F-actin. R13 (2300-2482) showed no binding to F-actin suggesting that DD (2494-2541) contributes to 

the F-actin binding site on R13-DD (2300-2541) 
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Figure 27 Image J was used to quantify the amount of protein in figure 26 and 28. The amount of 

talin is expressed as percent of total protein found in pellet. Bar graph represents mean ±S.E. (n≥3; *, 

p=0.01-0.05. Talin contains an actin binding site on F2F3 (206-405), R1-R9 (486-1848) and R13-DD 

(2300-2541). Talin F2R9 (206-1848), F2R10 (206-1973) and F2R12 (206-2294) showed significantly 

enhanced binding to F-actin as compared to talin F2F3, R1-R9, R13-DD, F2DD and FL talin. Talin 

FL and FL mutant (M319A, E1770K, T1767L) showed little binding to F-actin indicating that both 

the proteins are conformationaly restricted to bind to F-actin. Thus weakening of autoinhibitory 

F2F3/R9 interaction could not improve FL talin mutant’s ability to bind to F-actin. R9 (1654-1848) 

and R13 (2300-2482) showed no binding to F-actin. 

 

     We compared the ability of FL active mutant (M319A, E1770K, T1767L) to bind to 

F-actin with that of wild type FL talin (figure 27, 28). The FL active mutant  also showed 

little binding to F-actin similar to wild type FL talin. Thus weakening of the F3/R9 

autoinbitory interaction in FL active mutant could not improve it’s ability to bind to F-

actin. The purified talin fragments dissolved in F-actin buffer did not pellet down at the 

bottom of the centrifuge tubes in absence of F-actin (figure 29). 
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Figure 28 F-actin cosedimentation assay: FL talin and FL talin active mutant (M319A, 

E1770K, T1767L) proteins dissolved in F-actin buffer did not pellet down in absence of with 

F-actin (43 KDa). In presence of F-actin, both FL talin and FL talin active mutant (M319A, 

E1770K, T1767L) showed little binding to F-actin. Thus weakening of F2F3/ R9 

autoinhibitory interface in FL talin active mutant did not improve it’s ability to bind to F-

actin. 
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Figure 29: The purified  talin fragments F2F3 (206-405), F2R9 (206-1848), F2R10 (206-1973), F2R12 

(206-2294), F2DD (206-2541), FL (1-2541), R1-R9 (486-1848), R13DD (2300-2541) and FL talin were 

dissolved in F-actin buffer. The purified talin fragments did not pellet down following centrifugation 

at 63000 rpm at 24°C for 90 minutes in absence of F-actin. 

 

     The above findings show that FL talin contains an actin binding site on F2F3, R1-R9 

and R13-DD.  An additive effect of the actin binding sites on F2F3 and R1-R9 could lead 

to the enhanced binding of talin F2R9, F2R10 and F2R12 to F-actin. However, 

significantly reduced binding of FL talin to F-actin as compared to F2R9, F2R10 and 

F2R12 suggests that FL talin is conformationaly restricted to  bind to F-actin. The little 

binding of FL talin to F-actin could be due to the masking of any of the actin binding 

sites in FL talin by R13-DD. The FL talin active mutant (M319A, E1770K, T1767L) 

which showed enhanced binding to integrin did not show enhanced binding to F-actin. 

This finding suggests that the two binding events are regulated by different 

conformational activation mechanisms. 
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3.2 Discussion 

     Integrin mediated cell adhesion and their ability to couple extracellular matrix to actin 

cytoskeleton is vital to physiological and pathological processes such as  platelet 

adhesion, leukocyte transmigration, tumor vascularization and metastasis (Hynes et al., 

2002; Brooks et al., 1994; Berlin et al.,1995). Talin is an adaptor protein which plays an 

important role in the function of integrins by regulating activation of integrins and linking 

integrins to actin (Luo et al., 2007; Qin J. et al., 2004). The integrin binding site in Talin 

F2F3 domain is  self-masked by R9 (Figure 2,5) such that talin is autoinhibited to bind 

integrin β cytoplasmic tail (Goksoy et al., 2008; Song et al.; 2012).   

     Talin is randomly distributed in cytoplasm in inactivated platelets and fibroblasts. 

Upon stimulation of these cells by an agonist talin has been shown to be localised to 

membrane (Beckerle et al., 1989; Banno et al., 2012). PIP2 has been shown to activate 

talin (Goksoy et al., 2008). The results from our lipid co-sedimentation assay show that 

talin F2F3 binds MLVs containing 20% PIP2 strongly as compared to talin FL and  

F2DD (Figure 10-14). The structure of F3-R9 autoinhibitory complex revealed a stretch 

of negatively charged residues on R9 which is located on the same side as the stretch of 

positively charged residues on F2F3 (figure 6; Song et al.,2012). In lipid cosedimentation 

assays, FL wild type talin showed enhanced binding to MLVs enriched with higher 

concentration of PIP2 (50%) as compared to MLVs containing lower concentration of 
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PIP2 (Figure 18). Also, the full length talin mutant (talin-3E mutant) showed significantly 

reduced binding to MLVs containing higher concentration of PIP2 (50%) as compared to 

wild type full length talin (figure 18,19). These findings support the hypothesis that 

electrostatic repulsion between the negatively charged talin-R9 and membrane promotes 

cytosolic retention of autoinhibited talin. 

     The active mutant of talin F2R9 (D1676R, E1770K, M319A)  shows stronger binding 

to membrane as compared to the wild type talin F2R9 (Figure 22,23). Thus weakening of 

the talin F3/R9  autoinhibition substantially enhances the binding of talin to membrane by 

promoting the “pulling” of positively charged surface on talin-H to membrane and “ 

pushing” away of negatively charged surface on talin-R from membrane. This finding 

supports the hypothesis that enrichment of membrane with negatively charged PIP2 

promotes membrane localization and activation of autoinhibited talin via a “pull-push”. 

mechanism. However, approximately 60% of the total FL wild type talin pellets down 

with MLVs enriched with higher percentage (50%) of PIP2 (figure 18,19) which suggests 

the involvement of other cellular mechanisms in regulating activation of talin and its 

localization from cytosol to membrane. Banno et al. (2012) have shown that an 

interdomain interaction between Talin 466-787, a region of talin containing two vinculin 

binding sites, and Talin F2F3 prevents localization of talin to membrane. RIAM (Rap1-

GTP interacting adaptor molecule) which binds to both a member of Ras subfamily, Rap1 

and talin has been shown to be required for activation of integrin αІІbβ₃ in CHO cells 

(Lee et al, 2009). Further investigation of the role of Rap1/RIAM in talin’s localization to 

membrane and possibly it’s activation would be helpful in understanding the mechanism 
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of talin mediated integrin activation. Also, the crystal structure of FL talin would be 

valuable in understanding how binding to membrane and integrin is inhibited in FL talin. 

     Active mutant of F2R9 (D1676R, E1770K, M319A) showed increased binding to 

integrin β₃ CT as compared to wild type talin F2R9 in NMR studies (Figure 24). Also FL 

active triple mutant (T1767L, E1770K, M319A) showed increased integrin activation in 

CHO cells (Figure 25). These results suggest that weakening of autoinhibition in talin 

enhances talin mediated integrin activation and also the ability of talin to bind to 

membrane. Perhaps localization of talin to membrane facilitates the interaction of talin 

with integrin. In our NMR studies, Talin F2F3 showed significant perturbation of integrin 

β₃ CT mainly in the membrane proximal region (figure 24). FL talin showed negligible 

binding to β₃ CT. F2R9 showed weak interaction with β₃ CT and caused some 

perturbation particularly in the membrane distal region of integrin β₃ CT (figure 24). This 

finding suggests that an additional fragment of talin rod domain is involved in inhibiting 

the interaction of FL talin with integrin. 

     Along with other proteins such as vinculin, talin forms a connection between 

extracellular matix and actin cytoskeleton at sites of adhesion to substrate in activated 

platelets and fibroblasts. The activation of these cells leads to redistribution talin to 

membrane and polymerization of actin filaments and change in shape of cell (Beckerle et 

al., 1989). Previous studies have indicated the presence actin binding sites on COOH 

terminus, head domain and in rod domain (Hemmings et al., 1996). We used actin 

cosedimentation assay in order to investigate the reported actin binding sites in talin. The 

monomeric form of actin, Globular actin (G-actin) has been shown polymerize to 

filamentous actin (F-actin) in physiological conditions such as 2mM MgCl2 and 100 mM 
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KCl in presence of talin in invitro studies (Muguruma et al., 1990).  Our study suggests 

the presence of an actin binding site on F2F3, R1-R9 and R13-DD domain of talin, each 

of which binds to F-actin (Figure 26). However, FL talin does not show additive binding 

to F-actin due to the presence of three actin binding sites (figure 27). It rather shows 

significantly reduced binding to F-actin as compared to F2R9, F2R10 and F2R12 which 

suggests that the FL talin is not only conformationaly restricted to bind integrin but also 

F-actin. The triple talin FL mutant (T1767L, E1770K M319A) also showed little binding 

to F-actin (figure 27, 28). Thus the disruption of the autoinhibitory F3/R9 interface in 

talin which masks the integrin binding site on F3 increased the binding of talin to integrin 

but not to actin. These findings suggest that binding of talin to integrin and actin is 

regulated by different conformational activation mechanisms. Further investigation of the 

mechanisms which regulate binding of talin to actin  will help us better understand the 

role of talin in actin mediated changes in cell morphology and motility and focal adhesion 

turnover. 

     In summary, we have defined a “pull-push” mechanism which promotes membrane 

localization and activation of autoinhibited talin. Our results suggest that autoinhibited 

talin remains in cytosol due to electrostatic repulsion between negatively charged surface 

on R9 and plasma membrane. The enrichment of membrane with PIP2 promotes the 

pulling of positively charged talin-H to membrane and pushing away of negatively 

charged talin-R from membrane which in turn leads to localization of talin to membrane 

and it’s activation. Consistent with previous studies our results suggest the presence of 

three actin binding sites on talin. We found that full length talin adopts a conformation 

which not only prevents the integrin binding but also the binding of talin to actin. Our 
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studies suggest that the two binding events are regulated by different conformational 

activation mechanisms. 
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3.3 Elution Profiles of Proteins 

 

 

 

Superdex 200 

 

 

 

Superdex 200 

 

 

150 KDa 

150 KDa 

Talin 206-1848 wild type 

Talin 206-1848 D1676R, E1770K, M319A 

10.3 ml 

10.43 ml 



 

 

47 

 

 

 

Superdex 200 

 

 

 

Superdex 200 

 

 

 

250 KDa 

250 KDa 

Talin 206-1973 

Talin 206-2294 

 10.43 ml 

10.6 ml 
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   Superose 6 

 

 

 

 

Superose 6 

 

250 KDa 

250 KDa 

Talin 206-2541 

 

Talin full length (1-2541) 

13.2 ml 

13 ml 
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Superose 6 

 

 

 

 

250 

KD
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250 KDa 

Talin full length T1767L, M319A, E1770K 

13.4 ml 

Superose 6 

Talin full length H1711E, T1812E, N1815E 

12.9 ml 
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