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PURE COMPONENT ADSORPTION OF METHANE, ETHYLENE, 

PROPYLENE AND CARBON DIOXIDE IN SILICALITE 

 

QIANQIAN ZHOU 

ABSTRACT 

Adsorption isotherms are measured for pure methane, ethylene, propylene and carbon 

dioxide in silicalite. Isotherm data are collected using a volumetric method at three 

different temperatures of 10C, 35C and 65C at pressure up to 100psi. The Virial equation 

and Langmuir equation have been applied to represent excess amount adsorbed in each 

pure component system. The binary adsorption equilibrium for various mixtures are 

predicted from the pure component adsorption data, using the Ideal Adsorption 

Solution Theory (IAST).  
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NOMENCLATURE 

A       specific surface area, total surface area of a material per unit of mass   

          (             ⁄ ) 

a        molar surface area (                ⁄ ) 

K        Henry’s Law constant 

      the activated mass of solid which is independently measured.  

N       number of moles 

       the number of moles of fluid component i in adsorbed phase 

        the component i amount adsorbed per unit of solid mass,         ⁄  

P        equilibrium pressure 

R        universal gas constant, (8.314472 J/(mol·K)) 

 

Greek Symbols 

        spreading pressure 

       the chemical potential of species i (same in the fluid and adsorbed phase). 

  
      the chemical potential of pure solid without adsorbed phase. 
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CHAPTER I 

INTRODUCTION 

 

 

Principles of Adsorption 

 

The term adsorption was first introduced by Kayser (1881) to explain the condensation 

of gases on solid surface, in which the solid is considered impenetrable. Adsorption is 

defined as the enrichment of one or more components from a fluid phase in the 

interfacial layer between two bulk phases, such as a solid and a gas. The solid is called 

the adsorbent, while gas is called the adsorbate. Different components of a gas stream 

can be selectively collected and concentrated onto a solid surface by tailoring solid 

properties, the selectivity can be manipulated. Therefore, adsorption can be uniquely 

advantageous compared to other bulk separation methods where selectivity is fixed by 

the nature of fluid components [1].  
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Adsorption process has been extensively used in purification processes and bulk 

separation processes. The process is called purification process, if only trace 

contaminants from the process stream need to be removed. Purification of gases by 

adsorption is in widespread used in air pollution control.  Application of adsorption for 

waste water treatment is also well known application. Adsorption processes are 

classified as bulk separation processes, if one component needs to be recovered 

selectively from a mixture in high concentrations, such as, nitrogen or oxygen 

production from air, hydrogen production from reformer gas, ethanol production from 

fermentation broth, etc. 

 

Solid: silicalite 

 

Adsorption, a heavily materials-driven technology, has been well developed along with 

the development of microporous adsorbents such as silica gel, activated carbon, 

alumina and zeolites (sometimes called molecular sieves). 

Zeolites are porous crystalline aluminosilicates. The zeolite framework consists of an 

assemblage of tetrahedrons (classically, SiO4 or AlO4), joined together in various regular 

arrays through shared oxygen atoms, to form an open crystal lattice [2]. A tetrahedron 

is composed of a metal cation at the center and oxygen anions at the four apexes. For 

example, a silicate tetrahedron is sketched in Figure 1.1. The silicon atom is bonded to 

four oxygen atoms. Its valence is satisfied but each oxygen has only half of its charge 



 

3 
 

satisfied, therefore can form a bond with another silicon atom to join tetrahedrons in 

three dimensions. There are numerous different ways to stack the tetrahedrons and 

hundreds of unique framework structures resulting from different combinations are 

known [11].   

 

Figure 1.1 Silicate Tetrahedron (From ‘Wikipedia Commons’) 

Aluminum plays an important role in silicate structures. The ionic radii of Al makes it 

easily fit into a tetrahedral instead of Si. If Si tetrahedral site is occupied by Al, the 

substitution results in a net negative charge since Al is +3 and Si is +4. The negative 

charge is balanced by an ionized bonded cation in the immediate vicinity of Al site. As a 

result, along with Al/Si ratio of a zeolite increase, the cation content increase and its 

surface selectivity changes from hydrophobic to hydrophilic. The cations can be ion-

exchanged with others in a solution which enables tailoring of the zeolite structure for 

specific purposes. Cation exchange can result in charges in the sites of porous network 

as well as changes in the surface potential. As a side effect the chemical and thermal 

stability of zeolites decrease with increasing Al content. 
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Silicalite used in the study is the aluminum-free form of zeolite MFI (or ZSM-5). It has 

both straight elliptical channels and zigzag channels that cross at the intersections. The 

three-dimensional interconnected channels are 10-member oxygen rings of free 

diameter about 5.6  , which are intermediate between the small-port sieves with 8-ring 

channels(e.g. LTA or zeolite-A) and the large-port sieves with 12-ring channels[2](e.g. 

FAU or zeolite-X and Y).   The channel systems of silicalite and a characteristic complex 

of 10-rings are sketched in Figure 1.1. 

 

 

Figure 1.2 Framework Type MFI, 10-ring straight channel and complex of 10-rings 

viewed along b-axis (From ‘Database of Zeolite Structures’)  

 

Silicalite is hydrophobic in nature and has no ion exchange capacity since it does not 

contain any Al atoms. It is characterized by great thermal and chemical stability. Its 

surface has been considered as homogeneous. However, a heterogeneous behavior may 
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also exhibited without any cations in the pore structure because of geometric effects, 

due to different adsorbates located at different sites in the silicalite [3]. 

 

Scope of work  

 

Pure component adsorption isotherm is the most basic/fundamental characteristic of 

adsorption equilibrium. It is the equilibrium relation between the amount of the 

adsorbed substance and the pressure in the bulk fluid phase at constant temperature. 

 

A better understanding of mixture equilibrium behavior in adsorbents is important for 

the optimization of adsorption separation processes. However, experimental 

measurements of the multi-component adsorption isotherm are time-consuming and 

complicated because of the additional degree of freedom i.e. bulk composition. As a 

consequence experimental data are scarce. In present work, the binary adsorption 

equilibrium for various mixtures are predicted from the pure component adsorption 

data, using the Ideal Adsorption Solution Theory (IAST). As the name implies, IAST 

assumes an ideal mixture of components in the adsorbed phase.  

The pure component isotherm data as points cannot be conveniently used to calculate 

IAST results for mixtures. Thus, the pure component isotherm data is correlated with 

appropriate isotherm equations to facilitate the computations. 
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The primary purpose of this study is to collect isotherm data for several gases (i.e. 

methane, ethylene, propylene and CO2) at numerous temperatures (i.e. 10C, 35C, 65C) 

in silicalite. Experimental isotherm data are then correlated with isotherm equations 

and mixture (only binary) equilibrium behavior are predicted using IAST. 
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CHAPTER II 

THEORY 

 

 

Excess adsorption and Gibbs isotherm adsorption 

 

Excess adsorption is the number of molecules in micropores in excess of the amount 

that would be actually present in the ambient bulk fluid phase. Excess adsorption can be 

measured in experiment which is different from the absolute adsorption, the actual 

number of molecules in micropores. The difference between absolute and excess 

adsorption is negligible at the sub-atmospheric pressure [12]. 

The absolute amount adsorbed, based on a unit surface area is the integral of density 

profile normal to a surface (Talu and Myers, 2001) as, 

     ∫  ( )   
 

 
                                                         (2-1) 



 

8 
 

Where  ( ) is local density and z is distance perpendicular to a surface. The limits of the 

interfacial region, however, are very difficult to define. In this equation the upper limit 

for integration L is a function of T&P which complicate the use of this definition. 

As the first person to realize this complication, Gibbs (1928) introduced the concept of a 

“dividing surface” between two bulk phases. This hypothetical surface clearly separates 

the ill-defined interfacial region into two distinct phases.  Also, he assumed that the 

fluid phase and impenetrable solid phase have uniform properties. 

Compared to the actual adsorption condition, the changes in properties are attributed 

to a two-dimensional adsorbed phase, the dividing surface. All the general properties 

except volume are called “Gibbs surface excess”. The adsorbed phase does not have a 

volume since it is two-dimensional. The surface excess adsorption with Gibbs definition 

is 

    ∫ ( { }    )   
 

  
                                                   (2-2) 

This expression overcomes the ambiguity caused by the unclear upper limit of 

integration L in Eq. (2-1).  The low integration limit    corresponds to where the Gibbs 

dividing surface is located, which is not explained in Gibbs original work. Location of    

determines the reference state in adsorption thermodynamics.  

When it comes to the microporous adsorbent, most of the concepts of adsorption 

developed from flat surfaces are no longer valid, such as Langmuir and BET formulation. 

This is because the surface area of the porous solid cannot be independently measured 
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without any adsorption. Surface area loses its physical significance and cannot be used 

as the extensive thermodynamic property. (Gumma and Talu,2010) 

As a surface area- independent definition, the Gibbs dividing surface can be extended 

from flat surfaces to porous solids, as long as a reference state (which is independent of 

the system properties such as T and P) is used to locate the dividing surface. Then the 

Eq.(2-2) is only a definition of an excess thermodynamic property.(Talu, 2010) 

Gibbs definition of adsorption is a mathematical description and does not imply any 

shape of the surface phase. The fundamental property relation for the total internal 

energy U for adsorbed phase as (Talu, 2010) 

             ∑      (     
 )                                                 (2-3) 

  
  is the chemical potential of pure solid without adsorbed phase.    is the chemical 

potential of species i (same in the fluid and adsorbed phase).    is the number of moles 

of fluid component i in adsorbed phase. S is the entropy for the adsorbed phase.     is 

the activated mass of solid which is independently measured.  

The      term can be neglected, since the adsorbed phase has no volume. The above 

equation is simplified as 

        ∑       (     
 )                                                (2-4) 

The last term in the above relation is the change in surface free energy of solid when 

contacted with fluid bulk phase. For porous solids, it is solid grand potential    
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                                                             (2-5) 

It cannot be directly measured for porous solids. The following differential equation, 

called Gibbs adsorption isotherm equation, is utilized to calculate the grand potential. 

(Talu,2010) 

       ∑    (    )   (           )                                      (2-6)                        

Where    is the fugacity of component i in the bulk gas.    is the amount adsorbed based 

on the solid mass,        ⁄  .  

For an ideal gas phase, Eq. (2-6) reduces to  

       ∑
  

 
     (           )                                             (2-7) 

By definition, the grand potential   is zero at zero pressure. Thus the grand potential 

can be calculated from  

 

  
  ∫ ∑

  

  
   

 

 
    (          )                                                                 (2-8) 

The integrand 
  

  
 has a finite value at zero pressure, the Henry’s constant   . It relates to 

limiting slope of component i isotherm at the origin.[Talu,2010] 

      (
  

  
)  

 

 
       (

   

   
)                                                           (2-9) 

Therefore, the integral in Eqn.(2-8) is finite at all pressures. 

  



 

11 
 

Isotherm model 

 

The last term (     
 )    in Eq. (2-4) is the change in surface free energy of solid, 

when contacted with fluid bulk phase. (Talu, 2010) For adsorption on flat surface, it is 

often expressed in the form   

(     
 )                                                 (2-10) 

Where,   is the spreading pressure, A is the specific surface area. The spreading 

pressure  , is a crucial intensive variable for adsorption on flat surfaces. From a practical 

point of view, plenty of isotherm models have been developed for flat surfaces. Most of 

these models can be converted to equivalent forms for adsorption in microporous 

substances. Here, the relation between adsorbed phase concentration and the 

equilibrium vapor pressure is further studied in the following isotherm models from 

Ruthven’s book.[4]  

 

In Ruthven’s book, the Gibbs adsorption isotherm is a differential equation and is 

expressed as 

 (
  

  
)
 
 
  

 
                                             (2-11) 

  is the molar surface area, also 

  
 

  
                                             (2-12) 
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Corresponding to Eq. (2-7) , Eq. (2-11) is converted to 

 (
  

  
)
 
 
  

 
                                               (2-13) 

   is the component i amount adsorbed per unit of solid mass,         ⁄ .   is the 

spreading pressure.  

 

The adsorbed phase is characterized by an equation of state in the spreading pressure   

(      ) , just as an equation of state V (P, T, N) is used for fluids. 

 

Henry’s law 

Analogous to ideal gas law, the simplest EOS for the adsorbed phase is expressed as  

                                                          (2-14) 

From the Gibbs isotherm Eq. (2-11) 

(
  

  
)
 
 
  

  
 

 

 
                                                       (2-15) 

Integration at constant temperature gives 

          ( )                                                          (2-16) 

The integration constant is a function of temperature only and it relates to the Henry’s 

Law constant for the adsorbent-adsorbate pair. Combing this equation with the EOS in 

Eq. (2-11) and Eq. (2-12) gives 



 

13 
 

   
  

  
                                                           (2-17) 

K is the Henry’s law constant. 

 

Langmuir (single) Isotherm 

The Langmuir model is developed based on three assumptions i) adsorbed layer is a 

monolayer of finite number of adsorption sites, ii) the surface of solid is uniform and 

adsorption energy is same for all sites, iii) there is no interacting force among the 

molecules adsorbed[5]. 

 

At higher concentrations, Ruthven et al. postulate the equation of state is formed by 

 (   )                                                      (2-18) 

in analogy with P (V-b) = N RT, 

(
  

  
)
 
   

  

(   ) 
                                                 (2-19) 

Proceeding through the Gibbs isotherm Eq. (2-11), the integration comes to  

  

 
  

   

(   ) 
                                                     (2-20) 

Assume     , which is a reasonable assumption at low concentrations and neglect 

the term in    in the denominator of Eq. (2-20), above expression integrates to 
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  ( )    
   ⁄

     ⁄
 

 

   
 

  

  
    

                                        (2-21) 

  is the fractional coverage, take   =   ⁄ , and  =   ⁄ . As expressed in Eq. (2-21), the 

total monolayer coverage,      is achieved at infinite equilibrium pressue. 

 

Virial Isotherm 

The Virial equation of state gives the best fit at low and medium pressure range as 

stated by (Zhang and Talu, 1990). The adsorbed phase is considered to obey a general 

EOS of the Virial form 

  

  
   

  

 
 
  

  
 
  

  
                                         (2-22) 

Take the derivative at constant temperature 

(
  

  
)
 
    (

 

  
 
   

  
 
   

  
 
   

  
  )                                       (2-23) 

Proceeding through the Gibbs isotherm equation Eq. (2-11) in the same way leads to the 

Virial isotherm equation 

            ( )       
   

 
 
   

   
 
   

   
                            (2-24) 

Combination with Eq. (2-22), gives an exponential equation  

         (        ( )       
   

 
   

   

   
  
  

   

   
  
   )         (2-25) 
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which is reduced to 

         (         
     

   )                              (2-26) 

The Henry’s law constant (K) is related to the gas-solid interaction only, while B, C, 

D…are the Viral coefficients standing for the interactions in the adsorbed phase. 

Especially, the Henry’s law constant plays a significant role in analyzing the adsorbate-

adsorbent interactions.  

 

In Eq. (2-26) parameters are inverse functions of T, which can be simplified as follows. 

     
  
 
          

  
 

 

     
  

 
            

  

 
                                           (2-27) 

                    , etc are temperature-independent Virial coefficients.  

 

Calculation of Henry’s Law Constant From Experimental Data 

The Henry’s Law constant is defined as the slope of the isotherms at the origin. It is a 

very important thermodynamic property related to the interaction of the molecules 

with the surface. However, with strongly adsorbed components, it is difficult to 

determine the Henry’s Law constant directly from the limiting slope of the isotherm. 
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The expression Eq.(2-25) provides the basis of a useful method to evaluate Henry 

constants from experimental isotherms [Barrer and Davies, 1970]. 

 

The Virial equation Eq. (2-26) can be expanded to the following form 

  (
 

  
)     

  

 
 (   

  

 
)    (   

  

 
)   

  (   
  

 
)   

                        (2-28) 

A plot of ln(P/  ) versus    should be linear at concentration below the Henry’s Law 

limit. The extrapolation of this plot to zero-adsorbed phase concentration provides the 

simplest way of evaluating the Henry’s Law constant. The application of this method has 

been well recommended by Talu et al [1,4]. 
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Isosteric Heat of Adsorption 

 

The role of temperature in adsorption isotherms is based on the partial differentiation 

thermodynamic equation:[7] 

 ̅     [
     

  
]
 

                                                   (2-29) 

Or, alternatively 

      [
     

 (  ⁄ )
]
 

                                                  (2-30) 

where  ̅ is the differential enthalpy of adsorption, a negative quantity because 

adsorption is exothermic. The absolute value of  ̅ is called “isosteric heat” which is 

commonly replaced by symbol     to avoid confusion. The superscript (IG) refers to the 

ideal-gas assumption. In the rigorous real-gas equation, the pressure P is replaced by 

the fugacity of the gas.  

 

Isosteric heat provides useful information about the nature of the solid surface and the 

adsorbed phase. The interaction between adsorbate and adsorbent alters the energetics 

of the system. But it is precisely because of this fact, isosteric heat is path-dependent 

and is not a good choice to express thermodynamic properties, as stated by Myers [7, 

8].  
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However, isosteric heat indicates the degree of adsorbent heterogeneity and decreases 

with increasing quantities of adsorbed substances, when the adsorbent surface is 

heterogeneous. And, it can be calculated from temperature variation of isotherms, 

without using a calorimetric instrument. It is still an important property to be analyzed 

in the research and is commonly used in literature [5]. 

 

To calculate the isosteric heat, Virial equation of state Eq. (2-24) is considered in this 

thesis. A good review has been given by Talu. [1] Using pure gas adsorption isotherms at 

different temperature, the isosteric heat of adsorption of a pure gas is expressed as a 

polynomial 

   

 
  [

     

 (  ⁄ )
]
 

  (          
     

     )               (2-31) 
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Ideal Adsorbed Solution Theory ( IAST ) 

The Ideal Adsorbed Solution Theory (IAST) was first proposed by Myers and Prausnitz in 

1965. [9] It quickly became a classic model to predict the multi-component adsorption 

equilibria, depending on their respective single-component isotherm parameters. 

 

IAST is a predictive model which does not require any mixture data and is independent 

of the actual model of physical adsorption. [10] It is used to predict the binary mixture 

adsorption for pairs of gases in silicalite in this study. 

 

IAST is analogous to Raoult’s law for vapor-liquid equilibrium, assuming an ideal 

behavior to represent the relationship between the bulk gas phase and adsorbed phase 

[4] i.e.: 

        
 (  )     (constant T)                                      (2-32) 

where     and    are the spreading pressure of component i in the adsorbed phase and 

molar fraction, respectively. P is the total pressure of the gas mixture.   
 (  ) is the 

standard state pressure of pure component i which yields the same spreading pressure 

as that of the mixture at same temperature. 
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Unfortunately, spreading pressure    cannot be directly measured for porous solids. 

According to Myers and Prausnitz research [7], for a pure component system, the 

integration of the Gibbs adsorption isotherm equation, will give the relationship 

between spreading pressure   and pure component i isotherm adsorbed   
  in the 

adsorbed phase. 

  
  

  
 ∫

  
 

  
    

  
 

 
                                                       (2-33) 

For an ideal binary system, Eq. (2-32) and Eq. (2-33) becomes 

        
 ( )                                                         (2-34) 

 

        
 ( )                                                       (2-35) 

 

 
  
  

  
   (  

 )                                                           (2-36) 

 

       
  
  

  
   (  

 )                                                         (2-37) 

From pure component isotherm data 

  
    (  

 )                                                         (2-38) 
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    (  

 )                                                         (2-39) 

For mixing at constant T, the spreading pressure for each component is equal to that for 

the mixture, therefore 

  
    

                                                           (2-40) 

Also,  

                                                         (2-41) 

 

                                                              (2-42) 

Where,    and    represent the molar fraction of either component in the mixture. 

 

In these set of equations, there are eleven unknowns ( P,   
 ,   

 ,   ,   ,   ,    ,   
 ,   

 , 

  
 ,   

 ) and nine equations, from Eq.(2-34) to Eq.(2-42). Any two independent variables 

are specified, all other variables can be calculated at isotherm conditions. 

 

The total amount adsorbed, N (mol/kg) is 

 

 
 

 

     
 
  

  
  

  

  
  (                )                      (2-43) 

So far completes the definition of IAST model. 
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The selectivity of component 1 over component 2 is defined by  

     
    ⁄

    ⁄
                                                           (2-44) 

Selectivity is a very sensitive measure of the accuracy of the prediction of the adsorbed- 

phase composition. 
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 Implementation of Virial model with IAST 

With the Virial isotherm equation given in Eq. (2-25).The functionalities for IAST are 

 

  
  

  
   (  

 )      
  

   
  

 
 
    

  

 
 
    

  

 
                                                                (2-45) 
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                                                                (2-46) 

 

  
    (  

 )    
      (       

      
       

  )                                                (2-47) 

 

  
    (  

 )    
     (        

      
       

  )                                               (2-48) 

 

IAST and Virial equations are used to predict adsorption equilibria for gas mixtures in 

this work. 
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CHAPTER III 

EXPERIMENT 

 

 

A. Materials  

The silicalite sample as 1/16 inch pellets was purchased from UOP LLC, Illinois, US. The 

solid sample in this study is in pellet form with an unknown amount of binder. Silicalite 

crystals have a specific BET surface area of 350     ⁄  [2]. 

Information about the gases is given in Table I. 

TABLE I. Purity of gases used in the study 
 

Gas Grade Company 

Helium 4.7 VNG, WV, US 

Methane 4.0 MATHESON 

Ethylene 99.5% AGA GAS 

Propylene 99+% ACA. INC 

http://en.wikipedia.org/wiki/Des_Plaines,_Illinois
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Carbon dioxide Not available MATHESON 

 

B. Apparatus 

The apparatus is designed for measurement of pure and binary component isotherms by 

volumetric method. The crucial part of the apparatus is the measurement section, which 

is subdivided into four sections, on the basis of the usage: 

1. Inlet section 

2. Bypass section 

3. Storage section 

4. Exit section   

A detailed schematic diagram is shown in Figure 1. The inlet (not shown) before valve A1 

contains necessary manifold for different gases and outlet (not shown) after valve A11 

includes a mechanical vacuum pump and exhaust connections. 

The measurement section consists of an adsorption column, a thermocouple inside the 

column, two storage tanks of different sizes, a flow-rate controller, and two pressure 

sensors. There are other thermocouples to measure ambient temperature and water 

bath around the storage tanks. The temperature and pressure readings are collected 

from indicators connected to the sensors. All of the valves are isolated from the ambient 

with bellows design. The entire system is 316 stainless steeled. 

 

T 
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The adsorption column is made of ½ inch stainless steel tube, situated between the 

valve A6 and A7. In order to achieve isothermal conditions, the column is kept in a 

thermostatic waterbath during the measurements, offering a constant temperature 

surrounding. The water bath is connected to the Fisher Scientific-Isotemp-Heated Bath 

Circulator, with +- 0.1 C precision. 

Activation/ regeneration is achieved by replacing the waterbath with a heating mantle. 

During activation/regeneration, helium flow through the column is controlled by the 

flow controller. The activation is performed under vacuum(less than 0.5 psig) with 

helium flow about 20 cc STP/min. A pre-heating coil before the column is used to heat 

the helium to activation temperature.  

The pressure of the system is monitored by two pressure transducers, which have 

different ranges. The Low-Pressure transducer, placed between valves P1 and P3, has a 

0-15psi range. The High- Pressure transducer, placed between valves P2 and P4, has a 0-

100psi range. The pressure transducers are connected to the indicators. 

J-type thermocouple is connected to detect the temperature inside the adsorption 

column. The ambient temperature and the temperature around the storage tanks are 

also monitored with J-type thermocouples. The specifics, including model number, 

manufacturer, and the ranges of the instruments are compiled in Table II. 
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TABLE II Specifics for the instruments 

  Model NO. Manufacturer Range 

Flow controller Sensor FMA-133 OMEGA 

 

0-100 SCCM 

 Indicator FMA-2-DPV  

Low_P Sensor TJE/713-26 SENSOTEC 0-15 PSIA 

 Indicator 60-3147-01  

High_P Sensor TJE/713-10 SENSOTEC 0-100 PSIA 

 Indicator 60-3147-01  

Temperature Sensor J-TYPE OMEGA  

 Indicator DP82  

Heater Jacket TM518 GLAS*COL  

 Controller 2010 OMEGA  

Water Bath  9005 FISHER SCIENTIFIC  

 

C. Preliminary experiments 

 

i) Helium expansion/ internal volume determination 

In this system, only the volume of the exit section was previously determined by 

mercury displacement and helium burette techniques. The inside volume of other 

sections needs to be measured by helium expansion.  

Helium expansion is a method to measure the internal volume of a system, by charging 

helium into the known reference section and expanding it to the target section. The 

volume of the target section can be calculated from material balances. Adsorption of 

helium can be neglected under the room temperature. [1] Calculation of volume with 
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helium expansion technique is similar to the isotherm measurement, the only difference 

is that the gas amount adsorbed is assumed to be zero. The results of the volume 

calculation are summarized in Table III.    

TABLE III Inside volume of each section in the experimental system 

 Section Enclosed by valves Volume(cc) 
Standard 
deviation 

CV% 

Vo-1 Inlet A1+A2+A4+A9+A12 20.0502 0.2383 1.188 

Vo-2 Bypass A6+A8+A9+A10 9.9614 0.1526 1.532 

Vo-3 Exit A3+A5+A10+A7+A11+P1+P2 14.4835 0.2847 1.966 

Vo-4 Pump - - - - 

Vo-5 B-tank - - - - 

Vo-6 Saturator A2+A3 +A13 162.2194 2.5101 1.547 

Vo-7 Low-P P1+P3 6.5686 0.1334 2.030 

Vo-8 High-P P2+P4 6.4376 0.0974 1.513 

Vo-9 Bed (full) A6+A7 23.4905 0.3666 1.561 

Vo-
10 

S-tank A4+A5+A13 95.6001 1.4624 1.530 

Vo-
11 

Bed(empty) A6+A7 25.6431 0.4013 1.565 

 

ii) Experimental protocol 

The procedure, basically, consists of activation, gas charge and equilibration procedures. 

Prior to each adsorption experiment, the sample was activated at 310C under vacuum 

with helium flush flow overnight ensuring a negligible residual amount adsorbed. After 
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activation, charge and equilibration steps are repeated several times to collect isotherm 

data. 

 

ACTIVATION AND COOL-DOWN 

1. BRING TO STAND BY CONDITION 

2. Open Valves; 

·open exit valve A11, if the system is above atmospheric pressure 

·open all valves except inlet valve A1 

3. Vacuum system; 

·close air bleed valve, start the mechanical vacuum pump 

·wait until pressure indicators show lowest vacuum 

·close all valves except P1 and P2 

4. Start helium flow; 

·switch inlet gas to helium 

·open helium cylinder valve and regulator exit valve, set pressure above 10psig 

·open A1, A12, A8, A10 and A11, flow indicator should show helium flow-rate 

·slowly open A6 and A7, close A10 to direct helium flow through the column 

5. Start heating; 

·set up the heating mantle, confirm the adsorption column and furnace wall are  

 not in contact, confirm the control thermocouple is placed in the mantle 

·start Heat-controller 

6. Leave the system for activation over-night; 
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7. Stop the flow; 

·record the system condition 

·close A1, A12, A8 and A6 

·close helium cylinder and regulator valves 

8. Full vacuum; 

·wait for full vacuum, close A11 

·record system condition, close A7 to isolate the column 

9. Cool down 

·open the air bleed valve and stop the vacuum pump 

·set T-controller to under zero  

·unplug the heating mantle and remove it 

·wait until the sample TC reads desired ambient temperature 

 

ISOTHERM EXPERIMENTS 

1. First step after activation;( column should be isolated, and cooled) 

·place water bath around the column, set up water circulation, adjust controller to 

 desired isotherm temperature 

·switch inlet to desired gas 

·open gas cylinder valve, set regulator pressure 

·open A1, A9, A10 and A11 to let some gas go through A11 directly to vacuum, 

 then close A10  

·after full vacuum, close A11 
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·flush with gas, open A10 slowly, fill the exit part and small tank to 2-5 psi, 

 close A10, open A11 slowly, vacuum full, close A11, repeat one more time 

 

2. Charge pressure step if it is lower than 15psi( otherwise, skip to 3 below, if P charge> 

15 psi) 

·fill gas to desired pressure by opening A10 slowly 

·close A10 

·set chart-recorder, and record charge pressure, T-column, T-ambient and 

  T-jacket 

 

3. Charge pressure step if it is higher than 15 psia but lower than 100 psia  

·isolate low-P regulator, close P 1  

·fill gas to desired pressure by opening A10 slowly 

·close A10 

·set chart-recorder, and record charge pressure, T-column, T-ambient and  

 T-jacket 

 

4. Wait for equilibrium step 

·open A7 slowly and completely (keep A6 closed)  

·wait for the equilibrium until the pressure remains unchanged in 1 hour 

·record equilibrium pressure, T-column, T-ambient and T-jacket 
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·close A7 

 

5. Repeat step 2( or 3 ) and 4, varying the charge pressure as desired 

 

6. Go to stand-by condition 

 

·close A1, open all valves except A11 

·if the system is above atmospheric pressure open A11 to reduce pressure 

·close all valves except P1 and P2 

·stop water circulator, remove the water bath 

· open air bleed valve and turn off the vacuum pump if operating 

· leave the system 

 

e). Calculation Procedure 

Using the material balance, the amount adsorbed at each step is 

 

             

In which,  

    [
       

       (           
   )

]
      

 [
       

       (               )
]
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    is the initial number of moles present at each charge step.         is the volume of 

the column.         is the charge volume in the system.                      are the 

molar volumes of the gas, at the respective T, P conditions. Virial Equation of State is 

used with second Virial constants taken from DIPPR database for the molar volumes. 

   [
       

       (           
 )
]
  

 [
       

       (          
 )
]
  

 

   is the final number of moles present at each equilibrium step. 

Thus, amount adsorbed per mass adsorbent at each step is  

    
     

                   ⁄  

The isotherm data is collected by changing the conditions. The amount adsorbed is 

calculated from  

   ∑    

Where it is zero after activation by definition. The relation between    and    
  is the 

isotherm at the respective column temperature. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 

In this section the analysis of all pure component experiments are presented first, 

followed by a section where the experimental results are compared with isotherm 

models. 

A. Pure Component Adsorption Isotherms of Methane, Ethylene, 

Propylene and Carbon Dioxide in Silicalite 

Pure component adsorption isotherms were obtained volumetrically at three different 

temperatures, as 10C, 35C and 65C. The pure component excess adsorption isotherms 

of methane, ethylene, propylene and carbon dioxide in silicalite are presented in Figures 

4.1 through 4.4.  



 

36 
 

 

Figure 4.1 Adsorption Isotherm of methane in silicalite 

 

Figure 4.2 Adsorption Isotherms of ethylene in silicalite 
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 Figure 4.3 Adsorption Isotherms of propylene in silicalite 

 

Figure 4.4 Adsorption Isotherms of carbon dioxide in silicalite 
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Any gas adsorption isotherm in a micro-porous solid has two important characteristics: 

1) The saturation capacity as indicated by the plateau level at high pressures 

2) The Henry’s constant as indicated by the slope at origin 

The saturation capacity is determined by molecular size and micro-pore space available 

in the solid. For the same solid, the saturation capacity decrease as molecular size 

increases. For the four gases studied so far, the saturation capacities are in the order 

CO2>CH4>C2H4>C3H6 

This order is deduced, although the CH4 isotherms did not reach high enough plateau 

pressure levels. 

Another way to analyze the experimental data is from the slope at origin of the 

isotherm, which is the Henry’s constant. Henry’s constant of a gas is determined by the 

affinity of the solid or the strength of attractive forces between the solid and gas 

molecules [2]. According to the comparisons of the slopes under same temperature for 

four gases, the order of Henry’s constant is C3H6>C2H4>CO2>CH4. 
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B. Pure Component Isotherm Regressions 

The purpose of regression of the pure component data for a model was to express the 

data in an analytical form to facilitate binary calculations. The pure component data 

were fitted with two models: 

i) Virial model 

ii) Langmuir model 

Virial Regressions 

Regressions were performed on the pure component data to determine the number of 

Virial coefficients. A statistic software, Sigmastat, was used. Isotherm data at all 

temperatures were used in a single multiple linear regression with model equations 

given in Eqn. (2-28). The best fitting model was chosen by the F-statistics of the overall 

regression by forward stepwise technique with a significance level of 0.05. The 

significance levels based as T-statistics is also given in the table IV. Since   𝑣    <      , 

the null hypothesis that parameter equal to 0 will be rejected.   

 

The estimated Virial coefficients obtained from the data analysis for the adsorption of 

methane, ethylene, propylene and carbon dioxide in silicalite are presented in Table IV 

along with standard deviation of parameters. 

TABLE IV. Virial Coefficients for the adsorption isotherms 

 

Methane Ethylene 

Value Std.dev T-statistics Value Std.dev T-statistics 

k0 13.41 0.0474 0.0035 12.771 - - 
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k1 -2584.67 15.201 -0.0059 -3403.24 -0.635 0.0002 

b0 0.212 0.0993 0.4684 3.82 1.927 0.5045 

b1 236.72 27.938 0.1180 - -  

c0 -0.457 0.0699 -0.1529 -1.154 -1.275 1.1049 

c1 - -  -596.623 -2.261 0.0038 

d0 0.32 0.0316 0.0988 - -  

d1 - -  368.99 2.735 0.0074 

 
Propylene Carbon Dioxide 

Value Std.dev T-statistics Value Std.dev T-statistics 

k0 14.86 - - 14.411 - - 

k1 -4711.13 -0.392 0.0009 -3699.9 --0.995 -0.0003 

b0 - - - 1.627 1.105 0.6792 

b1 1671.751 1.503 0.0008 719.172 1.705 0.0024 

c0 - - - -2.902 -4.55 1.5679 

c1 -2293.08 -3.71 0.0016 - - - 

d0 - - - 1.415 4.729 3.3420 

d1 1237.059 3.193 0.0025 -167.952 -1.954 0.0116 

 

The Experimental data points and the Regressions of Virial equation (dashed lines) are 

shown in Figure 4.5-4.8. Because the experimental data are measured using the 

volumetric method, the experimental error in the calculated amount adsorbed,   , 

accumulates such that the last measured point is the least accurate. 
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Figure 4.5 Virial Regressions and experimental data for Pure Methane  

 

 
Figure 4.6 Virial Regressions and experimental data for Pure Ethylene  
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Figure 4.7 Virial Regressions and experimental data for Pure Propylene  

 

 
 
Figure 4.8 Virial Regressions and experimental data for Pure Carbon Dioxide  
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From these figures 4.5 through 4.8 and the statistics given in Table 7 it can be seen that 

the isotherm data are well correlated by Virial Model.  

 

Silicalite powder was used as adsorbent in literature [3].  Silicalite pallets with about 20% 

binder are used in this study. 

 

Figure 4.9 Comparison between experimental data and literature data under 35C 
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Langmuir Regressions 

Linear regressions are also used to estimate the parameters of Langmuir isotherm 

model. The model is first linearized followed by simple linear regression. Table V 

presents a common linearization of the Langmuir isotherm used in this study and the 

regressed parameter values by the least-squares method.  

TABLE V. Isotherm parameters for the adsorption isotherms 

Linear Regression Coefficients 

Adsorbent 

Methane Ethylene Propylene Carbon 
Dioxide 

 

 
 

 

   
  

 

  
 

T = 10C 

 
  ⁄  81.689 7.751 - 15.965 

b 0.0065 0.0648 - 0.0262 

   0.9984 0.9992 - 0.9962 

T = 35 C 

 
  ⁄  162.31 14.978 2.1846 35.547 

b 0.0033 0.0353 0.2964 0.0125 

   0.9984 0.9976 0.9998 0.9889 

T = 65 C 

 
  ⁄  330.6 34.801 7.5975 71.103 

b 0.0030 0.0162 0.0836 0.0073 

   0.9945 0.9922 0.9994 0.9664 

Units: P in kPa; n and    in mol/kg;  

 
 

Once Langmuir parameters are estimated, the assessment of goodness-of-fit is 

discussed by the R-square statistics. The table also contains R-square values to assess 
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the goodness–of-fit. In general, R-square values are very high with lowest being 0.9664. 

This would normally be an excellent representation of data with the model in the 

regression domain as P/n VS. P. Figure 4.10 to 4.13 graphically display the regressions. 

Examination indicates that Langmuir model captures most of the essence of data but 

deviates at low pressures (in the Henry’s Law region). This is particularly apparent in 

Figure 4.12 for CO2. The Henry’s Law region is extremely important in adsorption since 

it denotes the basic affinity of the solid for the gas species.  

 

The comparison of the Experimental data with correlation results from Langmuir model  

for pure methane, ethylene, propylene and carbon dioxide are illustrated in Figure 4.10 

through 4.13 in the linearized domain. 

 

 

 

Figure 4.10 Langmuir Regressions and Experimental Data for Pure Methane 
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Figure 4.11 Langmuir Regressions and Experimental Data for Pure Ethylene 

 

Figure 4.12 Langmuir Regressions and Experimental Data for Pure Carbon Dioxide 
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Figure 4.13 Langmuir Regressions and Experimental Data for Pure Propylene 
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C. Comparison of the models 

 

The Virial and Langmuir models have different structures and contain different number 

of parameters. In general, accuracy of a model to reproduce data increases with 

increasing number of parameters. Therefore, comparison of different models in this 

section is not a straightforward task.  

 

One method that is commonly employed is to calculate sum-of-square errors (SSE) for 

the models. SSE is defined as, 

  𝐸  ∑ (  
  𝑝   

     )
     𝑝   𝑡𝑠

 = 
                  (7-1) 

The sum-of–squares error (SSE) is a function of residues, the differences between the 

experimental data and predicted values (pressure in this case) given by mathematical 

models. The smaller SSE, the better the approximating function Regressions the data. 

Table VI below lists the SSE for the data set in this study. 

 
TABLE VI. Comparison of Sum of Square Error for two different regression models 

Sum of Square Error 

 
CO2 C2H4 

Langmuir Virial Langmuir Virial 

10C 216249.07 8019.21 818756.00 36366.65 

35C 48757.71 3402.29 347058.64 6699.16 

65C 201864.75 1620.69 145185.44 3149.01 

 CH4 
C3H6 

Langmuir Virial Langmuir Virial 
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10C 967.24 146.99 - - 

35C 784.28 94.49 33986.91 12666.68 

65C 278.75 56.97 15806921.87 13911.81 

 

 

Examination of Table VI indicates that the Virial isotherm represents the dataset much 

more accurately in this study. In addition, it provides T-independent parameter values 

directly which is more convenient to use in binary predictions. Therefore, the Virial 

isotherm equation with parameters given in Table IV is used in the mixture predictions 

with the IAST model. 
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D. Virial domain  

 
The isotherm plots Figure 4.1 through 4.8 do not reveal any detail in the low pressure to 

assess quality of data. However, Henry’s constant is a very important thermodynamic 

property related to the interaction of the molecules with the surface [2]. Therefore 

Henry’s constant values carry a significant weight in determining binary phase diagrams. 

Very accurate data at low pressure are necessary to accurately determine Henry’s 

constants. 

 A ‘Virial domain’ definition reported in literatures [1,4,12] reveals information about the 

Henry’s Law constant and the quality of data at low pressure, by plotting the isotherm 

data as ln(P/n) versus n. The intercept at zero amount adsorbed is related to Henry’s Law 

constant. The Virial domain plots Figure 4.14 through 4.17 are used to scrutinize data.  

 

Figure 4.14 Virial plot of ln(P/n) versus n for methane in silicalite. 
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Figure 4.15 Virial plot of ln(P/n) versus n for ethylene in silicalite. 

 

Figure 4.16 Virial plot of ln(P/n) versus n for propylene in silicalite. 
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Figure 4.17 Virial plot of ln(P/n) versus n for carbon dioxide in silicalite. 

 

As shown in Figure 4.14 through 4.17, the experimental data presented here has 

excellent accuracy for most with some scatter for C3H6 and CO2 at lower temperatures. 

Furthermore, these figures also show the Virial equation greatly following the data at 

low pressure. The Virial equation is found to be a reliable way to calculate the Henry’s 

law constants with good accuracy. 
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E. Prediction of Binary Adsorption Equilibrium Using IAST-Virial model 

 

This section discusses in detail the predictions made by IAST-Virial model. IAST-Virial 

model is the combination of IAST theory and the Virial isotherm equation. The 

predictions of the binary adsorption by the IAST-Virial model are quite straightforward 

and completely based on the obtained temperature independent parameters of the 

pure-component adsorption models as shown by Tables IV. Temperature-dependent 

coefficients used in the binary adsorption predictions are given in Table VII. 

 

TABLE VII.  Coefficients used in binary adsorption predictions 

Adsorbate Methane Ethylene Propylene Carbon Dioxide 

T = 10 C=283.15K 

K 4.2817 0.7518 -1.7783 1.3441 

B 1.0480 3.8200 5.9041 4.1669 

C -0.4570 -3.2611 -8.0985 -2.9020 

D 0.3200 1.3032 4.3689 0.8218 

T = 35 C=308.15K 

K 5.0223 1.7269 -0.4284 2.4042 

B 0.9802 3.8200 5.4251 3.9608 

C -0.4570 -3.0901 -7.4415 -2.9020 

D 0.3200 1.1974 4.0145 0.8700 

T = 65C=338.15K 

K 5.7664 2.7067 0.9279 3.4694 

B 0.9120 3.8200 4.9438 3.7538 

C -0.4570 -2.9184 -6.7813 -2.9020 

D 0.3200 1.0912 3.6583 0.9183 

*Units; Pressure in kPa, Amount adsorbed in mol/kg, Temperature in K. 

 

MATLAB is used in this study to calculate the total amount adsorbed in different binary 

systems and the computer code is given in Appendix A. In order to better analyze binary 
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mixture predictions, the data are represented in 3-D and 2-D plots, in three variations: 

pressure, gas composition and temperature. For the first two variations, isothermal 

condition at 35 °C is selected as the base common temperature for each predicted 

binary system. 

a) 3-D plots for total amount adsorbed in binary adsorption prediction 

 

The effect of total pressure and gas composition in total amount adsorbed are presented 

in 3-D graphs from Figure 4.18 to 4.23 to provide a vivid description of the predicted 

total amount adsorbed in various conditions. E.g. Figure 4.18 is the total amount 

adsorbed for CO2/C2H4 mixture in silicalite. 

 

 

Figure 4.18 Total amount adsorbed for CO2/CH4 mixture in fraction of pressure and gas 

composition  
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Figure 4.19 Total amount adsorbed for CO2/C2H4 mixture in fraction of pressure and 

gas composition  

 

Figure 4.20 Total amount adsorbed for CO2/C3H6 mixture in fraction of pressure and 

gas composition  
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Figure 4.21 Total amount adsorbed for CH4/C2H4 mixture in fraction of pressure and 

gas composition  

  

Figure 4.22 Total amount adsorbed for CH4/C3H6 mixture in fraction of pressure and 

gas composition  
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Figure 4.23 Predicted binary isotherms from the Virial-IAST model for C2H4/C3H6 in 

silicalite.  

 

These 3-D graphs present the predicted total amount adsorbed in binary isotherm 

adsorption systems. At the end of the compositions, such as y1 equal to 1.0 or 0, the 

paths are the pure component isotherms measured experimentally.  

b) 3-D plots for Selectivity in binary adsorption predictions 

 

Selectivity, acts as a sensitive indicator of phase behavior in adsorption system for 

practical applications, is also studied in this work. Adsorption separation factor is 

defined as 

α    
  

y ⁄

  
y ⁄
 
  

y ⁄

  
y ⁄

                                                                                  (4-1) 

Where x1, x2, y1 and y2 are the mole fractions and gas fractions of components 1 and 2. 

n1 and n2 are the amount adsorbed of components 1 and 2 in adsorbed phase.  
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As a measure of the preference of the adsorbent for component 1 over 2 in different 

condition, the selectivity of each binary system should approach to the ratio of the two 

pure components Henry’s constant [Talu and Myers, 1988] as pressure approach zero, in 

thermodynamics.  

      α    
K 

K 
                                                                                     (4-2) 

For selectivity calculated in this work, the component 1 is always the ‘heavy’ component 

in numerator, so that  α   >   0.  

The effects of total pressure and gas composition on selectivity are shown in Figure 4.24 

through 4.29. E.g.  Figure 4.24 is the selectivity for CO2/CH4 mixture in silicalite at 35°C.  

 

 

Figure 4.24 Selectivity for CO2/CH4 mixture in fraction of pressure and gas composition 
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Figure 4.25 Selectivity for CO2/C2H4 mixture in fraction of pressure and gas composition 

 

 

Figure 4.26 Selectivity for CO2/C3H6 mixture in fraction of pressure and gas composition 



 

60 
 

 

Figure 4.27 Selectivity for CH4/C2H4 mixture in fraction of pressure and gas composition 

 

Figure 4.28 Selectivity for C3H6/CH4 mixture in fraction of pressure and gas composition 
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Figure 4.29 Selectivity for C2H4/C3H6 mixture in fraction of pressure and gas composition 

 

In the above Figure 4.24 to 4.29, for each diagram, the selectivity approaches to a 

constant value at zero pressure. These constant values are equal to the ratio of the pure 

component Henry’s constants for each system. 
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c) 2-D plots for  total amount adsorbed 

 

3-D plots are useful to visualize the phase equilibrium but not very convenient to 

quantify it. Therefore, 2-D plots are examined to elucidate the effect of pressure, or gas 

composition, or temperature individually.  In this work, temperature is kept constant at 

35 C. Effect of pressure is examined at 50:50 mixture and the effect of gas composition is 

studied under the highest pressure of the light species in each binary system, which are 

given in Table VIII. 

 

TABLE VIII. Highest pressure of light species for each binary system  

 

Light Species Highest_P (kPa) Binary System 

CH4 632 CO2/CH4 -  

C3H6 304 CO2/C3H6 CH4/C3H6 C2H4/C3H6 

C2H4 629 CO2/C2H4 CH4/C2H4 - 

 

i) The effect of total pressure  

 

The effect of pressure on total amount adsorbed is studied for 50:50 gas-phase mixtures 

at 35 C. Figure 4.30 presents predicted total amount adsorbed for mixtures as a function 

of total pressure. In this figure, C2H4/C3H6 loading is not shown for clarity because it is 

almost identical to the CO2/C3H6 mixture. 
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Figure 4.30 Total mount adsorbed for 50:50 gas-phase mixtures in equilibrium 

 

The total amount adsorbed for binary mixtures in low pressure area, 0-100kPa, increase 

rapidly and tend to reach a plateau at high pressure level.  However, without having the 

experimental data to be compared, the accuracy of binary predictions could not be 

determined.  
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ii) The effects of gas composition 

 

 
 

Figure 4.31 Total amount adsorbed for mixtures, CO2/CH4, CO2/C2H4,CO2/C3H6 and 

C2H4/C3H6  at the highest pressure of the lighter species in each binary system 

 

 
Figure 4.32 Total amount adsorbed for mixtures, CH4/C2H4 and CH4/C3H6  at the highest 

pressure of the lighter species in each binary system  
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Total amount adsorbed is predicted as a function of gas composition in above two 

figures. Figure 4.31 showing an overall increasing tendency which is reasonable since y1 

is the gas fraction for the heavy component. Which caused a heavier total amount 

adsorbed when y1 approach to 1.0.  

 

iii) The effect of temperature 

 

The heat of adsorption will cause significant temperature variations in processes. Thus, 

the impact of temperature is also important to understand in adsorption phenomena 

[12].   

 

 

Figure 4.33 Total mount adsorbed for binary mixtures at three different temperatures under 

each highest pressure of the light species 

 

 

0.6

0.8

1

1.2

1.4

1.6

280 290 300 310 320 330 340

To
ta

l A
m

o
u

n
t 

A
d

so
rb

ed
 n

t 
(m

o
l/

kg
) 

Temperature (K) 

C3H6/CH4 C2H4/CH4 CO2/CH4 C2H4/C3H6 CO2/C3H6 CO2/C2H4



 

66 
 

Figure 4.33 shows that a relatively small temperature change (30K) will cause the total 

amount adsorbed to change by 32.6% for CO2/CH4 mixture. 
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d) 2-D plots for selectivity  

 

The selectivity as an important indicator of the phase behavior is studied in below 

 

i) The effects of pressure 

 

In the 50:50 binary adsorption predictions, y1 equals to 0.5, thus the definition of 

adsorption separation factor  

     
  

  ⁄

  
  ⁄
 
  

  ⁄

  
  ⁄

                                                                                  (4-1) 

Could be simplified to, 

     
  

  
                                                                                  (4-3) 

 

The effect of pressure on selectivity is shown in Figure 4.34. Each prediction approaches 

a different limiting selectivity above 1.0. The limiting selectivity is same to the ratio of 

the binary Henry’s constant at zero pressure.  E.g. the binary prediction approaches a 

limiting selectivity of 1.869 at zero pressure for CO2/C2H4 mixture while is same to the 

ratio of the Henry’s constant.  
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Figure 4.34 Selectivity for 50:50 gas-phase mixtures CH4/C2H4, C2H4/C3H6, CO2/C2H4 and 

CO2/C3H6 in equilibrium 

 
 

 
Figure 4.35 Selectivity for 50:50 gas-phase CO2/CH4 mixture in equilibrium 
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Figure 4.36 Selectivity for 50:50 gas-phase CH4/C3H6 mixture in equilibrium 

 

 

In Figure 4.36, the selectivity for CH4/C3H6 mixture is suspiciously high than it should 

be. This may be caused by the inaccurate Henry’s constant of C3H6 determined from the 

pure component isotherm data.  

 

The selectivity diagram is an effective, sensitive way to present the phase behavior and 

highly sensitive to the Henry’s constant. 

 

ii) The effects of gas composition 

 

Figure 4.37 through 4.39 are the variations of selectivity with gas phase composition at 

highest pressure of lighter species 
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Figure 4.37 Selectivity for binary mixtures at the highest pressure of the lighter species in each 

system 

 

 
Figure 4.38 Selectivity for binary mixtures at the highest pressure of the light species 

 
 

In Figure 4.38, the simulation involve C3H6 is showing stability problems again.  
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iii) The effect of temperature 

 

 

 

Figure 4.39 Selectivity for binary mixtures at three different temperatures under each highest 

pressure of the lighter species 

 

In the conditions studied (629 kPa and y1=0.5), the effect of temperature on selectivity is 

small, as indicated in Figure 4.39.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

 

In this section the analysis of all pure component experiments are presented first, 

followed by predictions of binary phase equilibrium.  

A. Pure Component Adsorption Isotherms  

Pure component adsorption isotherms of methane, ethylene, propylene and carbon 

dioxide were obtained volumetrically at three different temperatures, as 10C, 35C and 

65C.  

For these four gases studied, the saturation capacities are in the order 

CO2>CH4>C2H4>C3H6. Although the CH4 isotherms did not reach high enough plateau 

pressure levels, this order can be deduced from considering data and molecular sizes.  

Henry’s constant plays a significant role in adsorption thermodynamics while modeling 

the adsorption isotherm equilibrium. It is the slope at origin of the isotherms. According 
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to the comparison of the slopes under same temperature for four gases, the order of 

Henry’s constant is C3H6>C2H4>CO2>CH4. 

The pure component adsorption data are modeled by Virial model and Langmuir model. 

The Virial model with three parameters represents the dataset more accurately than 

Langmuir model in this study. Furthermore, the Virial model outperforms greatly 

following the data at low pressure. It is found to be a reliable way to calculate the 

Henry’s law constants with good accuracy. 

The Virial isotherm equation with T-independent parameters is used in the binary 

predictions with IAST model. 

 

B. Binary Adsorption Phase Equilibrium 

Even the simplest multicomponent, binary adsorption measurement is complicated and 

time- consuming, due to the extra degree of thermodynamic freedom in adsorption. 

Hence, the binary predictions are made by IAST-Virial model, based on the obtained 

temperature independent parameters of pure component adsorptions. This method is 

quite straightforward and time-saving for an initial assessment of binary phase behavior. 

Matlab Software is used in this study to handle the numerous calculations, by solving 

related non-linear equations, to predict the total amount adsorbed and selectivity in 

binary system. The accuracy and reliability of IAST-Virial predictions need to be further 

studied by collecting binary adsorption experimental data from a real detailed analysis. 
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Binary adsorption of CO2/CH4, CO2/C2H4, CO2/C3H6, CH4/C2H4, CH4/C3H6 and 

C2H4/C3H6 are predicted at 35C. For all of the mixtures, the total amount adsorbed and 

selectivity can be successfully predicted using IAST-Virial model. Predictions of binary 

behavior for binary mixtures are highly sensitive to Henry’s constant. For those mixtures 

including C3H6, the predictions are much less accurate caused by the less accurately 

determined Henry’s Law constant.   
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APPENDIX A 

PURE COMPONENT ADSORPTION DATA 
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TABLE IX Experimental Adsorption Isotherm Data 

T = 10C T = 35C T = 65C 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

Methane 

5.861 0.0755 9.757 0.0615 9.964 0.0303 

12.34 0.1470 18.72 0.1120 13.27 0.0401 

22.31 0.2424 32.92 0.1841 23.65 0.0700 

34.48 0.3443 37.13 0.2051 50.82 0.1430 

46.09 0.4282 51.40 0.2684 71.57 0.1897 

48.23 0.4415 57.16 0.2938 79.29 0.2130 

70.12 0.5776 153.8 0.6141 115.8 0.2930 

116.9 0.7963 254.1 0.8363 148.2 0.3514 

198.9 1.0443 394.8 1.0506 219.3 0.4824 

273.4 1.1927 437.5 1.1141 257.2 0.5351 

326.1 1.2874 621.9 1.2754 384.8 0.7167 

562.6 1.5009 633.0 1.2871 557.8 0.8906 

 
Ethylene 

1.758 0.3170 0.758 0.0904 2.172 0.1135 

5.240 0.6140 2.103 0.1747 7.516 0.2205 

10.38 0.8905 3.310 0.2512 13.82 0.3203 

18.79 1.1428 5.895 0.3567 22.75 0.4400 

30.48 1.3233 7.171 0.3855 38.54 0.6081 

48.03 1.4700 8.964 0.4627 56.13 0.7523 

68.95 1.5672 11.65 0.5442 96.53 0.9794 

72.05 1.5602 12.31 0.5580 141.4 1.1309 

91.71 1.6410 16.24 0.6529 180.0 1.2249 

141.4 1.7368 20.20 0.7341 238.9 1.3265 

190.7 1.8007 24.48 0.8114 289.6 1.3990 

192.7 1.7748 34.10 0.9710 398.9 1.5054 

293.7 1.8798 67.99 1.2503 512.0 1.5885 

325.8 1.8692 88.60 1.3350 583.7 1.6054 

404.1 1.9331 111.0 1.4222 656.8 1.6707 

435.8 1.9110 164.1 1.5315 670.2 1.6510 

546.8 1.9437 236.9 1.6173   

660.9 1.9727 242.7 1.6344   

  322.0 1.7047   

  374.8 1.7255   

  438.2 1.7759   

  556.8 1.8351   

  629.5 1.8384   
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TABLE IX (Continued) 

T = 10C T = 35C T = 65C 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

Propylene 

  0.138 0.1201 0.586 0.1307 

  0.448 0.1355 0.827 0.1651 

  0.517 0.3162 3.344 0.4405 

  1.827 0.7177 5.964 0.6455 

  1.862 0.4618 6.033 0.6117 

  4.861 0.9004 7.274 0.7062 

  12.27 1.2148 12.03 0.9000 

  28.58 1.3709 38.72 1.1984 

  53.06 1.4407 57.64 1.2750 

  120.7 1.4787 81.36 1.3186 

  172.7 1.5095 84.81 1.3446 

  304.4 1.5334 90.81 1.3445 

    146.2 1.4195 

    152.4 1.4320 

    239.3 1.4457 

    268.6 1.4877 

    453.7 1.5404 

    455.1 1.5192 

    654.0 1.5712 

 
Carbon Dioxide 

0.621 0.1271 1.655 0.1181 3.551 0.0930 

2.551 0.2499 6.240 0.2392 3.551 0.0930 

4.413 0.3339 6.999 0.2562 3.654 0.0923 

5.551 0.3810 12.51 0.3556 9.481 0.1646 

5.723 0.3114 11.48 0.2758 16.31 0.2288 

9.964 0.5352 21.00 0.4708 20.41 0.2660 

10.76 0.5599 23.51 0.5210 20.41 0.2660 

10.93 0.5649 28.96 0.5910 23.62 0.2881 

15.38 0.6370 23.65 0.4594 31.41 0.3450 

18.51 0.7802 43.27 0.6892 37.51 0.3867 

20.27 0.8187 87.57 1.0506 39.20 0.3970 

28.34 0.9920 97.91 1.1562 50.89 0.4725 

31.72 1.0577 113.8 1.1954 50.89 0.4725 

32.30 1.0621 135.1 1.2848 59.61 0.5192 

36.34 1.0881 164.5 1.4493 81.29 0.6323 

37.17 0.8974 181.0 1.5358 81.29 0.6336 

40.79 1.1967 178.6 1.4972 81.81 0.6345 

41.03 1.2039 210.0 1.5783 107.6 0.7498 

46.54 1.2451 211.7 1.5843 107.6 0.7498 
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TABLE IX (Continued) 

T = 10C T = 35C T = 65C 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

P 
(kPa) 

N 
(mol/kg) 

Carbon Dioxide 

54.16 1.3608 271.7 1.7280 109.6 0.7604 

62.06 1.4107 426.1 1.9155 109.6 0.7604 

65.85 1.4187 433.0 1.9020 109.6 0.7617 

67.68 1.4826 637.1 2.0499 110.3 0.7598 

71.71 1.5066   121.0 0.8049 

74.19 1.5336   168.6 0.9764 

86.53 1.6174   220.0 1.1057 

87.91 1.5494   231.0 1.1426 

93.77 1.6397   281.7 1.2439 

113.4 1.6419   291.3 1.2702 

118.3 1.7613   300.3 1.2902 

147.6 1.8560   338.6 1.3437 

170.0 1.9639   410.3 1.4553 

173.8 1.8616   428.9 1.4720 

218.9 2.0269   602.0 1.6544 

255.8 2.0586   627.5 1.6806 

307.2 2.0962     

353.4 2.1926     

405.4 2.1807     

440.9 2.1995     

587.8 2.3061     
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APPENDIX B 

 

MATLAB PROGRAM CODE FOR BINARY ADSOPRTION PREDICTION 
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% qianqian01_f 

% 

%   function for IAST 

%   QianQian Zhou 

function F = qianqian01_f(x) 

global y1 P k b c d 

% recover parameters 

  

k1 = k(1); 

k2 = k(2); 

b1 = b(1); 

b2 = b(2); 

c1 = c(1); 

c2 = c(2); 

d1 = d(1); 

d2 = d(2); 

  

% initialize 

F = zeros(size(x)); 

% recover variables 

x1 = x(1); 

x2 = 1 - x1; 

 

n1o = x(2); 

n2o = x(3); 
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P1o = x(4); 

P2o = x(5); 

F(1) = y1 - x1*P1o/P; 

F(2) =(1-y1)-(1-x1)*P2o/P; 

e1 = k1 + b1*n1o + c1*n1o^2+ d1*n1o^3; 

F(3) = P1o - n1o * exp(e1); 

 

e2 = k2 + b2*n2o + c2*n2o^2+ d2*n2o^3; 

F(4) = P2o - n2o * exp(e2); 

ee1 = n1o + b1/2 * n1o^2 +2*c1/3 * n1o^3 +3*d1/4 * n1o^4; 

ee2 = n2o + b2/2 * n2o^2 +2*c2/3 * n2o^3 +3*d2/4 * n2o^4; 

F(5) = ee1 - ee2; 

return 

>>>>>>>>>>>>>>>>>> 

% qianqian01.m 

Clear  % clear screen 

clc 

% transfer parameters 

global y1 P k b c d 

 

fprintf ('\n *** Ideal Adsorbed Solution Theory *** \n'); 

  

k1=2.404;    % carbon dioxide--35C 

b1=3.961; 

c1=-2.902; 
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d1=0.87; 

k2=5.022;      % CH4--35C,   

b2=0.98; 

c2=-0.457; 

d2=0.32; 

 % set parameters 

k = [k1; k2]; 

b = [b1; b2]; 

c = [c1; c2]; 

d = [d1; d2]; 

% set known conditions 

y1 = 0.01; % an initial value 

P  = 0.1; % just an initial value 

% set problem 

fun = 'qianqian01_f'; 

n1o = 0.01; 

n2o = 0.1; 

x1 = 0.01; 

x2 = 1 - x1; 

P1o = 10; 

P2o = 1; 

% set initial guess 

x0 = [x1; n1o; n2o; P1o; P2o]; 

% % uncomment to check ! 

% F0 = feval(fun, x0) 
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% Fnorm = norm(F0) 

options =optimset('Display','off'); 

% solve for a given y1 value 

y1_initial = y1; 

y1_final = 1.0; 

y1_values = linspace (y1_initial, y1_final, 11)'; 

% solve for a given P value 

P_initial = P; 

P_final = 600; 

P_values = linspace (P_initial, P_final, 61)'; 

% initialize 

Results = []; 

for e = 1:1:length(y1_values) 

        y1=y1_values(e); 

    for counter = 1:1:length(P_values) 

P = P_values(counter); 

x = fsolve (fun, x0, options); 

F = feval(fun, x); 

Fnorm = norm(F); 

% recover variables 

x1 = x(1); 

x2 = 1-x1; 

n1o = x(2); 

n2o = x(3); 

P1o = x(4); 
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P2o = x(5); 

% total amount adsorbed 

nt= n1o*n2o/(x1*n2o+x2*n1o);   

% % selectivity 

% s= x1*(1-y1)/(x2*y1);  % s1,2 

% s= (x2*y1)/x1*(1-y1);  % s2,1 

Results = [Results;    P, y1, nt, x1, n1o, P1o, x2, n2o, P2o, Fnorm]; 

% reset initial condition 

x0 = x; 

end 

x0=[0.01;0.1;0.1;10;1];  % the initial assumption 

end 

display (Results); 

x=Results(:,1);y=Results(:,2);z=Results(:,3); 

scatter3(x,y,z) % 3-D scatter plot 

xlabel('Pressure (kPa)') 

ylabel ('Gas fraction of CO2 y1') 

zlabel('Total amount adsorbed nt (mol/kg)') 
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