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VALIDATION OF AN ACCELEROMETRY BASED METHOD OF

HUMAN GAIT ANALYSIS

OBINNA NWANNA

ABSTRACT

Gait analysis is the quantification of locomotion. Understanding the science behind

the way we move is of interest to a wide variety of fields. Medical professionals

might use gait analysis to track the rehabilitation progress of a patient. An engi-

neer may want to design wearable robotics to augment a human operator. Use cases

even extend into the sport and entertainment industries. Typically, a gait analy-

sis is preformed in a highly specialized laboratory containing cumbersome expensive

equipment. The process is tedious and requires specially trained operators. Con-

tinued development of small and cheap inertial measurement units (IMUs) offer an

alternative to current methods of gait analysis. These devices are portable and simple

to use allowing gait analysis to be done outside the laboratory in real world envi-

ronments. Unfortunately, while current IMU based gait analysis systems are able

to quantify a subject’s joint kinematics they are unable to measure joint kinetics as

could be done in a traditional gait laboratory. A novel musculoskeletal model-based

movement analysis system using accelerometers has been developed that can calcu-

late both joint kinematics and joint kinetics. The aim of this master’s thesis is to

validate this accelerometry based gait analysis against the industry standard optical

motion capture gait analysis.
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CHAPTER I

INTRODUCTION

The human machine is a source of wonder and awe. We can manuever our bodies

through highly complex movements with minimal conscience effort. The complexity

of human motion has inspired study as far back as the fifth century, not long after

Aristotle wrote De Motu Animalium, an early treatise on animal biomechanics [1].

Generally speaking, the study of human motion is concerned with the change of a

person’s position or posture relative to some fixed point [2]. Specifically, gait is the

pattern of the movement of the body and limbs during locomotion. Although per-

formed without much thought, walking is a complex task that integrates signals from

the motor cortex in frontal lobe [3], rhythmic patterns from central pattern genera-

tors in the lower spinal cord [4], and sensory feedback mechanisms [5]. In addition, a

sound musculoskeletal system is needed to actually carry out the movements. Walk-

ing is such an intrinsic activity involving many biological systems that any deviation

from normal walking is evidence for some sort of pathology [6–8]. Dysfunction in any
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one of the prior mentioned systems can cause atypical gait. Consequently, observing

changes in gait can reveal key information about persons’ state of health. These

observations are valuable when searching for reliable information on the progression

neurodegenerative diseases, like multiple sclerosis or Parkinson’s, systemic diseases,

sequelae from stroke, and aging-related diseases. Accurate, reliable knowledge of gait

characteristics at a given time, and even more importantly, monitoring and evaluat-

ing them over time, will enable early diagnosis of diseases and their complications

and help to find the best treatment.

In its earliest form gait analyses were semi-subjective procedures carried out

by trained specialists who directly observe a patient’s gait by making her walk. This

is perhaps accompanied a survey to the patient asking for a self-evaluation of her gait

quality. This analysis can only give a subjective and qualitative measure of gait with

questionable accuracy and precision, resulting in negative effects on the diagnosis,

follow-up, and treatment of the pathologies.

Progress in new technologies continuously improve the sophistication of gait

analysis methods. Currently, entire specialized gait laboratories exist to allow an

objective evaluation of different gait parameters, resulting in more efficient mea-

surement and providing specialists with a large amount of reliable information on

patients’ gaits.
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1.1 Quantifying Human Motion

1.1.1 Anatomy and Physiology

Anatomical Terms

The anatomical position is the reference point from which all other anatomical de-

scription are based [9]. When in the anatomical position the eyes are directed foward,

arms are by the side of the body with the palms facing foward, and the legs are close

together with the feet parallel. In this position we can define three anatomical planes:

the coronal plane, the transverse plane, and the sagittal plane [9].

Figure 1.1: The anatomical position with three reference planes [10].

The coronal plane divides the body into anterior (front) and posteriror (rear)

sections. The tranverse plane divides the body into superior (upper) and inferior

(lower) sections. The sagittal plane divides the body into left and right halves (Figure

1.1). In regards to gait, a majority of movements occur within the sagittal plane

3



[10]. Most joints are free to move in only one or two of these planes (Figure 1.2).

Movements in the coronal plane are called abduction and adduction. For example,

spreading and closing of the legs. Movements in the transverse plane are internal

and external rotations. For example, twisting the head left to right. Movements in

the sagittal plane are called flexion and extensions. Note that the ankle movement

to point the toes is called planterflexion while the movement to bring the toes closer

to the body is called dorsiflexion.

Figure 1.2: Movements at the hip and knee [11].

Bones and Muscles

Walking is an activity that involves the entire body. Typically when studying gait

bones and muscles of the pelvis and legs receive the most attention [12–14]. The

pelvis is a compound bone structure connecting the base of the spine with the femer.

The femer articulates with the pelvis on its proximal end and both the tiba and fibula

on its distal end. The ankle is a complex joint connecting the tibia and fibula with
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the 26 bones of the foot (Figure 1.3 A). Muscles actuate movement at the joints. The

musculoskeletal system is a mechanically redundant structure [12]. Multiple muscles

can control the same joint. For example, there are 15 muscles that control the 3

degrees of freedom at the hip [12]. It is therefore possible that different combinations

of muscle activiations result in the same movement. Primary movers at the hip for

flexion are the iliopsoas and rectus femoris [9]. The rectus femoris also, along with

the vasti muscles, causes knee extension. The gluteal muscles and hamstrings extend

the hip. Also, the hamstrings flex the knee. At the ankle, the tibialis anterior causes

dorsiflexion and both gastrocnemius and soleus cause planterflexion (Figure 1.3 B

and C).

Figure 1.3: Bones and muscles of the lower limbs [15].
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Figure 1.4: Gait events and functional phases of the gait cycle [19].

1.1.2 The Gait Cycle

Walking is a method of terrestial locomotion whereby the legs are used in an alternat-

ing manner for propulsion and support. Generally speaking, walking is a repetative

movement with its fundamental period called the gait cycle. Also called a stride, the

gait cycle is usually defined as the interval of time between successive heelstrikes of a

given foot[16]. The gait cycle can broken down any manner of ways depending on the

population being observed or the desired outcomes of the observation. With certian

pathological gaits it may be inappropriate to deliniate gait cycles with heelstrikes

because the heel may never come in contact with the ground [17]. This problem is

mitigated by dividing the gait cycle by functional phases (see Figure 1.4) rather than

at events [18]. This section will present the general functional divisions of the gait

cycle while still presentinig the typical events of normal gait[11].
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Stance

During gait each leg goes through two major phases, a stance phase and a swing

phase. Each leg spends approximately 60% and 40% of the gait cycle in the stance

phase and swing phase, respectively. A leg is in the stance phase when its foot is in

contact with the ground. Walking is characterized by at least one leg in the stance

phase at all times. Both legs can simultaneously be in the stance phase during a gait

cycle. This period is called double support. Subdivisions of the stance phase are the

initial contact phase, the loading response phase, the midstance phase, the terminal

phase, and the pre-swing phase.

Let us ’walk’ through a gait cycle beginning with the initial contact of the

left foot.

Initial Contact This is the instantaneous moment when the left foot first makes

contact with the ground. In normal walking this initial contact is a heelstrike. This

also marks the beginning of double support.

Loading Response The loading response is a transitional period from double

support to single support. As the left foot rocks from heel to midfoot it begins to

accept the full weight of the body. This phase continues all the way up until toe-off

of the right foot. The loading response accounts for about 10% of the gait cycle.
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Midstance Midstance is the first half of single support. The entire weight of the

body is on the left leg and the right foot swings from its toe-off point towards its

next heelstrike. At the end of midstance the center of mass of the body is aligned

over the left forefoot. Midstance accounts for about 25% of the gait cycle.

Terminal Stance The remainder of single support is the terminal stance phase.

This phase is from the moment the heel of the supporting foot rises off the ground

until the footstrike of the swinging ipsilateral leg. The terminal stance phase is about

20% of the gait cycle.

Pre-swing Again we are in double support, however, this time weight is shifting

from the left leg to the right leg and the left foot continues to rock from midfoot to

toe-off. This phase positions the limb for swing. This pre-swing phase is about 10%

of the gait cycle.

Swing

The swing phase functions to advance the limb foward and position the limb in

preparation for the next stance phase. The swing phase has subdivisions: initial

swing, midswing, and terminal swing.
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Initial Swing The initial swing commences the moment the foot leaves the ground

continues until the swing foot is next to the stance foot. This contributes to approx-

imately one-third of swing and about 13% of the gait cycle.

Midswing Midswing is from when the feet are adjacent until the tibia of the swing

leg is vertical.

Terminal Swing The final phase of gait cycle is the terminal swing. It begins

when the tibia of the swing leg is vertical and ends when the foot strikes the floor.

1.1.3 Gait Analysis

Gait analysis is the qualitative and quantitative evaluation of gait and the various

factors that characterize it. A wealth of data can be gathered from an analysis.

Depending on the field of research, the factors of interest vary. Parameters measured

from a gait analysis fall into one of the following categories: spatio-temporal variables,

kinematic variables, and kinetic variables.

Temporal and spatial characteristics are obtained by measuring the distances

and velocities between the feet at different phases of the gait cycle. These measure-

ments include step time, step length, stride time, stride length, step width, cadence,

and swing and stance phase durations.
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Kinematics is the spatial and temporal description of the motion of points

and bodies without consideration for the causes of motion [20]. An analysis of this

type is concerned with the position, orientation, and velocity of the limbs at all times

during gait, typically in the form of joint angles, joint angular velocity, and joint

angular acceleration [2]. These position data can be taken relative to any anatomical

position such as the body’s center of gravity or centers of rotation of joints [21].

Kinetics is a term for the forces and torques that compel bodies to move. A

kinetic analysis wants to know the reaction forces between the feet and ground and

also, ideally, the muscle forces generated by the body to maintain posture and cause

movement. Because muscles act to change joint angles, often we are statisfied with

knowing the overall torque at a joint rather than the individual muscle activations.

1.2 Methods of Gait Analysis

1.2.1 Motion Capture

Mechanical

Mechanical motion capture systems use goniometers to directly measure relative joint

angles. Goniometers can be fiber optic or potentiometer based devices which encode

angular position [22]. Each joint to be measured requires at least one goniometer per

degree of freedom. As such, mechanical systems often employ a body exoskeleton

with the sensors rigidly mounted at points of articulation (Figure 1.5).
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Figure 1.5: Mechanical motion capture exoskeleton.
http://www.metamotion.com

These mechanical systems are fairly low cost and can be wireless allowing

a large capture volume. Because angles are measured directly these systems can

provide real-time body segment kinematic information. Disadvantages of this system

are mainly due to its cumbersome nature. Exoskeletons are rigid and heavy, with

some weighing around 4 kg (Gypsy 7, MetaMotion, San Francisco, CA). This can

impede natural motion.

Load Cells

Load cells are transducers that convert force into electrical output. Kinetic measure-

ments in most gait analysis is largely focused on the forces between the foot and

the ground. To capture ground reaction forces a stationary force plate can be em-

bedded into the ground [23–26]. However, a stationary force plate can only measure

one step. The solution to this is to use a walkway of multiple force plates or an

11



instrumented treadmill with force plates under the moving belt [23–26]. Although

both allow for many steps to be captured, they restrict subjects to walking along a

straight line. Shoes instrumented with load cells or pressure sensors overcome this

limitation of stationary force plates [27–30]. Instrumented shoes have been widely

used to measure GRF and analyze loading pattern during the stance phase of gait.

EMG

EMG is the use of sensors to measure electrical activity in a muscle. The sensors can

be surface electrodes, placed on the skin over the muscle of interest, or wire electrodes,

inserted with a hypodermic needle into a muscle. Both provide an indirect measure

of muscle activation and timing with the latter being more selective than the former

[31].

Optical

Optical mocap systems depend on a network of synchronized cameras. Each camera

determines the location of an object of interest in its own coordinate system (x,y).

Combining data on an object’s location in each camera’s view with data of the posi-

tion of the cameras relative to each other the global coordinates (x,y,z) of the object

in the capture volume can be calculated. This requires careful calibration of the cam-

eras and consideration of parallax and lens distortion. At least two cameras at any
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given time must have an uninterrupted line of sight to triangulate an object. For hu-

man mocap, the cameras track special markers that are affixed to known anatomical

locations on a subject usually on areas where there is minimal soft tissue between the

skin and underlying bone. Passive marker optical systems use retroreflective markers

to reflect light, typically infrared, emitted from near the cameras lens. The cameras

are adjusted to pick up only the brightly reflected light from the markers and ignore

other incident light. Active optical systems offer better marker discrimination than

passive optical systems. The triangulation calculations are similar but rather than

markers reflecting light emitted by the cameras, the markers produce their own light.

Marker confusion is reduced by illuminating only one marker at a time very quickly

or each marker emitting a unique frequency of light. Capture volume and freedom of

movement is reduced because active markers must be tethered to a power supply.

Markerless techniques are the frontier of optical mocap. Both passive and

active markers impede normal motions and also are prone to error from movement

between the skin they are placed on and the underlying bone [32]. Advancements in

computer vision are leading to tracking methods that don’t require subjects to wear

special equipment [33, 34].

Inertial

There are three main classes of inertial measurement units (IMUs): accelerometers,

gyroscopes, and magnetometers. These devices measure an object’s acceleration,
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velocity, and orientation.

Accelerometers Accelerometers measure the magnitude of accelerations applied

along a sensitive axis. Often, a set of three accelerometers are grouped and oriented

orthogonally with respect to each other to allow for 3-dimensional acceleration mea-

surements. There are a variety of different transducer technologies that are used in

accelerometers including piezoelectric, piezoresistive, and variable capacitive trans-

ducers with the first two types being widely used in human movement applications

[35–37]. All these types of sensors operate with the same underlying principle [38].

The basic mechanism of an accelerometer is a mass attached to a spring. Essentially,

there is a test mass attached to a spring that is displaced when an acceleration is

applied to the sensor. With the measured compression/extension of the spring and

the mass and spring constant known, Hooke’s law and Newton’s second law can be

used to calculate acceleration (Equation 1.1).

F = kx = ma⇒ a =
kx

m
(1.1)

F : total force acting on test mass, k: spring constant, x: measured change in
spring length, m: mass, a: calculated acceleration

These sensors transduce accelerations into an electrical signal. The relation-

ship between acceleration and electrical output must be determined under specific

calibration procedures. Two primary ways exist for calibrating an acceleometer:

static and periodic calibration. Both involve applying known magnitudes of acceler-

ations to the sensor and recording the electrical output. With the static calibration

14



method the sensor output is measured while in two different constant acceleration

fields. This achieved usually by orienting the sensing axis parallel and perpendicular

to the earth’s gravitational field. From these two data points a linear function can

be created to relate electrical output to acceleration (Equation 1.2).

y =
y2 − y1
x2 − x1

(x− x1) + y1 (1.2)

The voltages, x1,2 are measured when known accelerations y1,2 are applied to the
sensor. With this calibration function measured signal x is inferred to be caused

by acceleration y.

This, however, assumes a linearity between the sensor input and output. A

periodic calibration can provide a more accurate characterization of an accelerometer

but requires specialized equipment and is more time consuming [39–41]. Periodic cali-

bration vibrates an accelerometer at various frequencies to determine the relationship

between known acceleration harmonics and raw electrical output.

Gyroscopes Gyroscopes sense rotational velocity. These devices have evolved

from nested mechanical gimbals to vibrating structure MEMS. The old style gimbal

structure used the law of conservation of angular momentum and the phenomenon

of precession to measure angular velocity. Vibrating structure MEMS determine

angular velocity by measuring the Coriolis force [42]. How this works is a test mass is

attached to two orthogonal sets of springs. The mass is vibrated sinusoidally in one

direction. As the system is rotated a Coriolis force, which is proportional to the input

angular velocity and the rate of oscillation of the test mass, extends/compresses the
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perpendicular springs. The magnitude and direction of this spring stretch is detected

by a capacitor and will thus give a measure of the system’s angular velocity.

Magnetometers Magnetometers are sensors made with magnetoresistive materi-

als. A magnetoresistive material’s conductivity is dependent on an applied magnetic

flux. When rotated through a constant magnetic field a magnetometer will output an

electrical signal dependent on its position. Magnetometers can provide orientation

information that cannot be measured from accelerometers and gyroscopes alone [43].

1.2.2 Optical Based Gait Analysis

Seen as the industry standard in gait analysis, optical motion capture (OMC) based

gait analysis combine infrared cameras, retroreflective markers, and either an instru-

mented walkway or treadmill. Laboratories with this equipment are typically found

in major hospitals and universities (Figure 1.6). Companies like Tekscan, CON-

TEMPLAS, Motek Medical, and BTS Bioengineering outfit entire laboratories with

equipment costing hundreds of thousands of dollars.

1.2.3 Inertial Based Gait Analysis

While OMC systems are currently widely used as the gold standard in gait analysis

in a laboratory setting, IMC systems are being introduced as an alternative with the

goal of performing gait analysis in real world environments [44–46]. There are many
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Figure 1.6: An optical motion capture gait analysis laboratory. (1) infrared
videocameras; (2) inertial sensor; (3) GRF measurement walkway; (4) wireless
EMG; (5) workstation; (6) video recording system; (7) TV screen; (8) control

station. http://btsbioengineering.com

commercial products that use accelerometers in healthcare monitoring applications,

mainly as pedometers and physical activity monitors [47]. The IDEEA: intelligent

device for energy expenditure and physical activity by MiniSun performs physical

activity assesment and gait analysis. It is a wearable device with numerous sensors on

the legs and feet. It is limited to monitoring spatiotemporal gait parameters. Other

systems combine multiple types of IMUs [48–50]. The sensors, attached to different

body segments, provide acceleration, angular velocity and orientation measurements.

Sensor fusion algorithms combine data from each sensor to provide body segment

orientation estimates. Xsens Technologies (Enschede, Netherlands) markets a full-

body inertial motion capture suit (Figure 1.7). The Lycra suit has embedded within

it 17 tracking sensors each having a tri-axial accelerometer, tri-axial gyroscope, and

a tri-axial magnetometer. The sensors sample at 120 Hz and communicate wirelessly
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Figure 1.7: Commercial motion capture system marketed by Xsens Technologies.
http://www.xsens.com

to a computer. The system uses a specific biomechanical model and proprietary

algorithms to estimate 3-dimensional kinematics and 3-dimensional positioning of

the wearer in near realtime [51].

Yet another IMC gait analyis system being developed is the iTRACK. The

iTRACK takes an approach unlike the previously described IMC gait analysis. It is a

musculoskeletal model-based approach to gait analysis [52]. Rather than measuring

body segment accelerations on a subject and integrating the signal to find body

kinematics, the musculoskeletal model predicts physiologically plausible movements

that can generate measured accelerometer signals. It is a two-dimensional lower body

model representing movement in the sagittal plane. When given acceleration data

from a walking person along with the position of the sensors on the person, the

model iteratively calculates a combination of muscle activations that produces the
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same input signal. Joint kinematics and joint kinetics are then determined from the

these activations.

1.3 Goal of Work

1.3.1 Motivation

Contrary to its apparent utility, gait analysis does not enjoy widespread usage as a

tool for clinical testing of locomotor disorders. In the healthcare industry gait labo-

ratory analysis is seen as inefficient and uneconomical [53]. Reasons for this include:

a typical testing session can take up to 2 hours to perform, a staff of specially trained

engineers and technicians is required to operate the equipment, and the equipment

cost for a typical laboratory average $300,000. To accelerate adoption of gait analysis

at least two things must be done: increase the subject testing efficiency and decrease

the equipment cost. Burgeoning IMU technologies have allowed the development of

new methods of gait analysis that can address some of the current limitations. Iner-

tial based motion capture offer reduced session preparatory time compared to marker

based methods. However, current IMU based gait analysis systems are only capable

of determining joint kinematics and not joint kinetic data like the industry standard

passive marker/force plate comnbination. Recently developed is the iTRACK, a sys-

tem of model-based movement analysis with accelerometers, whose aim is to calculate

both joint kinematic and kinetic variables in a versatile cost effective package.
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1.3.2 Objective

The objective of this work is to determine the validity of using the iTRACK as

a method of gait analysis. This is the first study using the iTRACK with real

human accelerometry measurements. Previously it has only been used on computer

generated accelerometry data from a model simulating human walking. Therefore this

work will be investigating the accuracy of the iTRACK gait analysis by comparing

it to another accepted method of gait analysis. A dataset of normal walking by

able-bodied subjects in controlled conditions will be used for the analysis.
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CHAPTER II

METHODS

2.1 Subject Population

A total of 6 volunteers, 2 men and 4 women, participated in this study. The 6

participants were healthy adults aged 19-38 (23 ± 6.7 years) with a mean height of

1.73 ± 0.11 and mean weight of 68.8 ± 12.3 (Table I).

Subjects responded to recruitment flyers posted around the Cleveland State

University campus. Before being enrolled in this study participants were required

to pass a prescreening questionnaire to ensure they suffered from no medical con-

ditions that affect walking (Appendix A). All individuals provided written consent

Table I: Subject Characteristics

Subjects (n) Age (y) Height (m) Weight (kg)

Female 4 24.5 ± 9.0 1.66 ± 0.06 60.0 ± 5.7
Male 3 21.0 ± 1.0 1.83 ± 0.06 80.6 ± 6.7
Total 7 23.0 ± 6.7 1.73 ± 0.11 68.8 ± 12.3
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for participation. This experimental protocol received approval from the University’s

Institutional Review Board.

2.2 Apparatus

2.2.1 Optical Motion Capture System

In this study a network of 10 infrared cameras (Motion Analysis Corp, Santa Rosa,

CA) and an instrumented split belt treadmill (R-Mill, ForceLink, The Netherlands)

were used to capture kinematic marker data and ground reaction force data. The

cameras were aimed and calibrated to a capture volume of 4 x 6 m centered over

the treadmill. The cameras connect to a computer running Cortex software (Mo-

tion Analysis Corp, Santa Rosa, CA) via a local area network. The force plates

transmit data to this computer via a data acquisition (DAQ) device (NI USB-6255,

National Instruments Corp, Austin, TX). Cortex was used calibrate the instrumenta-

tion; record, identity, and label markers; stream recorded data for further processing.

2.2.2 Inertial Motion Capture System

The Trigno� Wireless System (Delsys Inc., Natick, MA) was used as the inertial

capture device. The unit comes with 16 sensors each having an EMG electode and

a triaxial accelerometer. The accelerometers are capable of measuring ± 6 g at an

8-bit resolution. The sensors transmit wirelessly to a base station up to 20 meters
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away. The base station is controlled by a computer over USB and routes the sensor

signals to a DAQ device. Each sensor is 276 x 241 x 127 mm.

2.3 Experimental Protocol

2.3.1 Subject Preparation

For the walking sessions a subject would wear form fitting compressive shorts and

a form fitting athletic tank top along with athletic footwear. First the reflective

markers were placed on the subject’s lower body and torso as in Appendix B - 25 in

total. Markers were affixed with skin friendly toupee tape. Where possible markers

were placed directly on the skin. The markers corresponding to landmarks on the

torso and pelvic area were affixed to the tight clothing the subect was wearing. Next,

the tri-axial accelerometers are attached to the subect. There were 10 used in total

(Appendix B). All sensor were attached directly to the skin with toupee tape except

for the four sensors attached to the shoes (Figure 2.1). Sensors on the shoes were

additionally secured with medical tape. As the iTRACK system is based on a two

dimensional model, we are only concerned with movements in the sagittal plane,

which is considered the xy plane. Anteriorly, the horizontal direction, is positive x

and superiorly, the vertical direction, is positive y. When each sensor was placed care

was taken to ensure there was maximum correlation between the plane formed by

two of three sensing axes and the sagittal plane of the test subject. For example, the

sensor on the sternum is place so its z-axis is pointing straight ahead to the direction
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Figure 2.1: A subject with retroreflective markers and triaxial accelerometers.

the subect is facing, the x-axis is pointing up towards the ceiling, and the y-axis is

pointing to the subject’s right side. For this IMU its z and x axis measure the x and

y axis of the subject, respectively.

After all markers and sensors are attached the subject her height is recorded

and she is photographed for later measurement of the sensor placement using Ki-

novea (version 0.8.15, www.kinovea.org). Pictures were taken at a resolution of 8

megapixels [54]. Each body segment is imaged individually. All photographs are

taken parasagittally from the subjects left and right. An object of a known length is

placed in the same plane as the sensor being photographed. In the images of the torso

segment the sternum sensor, the sacrum sensor, and a greater trochanter marker are

visible. In the images of the thigh segment the thigh sensor, the greater tronchanter

marker, and the epicondyle marker are visible, In the image of the shank segment the

shank sensor, the epicondyle marker, and the lateral malleolus marker are visible. In
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the image of the foot the entire foot is visible.

2.3.2 Calibration to Subject

Data were recorded of the subject in quiet standing for calibration of OMC and

calculation of initial sensor angles. The subject stood still on the treadmill for 15

seconds in the T-pose while OMC and accelerometer data is recorded. In the T-pose

the subject stands with the feet shoulder width apart and the toes pointed forward.

The arms are fully extended with the hands at shoulder height pointing directly to

the right and left.

2.3.3 Walking Trials

The subject was given two abbreviated unrecorded trial runs to familiarize herself

with the the walking task. Following the trial runs the subject performs four full

length recorded runs. Approximately one minute of rest was given between runs.

In each run the subject’s task was to walk at a constant stride rate while

the speed of the treadmill increased at regular intervals. A metronome was used to

help the subject maintain the desired cadence. Each run began with a 20 second

interval for the treadmill to accelerate to speed and the subject get in sync with the

metronome. This was followed four 55 second intervals of walking with 5 seconds

between each interval to transition to the next speed. The speeds within each run

varied from 1.0 to 1.8 m/s. Runs were performed at a cadences ranging from 45 to 63
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strides/min. These numbers are based on Murray et al. study of free walking patterns

in normal men [55]. The exact speed and cadence combinations were adjusted to what

the subject was capable of handling while maintaining a relativly normal walking gait.

2.4 Gait Analysis

2.4.1 Analysis Using Optical Motion Capture

The optical motion capture (OMC) gait analysis was performed with a software

system called the human body model (HBM) [56]. The HBM is capable of real-time

analysis of kinematics, kinetics, and muscle function. As in figure 2.2, to perform its

analysis the HBM needs the trajectories of properly defined markers and the treadmill

force plate signals. For each walking trial analyzed the HBM was first initialized by

streaming the calibration T-pose recording of the respective subject and then followed

by the streaming the walking trial data. The resulting angles, moments and GRF

time histories were saved to a tab delimited file.

After the gait analysis, a representative gait cycle was created for each trial.

The data were sliced at each right foot heelstrike as determined below (see 2.4.2).

Each cycle of data was normalized temporally and resampled to 500 data points. The

mean of the values at these points became the representative gait cycle.
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Figure 2.2: Processing pipeline of the HBM gait analysis. Kinematic marker
data along with load cell data is provided to the model which can calculate in real

time joint angles, joint moments, and ground reaction forces [56].

2.4.2 Analysis using Inertial Sensors

Prior to the inertial motion capture (IMC) gait analysis accelerometer signals were

time shifted forward to be synchronized to the marker and force plate data. There is a

fixed delay of 96 ms because of the on board low pass filtering that takes place on the

sensors. Next, a representative gait cycle was created for each trial. Gait cycles were

isolated by identifying consecutive right foot heelstrikes. The vertical accelerometer

signal from the sensor placed on the right heel was used to identify heelstrikes. A

heelstrike was characterized in the signals as a rapid change in acceleration followed

by a rather lengthy steady-state period (Figure 2.3).

Each heelstrike was detected programmatically by running the right heel

vertical accelerometer signal through the following process (see Appendix C):
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Figure 2.3: Vertical accerometer signal from a heel-placed sensor. Heelstrikes are
identified.

� a 10 Hz high pass finite impulse response (FIR) filter

� signal rectification

� a 5 Hz low pass FIR filter

� peak detection algorithm

Each gait cycle was the isolated and normalized temporally. The signals were

resampled at 500 points and then the mean and standard deviation of these values

were calculated.

For iTRACK to preform a gait analysis it requires the mean gait cycle along

with the standard deviation of a walking trial, the duration of the gait cycle, the speed

at which the subject was walking, the subject’s height and weight, and the location

of the sensors on the subject. First the musculoskeletal model is initialized by scaling

to the subject and placement of the sensors. Next the gait analysis is treated like an
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optimal control problem, the goal of which is to find a set of neuromuscular inputs

that can cause the model to generate the same accelerometer signals measured from

a subject all while optimizing a certain objective function [52]. When the model is

solved the output is a set of simulated accelerometer signals closely matching the

measured signals along with a set of coordinates, velocities, and inputs which can be

used to calculate joint angles, moments, and ground reaction forces.

In detail, the dynamical system is described by the state variable x which is

a vector that contains generalized coordinate and velocity variables for each degree

of freedom in the model (joints and torso) in addition to an active state and a length

variable for each muscle in the model. With x along with u, a vector of neural excita-

tion for all muscles, the implicit equation 2.1b is formed to create the musculoskeletal

model, where f incorporates the multibody dynamics, muscle contraction dynamics,

muscle activation dynamics, and muscle-skeleton coupling of the system.

arg min
x,u

F [x(t),u(t)] (2.1a)

f(x, ẋ,u) = 0 (2.1b)

x(T ) = x(0) + v · T · x̂ (2.1c)

Using the direct collocation method 2.1b is solved iteratively while obeying

the constraint 2.1c and satisfying the objective function 2.1a. The constraint requires
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that model is in the same orientation at the end of the gait cycle as it in beginning

but displaced one stride length (v · T , speed and gait cycle duration). The objective

function serves to ensure that the simulated movements replicate the accelerometer

signals and are physiologically plausible. The first half of the objective function 2.2

is the tracking term.

F(.) =
Wtrack

NsensorsT

NsensorsT∑
i=1

T∫
0

(
si(t)− g(x(t), ẋ(t))

σi(t)

)2

dt

+
Weffort

NmusclesT

NmusclesT∑
i=1

T∫
0

ui(t)
2dt

(2.2)

The difference between the measured accelerations, si(t), and the simulated

accelerations, g(x(t), ẋ(t)), should be as small as possible for good tracking. The

second half of the objective function is the effort term. Minimizing the control input,

ui(t)
2, effectively tells the model to walk in the most energy favorable way possible.

The coefficients, Wtrack and Weffort, are weighting terms that determine how impor-

tant each part of the objective function is. They were set to 1 and 10 respectively

for this study. When the problem is solved the result is a state vector and control

vector, x and u, defined at all time points of the gait cycle.
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2.5 Statistical Analysis

2.5.1 Variables Compared

The iTRACK system is capable of modeling joint angle and moments for the hip,

knee, and ankle. It is also able to determine ground reaction forces. Joint angles, joint

moments, and ground reaction forces are very common parameters studied in gait

analysis [57]. These kinematic and kinetic variables provide much insight to clinicians,

as such, they were the parameters focused on during this validation study. Maximum

and minimum hip, knee, and ankle joint angles and moments were compared between

the two methods. Also, maximum and minimum horizontal ground reaction forces

were compared. In the vertical direction only maximum vertical ground reaction

forces were investigated as the minimum ground reaction forces occur while the foot

is of the ground and is trivially equal to zero.

2.5.2 Validation

For this method comparison study the data from all collected trials are pooled to-

gether and analyzed using the ordinary least products regression (OLP) [58]. OLP

is used rather than a simple linear least squares fit because it is assumed there is an

error in both measurement techniques (Equation 2.3).
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β̂y =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(2.3a)

β̂x =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(yi − ȳ)2
(2.3b)

β̂ =

√
β̂y

β̂x
(2.3c)

α̂ = ȳ − β̂ x̄ (2.3d)

A least squares fit only considers error in one of the dimensions. The OLP

method can determine if there are any fixed or proportional biases between the two

methods. A fixed bias is when there is a constant difference between the two mea-

surement methods. A proportional bias is when one method gives a higher or lower

measurement proportional to the magnitude of the measured variable. The strength

of the regression is determined by Pearson product-moment correlation coefficient

(Equation 2.4).

r =

∑n
i=1(Xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.4)

To what degree of accuracy one method can predict the other will be quan-

tified as the RMS error (Equation 2.5).

32



ERMS =

√√√√ 1

n

n∑
i=1

(yi − (β̂xi + α̂))2 (2.5)
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CHAPTER III

RESULTS

A representative set of raw acceleration signals during a walking trial is shown in

figures 3.1-3.3. Superimposed on the wave forms are the locations of right foot heel-

strikes. As seen, there is a very regular pattern throughout the walking trial although

occasionally anomalies appear. The magnitudes of acceleration are typically in 0 to

2 g range in the sensors on the torso and -1.5 to 4 g in the sensors on the legs and

feet.

Figures 3.4-3.6 are a set of the averaged gait cycle accelerometer signals from

a representative walking trial superimposed with the iTRACK tracking result. The

iTRACK calculated accelerometer signals resemble the input accelerometer signals.

The higher frequency components are not tracked as well as the lower frequencies.

This observation is consistent among all the trials.
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Figures 3.7-3.7 are a representative set of the joint trajectories as deteremined

by the OMC gait analysis method and the IMC gait analysis method. The trajec-

tories from both methods resemble each other. There are the occasional blips in the

trajectories of the OMC trajectories not present in the IMC trajectories. There are

some higher frequency oscillations present in the IMC trajectories not present in the

OMC trajectories. This is consistent among all the trials.

Figures 3.8-3.11 show the results of the OLP regression on the gait variables

analyzed. The correlation strength varied from weak to strong with a range of 0.12

to 0.94. The RMS in the joint angle measurements were less than 8.71 degrees. The

RMS in the joint moment measurements were less than 16.00 Newton-meters. The

RMS in the GRF values were less than 5% of body weight. Statistical results are

summerized in Table II.
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Figure 3.4: The mean ± SD measured accelerometer signal (dotted line) with
the simulated accelerometer signal (thick line) superimposed for the sternum and

sacrum sensor.
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Figure 3.5: The mean ± SD measured accelerometer signal (dotted line) with
the simulated accelerometer signal (thick line) superimposed for the right thigh

and shank sensor.
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Figure 3.6: The mean ± SD measured accelerometer signal (dotted line) with the
simulated accelerometer signal (thick line) superimposed for the right foot sensor.
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Figure 3.7: Joint angle and moment trajectories calculated from a representative
walking trial. Dashed lines are the result of the OMC method. Solid lines are the

result of the IMC method.
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Figure 3.8: OLP regression analysis of maximum and minimum hip angle and
moment. The dashed lines is the identity line passing through zero. The solid line

is the regession line of the data points.
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Figure 3.9: OLP regression analysis of maximum and minimum knee angle and
moment. The dashed lines is the identity line passing through zero. The solid line
is the regession line of the data points. Each subject is uniquely identified with a

different marker.
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Figure 3.10: OLP regression analysis of maximum and minimum ankle angle and
moment. The dashed lines is the identity line passing through zero. The solid line
is the regession line of the data points. Each subject is uniquely identified with a

different marker.
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Figure 3.11: OLP regression analysis of maximum and minimum GRF in the
horizontal and vertical direction. The dashed lines is the identity line passing
through zero. The solid line is the regession line of the data points. Each subject

is uniquely identified with a different marker.
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β 95% CI Proportional Bias α 95% CI Fixed Bias r RMSE

Min Hip Angle 0.78 0.62, 0.98 IMC 4.18 1.36, 7.75 OMC 0.12 8.71
Max Hip Angle 1.05 0.84, 1.32 - -5.42 -15.53, 2.64 - 0.21 7.08
Min Hip Moment 0.80 0.71, 0.91 IMC -14.85 -21.02, -7.85 IMC 0.84 9.67
Max Hip Moment 0.50 0.40, 0.63 IMC 8.22 2.42, 12.83 OMC 0.15 16.00
Min Knee Angle 1.13 0.91, 1.40 - -8.74 -10.45, -7.36 IMC 0.41 5.87
Max Knee Angle 0.80 0.66, 0.99 IMC 9.47 -3.23, 19.82 - 0.49 3.37
Min Knee Moment 1.07 0.89, 1.29 - -5.72 -10.52, 0.07 - 0.60 8.30
Max Knee Moment 0.62 0.53, 0.73 IMC -14.95 -20.96, -9.81 IMC 0.74 10.66
Min Ankle Angle 2.02 1.73, 2.34 OMC 27.66 21.62, 34.68 OMC 0.77 8.10
Max Ankle Angle 0.93 0.74, 1.17 - -0.53 -4.79, 2.87 - 0.22 4.53
Min Ankle Moment 0.64 0.52, 0.78 IMC -2.77 -5.23, 0.25 - 0.46 8.63
Max Ankle Moment 1.19 1.06, 1.34 OMC -21.58 -36.14, -8.65 IMC 0.86 7.41
Min Horizontal GRF 0.65 0.55, 0.77 IMC -0.06 -0.08, -0.02 IMC 0.68 0.05
Max Horizontal GRF 0.80 0.67, 0.97 IMC 0.05 0.00, 0.09 OMC 0.61 0.05
Max Vertical GRF 0.54 0.49, 0.58 IMC 0.49 0.44, 0.55 OMC 0.94 0.03

Table II: Summary of analysis by ordinary least products regression.
β, α : coefficients in the regression model y = βx+α. Proportional bias: If the 95%
confidence interval (CI) for β is greater than 1 there is a bias towards the OMC
method. If it is less than 1 there is a bias towards the IMC method. If it includes
1, is no bias. Fixed bias: If the 95% confidence interval (CI) for α is greater than 0
there is a bias towards the OMC method. If it is less than 0 there is a bias towards
the IMC method. If it includes 0, is no bias. r: correlation coefficient. RMSE: root

mean square error.
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CHAPTER IV

DISCUSSION

The iTRACK gait analysis system using inertial sensors is capable of estimating

joint extension/flexion angles, joint moments, and ground reaction forces. Because

this study is the first time the iTRACK has been used on human data there is much

to be learned and improved upon.

Although the accelerometers used provided good measurements of body seg-

ment linear accelerations there were still some artifacts present. The raw data here

is comparable to other studies [59, 60], yet there were periods of high frequency os-

cillations in the signal, especially around heelstrike. This is likely due to the manner

in which the sensors were attached to the subjects. Some of the sensors had to be

affixed to a fleshy mass, such as the thigh. Any impact from walking will show up

as a damped vibration in the signal because of this. Another sensor placement issue

was ensuring the sensing axis were in a parasagittal plane. Humans exhibit some

motion perpendicular to the direction of travel when walking. These motions are
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not accounted for in the iTRACK model. If the accelerometers picked up any out of

plane motion the gait analysis would be tainted.

The statistical analysis showed some interesting trends. The strongest cor-

relations for the OLP regressions were from the GRF and ankle angle and moments

while the hip and the knee exhibited more moderate correlation values. This is when

performing the regressions with the entire cohort’s data however. When observing

the scatter plots in figures 3.8-3.11 and considering each subject individually, one

can visually see a stronger intra-subject correlation than an the entire experimental

group. It is relevant to note that in clinical or sport performance applications it is

more interesting track how a single subject’s variables change over time or in different

conditions. In Appendix D all the IMC gait analysis from a single subject in this

study are plotted. This figure suggests that the IMC method is at least sensitive

enough to show changes in one’s gait.

Across most of the gait variables considered there tended to be a proportional

bias towards the IMC gait analysis. This means that for a given trial the IMC method

would calculate greater joint angles, moments, or GRFs than the OMC method. This

is likely a consequence of the two dimensional lower body musculoskeletal model used

in the IMC method versus the three dimensional musculoskeletal model used in the

OMC method. As the model is two dimensional and the torso is considered a single

rigid body, any out of plane accelerations measured will be falsely considered to occur

in the sagittal plane. Also, the contribution of arm-swing to making locomotion more
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efficient is not modeled. These two factor my cause the proportional bias.

4.1 Recommendation

The iTRACK was compared to the ‘gold standard’ OMC based gait analysis. There

was low to strong correlation between the two methods depending on the variable

of interest. The iTRACK system is not mature enough to completely replace the

current industry standard gait analysis, however, when all the pros and cons are

considered there may be some potential use cases. The iTRACK has the advantage

of being a fraction of the price of a typical gait laboratory. It is portable and does not

require special equipment besides the IMUs. Although, the method may not be very

accurate compare trends within a population, with RMS errors ranging from 3.37 to

8.71 deg, that could be good enough in certain applications to quantify changes in

gait over time within a single subject. The price, compactness, and ease of use could

make this system useful in telemedicine applications. Telemedicine is the concept of

taking medical services to remote rural areas that are normally underserved.

4.2 Future Work

In this validation study just maximum and minimum values for a set of gait variables

were compared. A future validation study should examine the correlation between the

entire joint trajectories estimated by both methods. Clinically, gait analysis would
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be preformed on a population with abnormal gait. This study used data from asymp-

tomatic test subjects. The next step would be to validate this method on subjects

with atypical gait and see if there is enough sensitivity to detect gait abnormalities.

Repeatability in a method-comparison study is a necessary, but insufficient, condi-

tion for agreement between methods. If one or both methods do not give repeatable

results, assessment of agreement between methods is meaningless. Future work to

validate this method should include a repeatability study. Beyond validating the

iTRACK, there are potential ways to improve the system. Right now the only IMUs

being used are accelerometers. The addition of gyroscopes or magnetometers or both

may result in more robust motion capture data and therefore better tracking by the

musculoskeletal model. Perhaps a long term goal would be to create a 3-dimensional

or a full body musculoskeletal model.
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[5] Serge Rossignol, Réjean Dubuc, and Jean-Pierre Gossard. Dynamic sensorimotor

interactions in locomotion. Physiological Reviews, 86(1):89–154, January 2006.

ISSN 0031-9333, 1522-1210. doi: 10.1152/physrev.00028.2005. URL http://

physrev.physiology.org/content/86/1/89. PMID: 16371596.

[6] M H Pope, T Bevins, D G Wilder, and J W Frymoyer. The relationship between

anthropometric, postural, muscular, and mobility characteristics of males ages

18-55. Spine, 10(7):644–648, September 1985. ISSN 0362-2436. PMID: 4071274.

[7] Katia Turcot, Rachid Aissaoui, Karine Boivin, Michel Pelletier, Nicola Hage-

meister, and Jacques A de Guise. New accelerometric method to discriminate

between asymptomatic subjects and patients with medial knee osteoarthritis

during 3-d gait. IEEE transactions on bio-medical engineering, 55(4):1415–

1422, April 2008. ISSN 0018-9294. doi: 10.1109/TBME.2007.912428. PMID:

18390333.

[8] Arash Salarian, Heike Russmann, François J G Vingerhoets, Pierre R Burkhard,

and Kamiar Aminian. Ambulatory monitoring of physical activities in patients

with parkinson’s disease. IEEE transactions on bio-medical engineering, 54(12):

2296–2299, December 2007. ISSN 0018-9294. PMID: 18075046.

53

http://www.sciencedirect.com/science/article/pii/S0301008203000911
http://www.sciencedirect.com/science/article/pii/S0301008203000911
http://physrev.physiology.org/content/86/1/89
http://physrev.physiology.org/content/86/1/89


[9] Keith L Moore, A. M. R Agur, and Arthur F Dalley. Essential clinical anatomy.

Lippincott Williams & Wilkins, Baltimore, MD, 2011. ISBN 9780781799157

0781799155 9781609131128 1609131126.

[10] A Godfrey, R Conway, D Meagher, and G OLaighin. Direct measurement of

human movement by accelerometry. Medical engineering & physics, 30(10):1364–

1386, December 2008. ISSN 1350-4533. doi: 10.1016/j.medengphy.2008.09.005.

PMID: 18996729.

[11] Michael Whittle. Gait analysis: an introduction. Butterworth-Heinemann, 2007.

ISBN 9780750688833.

[12] Marcus G Pandy and Thomas P Andriacchi. Muscle and joint function in human

locomotion. Annual review of biomedical engineering, 12:401–433, August 2010.

ISSN 1545-4274. doi: 10.1146/annurev-bioeng-070909-105259. PMID: 20617942.

[13] Kevin B Shelburne, Michael R Torry, and Marcus G Pandy. Contributions of

muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading

during normal gait. Journal of orthopaedic research: official publication of the

Orthopaedic Research Society, 24(10):1983–1990, October 2006. ISSN 0736-0266.

doi: 10.1002/jor.20255. PMID: 16900540.

[14] Deepak Kumar, Karupppasamy Subburaj, Wilson Lin, Dimitrios C Karampinos,

Charles E McCulloch, Xiaojuan Li, Thomas M Link, Richard B Souza, and

Sharmila Majumdar. Quadriceps and hamstrings morphology is related to walk-

ing mechanics and knee cartilage MR relaxation times in young adults. The

54



Journal of orthopaedic and sports physical therapy, October 2013. ISSN 1938-

1344. doi: 10.2519/jospt.2013.4486. PMID: 24175607.

[15] Sheila Jennett. Churchill Livingstone’s dictionary of sport and exercise sci-

ence and medicine. Churchill Livingstone Elsevier, Edinburgh, 2008. ISBN

9780443102158 0443102155.

[16] Jr Zeni, J A, J G Richards, and J S Higginson. Two simple methods for

determining gait events during treadmill and overground walking using kine-

matic data. Gait & posture, 27(4):710–714, May 2008. ISSN 0966-6362. doi:

10.1016/j.gaitpost.2007.07.007. PMID: 17723303.

[17] J R Hughes, S G Bowes, A L Leeman, C J O’Neill, A A Deshmukh, P W Nichol-

son, S M Dobbs, and R J Dobbs. Parkinsonian abnormality of foot strike: a phe-

nomenon of ageing and/or one responsive to levodopa therapy? British Journal

of Clinical Pharmacology, 29(2):179–186, February 1990. ISSN 0306-5251. URL

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380081/. PMID: 2306409

PMCID: PMC1380081.

[18] Los Amigos Research, Inc Education Institute, Rancho Los Amigos National

Rehabilitation Center, Rancho Los Amigos National Rehabilitation Center,

Pathokinesiology Service, Rancho Los Amigos National Rehabilitation Center,

and Physical Therapy Department. Observational gait analysis. Los Amigos

55

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380081/


Research and Education Institute, Rancho Los Amigos National Rehabilita-

tion Center, Downey, CA, 2001. ISBN 0609607898 9780609607893 0967633516

9780967633510.

[19] Sara Cuccurullo. Physical medicine and rehabilitation board review. Demos, New

York, 2004. ISBN 1888799455.

[20] E. Kreighbaum and K.M. Barthels. Biomechanics: a qualitative approach for

studying human movement. Allyn and Bacon, 1996. ISBN 9780205186518. URL

https://encrypted.google.com/books?id=3NALAQAAMAAJ.

[21] David A Winter. Biomechanics and motor control of human movement. John

Wiley & Sons, Hoboken, N.J., 2005. ISBN 047144989X 9780471449898.

[22] Pj Rowe, Cm Myles, Sj Hillmann, and Me Hazlewood. Validation of flexible

electrogoniometry as a measure of joint kinematics. Physiotherapy, 87(9):479–

488, September 2001. ISSN 00319406. doi: 10.1016/S0031-9406(05)60695-5.

URL http://linkinghub.elsevier.com/retrieve/pii/S0031940605606955.

[23] Marco Rabuffetti and Carlo Frigo. Ground reaction: intrinsic and extrinsic

variability assessment and related method for artefact treatment. Journal of

Biomechanics, 34(3):363–370, March 2001. ISSN 00219290. doi: 10.1016/

S0021-9290(00)00136-6. URL http://linkinghub.elsevier.com/retrieve/

pii/S0021929000001366.

56

https://encrypted.google.com/books?id=3NALAQAAMAAJ
http://linkinghub.elsevier.com/retrieve/pii/S0031940605606955
http://linkinghub.elsevier.com/retrieve/pii/S0021929000001366
http://linkinghub.elsevier.com/retrieve/pii/S0021929000001366


[24] Yu-Chi Chen, Shu-Zon Lou, Chen-Yu Huang, and Fong-Chin Su. Effects of foot

orthoses on gait patterns of flat feet patients. Clinical Biomechanics, 25(3):265–

270, March 2010. ISSN 02680033. doi: 10.1016/j.clinbiomech.2009.11.007. URL

http://linkinghub.elsevier.com/retrieve/pii/S0268003309002630.

[25] Alain Belli, Phong Bui, Antoine Berger, André Geyssant, and Jean-René Lacour.
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APPENDIX A

Prescreening Questionnaire
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Prescreening Questionnaire 
 

Subject ID:    

Birth date:  Date:  

 
Do/have any of the following conditions apply to you? (Check all that apply) 
 

 Balance Disorders  Neurological Disorders 

 Orthopedic Disorders  Limb Length Discrepancies 

 Rheumatic Disorders  Scoliosis 

 Knee Injuries/surgeries  Strains/Sprains/Pulls 

 Tendonitis  Fractures 

 Ankle/foot problems  Low back problems 

Please explain any checked condition: 
 
 
 
 
 

Circle YES or NO  for each of the following questions: 
 

Do you require the use of walking aids?  

 YES NO  

Are you under orders from your physician to limit physical activity? 

 YES NO  

Are you uncomfortable of the idea of walking up to one-half mile? 

 YES NO  

Is there anything you would like the researchers to be aware of? 

 YES NO  
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APPENDIX B

Marker and Sensor Placement

Table III: Accelerometer Placement

Sensor Placement

1 Sternum
2 Sacrum
3 Right lateral thigh
4 Right lateral shank
5 Right foot, over 2nd and 3rd metatarsal
6 Left lateral thigh
7 Left lateral shank
8 Left foot, over 2nd and 3rd metatarsal
9 Left heel
10 Right heel
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Table IV: Reflective Marker Placement

Marker Placement

A Jugular notch of the sternum
B Xiphoid Process
C Navel
D T10
E Right anterior superior iliac spine
F Left anterior superior iliac spine
G Left posterior superior iliac spine
H Right posterior superior iliac spine
I Right greater trochanter of the femer
J Left greater trochanter of the femer
K Left thigh, 1/3 the distance of I to M
L Right thigh, 2/3 the distance of J to N
M Right lateral epicondyle of the knee
N Left lateral epicondyle of the knee
O Right tibia, 2/3 the distance of M to Q
P Left tibia, 1/3 the distance of N to R
Q Right lateral malleolus
R Left lateral malleolus
S Right 5th metatarsal
T Left 5th metataesal
U Right big toe
V Left big toe
W Left heel, same height as V
X Right heel, same height as U
Y Sacrum Bone
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APPENDIX C

Footstrike Detection Code

The following code, written in Python 2.7, detects heelstrike and toeoff events during

walking from the waveform of the vertical component of acceleration measured on

the foot.

1 import numpy as np

2 from dtk import process

3

4 def gait_landmarks_from_accel(time, right_accel, left_accel, threshold=0.33, **kwargs):

5 """

6 Obtain right and left foot strikes from the time series data of accelerometers placed on the heel.

7

8 Parameters

9 ==========

10 time : array_like, shape(n,)

11 A monotonically increasing time array.

12 right_accel : array_like, shape(n,)

13 The vertical component of accel data for the right foot.

14 left_accel : str, shape(n,)

15 Same as above, but for the left foot.
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16 threshold : float, between 0 and 1

17 Increase if heelstrikes/toe-offs are falsly detected

18

19 Returns

20 =======

21 right_foot_strikes : np.array

22 All times at which a right foot heelstrike is determined

23 left_foot_strikes : np.array

24 Same as above, but for the left foot.

25 right_toe_offs : np.array

26 All times at which a right foot toeoff is determined

27 left_toe_offs : np.array

28 Same as above, but for the left foot.

29 """

30

31 sample_rate = 1.0 / np.mean(np.diff(time))

32

33 # Helper functions

34 # ----------------

35

36 def filter(data):

37 from scipy.signal import blackman, firwin, filtfilt

38

39 a = np.array([1])

40

41 # 10 Hz highpass

42 n = 127; # filter order

43 Wn = 10 / (sample_rate/2) # cut-off frequency

44 window = blackman(n)

45 b = firwin(n, Wn, window=’blackman’, pass_zero=False)

46 data = filtfilt(b, a, data)

47

48 data = abs(data) # rectify signal
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49

50 # 5 Hz lowpass

51 Wn = 5 / (sample_rate/2)

52 b = firwin(n, Wn, window=’blackman’)

53 data = filtfilt(b, a, data)

54

55 return data

56

57 def peak_detection(x):

58

59 dx = process.derivative(time, x, method="combination") # central difference

60 dx[dx > 0] = 1

61 dx[dx < 0] = -1

62 ddx = process.derivative(time, dx, method="combination") # central difference

63

64 peaks = []

65 for i, spike in enumerate(ddx < 0):

66 if spike == True:

67 peaks.append(i)

68

69 peaks = peaks[::2]

70

71 threshold_value = (max(x) - min(x))*threshold + min(x)

72

73 peak_indices = []

74 for i in peaks:

75 if x[i] > threshold_value:

76 peak_indices.append(i)

77

78 return peak_indices

79

80 def determine_foot_event(foot_spikes):

81 heelstrikes = []
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82 toeoffs = []

83

84 spike_time_diff = np.diff(foot_spikes)

85

86 for i, spike in enumerate(foot_spikes):

87 if spike_time_diff[i] > spike_time_diff[i+1]:

88 heelstrikes.append(time[spike])

89 else:

90 toeoffs.append(time[spike])

91 if i == len(foot_spikes) - 3:

92 if spike_time_diff[i] > spike_time_diff[i+1]:

93 toeoffs.append(time[foot_spikes[i+1]])

94 heelstrikes.append(time[foot_spikes[i+2]])

95 else:

96 toeoffs.append(time[foot_spikes[i+2]])

97 heelstrikes.append(time[foot_spikes[i+1]])

98 break

99

100 return np.array(heelstrikes), np.array(toeoffs)

101

102 # ----------------

103

104 right_accel_filtered = filter(right_accel)

105 right_spikes = peak_detection(right_accel_filtered)

106 (right_foot_strikes, right_toe_offs) = \

107 determine_foot_event(right_spikes)

108

109 left_accel_filtered = filter(left_accel)

110 left_spikes = peak_detection(left_accel_filtered)

111 (left_foot_strikes, left_toe_offs) = \

112 determine_foot_event(left_spikes)

113

114 return right_foot_strikes, left_foot_strikes, right_toe_offs, left_toe_offs
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APPENDIX D

Intra-Subject Gait Variabilty
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Figure D.1: Inertial based gait analyses of every walking trial from a single
subject.
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