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THE EFFICACY OF HIPPOCAMPAL STIMULATION IN PREVENTING 

DEPRESSIVE SYMPTOMS 

TIMOTHY PATRICK 

ABSTRACT 

 

The hippocampus provides negative feedback for the Hypothalamic-Pituitary- 

Adrenal (HPA) axis. The HPA axis is responsible for producing a response to stressful 

stimuli. The hippocampus is sensitive to high levels of glucocorticoids (GCs), because of 

its large number of GC receptors. In times of severe stress, hippocampal function is 

inhibited and its control over the HPA axis is diminished, leading to hyperactivity of the 

adrenal glands as well as hypercortisolism, typical of depression. Long-term stress and 

depression can eventually lead to chronic impairments in cognitive ability, as well as 

structural damage in the hippocampus. Exercise and environmental enrichment stimulate 

significant growth and activity in the hippocampus, and have been used successfully as 

antidepressant treatments in previous studies. However, these previous studies failed to 

demonstrate whether such treatments are capable of preventing the cognitive symptoms 

of depression during times of persistent chronic prolonged stress. Previous research has 

also evaded the possibility of a potential additive effect when both treatments are used in 

combination. The current study aims to extend previous research in this area by  

examining both the possibility of a preventative efficacy of hippocampal stimulation  

during periods of stress, as well the possibility of an additive effect associated with the 

use of both treatments. Rodents went through a 10-week period of CMS along with 

concurrent exposure to environmental enrichment, environmental enrichment and  
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exercise, or neither. Sucrose consumption was used as a measure of anhedonia at the 8- 

week point. At the completion of the 10 week CMS period, spatial memory was measured 

using the Morris Water Maze and a Novel Object Placement Task. The overall level of 

spatial memory impairment was determined based on the group means collected during 

these tests. Overall, results from the current study provide evidence supporting the 

preventative efficacy of hippocampal stimulation during periods of stress. While 

environmental enrichment appeared to be insufficient in preventing the cognitive 

impairments associated with higher levels of stress, an additive effect of both exercise 

and enrichment was observed. While it remains unclear whether exercise alone is capable 

of providing the level of protection observed in this study, the results reveal that exercise 

is a requisite for the maintenance of hippocampal function in the presence of consistent 

stress.  
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CHAPTER I 

INTRODUCTION 

 

1.1     STRESS AND THE HIPPOCAMPUS 

 Chronic stress and depression involve abnormal increases in the manufacturing and 

release of adrenal hormones known as glucocorticoids or GCs. The hippocampus is a 

brain structure located in the limbic system; its known primary functions involve the 

consolidation of declarative and spatial memory. The hippocampus is highly concentrated 

with receptors for glucocorticoids as it provides the Hypothalamic-Pituitary-Adrenal 

(HPA) axis with negative feedback regarding the level of GCs in the bloodstream 

(Stokes, 1995). The HPA axis refers to the structures involved in the manufacturing of the 

stereotypical stress response. A fully functional hippocampus receiving large quantities of 

GCs will work to slow the production of these hormones. By providing negative feedback 

to the HPA axis, the hippocampus is able to exercise inhibitory control over the intensity 

of the response. These GCs, however, have a damaging effect not only  

to the structure of the hippocampus, but also on its functioning. Reductions in overall size 

and cell count occur, as well as impairments in specific types of memory from long-term  
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exposure to stress. The hippocampus, after significant reductions in size and function, 

soon becomes unable to provide reliable feedback to the HPA axis, thus leading to the 

hyperactive stress response system, typical of those who are depressed. While stress 

slows the growth or function of cells in the hippocampus and leads to cognitive 

impairment, antidepressant treatments typically promote cell growth and neurogenesis in 

the hippocampus, while also normalizing cognitive function. Therefore, it is apparent that 

some relationship exists between mood disorders, such as depression, and the functional 

state of the hippocampus. The direction of the relationship implies that basic hippocampal 

maintenance may be an effective step towards preventing the onset of depression. If this 

is in fact the case, then we would expect to see significant improvements in those who 

engage in behaviors that promote activity, and increase chemical production in the 

hippocampus. Indeed, exercise, as well as exposure to enriched surroundings, increases 

the activity of the hippocampus, and both behavioral treatments have been used 

effectively in treating depression and its symptoms. 

  Although these behavioral treatments are successful in repairing the neurological 

and cognitive damage that occurs as a result of chronic stress and depression, the 

overwhelming majority of studies introduce these behavioral treatments after the stressful 

period has concluded. Therefore, such studies are demonstrating that exercise and 

environmental enrichments (EEs) are capable of cognitive repair only when stress is 

completely absent. Unfortunately, stress is rarely ever removed from one’s life entirely  

and replaced with something beneficial like exercise. A balance between the two is a 

more plausible real-life scenario. Wright and Conrad (2008) observed that environmental 

enrichment was capable of preserving hippocampal-mediated function when provided  
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during a 3-week period of restraint-induced stress. Rodents in this study demonstrated 

less impairment in spatial memory ability as a result of the concurrent exposure to 

environmental enrichment. However, the type and duration of the stress treatment was 

consistent throughout this study allowing for possible habituation during the treatment 

phase. Also, the enrichment used in the Wright study was non-specific and utilized social 

as well as environmental and physical stimulation. Therefore, it is uncertain as to which 

element of their treatment was most efficacious in terms of providing the level of 

stimulation necessary to diminish the cognitive symptoms of stress.   

It remains unclear which specific treatments are sufficiently strong to prevent the 

development of depressive symptoms throughout an extended period of chronic stress. 

The goals of the present study were to determine whether an enriched environment alone, 

an enriched environment combined with exercise, or both could provide a level of 

hippocampal stimulation necessary for the prevention of depressive symptoms during a 

10-week period of daily chronic mild stress. By providing both stress and behavioral 

treatments concurrently over an extended period, it was possible to more accurately  

examine the beneficial and potentially protective qualities of both exercise and 

environmental enrichment. It was proposed that exercise and an enriched environment, in  

combination, would not only provide the optimum level of hippocampal stimulation, but 

would also supply the degree of activity necessary to attenuate the cognitive symptoms of 

chronic stress. If hippocampal stimulation is necessary for the prevention of these 

symptoms, then it follows that those treatments providing the hippocampus with the 

optimum amount of stimulation would be most effective. Therefore, it was predicted that 

rodents who are exposed to more forms of hippocampal stimulation would experience  
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observably greater levels of cognitive preservation. 

Stress and depression are intimately connected physio-emotional states that have 

distinct short- and long-term effects on the mind and body. While stress itself is not 

considered a form of depression, depression is typically accompanied by a significant 

amount of stress. Stressful life events that occur, independent of an individual’s behavior, 

substantially increase the risk of experiencing a depressive episode. A causal relationship 

is believed to exist between chronic stress and the later development of depressive 

symptoms (Kendler, Karkowski, & Prescott, 1999).  

Depression often results in notable changes in cognitive function (typically 

impairments, but, as we will discuss, not always). Attention, memory, visuomotor speed 

and language can all be negatively affected. Furthermore, both stress and depression can 

lead to atrophy and cell loss in the hippocampus (Duman, 2004; Ravnkilde, et al., 2002).  

In fact, higher levels of GCs in the blood lead to greater reductions in hippocampal 

volume (Ohl, et al., 1999). Volume loss is also strongly associated with lower cognitive 

performance, while higher cognitive performance is associated with lower levels of GCs  

(Starkman, Giordani, Gebarski & Schteingart, 2003). In other words, stress or exposure  

to GCs can damage the hippocampus. Cell count is lower in the hippocampus of animals  

exposed to higher levels of GCs. Slowed cell transmission as well as changes in overall 

cell structure can occur as a result of greater exposure to stress (Gould & Tanapat 1999; 

Keenan & Kuhn, 1999; Sandi, et al., 2003; Stein-Behrens et al., 1994; Stewart et al., 

2005; Stokes 1995). It is clear how long-term stress and depression lead to cognitive 

decline. Chronic stress actually inhibits the production of brain-derived neurotrophic 

factor or BDNF, a growth factor required for neurogenesis and neuroprotection,  
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essentially a neuronal requisite for learning (Choy, de Visser, Nichols & van den Buuse, 

2008; Fabel et al., 2003). 

 

         1.1.1      STRESS AND MEMORY 

Memory is highly sensitive to stress. Specific memory impairments are consistent 

with both chronic stress and depression, as GCs have deleterious effects on distinct types 

of memory (Buchanan, & Tranel, 2008). Interestingly, different forms of memory are 

altered by stress in different ways. Memory processes are also uniquely affected. Stress  

facilitates the consolidation of memories, while impairing the recollection of previously 

stored information (Daimond, Fleshner, Ingersoll & Rose, 1996; Roozendaal,  

2002; Kuhlmann, Piel & Wolf, 2005; Beckner, Tucker, Delville & Mohr, 2006; Wolf, 

2008; Schoofs, Wolf & Smeets, 2009). A perceivable level of emotional arousal is  

required for the negative effects of stress on memory retrieval to emerge (Tollenaar,  

Elzinga, Spinhoven, & Everaerd, 2008). Conversely, noradrenaline  release is critical in  

facilitating memory consolidation during a stressful experience, such as a flashbulb 

memory (Roozendaal, McEwen & Chattarji, 2009). Stress can also enhance the strength 

of implicit memories, such as conditioned responses to fearful stimuli (Sapolsky, 2003).  

Such memories are more available in those who are depressed, demonstrated by their 

characteristic automatic memory biases towards negative information (Bradley, Mogg & 

Williams, 1995).  

Working memory is also impaired during periods of stress, with higher stress being 

associated with lower performance (Oei, et al., 2006; Schoofs, Wolf & Smeets, 2009). 

However, it is hippocampal dependent memory that experiences the greatest deficits  
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during times of heightened stress (Ohl, et al., 1999). High cortisol levels negatively affect 

general declarative memory retrieval (Kirschbaum et al., 1996; Buchanan & Tranel, 

2008). Stressed participants demonstrate the impaired retrieval of autobiographical and 

socially relevant memories (Rosch, 1997; Buss, Wolf, Witt & Hellhammer, 2004; Merz, 

Wolf & Hennig, 2010). In addition, the recognition of novelty is impaired in rodents who 

are under stress. (Elizalde, et al., 2008).   

The hippocampus is also the primary structure involved in the consolidation and  

retrieval of spatial memory. It contains place cells that fire in accordance with specific 

objects in the environment, leading to familiarization of different areas and places. The 

hippocampus essentially acts as a map that stores information regarding visited locations.  

This type of memory, known as spatial memory, is also considerably impaired by  

increases in stress (Kirschbaum, et al., 1996; Keenan & Kuhn, 1999; Hu, Xuemei,  

Shengwang & Changlin, 2003; Song, et al., 2006; Moosavi, Naghdi, Maghsoudi &  

Zahedi, 2007). It has been suggested that spatial memory deficits occur as a result of the 

harmful effects of stress on place cell firing stability (Kim et al., 2007). If these cells do 

not fire correctly in accordance with a familiar environment, then this environment will 

appear less recognizable. 

During chronic stress and depression, hippocampal neurogenesis is reduced and  

cell loss and atrophy are observable. These developmental deficits lead to noticeable 

impairments in cognitive performance that are strongly associated with higher cortisol 

levels and lower hippocampal volume (Starkman, Giordani, Gebarski & Scteingart,  

2003).  
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1.2     REVERSAL OF DEPRESSIVE SYMPTOMS 

 Fortunately, these symptoms are in no way permanent. Researchers have found that 

chronic antidepressant treatment is successful in reversing the course of depressive  

symptoms, specifically in the hippocampus (Burt, Niederehe & Zembar, 1995; McEwen,  

2000; Czeh & Lucassen, 2007). The hippocampus then appears to be the main structure 

of interest when measuring the damaging effects of stress, as well as the favorable results  

of antidepressant treatment. It has been proposed that regulation of neurogenesis in the  

hippocampus is critical in the treatment of depression (Duman, 2004; Becker &  

Wojtomicz, 2006). It is believed that human and rodent hippocampi are analogous, since  

damage to both produces corresponding behavioral impairments (Goodrich-Hunsaker, 

Livingstone, Skelton & Hopkins, 2010).  A parallel between the functions of the  

hippocampus in both humans and rodents is imperative. The results of this study can only 

be generalized to humans if the structures are comparable between the two species. 

Specifically, the hippocampi of rats and humans have generally been found to mediate 

similar if not identical functions. These include spatial and temporal pattern separation, 

sequential learning, spatial and temporal pattern associations, spatial and temporal pattern 

completion, and short-term and intermediate-term memory (Kesner & Hopkins, 2006). 

 

1.2.1    ENVIRONMENTAL ENRICHMENT 

Environmental enrichment involves long-term exposure to novel surroundings. 

Enriched environments (EEs), unlike exercise, provide novel sensory stimulation and 

numerous opportunities for learning and manipulation. Housing in an enriched 

environment has notable beneficial effects on the hippocampal structure and function of  
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rodents. Age-related impairments in spatial memory are reduced after exposure to EEs 

(Anisman, Zaharia, Meaney & Merali, 1998; Nilsson, 1999; Lores-Arnaiz, et al, 2006; 

Wright & Conrad, 2008; Frick, Stearns, Pan & Berger-Sweeney, 2010). These 

improvements are the product of increased neurogenesis, increases in levels of nerve 

growth factors (such as BDNF), noradrenaline, as well as 5-HT1 production and 

transmission in the hippocampus following exposure to EEs (Naka, shiga, Yaguchi &  

Okado, 2001; Rasmuson, et al., 1997; Rosenzweig & Bennett, 1996; Torasdotter, et al.,  

1998). 5-HT1 is a subfamily of seretonin (5-HT) receptors that when activated, inhibit the 

response of the sympathetic nervous system, thereby dulling the intensity of the 

sympathetic response to stressful stimuli. 

In animal models of depression, enriched environments appear to have an 

antidepressant-like effect on rodents (Brenes, Rodriguez & Fornaguera, 2006). 

Behaviorally, chronically stressed rodents housed in enriched environments show less 

escape-oriented, and more exploratory behaviors in novel situations than do stressed 

rodents housed in standard laboratory conditions (Larsson, Winblad & Mohammed, 

2002). Non-stressed rodents housed in EEs also demonstrate more rapid habituation to 

novelty than controls, as well as larger reductions in their startle response (Hattori, et al., 

2007). It has been suggested that housing in an EE improves an animal’s information–

processing ability, allowing for more efficient learning and responses to novelty 

consistent with the notion that exposure to EE results in functional preservation of the 

hippocampus (Brenes, Rodriguez & Fornaguera, 2007). Novel situations would be placed 

in the proper context based on previously stored information, allowing for more 

appropriate physio-behavioral responses to unfamiliar stressors (Becker & Wojtomicz,  
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2006).  

 

         1.2.2     EXERCISE 

Physical activity, like EEs, also improves learning and memory in humans and  

animals (Van Praag, 2009). Both exercise and environmental enrichment provide 

protection against age-related memory impairments (O’Callaghan, Griffin & Kelly,  

2009). In fact, the cognitive and emotional benefits of EEs and exercise are highly 

similar. Similar to EE, exercise leads to improvements in learning and memory, increases 

in the rate of hippocampal neurogenesis through the heightened production of nerve 

growth factors in rodents, as well as an increase in 5-HT1 production (Bjornebekk, Mathe 

& Brene, 2005; Christie et al, 2008; Cotman & Berchtold, 2002; Cotman, Berchtold & 

Christie, 2007; Grace, Hescham, Kellaway & Bugarith, 2009; O’Callaghan, Ohle & 

Kelly, 2007; Vaynman, Ying & Gomez-Pinilla, 2004; Winter, et al., 2007).  

EEs and exercise are both believed to be capable of promoting new and more 

proficient types of cognitive processing. Overall brain function is made more efficient 

through increases in neurotransmitters, nerve growth factors, and synaptic plasticity, 

allowing for faster processing speeds, and greater cognitive flexibility (Chodzko-Zajko, 

1991; Christie et al., 2008; Hillman, Snook & Jerome, 2003). 

Most relevant to the current study, exercise like EE, also works as an antidepressant 

(McCann & Holmes, 1984). In fact, exercise can be considered a more effective anti-

depressant than typical anti-depressant medications. Rates of relapse are lower in those 

who exercise regularly with and without medication. In fact, the rates are the lowest for 

those who exercise exclusively (Babyak, et al., 2000; Brosse, Sheets, Lett & Blumenthal,  
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2002). Exercise is also the strongest neurogenic stimulus out of all available anti- 

depressant treatments (O’Callaghan, Griffin & Kelly, 2009). There does not appear to be 

a notable dissimilarity in the stimulatory efficacy of aerobic and anaerobic exercise, and  

combining the two may potentially have an additive effect (Brosse, Sheets, Lett & 

Blumenthal 2002; Strohle, 2009). Fortunately, individuals who increase their activity 

over time are at no greater risk for depression than those who have remained active, as 

the improvements are almost immediately effective. Similarly, wheel running in rodents 

results in a three-fold increase in the production and survival of new neurons during only 

the first 32 days of activity, with cell genesis peaking at 3 days. However, those who used 

to be, but are no longer active are 1.5 times more likely to develop depressive symptoms 

than those who maintain an active lifestyle, (Babyak, et al, 2000). It is quite possible that 

this higher rate of depression is due to a lack of hippocampal maintenance provided in the 

form of exercise. 

While it is clear that exercise can be used as an effective treatment for depression, 

there remains some disagreement over whether or not exercise can prevent the onset of 

depressive symptoms proactively in the presence of long-term external stress 

(Greenwood, et al., 2003; Palmer, 2005; Paluska & Schwenk, 2000;). The current study 

aims to answer this question by examining the neuro-protective efficacy of both exercise 

and EEs when provided concurrently with long-term chronic stress. By assimilating both 

EEs and exercise, it will be possible to measure the preventative power of not just EEs, 

but EEs when combined with the ability to exercise, while stress is consistently present. It 

is predicted that both treatments used in combination will demonstrate the preventative 

power to overcome the onset of depressive symptoms throughout the chronic stress  
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period.  

 

1.3    CHRONIC MILD STRESS 

The chronic mild stress model of depression, or CMS, is intended to mimic 

naturalistic stressors over an extended time period, in order to more reliably produce 

depressive symptoms in rodents. In the CMS model, rodents are exposed sequentially to a 

variety of mild stressors such as food or water deprivation once every 10 to 14 hours, for 

a period of weeks or months. No single stressor is necessary or sufficient to result in any 

measurable change in the cognitive state of the rodent (Willner, 1997; Willner, 1997). 

Each stressor on its own is harmless, yet the high frequency, as well as the 

unpredictability in the manner they are provided, results in the long-term development of 

depressive symptoms. The stress response is not a static event. The intensity of each 

response can vary based on the specific nature of the present stressor. Those that are both 

uncontrollable and contain social-evaluative potential elicit the largest and most 

prolonged increases in cortisol levels (Dickerson & Kemeny, 2004). The CMS model, 

being uncontrollable in design, is therefore assumed to be a more reliable technique for 

producing depressive symptoms than more severe stress treatments of shorter durations.  

Exposure to CMS in rodents results in significant reductions in body weight and 

locomotor activity. Rodents also experience corticosterone hypersecretion, typical of 

HPA axis hyperactivity, as well as a variety of sleep disorders characteristic of depression 

(Willner, 1997; Xu, et al, 2008). More importantly however, CMS leads to anhedonic 

behavior in rats and mice. (Elizalde, et. al., 2008; Enkel, Spanagel, Vollmayr & 

Schneider, 2010; Grippo, Beltz & Johnson, 2003; Henningsen, et al., 2009; Jans &  
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Blkland, 2008; Muscat, Papp & Willner, 1992; Willner, 1997; Pohl, et al., 2007; Xu et al., 

2008). 

Anhedonia is defined as a decreased interest in pleasure in almost all aspects of  

life, likely associated with a decrease in the production of dopamine common among 

depressed individuals (Muscat, Papp & Willner, 1992). Anhedonia is the principal 

distinguishing feature of depression in rodents (Pohl, et al., 2007). Over 70% of rats that 

undergo CMS treatment demonstrate anhedonic-like behavior, in the form of reduced 

levels of sucrose intake (Henningsen, et al., 2009). During or after the stress treatment, 

rodents are given a palatable solution of sucrose and water. The ability to enjoy the 

sweetness is inferred by measuring the amount consumed. Smaller amounts presumably 

indicate lower sensitivity for reward, or anhedonia. Normal water consumption remains 

unaffected by CMS (Muscatt, Papp & Willner, 1992; Willner, 1997). Anhedonia, much 

like the other symptoms of chronic stress and depression, is reversible with the use of 

anti-depressants (Muscat, Papp & Willner, 1992; Willner, 1997; Elizalde, et al., 2008). 

Chronic anti-depressant treatment has even been shown to prevent the development of 

anhedonia in rodents exposed to CMS (Grippo, Beltz, Weiss & Johnson, 2006).  

 

1.4    TREATMENT AND MEASUREMENTS OF SYMPTOMS 

Anhedonic behavior, spatial memory ability, and novel object and novel placement 

recognition are the standard quantitative measures of depression in rodents. The current 

study utilized these measures in order to more thoroughly examine the severity of the  

depressive symptoms induced by 10 weeks of CMS. Previous studies using CMS as a 

model of depression have experienced visible symptoms after only four weeks of  
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application (Grippo, Beltz & Johnson, 2003; Jans & Blokland, 2008). Providing 10 weeks 

of CMS minimized the risk of a delayed response to the stress and also maximized the 

depressive capability of the treatment. Pairing EEs and exercise treatments with an 

extended, concurrent period of CMS allowed the researchers to more accurately measure 

their preventative capacity, rather than their influence in treatment.  

Other related studies typically removed the stressor prior to the introduction of the 

anti-depressant, which fails to accurately mimic the normal fluctuations of traditional 

stress in non-experimental environments. This study also compared the protective 

potential of exposure to EEs with and without access to physical activity, which to our 

knowledge has not been done previously.  

The current study proposed to take a step toward answering questions involving the 

ability of treatments that promote significant hippocampal activity to attenuate the 

severity of depressive symptoms when those treatments are administered during CMS.  

Several aspects of our daily life have the potential to alter our brain health and cognitive 

function (Gomez-Pinilla, 2008). Consistent physical activity, as well as prolonged 

exposure to EEs both lead to the reversal of stress-related damage to the hippocampus 

and were therefore used as manipulations in the current study. 

Based on these observations, the present study intended to focus on the 

hippocampus, and the behavioral maintenance of this structure, as a means of potentially  

preventing the onset of depressive symptoms. It was expected that consistent 

hippocampal stimulation would be effective in preventing the depressive effects of long- 

term chronic stress. However, a behavioral model of prevention requires identification of  

specific treatments (manipulations) that have antidepressant properties in terms of  
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hippocampal growth and preservation. 

 

1.5    RESEARCH QUESTION AND HYPOTHESES 

The current study was designed to examine whether consistent hippocampal 

stimulation was effective in preventing the long-term cognitive symptoms of chronic  

stress and depression. The study also intended to isolate the two treatments 

(environmental enrichment and enrichment plus exercise) in order to identify whether an 

enriched environment was sufficient in preventing depressive symptoms or if the 

inclusion of exercise was necessary. 

 

Hypothesis 1: Rats housed in isolation and spared the CMS treatment (true controls) will 

not be significantly different in behavior from the CMS group that receives EEs alone, 

nor different from the CMS group that receives EEs with access to exercise.  

 

Hypothesis 2: Rats placed in EEs with access to a running wheel during exposure to 10 

weeks of CMS will display less behavioral impairments than rats in stark environments or 

those receiving only EEs. 

 

Hypothesis 3: Rats placed in EEs without access to running wheels during the CMS  

treatment will show less behavioral impairment than stressed rats in stark environments. 

 

These hypotheses were tested by pursuing the following specific aims: 
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Aim 1: Divide the experimental groups in terms of behavioral treatments while keeping  

the CMS procedure consistent among all groups except true controls. Ensure that the 

difference in behavioral impairment is due solely to the specific treatments that separate  

the 4 groups.   

 

Aim 2: Quantify the extent of depressive symptoms following 8 weeks of CMS in three 

different experimental groups by measuring their level of anhedonia in comparison with 

the control group using the sucrose drinking test. 

 

Aim 3: Measure and compare the behavioral impairment of all four groups using their 

performance in the Morris water maze and Novel Object Placement Test that in addition 

to memory, examine: 

1. General locomotor activity 

2. Sensory/motor processing (ability to see and use spatial cues for navigational 

purposes) 

3. Assessment of rewarding stimuli (willingness to escape the water) 

 

 

 

 

 

 

 

 

15 



 

 

 

 

 

 

CHAPTER II 

MATERIALS AND METHODS 

 

2.1    RESEARCH DESIGN 

In this true experimental design concurrent behavioral stimulation and CMS in 

individually housed rodents.  

Rats were  assigned to one of four experimental groups:  

1. Control,  

2. Stress only  

3. Stress/EEs  

4. Stress/EEs/Exercise.  

Dependent upon group assignment rats received either EEs in the form of cage toys, 

exercise and EEs, or neither exercise nor EEs (see Table 1). All groups, with the 

exception of the control group, underwent 10 weeks of CMS that was provided 

concurrently with their assigned behavioral treatment. The differences in the preventative 

quality of the treatments were measured based on the results of behavioral tests designed  
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Table I.  

Descriptions of the Treatment Levels. Treatments were defined by the administration or 

withholding of stress as well as the exposure or lack thereof to enrichment in the form of 

toys, natural food, and exercise.  
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GROUPS Controls Stark 

Environment 

EEs EEs/Exercise 

MANIPULATIONS 

Chronic Mild 

Stress    

EEs 

(Environmental/ 

Dietary) 
   

Exercise 

   

INSTRUMENTS 

Sucrose-Drinking 

Test    

Water Maze Test 

   

Novel Object 

Recognition Test    

  



to test abilities normally impaired by chronic stress and depression. 

 

 

 

2.2       TIMELINE OF TREATMENTS AND TESTS 

 

Days 1-3: Acclimatization period (No stress). Newly arriving rats were handled for 2 

minutes per day for the first 3 days in laboratory. 

Days 4-56: First 8 weeks of CMS treatment. 

Days 56-60: Sucrose test was given to determine the severity of anhedonia among 

individual rats thus far. The CMS continued throughout.  

Days 60-70: CMS continued for the last two weeks until completion of all behavioral 

testing. 

Days 70-72: Morris Water maze testing began in order to measure the spatial memory 

abilities of each rodent. The water maze test concluded on the third day with a probe test. 

Days 72-74: CMS continued. 

Day 74: Novel Object Placement Task was given in order to measure object placement 

recognition ability.  

 

2.3    SUBJECTS 

Twenty-four male Long Evans rats aged between 45-49 days old at time of arrival. 

Rats were ordered from Harlan Labs in Indianapolis, IN. The rats were randomly placed 

in one of the four experimental groups at the time of arrival. They were then housed 

individually except when grouping was required as a stressor. Food and water were 

available ad libitum, except during periods of deprivation. The temperature 

 in the laboratory was kept constant at 73° F or 23° C. There was a standard 12 hour 
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 light/dark cycle from 7 a.m. to 7 p.m. excluding the stress periods involving variations in 

illumination. This study was approved by the Cleveland State Institutional Animal Care 

and use Committee to ensure the ethical treatment of laboratory animals in research. 

 

2.4    MATERIALS 

The 24 rats were housed in 24 separate individual plastic cages measuring 21”x 15 

½”x 8” with stainless steel lids. Each cage contained easily accessible food and water as 

well as sufficient bedding. The cages in the EEs group were provided with items such as 

plastic balls, huts and plastic or cardboard tubes and chewable toys. Toys were alternated 

with others after a few days in order to maintain consistent novelty. The cages in the 

EEs/exercise group contained running wheels (Large Flying Saucer Wheel, Ware 

Manufacturing Inc. USA) as well as enrichment toys. The platform for the wheels was 

secured to the bottom of the cages so as to minimize any difficulties in maintaining the 

availability of exercise. The groups receiving EEs were also provided with natural dietary 

supplementation in the form of fruits, nuts or vegetables three days a week so as to 

provide multiple forms of sensory stimulation. These food items were supplied in 

addition to their regular diet of 18% protein rat pellets. Eighteen wire cage lids were 

employed as wedges to tilt the cages 45°. Two 75 Watt (Chauvet®Lighting, USA) strobe 

lights attached to a light stand were used during the stroboscopic light stress period. The 

exercise/EEs group’s exercise wheels held a small magnet that triggered the magnetic 

switches attached to the side of the cage. These switches then communicated with a Mini- 

Counter (Columbus Instruments, USA) that reported to a PC that records the total number 

of revolutions ran per rat per day.  
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2.4.1    SUCROSE CONSUMPTION TEST 

Sucrose solution (450 ml at 1.5%) was available in a labeled water bottle for exactly 

four days (96 hours).  

 

            

         2.4.2    MORRIS WATER MAZE 

 

Rodents were moved to smaller cages containing no bedding prior to being 

transported to the water maze room in order to preserve the aridity of the original 

bedding. A 6’(183 cm) in diameter and 2’ (61 cm) deep round galvanized metal pool was 

used for the maze. Construction paper geometric figures were taped to the inside of the 

pool to act as visual reference cues. A hidden platform 6” (15 cm) in diameter was placed 

¾” (2 cm) below water level in a designated quarter of the tank where it remained for the 

entirety of the testing. Non-toxic, white tempura paint (Sargent Art, USA) was used to 

cloud the water and mask the location of the platform. The movements of the rat were 

tracked by a video surveillance camera model number XAVEE-B480AC-D/N (Xavee, 

USA Distributor) the ceiling directly above the pool. The camera communicated with the 

Videomex Water Maze System V.5 software (Columbus Instruments, USA) loaded onto 

the HP Vectra 466 PC. This software measured the latency to find the platform as well as 

total distance traveled and the rodent’s overall proximity to the platform.  

 

 

        2.4.3    NOVEL OBJECT PLACEMENT TASK 

 

  The same pool used in the water maze was used for the Novel Object Placement  

Task. The visual cues remained in place as they should have little impact on the outcome  
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of the test. Two novel toys were placed inside the empty, dry pool. The test was not only 

tracked using the Videomex software, but it was also documented on a DVD, using 

Panasonic DVD recorder model DMR-EZ48VK that was connected to the surveillance 

camera. 

 

2.5    PROCEDURES 

A slight variation of the protocol developed by Papp (1991) was used. The stress 

protocol consisted of eight different stressors: one period of intermittent illumination 

stroboscopic light, 45° cage tilting, paired housing (up to two hours), two periods of food 

or water deprivation, food and water deprivation, soiled cage (wet bedding), and no 

stress. Rats were housed individually and each underwent a three day period of 

acclimatization prior to any stress exposure. During this period, each rat was handled for 

two minutes a day in order to prepare them for later handling. The rats were then placed 

back into their cages until the next day. On the first day of the CMS treatment, the first 

stressor was applied in the morning. Each stressor, with the exception of the paired 

housing, lasted 10-14 consecutive hours. Therefore, stressors were most often applied in 

the morning and then again later in the evening. The CMS treatment continued on for 10 

full weeks. For the EEs and the EEs/exercise groups, novel food items were provided to 

supplement their normal diet. Small amounts of natural foods such as fruits, vegetables or 

nuts were given as additional enrichment three days a week throughout the 10-week 

period.  

The CMS method consisted of eight stressors applied 12 times a week along with 

two periods of no stress (see Table II). The order of application of these stressors was  
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semi-random. Stroboscopic light is most effective in the dark therefore its use was limited 

to the evening. Also, food and water deprivation, though available twice each week were 

not used consecutively so as to maintain mild levels of dietary stress. The CMS treatment 

was administered for a 10-week period and throughout the final week of behavioral 

testing. 
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Table II.  

List of Weekly Stressors. The list of the type of stressors, their duration as well as the 

frequency of their administration each week.  

 

Weekly Schedule: 

Stressor                        # of periods                  Information 

Soiled (wet) Caging            2                   250-400 ml of water poured into bedding 

No food or water                 2                   Access to food or water denied 

 

No food and water              2                   Access to food and water removed 

 

No stress                             2                    All forms of stress removed 

 

Stroboscopic light               1                   Two Strobe lights set at 150 flashes/ min. 

 

Paired housing                    1                   Rats paired in cages for up to 2 hours 

 

Intermittent Illumination    1                    Lights are turned off/on every two hours 

 

45° Cage tilt                       1                    Cages are tilted at a 45° angle. 
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2.5.1    WEIGHT 

 

Each rat was weighed at the completion of the acclimatization period in order 

to record their starting weight. Weights were recorded once a week for the remainder 

of the experiment as a measure of each rats developmental health. The mean overall 

weight fluctuations of the groups, as well as the mean increases in weight per week, 

were recorded. 

 

             

2.5.2    SUCROSE CONSUMPTION TEST 

 

Rats were deprived of water for 14 hours prior to the administration of the 

sucrose test. At the completion of week eight of CMS each rat was given both regular 

water and 450 ml of a palatable 1.5% sucrose solution. The rats had access to both the 

solution and their regular water ad libitum for four consecutive days (96 hours). Ball 

bearing-filled sipper tubes were used for the sucrose solution to minimize leakage. At 

the completion of testing the remaining solution was measured and subtracted from 

the original 450ml, leaving the total amount consumed. The amounts consumed were 

separated by group, and their means were calculated.      

  

2.5.3    RUNNING WHEEL 

 

The rats were allowed to run ad libitum. Small magnets were affixed to the 

running wheels in the Enrichment/exercise group’s cages. These magnets triggered 

switches attached to the exterior of the cage. Each revolution of the wheel closed the  

magnetic switch, which was wired to a Mini-Counter that quantified the number of 

revolutions each rat completed. These numbers were recorded in order to determine  
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the developmental health of the rats. 

 

         

2.5.4   MORRIS WATER MAZE 

The Morris water maze (Morris, 1984) was specifically designed as a measure 

of spatial memory ability in rodents. The water maze consisted of a round galvanized 

metal pool (188.88 cm in diameter, 60.96 cm deep), that contained various geometric 

visual cues attached to the interior (see Figure 1). The pool was separated into four 

quadrants. A round platform (20.32cm tall, 15.24cm in diameter) was placed in the 

same quadrant for every trial with the exception of the probe test. The tank was filled 

with water (23-29° C) until it reached 2cm above the top of the platform. Once the 

tank was filled, white tempura paint was added to mask the location of the platform. 

Rats underwent a two-trial (one block) training period the night prior to the beginning 

of testing.  

Rats were placed in the water at a randomly chosen location around the pool for 

each block. The rats were lowered into the water facing the inside wall of the pool. Once 

the rat was in the water the tracking of its movement began. Each trial lasted a maximum 

of 60 seconds. If the rat was unable to find the platform in less than 60 seconds, it was 

manually positioned on the platform where it remained for 30 seconds until being 

removed, toweled off and placed back in its cage. If the rat was successful in locating the 

platform, 30 seconds was also given until removal. Once the first round of trials had been 

completed the second round of trials began. Rats were placed in the water from the same 

location as in the previous trial and in the same order. After this training period each rat 

was tested in five blocks of two trials each  
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Figure 1. The Morris Water Maze.  After the 10
th

 week of CMS, the spatial memory of 

the rodents was measured based on the rate that they learned the location of a hidden 

platform over 10 trials. (The platform was located on the right) 
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(10 total trials) over the next three days. For every trial, the latency to find the 

platform, total path length and mean proximity to the platform were recorded for each rat, 

and the overall group means were calculated. 

A probe test was administered six hours after the last trial, which examined  

each rat’s retention of the location of the original platform. In the probe test the platform 

was removed and each rat swam for the maximum 60 seconds without interference. Each 

group’s mean proximity to the platform as well as the total number of crossings into the 

original location was recorded as measures of spatial memory.  

 

        

         2.5.5    NOVEL OBJECT PLACEMENT TEST 

This test was based on the observation by Ennaceur and Delacour (1988) that 

rodents have a natural inclination to spend more time exploring unfamiliar objects. 

However, unlike conventional novel object tasks that measure the response to novelty in 

appearance, this test further examined spatial memory impairment by exploring the 

response to novelty in location (Li, et al., 2008). Two days after the probe test, the rats 

were returned to the water maze testing room. The pool was drained of water and dried 

before testing began. The movements of the rats were tracked with the same  

Videomex Water Maze System V.5 software located on the HP Vectra 466 PC. The 

surveillance camera above the pool was also connected to a DVD recorder that was used 

to record each trial.  

The complete test was broken up into two trials labeled trial A and trial B. The 

location of the objects and entry point in both trials was the same for every rodent. Two 

entirely novel objects were placed directly in the center of two pool quadrants  

 

27 



approximately 36” (91 cm) apart and 18” (46 cm) from the sides of the pool. These 

quadrants were side by side and equal distance from the first point of entry, eliminating 

any potential for proximity-based partiality to either object. The rodents were placed in 

the pool facing both objects and were given five minutes (300 seconds) to explore. The 

time spent in each quadrant as well as the time spent in the area directly surrounding each 

object were recorded. The pool was rinsed or disinfected after each five-minute trial to 

eliminate any possible olfactory cues.  

Once the first trial was completed, the location of one of the objects was altered. 

The toy that was originally positioned in the top left quadrant relative to the point of entry 

was moved to the bottom right quadrant of the pool. The point of entry was also moved 

90° to the left (see Figure 2). Therefore, the toy that was originally located on the rodent’s 

left side was now on its right. Once again the rodents were given five minutes to explore 

while their movements were tracked and recorded. The percentage increase in the time 

spent exploring the toy before and after it was moved was measured. Also measured was 

the percent decrease in the proximity to the toy in trial after it had been moved.   

 

2.6    DATA ANALYSIS  

         Pearson product-moment correlations were performed to examine the 

relationship between data gathered throughout the treatment period, including weekly 

weights taken as well as the amount of sucrose consumed over the four day testing 

period at the end of the 8
th

 week, and the performance in the Morris water maze 

(MWM).  A one-way ANOVA was performed to identify whether there was a 

significant difference in weight gained between the groups during the first six weeks 
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Figure 2. Novel Object Placement Test. The figure shows the point of entry and the 

position of the novel toys in both trials. This test measured the rodents’ awareness of 

novel location. 
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of CMS. An ANOVA was also performed to examine the differences between the groups’ 

mean sucrose consumptions. For the MWM, an ANOVA was performed comparing the 

groups based on the latency to find the platform, the percentage of the total time spent 

swimming in the platform quadrant, and also the mean path length per group. A 

significance level of .05 was used. Tukey post-hoc comparisons were used to examine the 

specific groups that differed.  

A strong correlation between either sucrose consumption and testing performance 

or weight and testing performance would suggest that rodents exhibiting more mild 

depressive symptoms also performed better on spatial memory tasks. Differences 

between the experimental groups in mean sucrose consumption and mean weight would 

suggest variations in the sensitivity of each group to the CMS. Statistical evidence such 

as this would imply dissimilarity in the overall stress levels of the four groups based on 

the different treatments provided. The experimental groups that perform most 

successfully throughout the behavioral testing will be believed to have benefited the most 

from their specific experimental treatment. There may be alternative reasons for obtaining 

significant results from these behavioral tests. It is possible that the exercise group may 

simply become better swimmers and therefore take less time to reach the platform. This 

can potentially be ruled out as an explanation since learning the location of the platform 

must be accomplished independent of swimming ability. Therefore, it is the learning and 

spatial memory ability that allows the rodents to find and preserve the location of the 

platform rather than the physical development of the rodents. 

It is also feasible that it is the enrichment of both the toys and the running wheels 

that could potentially result in behavioral preservation rather than the specific benefits of  
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the exercise. Perhaps the running wheel will function more as a source of perceptual 

enrichment as opposed to a source of exercise. This can potentially be ruled out based on 

the differences in the outcomes of the two enriched groups. Similar results from both the 

enriched and the enriched/exercise group would make this distinction difficult. However, 

if these groups differ from one another significantly, then it can be concluded that it was 

the distinguishing benefits of the exercise and not simply more enrichment that produced 

these results. 
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CHAPTER III 

RESULTS 

 

Table III.  

Brief Statistical Analysis. “Non-sig” indicates there were no significant differences noted 

by the analyses. “Sig” indicates at least partial significance noted among the analyses that 

were conducted. See the appropriate headings of this section for details. 
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EXPERIMENT Comparison of 

Group Means 

Sig Non-

sig 

Tests of Association Sig Non-

sig  

 

Body Weights ANOVA/Tukey’s 

 



 

    Group x Mean weight 

increase 
  

Sucrose-

Drinking Test ANOVA/Tukey’s 

  


Group x Mean amount 

consumed 
 

 

Water Maze 

Test 

ANOVA/Tukey’s 

 

RM 

ANOVA/Tukey’s 

  

 

 



    

    

Group x Mean latency 

 

Group x Path length 

 

 

 

 

 

 

Water Maze 

Probe 
ANOVA 

  



Proximity x Number of 

Entries  

(Negative) 
  

 

Novel Object 

Placement Test 
ANOVA 

  



 

 

  



3.1    WEIGHTS 

Weights were recorded weekly for each participant beginning at the end of the first 

full week of CMS and continuing until the end of the 6
th

 week (see Figure 3). Due to the 

variation in the age of the rodents at the time of arrival, mean weight gained per week 

was utilized, as opposed to the end or weekly weight (see Figure 4). An examination of 

the first six weeks of weight gain and loss between the groups using ANOVA revealed a 

significant difference in weight gain beginning in the third week of treatment (F (3, 20) 

=5.71, p = .005). Week four demonstrated marginally significant differences (F (3, 20) = 

2.65, p= .076). Fluctuations in weight during week five and six also differed significantly 

between groups (F (3, 20) = 21.29, p= .001) and (F (3, 20) =19.46, p= .001), respectively. 

ANOVA results demonstrated a main effect of group membership on overall mean 

increase in weight over the first six weeks of treatment (F (3, 20) = 3.19, p= .046). 

Tukey’s HSD post-hoc analysis indicated that the Control and the EEs/Exercise  

group differed significantly in weight gain beginning in the 3
rd

 week of treatment (p = 

.003). During week four the Stark environment group showed the greatest separation 

from the EEs/Exercised group (p=.048). Weeks five and six resulted in the EEs/Exercise 

group displaying significant variation from all other groups (p< .001). Finally, the mean 

increase in weight per week over the first six weeks showed the greatest difference 

between the Control group and the EEs/Exercised group (p= .035). None of the variation 

between the other experimental groups approached significance. Table IV illustrates each 

groups mean weight gained or lost per week. 

Tests of association revealed that experimental group membership was 

significantly correlated with the overall mean increase in weight per week at the end of 
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Figure 3. Plotted weight gain per week. Each experimental group’s mean weight (g) 

gained per week for the first six weeks of CMS. 
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Figure 4. Mean overall weekly weight gain. Mean growth rate (g) per week for each 

experimental group over the entire six weeks.  
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Table IV. 

Weight fluctuations per week.  Data are represented as mean and ± standard error of the 

mean and were obtained weekly from all rodents included in the experiment. The number 

of animals in each experimental group was n=6 with N= 24. 
 

 

AGE                                 Week 1         Week 2        Week 3        Week 4         Week 5         Week 6          Overall_          
Control                           47.3 ± 4.8     47.2 ± 4.1     36.5 ± 2.3     32.7 ± 2.7     23.7 ± 3.6      23.0 ± 3.4      34.4 ± 2.8 

_____________________________________________________________________________________________ 

Stark Environment       47.3 ± 8.6     36.3 ± 4.9     20.3 ± 6.2     25.7 ± 5.3     25.3 ± 3.2      17.5 ± 3.7      28.3 ± 2.9  

 

Enrich. Environment    50.7 ± 7.7     41.5 ± 3.0     17.7 ± 5.3     33.2 ± 4.4     31.3 ± 4.6      12.7 ± 1.4      31.2 ± 1.5 

 

Enriched/Exercise         33.0 ± 3.2     35.7 ± 5.1      9.2 ± 4.5      41.3 ± 2.7    -15.7 ± 6.5      40.3 ± 1.7      24.0 ± 2.5     
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the first 6 weeks of treatment (r (24) = .470, p < .05). Increases in weight at the end of the 

3
rd

 week was also significantly associated with group membership (r (24) = .650, p < 

.05). The correlation between group and the increase in weight after the fourth week 

approached but failed to reach significance, while weeks five and six were both 

significantly associated with group membership (r (24) = .588, p < .05, r (24) = .435, p < 

.05, respectively). There was a strong negative association between the increase in weight 

at the end of week five and the increase in weight at the end of the 6
th

 week (r (24) = -

.685, p <.05).   
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         3.1.1     SUCROSE TEST 

At the end of the 8
th

 week of treatment, the sucrose test was given as a measure of 

anhedonia. The results can be seen in Figure 5. There were evident differences in the 

amount of 1.5% sucrose consumed over the three day testing period. However, an 

analysis of variance of the quantity of sucrose solution consumed per experimental group 

approached, but failed to reach the level of significance (F (3, 20) = 2.32, p= .106, ƞ²= 

.258). The quantity of sucrose consumption was not strongly associated with any other 

variable or measurement.  
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Figure 5. Sucrose test results. Mean volume of 1.5 % sucrose solution consumed per 

group over the three day testing period. 
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         3.1.2     MORRIS WATER MAZE 

         At the end of the ten-week period of the CMS treatment each rodent underwent 10 

trials of Morris water maze testing followed by an individual trial probe test. Performance 

in the water maze over the 10 trials was measured based on the distance swam per trial 

(path length) (see Figure 6). The mean path lengths (see Figure 7) for the individual 

groups did not reach significance (F (3, 20) = 1.53, p= .24). Path length significantly 

decreased between the first and last trial (F (1, 9) = 11.31, p= .001). Trial 3 revealed the 

largest variability in distances swam, an ANOVA identified a difference of marginal 

significance (F (3, 20) = 2.96, p= .057). No other trial displayed such a trend.  

Closely associated to path length was the latency to locate the platform for each of 

the trials (see Figure 8). Resembling the path length data, a repeated measures ANOVA 

revealed that the overall mean latency for all groups to reach the platform decreased 

significantly between the first and last experimental trials (F (1, 9)= 11.18, p= .001). 

Again, mirroring the path length data, both trial 1 (F (1, 9) = 73.24, p= .000) and trial 2 (F 

(1, 9) = 15.30, p= .001) latencies were significantly longer in duration than the final eight 

trials. The differences in the experimental groups mean latency for the entirety of the 

experiment (see Figure 9) proved to be marginally significant (F (3, 20)= 2.44, p= .094, 

ƞ²= .268). While there was discernible diversity in the latency between the groups over 

the 10 trials, the variation was not significant for any of the trials. Identical to the path 

length data, Trial 3 displayed the greatest variation between the groups (F (3, 20) = 2.24, 

p= .115). There were five blocks of trials during the MWM testing. Each block consisted 

of two identical trials. Analysis of the mean latency for each block indicated that the 

largest variation in performance took place during block 4, however the differences did  
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Figure 6. Plotted distance swam per trial. Each group’s mean distance (cm) swam per 

Morris water maze trial. 
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Figure 7. Mean path length. The mean distance swam for each group over the entire 

Morris water maze testing period. 
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Figure 8. Plotted latency to locate platform. The mean latency to locate the platform 

for each group over the ten trials of Morris water maze testing.  
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Figure 9. Mean MWM latency. The mean amount of time required for each group to 

locate the platform over the entire testing period. 
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not reach significance (F (3, 20) = 1.88, p= .166). The mean latency for trial 2 was found 

to be highly correlated with group membership, and the relationship proved to marginally 

significant (r (24) = -.398, p = .054). On the other hand, the association between the mean 

overall latency and group membership did reach significance (r (24) = -.469, p < .05).  

Finally, the percentage of the trial latencies spent swimming in the platform 

quadrant was recorded for each trial (see Figure 10). An examination of each 

experimental groups mean percentage of time expended in the platform quadrant revealed 

a significant difference during trial 2 (F (3, 20) = 3.80, p = .026). A post hoc analysis 

revealed notable differences among the Control group and the Enrichment group (p = 

.046). Significant differences were also observed between the Enriched and the 

Enriched/exercise groups (p = .036). All other trials including the overall mean failed to 

approach significance (see Figure 11). 
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Figure 10. Plotted percentage of time in platform quadrant. The mean percentages of 

the trial latency spent in the platform quadrant.  
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Figure 11.  Mean percentage in platform quadrant. The overall mean percentage of 

the water maze trial latencies spent in the platform quadrant. 
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3.1.3     PROBE TRIAL    

After completion of the 10 trials, the rodents were tested in a final probe trial in 

which the platform was removed.  Performance on this trial was based on measurements 

of each rodent’s mean proximity to the original platform location (see Figure 12), and 

also the number of entries made into the platform zone (see Figure 13). Analysis of the 

probe trial data revealed no significant differences between the experimental groups 

based on the number of entries into the platform zone F (3,20) = .649, p= .593) and also 

on the mean proximity to the original platform location F(3, 20) = .698, p= .564). Probe 

trial proximity and the number of entries into the platform area during the probe trial 

exhibited a significantly negative association (r (24) = -.720, p < .05). Interestingly, the 

increase in weight at the end of the first week of treatment was highly correlated with the 

rodents’ proximity to the original platform location during the probe trial (r (24) = .510, p 

<.05), as well as the rodents’ number of entries into the platform area (r (24) = -.567, p < 

.05).  
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Figure 12. Probe trial proximity. The mean proximity (cm) for each group to the  

original platform location during the probe trial. 
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Figure 13. Probe trial zone entries. The mean number of entries into the platform zone 

per group during the probe trial.  
 

 

 

 

 

 

 

 

 

 

 

 

 

50 

4.67
4.17

6

7

3

4

5

6

7

8

Control Stark Enriched Enriched/Ex.

Group

E
n

t
r
ie

s
 (

#
)



         3.1.4     NOVEL OBJECT PLACEMENT TEST 

Each experimental group’s mean difference in the percentage of time exploring toy 

1 before and after it had been moved, was measured. (see Figure 14) Their percentage 

difference in their mean proximity to the toy in trial A and after it was moved in trial B 

was also recorded. (see Figure 15). No significant differences were observed between the 

groups based on their percentage increases in time spent exploring the moved object in 

trial 2 of the NOPT (F (3, 20) = .938, p= .441). There was also no significant differences 

based on each group’s mean percent decrease in proximity to the moved toy F (3, 20) = 

.239, p= .868).  
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Figure 14. Percentage increase in time spent exploring moved toy. Displayed is 

each group’s mean percentage increase in the amount of time spent exploring the toy 

after it had been moved.. 
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Figure 15. Percentage differences in the proximity to toy before and after 

movement. Displayed are the mean differences in proximity to the moved toy in trial 2 of 

the NORT and the proximity to the non-moved toy. 
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                   3.1.5     RUNNING WHEEL  

Based on the data gathered by the PC from the running wheel cages, it was 

concluded that all of the rodents in the EEs/exercise group did run throughout their 

exposure to CMS. There were apparent differences in the volume of wheel running 

performed by the individual rodents in the EEs/exercise group (see Figure 16). However, 

analyses concluded that the distance ran did not influence the rodents performance on any 

aspect of the behavioral tests. The number of revolutions was associated only with the 

mean weight gained per week (r (6) = .918, < .05). 
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Figure 16. Number of revolutions ran. This graph represents the total number of wheel 

revolutions recorded from each rodent’s cage over the last two weeks of CMS treatment. 
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CHAPTER IV 

 

DISCUSSION 

 

 

The purpose of this study was to further isolate the hippocampus as a structure 

involved in the formation and prevention of depression and depressive like symptoms. It 

was proposed that behaviors that result in greater hippocampal stimulation would be more 

effective in preventing the onset of these depressive symptoms.  

 Weight loss 

 Anhedonia 

 Spatial memory impairment 

The experimental treatments used in this study were chosen based on their known 

efficacy in enhancing hippocampal cell growth. Concurrent exposure to these treatments 

during the 10-week CMS period allowed us to identify the most effective form of 

prevention of specific depressive symptoms during times of prolonged stress. Our results 

point to a potential additive effect of environmental enrichment and exercise in 

combating the behavioral symptoms of depression.  

 

 

 

56 



Weight 

 The weekly increases in weight served as the primary indicator of the interaction  

between persistent stress exposure and the designated experimental treatment of the  

individual groups. Stress in rodents is associated with reductions in weight gained per  

week (Wright & Condrade, 2008). Therefore, the lower the weight, the more sensitive to 

stress that experimental group is believed to be. While the experimental groups’ mean 

increases in weight were consistent with the expected trend the differences were too small 

to be definitive. Also, the weights from the EEs/exercise group were in conflict with the 

intended point of this measure. Lower weights in this group were more associated with 

higher amounts of running as opposed to more severe depressive symptoms. Based on 

each group’s environment, lower weights should have been characteristic of those 

experiencing lower levels of stimulation.  

The results showed a main effect for weight based on group membership however, 

the major differences in weight were observed between the Control and the EEs/exercise 

groups only. Although not significant, early differences were observed between the 

Control and Stark groups weight gain which would point to early variations in their 

responses to the environment, since the sole difference between these two groups was the 

Stark group’s exposure to CMS. Other studies have observed such early and persistent 

fluctuations in weight gain as a result of the CMS treatment (Forbes, Stewart, Matthews 

& Reid,
1
 1996).  

While the validity of this measure is not in question, the present study’s utilization  
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1
  The Enriched/Exercise groups weights would naturally be significantly lower as a result of the 

greater number of calories burned, regardless of their sensitivity to the CMS treatment.  



of it made it difficult to identify differences in weight based on the intensity of the  

symptoms as opposed to the level of activity demonstrated by the experimental groups. 

Weight would be a more suitable index if the experimental design provided all groups 

with access to exercise, or none at all.  

 

Anhedonia  

Decreased sensitivity to pleasurable experiences or anhedonia is a known 

symptom of depression. Sucrose consumption was used as an indication of depressive 

symptoms at the end of each rodent’s 8
th

 week of CMS. While there were differences 

between the amounts consumed between groups, they approached but did not reach a 

level of significance. The EEs totals conflicted with our final hypothesis. It was expected 

that rodents receiving more stimulation would consume more sucrose, and while this was 

observed slightly in the EEs/exercise group none of the differences proved to be 

significant. However, group membership did account for 25% of the variance in overall 

consumption.  

Sucrose solution consumption can be attributed to changes in physiological 

sensitivity to the taste, as opposed to reductions in overall drinking, since the intake of 

water is unaffected by CMS (Willner, 1997). Also, anti-depressant treatment has been 

shown to increase consumption in stressed animals but not controls, demonstrating a 

chemically induced restoration of sensitivity in anhedonic rodents (Muscat, Papp &  

Willner, 1992).  Therefore, the variations in the amounts consumed cannot be explained 

by factors relating to thirst, but are instead caused by physiological changes more closely  

believed to be related to pleasure avoidance (Forbes, Stewart, Matthews & Reid, 1996). 

 

58 



It is possible that the rodents in the EEs group were preoccupied with the 

environmental and dietary enrichment and therefore were less likely to spend as much 

time drinking the solution; however, the mean volume consumed by the EEs/Exercise 

group would suggest otherwise, since both groups received similar types of stimulation. It 

is certainly viable that the EEs group did indeed experience more severe depressive 

symptoms than the Stark group as a result of the CMS treatment. However, resilience to 

the onset of anhedonic behavior after long-term exposure to chronic unpredictable stress 

has been observed in some studies (Gouirand and Matuszewich, 2005; Henningsen, at. 

al., 2009). Indeed, the cognitive deficits typical of depression are still observed in stressed 

rodents who are found to be less susceptible to anhedonic-like behavior. Therefore, the 

results of this test are difficult to interpret.  

 

Water Maze 

Results from the MWM testing were less ambiguous. Since the outcome of the 

analyses of path length and latency were so highly similar, only latency and the 

percentage of time spent swimming in the platform quadrant will be discussed. It was  

predicted that the rodents receiving enrichment during their treatment would learn the  

location of the platform earlier and reach it more efficiently than the Stark group, thereby  

demonstrating superior spatial memories. In terms of the mean latency for each group 

over the 10 testing trials, the differences between the groups attained marginal 

significance. The EEs/Exercise group performed at the highest level in terms of their 

ability to locate and retain the location of the platform, which was consistent with our 2
nd

 

hypothesis. Their mean time required to reach the platform was 36% lower than the mean  
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time of the rodents in the Stark environment group. Curiously, the EEs and the Stark  

groups performed similarly. Such a small disparity in water maze performance between 

the EE and Stark groups seemed to support the results of the sucrose consumption test, 

and provide added evidence for their comparable depressive states.  

Group membership was strongly associated with mean latency over the course of 

the MWM testing indicating identifiable differences in performance. The largest 

differences observed in trial latency occurred during the initial trials. Early differences 

would be expected if the CMS had affected each group differently depending on their 

designated treatments. Rodents should locate and retain the position of the platform at a 

different rate. In fact, trial 2 and 3 showed the greatest variation between groups in 

latency as well as the percentage of time spent in the platform quadrant, pointing to the 

expected difference in the rate of spatial memory storage among the groups. 

Normalization of each group’s latencies beginning in trial 1 and continuing on to trial 10 

showed no significant differences in the percentage reduction in time for any successive 

trial. This may have been caused by the variations in each testing groups starting distance 

to the platform for each block of tests, which would lead to apparent fluctuations in the 

percentage decrease. In other words, trial 2 for the first testing group may have had a 

large decrease in latency due to closer starting proximity to the platform, while trial 9 

may have been further away but the latencies may have been similar indicating minimal 

differences in the percent reduction, even though learning may have continued to take 

place throughout testing. Still, all of the rodents did manage to learn the exact location of 

the platform before the end of the testing period.  

While the EEs/Exercise group demonstrated a perceptible advantage in the storage  
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and retrieval of the platform location, they spent the smallest percentage of their  

trials in the platform quadrant. This group spent 7% less time in this quadrant than the 

Stark group and the EEs group who performed almost identically on this measure. 

Interpretation of this data is difficult since it could be assumed that greater time spent in 

the platform quadrant is indicative of greater awareness of the platform location. 

However, the researchers suggest an alternative explanation for this discrepancy. It is 

more likely that additional time spent in the platform quadrant represents greater 

uncertainty as to the platform’s exact location. Rodents spending a greater percentage of  

time swimming in the platform quadrant would naturally have to swim longer in this  

quadrant without locating the platform. Therefore, these results are most likely a measure 

of the precision of the spatial memory ability of each group. Based on this assumption, 

the EEs/Exercise groups displayed greater accuracy and efficiency in locating the 

platform than all other groups. The results from the MWM further support the strong 

similarities in spatial memory performance between the Enriched and Stark groups, 

indicating no advantage in the level of spatial memory ability maintained through 

consistent enrichment.  

 

Probe Trial 

The purpose of the probe trial was to measure each group’s retention of the precise  

location of the platform by tracking each rodent’s time spent swimming on or around the  

area where the platform had originally been placed.  Like the MWM, it was predicted that  

higher levels of enrichment would result in more well preserved spatial memory. The 

probe trial measurements were somewhat consistent with the MWM findings. In support  
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of our interpretation of the results from the MWM, the EEs/Exercise group on average 

crossed into the original platform area more than any other group providing further 

evidence for a more precise spatial memory in this group. The EEs group 

performed similarly, while the Stark group demonstrated less specificity in 

their search for the platform. While the results indicate a perceivable divergence in 

performance, the group variations in entries didn’t reach significance.  

The EEs group swam in closest proximity to the platform location during the  

probe trial, while the EEs/Exercise groups swam on average 16% further away from the  

spot of the original platform. The Stark groups mean proximity was slightly higher than  

the EEs/exercise group’s but the differences were minor. In terms of the percentage of 

time spent in the platform quadrant the results were similar to those obtained during the 

MWM testing. The EEs group spent a markedly longer percentage of time searching in 

the platform’s quadrant than the other groups. Mirroring the MWM results, the 

EEs/Exercise group occupied the platform quadrant the least during the one-minute trial. 

Again, this is not a direct indication that the EEs/Exercise group had impaired spatial 

memory, although that seems to be a reasonable assumption. However, based on their low 

mean latency to find the platform this is difficult to accept. Instead, it may be more 

probable that the EEs/Exercise group became aware of the absence of a platform faster 

than the other groups. As a result, these rodents would have moved into other quadrants 

to explore further rather than spend more time in an area that no longer provided safety.  

The greater number of platform zone entries by the EEs/Exercise group also supports our  

reasoning.  

Similar studies have also failed to observe significant differences in time  
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spent in the platform quadrant (Gouirand and Matuszewich, 2005). In this study, the EEs 

group consistently spent more time searching for the platform in areas closer to  

its original location not only in the MWM but also during the probe trial. Therefore, it 

was concluded that while the memory of the general position of the platform was stronger 

in the EEs group than the Stark group, the accuracy of both groups’ spatial memory was 

inferior to those who had access to exercise. The Enriched group’s lower proximity to the 

original platform location in both tests along with the greater amount of time searching in 

its quadrant supports the possibility of an inaccurate but persistent general awareness. 

 

Novel Object Placement Test  

The results of the NOPT were somewhat contradictory to the hypothesis and 

appeared incompatible with the other tests. It was predicted that greater time spent 

exploring the moved toy in trial B was indicative of more well preserved spatial memory. 

Therefore, the researchers expecte that the groups receiving enrichment would 

demonstrate a clear bias towards the moved objects. The means of the groups on both 

measures of this test were too close to identify any significant differences. In terms of the 

difference in time spent exploring the two toys, the EEs/Exercise and Stark groups 

performances were indistinguishable. The Control group showed the smallest preference  

for the moved toy, which was also not anticipated. The difference in proximity to each 

toy in the second trial conflicted with the previous results if proximity in this test is an 

indication of general curiosity. The Stark group spent the second trial 59% closer to the 

moved toy than did the EEs/exercise group. The difference in proximity may not have  

been a reliable indicator of preference in the behavioral tests utilized in this study. Other  
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studies have also failed to find significant differences in exploration time between 

stressed and non-stressed rodents (Li, et al., 2008). No identifiable trends in performance 

were found and this is could be due to the small number of rodents tested as well as the 

relative insensitivity of the test measures. The design of this test assumed that rodents 

would be capable of identifying whether an object moved or did not move based solely 

on the stationary object’s consistent position in front of a spatial cue inside the pool. In 

fact, both objects may be considered to have moved if left/right orientation was the 

subjects’ primary means of determining location. More specifically, if the object that was 

originally on the rodent’s left side in trial A is now located to its right in trial B, then the  

same would apply for the non-moved toy. Both objects essentially change their 

orientation relative to the rodent. The only identifiable consistency in the positioning of 

the non-moved toy was its maintained proximity to a specific visual cue inside the pool. 

Therefore, this test demanded a level of spatial memory acuity that its design was perhaps 

too insensitive to measure.  

Interesting associations were observed between the time spent exploring the toys 

and other measures in the test that should be noted. For example the time spent exploring  

both toys during the first trial was negatively associated with the rodents’ mean weight 

gain per week indicating greater exploratory behavior in the lighter rodents. Also, an 

interesting negative correlation was discovered between the latency in trial 3 and the 

difference in exploration time between the two toys. In other words the lower the rodent’s 

latency in this trial, the greater the rodent’s bias towards the object in the novel position. 

As noted before, trial 3 experienced more variation in latency between the groups than  

any other trial. It would seem that performance in this trial was more predictive of overall  
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spatial memory ability than any of the others. Indeed, the earlier phases of testing were 

the strongest indicators of any variation in overall spatial memory ability. 

 

Conclusion 

Stress or the exposure to sufficient levels of GCs results in observable damage to 

the hippocampus (Stein-Behrens, et al. 1994). Reductions in the firing rate of 

hippocampal neurons have also been observed (Duman, Malberg, Nakagawa and D’Sa, 

2000). The negative response of these cells as a result of exposure to GCs is linked to 

significant reductions in overall activity as well as the eventual atrophy of the neurons  

that is common among depressed patients. These lower levels of neurological excitement  

and the eventual reductions in the volume of the hippocampus are associated with 

identifiable impairments in memory performance (Kirschbaum, et. al., 1996, Ohl, et al., 

1999). This study did not measure the severity of the depressive symptoms on a cellular 

level but instead observed the physical and behavioral effects induced by weeks of 

uninterrupted CMS exposure. Performance on the behavioral tests was intended to be an 

indication of some level of hippocampal impairment.  

While the stress provided for the groups remained identical throughout the 10 

weeks of CMS treatment, the rodents’ sensitivity to the stress was manipulated through 

the introduction of new and unfamiliar objects as well as the ability to exercise. Exercise 

actually increases GC levels in the blood but does not have a harmful impact on the 

functioning of the hippocampus (Christie et al., 2008; Gomez-Pinilla, Dao & So, 1997).  

Exercise is believed to be a modulator of the HPA axis. Perhaps it is the steady exposure  

to low levels of GCs that allows for the habituation and eventual increased resistance to  
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stress. Hattori et al. (2007) and Markham (2004) propose the same explanation for the 

beneficial effects of enrichment in reducing the severity of depressive symptoms. 

Frequent exposure to new and unfamiliar objects can be classified as a series of mild 

stressors. Several mild stressors over the course of a ten week period would certainly 

have an effect on subsequent HPA activity. Recurrent exposure to mild stressors would 

eventually desensitize the rodent to the stress of novelty allowing it to engage in more 

exploratory behavior in unfamiliar surroundings.  

Several studies have observed increases in growth factor concentration in the  

hippocampus as a result of heightened levels of physical activity (Gomez-Pinilla, Dao  

and So, 1997; Van Praag, 2009). Higher levels of BDNF are typically accompanied by 

increases in hippocampal cell proliferation (Bjornebekk, Mathe and Brene, 2005). 

Therefore, it was concluded that hippocampal maintenance in any form would increase  

one’s resistance to developing depressive symptoms. Hippocampal stimulation is most 

certainly not isolated to exercise and EE only. There are undoubtedly additional methods 

of promoting higher levels of activity in the hippocampus however exercise and EE are 

known environmental and behavioral means of achieving this result.  

The present study intended to focus on providing hippocampal stimulation as a 

means of potentially attenuating the behavioral and cognitive symptoms of depression. 

Treatments were chosen based on their positive neurogenic properties, specifically in the 

hippocampus. The presence of these treatments during a prolonged period of CMS 

revealed the potential importance of consistent hippocampal maintenance when faced 

with extended periods of chronic stress. This study also takes a step toward examining the  

interactive effects of multiple treatments on the preservation of cognitive ability, as  
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opposed to only one. 

The overwhelming majority of related studies have focused on the treatment of 

previously induced depressive symptoms as opposed to possible forms of prevention or 

attenuation. The current study examined solely the protective ability of these practices. 

Earlier studies have also failed to examine the potential additive benefits of combined 

treatments. It is unclear whether exercise and environmental enrichment share potential 

additive benefits when practiced in combination. Yet it is clear that EE and exercise 

provided a greater amount of resistance against the development of depressive symptoms 

than just EE alone, which did not appear to afford any noticeable advantage in the  

prevention of these symptoms. Increased cell proliferation and growth factor  

concentration were likely factors that influenced this result, although it was not our aim to 

affirm that idea. Evidence from previous studies supports this conclusion. The lack of 

statistical power and sensitivity in this study prevented the identification of significant 

variation between groups in several measures, although clear differences in spatial 

memory ability and responsiveness to stress were apparent.  

While the results from this study point to an advantage in performance for those 

rodents receiving both EEs and exercise, there was certainly room to improve the design 

of this study. Water maze testing would be the primary measure of spatial memory, as 

opposed to two separate tests. Such high frequency testing during each rodent’s last week 

of experimentation may have interfered with the results of the novel object placement 

test. Regardless of whether the outcome of  the novel object placement test was valid, it 

added little to the overall results of the study and therefore would be omitted in future  

studies. Most importantly, if done again this study would examine the benefits of exercise  

 

 

67 



in isolation in order to verify that there was indeed an additive effect of combined 

exercise and EE. The design of the present study did not allow for the measurement of 

exercise’s preventative capacity when provided in isolation.  

Future research should focus not only on identifying the potential interactions of  

these behavioral treatments, but also on the identification of other treatments that are  

capable of eliciting similar levels of stimulation in the hippocampus. There may also be a  

discrepancy in the effectiveness of each treatment based on the time of their 

administration. In other words, enriched environments may be more successful at treating  

previously developed depressive symptoms, while exercise may be the best proactive  

method of treatment. Providing long-term exposure to exercise and enrichment prior to 

the administration of stress may be another possible means of examining the protective 

efficacy of these treatments. Comparing the rate at which previously enriched rodents 

develop depressive symptoms after their introduction to stress with that of rodents with 

no prior enrichment might further illustrate the potential stress-attenuating influence of 

these treatments. Future variations of this study may also help to identify the actual speed 

at which these protective physiological modifications are activated. By examining the 

spatial memory ability of chronically stressed rodents after a single period of exercise, it 

might be possible to identify immediate improvements, which would indicate a more 

instantaneous effect of these treatments on hippocampal function.  

The results of this study suggest that depression and chronic stress can have 

damaging effects on both the hippocampus and its influence on behavior while exposure 

to exercise and environmental enrichment may lead to observable improvements in  

hippocampal activity and performance. Future research should aim to provide a better  
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understanding of the mechanisms by which these and other treatments improve mood and 

cognitive performance. Improved awareness of the kinds of experiences and practices that 

stimulate an enhanced defense against these symptoms will provide evidence in support 

of the types of lifestyles that may be most resistant to the cognitive and emotional 

consequences of chronic stress. Finding the answers to these questions could potentially 

lead to an optimization of the effectiveness of behavioral treatments in treating and 

preventing the symptoms of chronic stress and depression.  

From an evolutionary standpoint, these results shed some light on the sort of 

behaviors that may have been the most auspicious in terms of increasing the odds of  

human survival. Perhaps both were essential ingredients for survival throughout earlier 

more life-threatening times in our species history. An existence consisting of regular 

physical activity, with exposure to novel environments would likely increase the chances 

of locating previously undiscovered sources of sustenance and habitation. Frequent 

exercise would assist not only in the tracking of game, but in the avoidance of predators. 

It is assumed by these researchers that for the majority of human existence, our way of 

life consisted of regular amounts of both environmental enrichment, and exercise. It is 

logical to imagine that over several generations of such a high-risk lifestyle, the behaviors 

and experiences that were consistent with improving the likelihood of survival would 

eventually become required for the healthy functioning of our bodies and minds. The 

human brain may have evolved a physiological need for the type of stimulation this 

lifestyle provides. If the human hippocampus has in fact developed based on the 

fundamentals of primitive life, then depression should be as widespread as it is in today’s  

comparatively relaxed existence. An understanding of human development throughout  
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our history, as well as a familiarity with the basic ingredients for survival during these 

primitive times would aid in the detection of other potentially stress minimizing 

behaviors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70 



BIBLIOGRAPHY 
 

 

Anisman H, Zaharia M.D., Meaney M.J., & Merali Z. (1998) Do early-life events 

permanently alter behavioral and hormonal responses to stressors? International 

Journal Developmental Neuroscience 16, 149-164.  

Babyak M, Blumenthal J.A., Herman S, Khatri P, Doraiswamy M, Moore K, Craighead 

E, Baldemicz T.T., & Krishnan K.R. (2000) Exercise treatment for major 

depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic 

Medicine 62, 633-638. 

Becker S, & Wojtowicz J.M. (2006) A model of hippocampal neurogenesis in memory 

and mood disorders. Trends in Cognitive Sciences 11, 70-76. 

Beckner V.E., Tucker D.M., Delville Y, & Mohr D.C. (2006) Stress facilitates 

consolidation of verbal memory for a film but does not affect retrieval. Behavioral 

Neuroscience 120, 518-527. 

Bjornebekk A, Mathe A.A., & Brene S. (2005) The antidepressant effect of running is 

associated with increased hippocampal cell proliferation. International Journal of 

Neuropsychopharmacology 8, 357-368. 

Blustein J.E., McLaughlin M, & Hoffman J.R. (2006) Exercise effects stress induced 

analgesia and spatial learning in rats. Physiology & Behavior 89, 582-586. 

Bradley B.P., Mogg K, & Williams R. (1995) Implicit and explicit memory for emotion-

congruent information in clinical depression and anxiety. Behavioral Research 

Therapy 33, 755-770. 

 

                                                                     

71 



Brenes J.C., Rodriguez O, & Fornaguera J. (2007) Differential effect of environment 

enrichment and social isolation on depressive-like behavior, spontaneous activity 

and serotonin and norepinephrine concentration in prefrontal cortex and ventral 

striatum. Pharmacology, Biochemistry and Behavior 89, 85-93. 

Brenes Saenz J.C., Rodriguez Villagra O, & Fornaguera Trias J. (2006) Factor analysis of 

forced swimming test, sucrose preference test and open field test on enriched, 

social and isolated reared rats. Behavioural Brain Research 169, 57-65. 

Brosse A.L., Sheets E.S., Lett H.S., & Blumenthal J.A. (2002) Exercise and the treatment 

of clinical depression in adults: Recent findings and future directions. Sports 

Medicine 32, 741-760. 

Buchanan T.W., & Tranel D. (2008) Stress and emotional memory retrieval: Effects of 

sex and cortisol response. Neurobiology of Learning and Memory 89, 134-141. 

Burt D.B., Niederehe G, & Zembar M.J. (1995) Depression and memory impairment: A 

meta-analysis of the association, its pattern, and specificity. Psychological 

Bulletin 117, 285-305. 

Buss C, Wolf O.T., Witt J, & Hellhammer D.H. (2004) Autobiographic memory 

impairment following acute cortisol administration. Psychoneuroendocrinology 

29, 1093-1096. 

Chodzko-Zajko W.J. (1991) Physical fitness, cognitive performance and aging. Sports 

Exercise 23, 868-872. 

 

 

 

 

72 



Choy K.H.C., de Visser Y, Nichols N.R., & van den Buuse M. (2008) Combined  

neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF 

expression in hippocampus: Effects on learning and memory. Hippocampus 18, 

655-667. 

Christie B.R., Eadie B. D., Kannangara T.S., Robillard J.M., Shin J., & Titterness A.K. 

(2008) Exercising our brains: How physical activity impacts synaptic plasticity in 

the dentate gyrus. Neuromolecular Medicine 10, 47-58. 

Cotman C.W., & Berchtold N.C. (2002) Exercise: a behavioral intervention to enhance 

brain health and plasticity. Trends in Neurosciences 25, 295-301. 

Cotman C.W., Berchtold N.C., & Christie L.A. (2007) Exercise builds brain health: key 

roles of growth factor cascades and inflammation. TRENDS in Neuroscience 30, 

464-472. 

Czeh B, & Lucassen P.J. (2007) What causes the hippocampal volume decrease in 

depression? Are neurogenesis, glial changes and apoptosis implicated? European 

Archives of Psychiatry and Clinical Neuroscience 257, 250-260. 

Daimond D.M., Fleshner M, Ingersoll N, & Rose G.M. (1996) Psychological stress 

impairs spatial working memory: Relevance to electrophyiological studies of 

hippocampal function. Behavioral Neuroscience 110, 661-672. 

Dickerson S.S., & Kemeny M.E. (2004) Acute stressors and cortisol responses: A 

theoretical integration and synthesis of laboratory research. Psychological Bulletin 

130, 355-391. 

Duman R.S. (2004) Depression: A case of neuronal life and death? Biological Psychiatry                                                           

 56, 140-145.  

 

73 



Duncko R, Brtko J, Kvetnansky R, & Jezova D. (2001) Altered function of peripheral 

organ systems in rats exposed to chronic mild stress model of depression. Cellular 

and Molecular Neurobiology 21, 403-411. 

Eich T.S., & Metcalfe J. (2009) Effects of the stress of marathon running on implicit and 

explicit memory. Psychonomic Bulletin & Review 16, 475-479. 

Elizalde E, Gil-Bea F.J., Ramirez M.J., Aisa B, Lasheras B, Del Rio J, & Tordera R.M. 

(2008) Long-lasting behavioral effects and recognition memory deficit induced by 

chronic mild stress in mice: effect of antidepressant treatment. 

Psychopharmacology 199, 1-14.  

Enkel T, Spanagel R, Vollmayr B, & Schneider M. (2010) Stress triggers anhedonia in 

rats bred for learned helplessness. Behavioural Brain Research 209, 183-186. 

Ennaceur A, & Delacour J. (1988) A new one-trial test for neurobiological studies of 

memory in rats. Behavioral Brain Research 31, 47-59. 

Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C.J., & Palmer T.D. 

(2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. 

European Journal of Neuroscience 18, 2803-2812. 

Frick K.M., Stearns N.A., & Pan J.Y., & Berger-Sweeney J. (2010) Effects of 

environmental enrichment on spatial memory and neurochemistry in middle-aged 

mice. Learning & Memory 10, 187-198. 

Gomez-Pinilla F. (2008) Brain foods: the effects of nutrients on brain function. Nature  

Reviews: Neuroscience 9, 568-578. 

 

 

 

74 



Goodrich- Spatial deficits in a virtual water maze in amnesic participants with 

hippocampal Hunsaker N.J., Livingstone S.A., Skelton R.W., & Hopkins R.O. 

(2010) damage. Hippocampus 20, 481-491.  

Gouirand A.M., & Matuszewich L. (2005) The effects of chronic unpredictable stress on 

male rats in the water maze. Physiology & Behavior 86, 21-31. 

Gould E, &Tanapat P. (1999) Stress and hippocampal neurogenesis. Society of Biological 

Psychiatry 46, 1472-1479. 

Grace L, Hescham S, Kellaway L.A., & Bugarith K. (2009) Effect of exercise on learning 

and memory in a rat model of developmental stress. Metabolic Brain Disorders 

24, 643-657. 

Greenwood B.N., Foley T.E., Day H.E.W., Campisi J, Hammack S.H., Campeau S, 

Maier S.F., & Fleshner M. (2003) Freewheel running prevent learned 

helplessness/behavioral depression: Role of Dorsal Raphe Seretonergic Neurons. 

The Journal of Neuroscience 23, 2889. 

Grippo A.J., Beltz T.G., & Johnson A.K. (2003) Behavioral and cardiovascular changes 

in the chronic mild stress model of depression. Physiology & Behavior 78, 703-

710. 

Grippo A.J, Beltz T.G., Weiss R.M., & Johnson A.K. (2006) The effects of chronic 

fluoxetine treatment on chronic mild stress-induced cardiovascular changes and 

anhedonia. Biological Psychiatry 59, 309-316.                                                 

 

 

 

 

75 



Hattori S, Hashimoto R, Miyakawa T, Yamanaka H, Maeno H, Wada K, & Kunugi H. 

(2007) Enriched environments influence depression-related behavior in adult mice 

and the survival of newborn cells in their hippocampi. Behavioural Brain 

Research 180, 69-76. 

Henningsen K, Andreasen J.T., Bouzinova E.V.,  Jayatissa M.N., Jensen M.S., Redrobe 

J.P., & Wiborg O. (2009) Cogntive deficits in the rat chronic mild stress model for 

depression: Relation to anhedonic-like responses. Behavioural Brain Research 

198, 136-141. 

Hillman C.H., Snook E.M., & Jerome G.J. (2003) Acute cardiovascular exercise and 

executive control function. International Journal of Psychophysiology 48, 307-

314. 

Hu W, Xuemei L, Shengwang H, & Changlin H. (2003). Effects of chronic stress on 

spatial learning and memory and nitric oxide in hippocampus of rats. Chinese 

Mental Health Journal 17, 75-76.  

Jans L.A.W., & Blokland A. (2008) Influence of chronic mild stress on the behavioural 

effects of acute tryptophan depletion induced by a gelatin-based mixture. 

Behavioural Pharmacology 19, 706-715. 

Keenan P.A., & Kuhn T.W. (1999) Do glucocorticoids have adverse effects on brain 

function? CNS Drugs, 11, 245-251. 

Kendler K.S., Karkowski L.M., & Prescott C.A. (1999) Causal relationship between 

stressful life events and the onset of major depression. American Journal of 

Psychiatry 156, 837-841. 

 

 

76 



Kesner R.P., Hopkins R.O. (2006) Mnemonic functions of the hippocampus: a 

comparison between animals and humans. Biological Psychology 73, 3-18  

Kim J.J., Lee H.J., Welday A.C., Song E.Y., Cho J, Sharp P.E., Jung M.W., & Blair H. T. 

(2007) Stress-induced alterations in hippocampal plasticity, place cells, and 

spatial memory. www.pnas.org/cgi/doi/10.1073/pnas.0708644104 

Kirschbaum C, Wolf O.T., May M, Wippich W, & Hellhammer D.H. (1996) Stress- and 

treatment-induced elevations of cortisol levels associated with impaired 

declarative memory in healthy adults. Life Sciences 58, 1475-1483. 

Kuhlmann S, Piel M, & Wolf O.T. (2005) Impaired memory retrieval after psychosocial 

stress in healthy young men. The Journal of Neuroscience 25, 2977-2982. 

Larsson F, Winblad B, & Mohammed A.H. (2002) Psychological stress and 

environmental adaptation in enriched vs. impoverished housed rats. 

Pharmacology, Biochemistry and Behavior 73, 193-207. 

Lin D, Bruijnzeel A.W., Schmidt P, & Markou A. (2002) Exposure to chronic mild stress 

alters thresholds for lateral hypothalamic stimulation reward and subsequent 

responsiveness to amphetamine. Neuroscience 114, 925-933. 

Lores-Arnaiz S, Bustamante J, Arismendi M, Vilas S, Paglia N, Basso N, Capani F, 

Coirini H, Lopez Costa J.J., & Lores Arnaiz M.R. (2006) Extensive enriched 

environments protect old rats from the aging dependent impairment of spatial 

cognition, synaptic plasticity and nitric oxide production. Behavioural Brain 

Research 169, 294-302.  

McCann I. L., & Holmes D.S. (1984) Influence of aerobic exercise on depression.  

Journal of Personality and Social Psychology 46, 1142-1147. 

 

77 



McEwen B.S. (2000). Effects of adverse experiences for brain structure and function. 

Biological Psychiatry 48, 721-731. 

Merz C.J., Wolf O.T., & Hennig J. (2010) Stress impairs retrieval of socially relevant 

information. Behavioral Neuroscience 124, 288-293. 

Moosavi M, Naghdi N, Maghsoudi N, & Zahedi Asl S. (2007) Insulin protects against 

stress-induced impairments in water maze performance. Behavioural Brain 

Research 176, 230-236. 

Morris R.G.M. (1984) Development of a water-maze procedure for studying spatial 

learning in the rat. Journal of Neuroscientific Methods 11, 47-60. 

Muscat R, Papp M, & Willner P. (1992) Reversal of stress-induced anhedonia by the 

atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology 109, 

433-438. 

Naka F, Shiga T, Yaguchi M, Okado N. (2001) An enriched environment increases 

noradrenaline concentration in the mouse brain. Brain Research 924, 124-126. 

Nilsson M, Perfilieva E, Johansson U, Orwar O, & Eriksson P.S. (1999) Enriched 

environment increases neurogenesis in the adult rat dentate gyrus and improves 

spatial memory. Journal of Neurobiology 39, 569-578. 

O’Callaghan R.M., Griffin E.W., & Kelly A.M. (2009) Long-term treadmill exposure 

protects against age-related neurodegenerative change in the rat hippocampus. 

Hippocampus 19, 1019-1029. 

O’Callaghan R.M., Ohle R., & Kelly A.M. (2007) The effects of forced exercise on 

hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial 

learning. Behavioural Brain Research 176, 362-366. 

 

78 



Oei N.Y.L., Everaerd W.T.A.M., Elzinga B.M., Van Well S, & Bermond B. (2006) 

Psychosocial stress impairs working memory at high loads: An association with 

cortisol levels and memory retrieval. Stress 9, 133-141. 

Ohl F, Michaelis T, Vollmann-Honsdorf G.K., Kirschbaum C, & Fuchs E. (1999) Effect 

of chronic psychosocial stress and long-term cortisol treatment on hippocampus-

mediated memory and hippocampal volume: a pilot-study in tree shrews. 

Psychoneuroendocrinology 25, 357-363. 

Palmer C. (2005) Exercise as a treatment for depression in elders. Journal of the 

American Academy of Nurse Practitioners 17, 60-66. 

Paluska S.A., & Schwenk T.L. (2000) Physical activity and mental health: current 

concepts. Sports Medicine 29, 167-180. 

Papp M, Willner P & Muscat R. (1991) An animal model of anhedonia: attenuation of 

sucrose consumption and place preference conditioning by chronic unpredictable 

mild stress. Psychopharmacology 104, 255-259. 

Pohl J, Olmstead M.C., Wynne-Edwards K.E., Harkness K, & Menard J.L. (2007) 

Repeated exposure to stress across the childhood-adolescent period alters rats’ 

anxiety- and depression-like behaviors in adulthood: The importance of stressor 

type and gender. Behavioral Neuroscience 121, 462-474. 

Rasmuson S, Olsson T, Henriksson B G.,  Kelly P.A.T., Holmes M.C., Seckl J.R., & 

Mohammed A.H. (1997) Environmental enrichment selectively increases 5-HT1A 

receptor mRNA expression and binding in the rat hippocampus. Molecular Brain  

Research 53, 285-290. 

 

 

79 



Ravnkilde B, Videbech P, Clemmensen K, Egander A, Rasmussen N.A., & Rosenberg R. 

(2002) Cognitive deficits in major depression. Scandinavian Journal of 

Psychology 43, 239-251. 

Roozendaal B. (2002) Stress and memory: Opposing effects of glucocorticoids on 

memory consolidation and memory retrieval. Neurobiology of Learning and 

Memory 78, 578-595.  

Roozendaal B, McEwen B.S., & Chattarji S. (2009) Stress, memory and the amygdala. 

Nature: Neuroscience 10, 423-433. 

Rosch P.J. (1997) Stress and memory loss: Some speculations and solutions. Stress 

Medicine 13, 1-6. 

Rosenzweig M.R., & Bennett E.L. (1996) Psychobiology of plasticity: effects of training 

and experience on brain and behavior. Behavioural Brain Research 78, 57-65. 

Sandi C, Davies H.A., Cordero M.I., Rodriguez J.J., Popov V.I., & Stewart M.G. (2003) 

Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus 

following water maze training. European Journal of Neuroscience 17, 2447-2456. 

Sapolsky R.M. (2003) Stress and plasticity in the limbic system. Neurochemical  

 Research 28, 1735-1742. 

Schoofs D, Wolf O.T., & Smeets T (2009) Cold pressor stress impairs performance on 

working memory tasks requiring executive functions in healthy young men. 

Behavioral Neuroscience 123, 1066-1075. 

Song L, Che W, Min-wei W, Murakami Y, & Matsumoto K. (2006) Impairment of the 

spatial learning and memory induced by learned helplessness and chronic mild 

stress. Pharmacology, Biochemistry and Behavior 83, 186-193. 

 

80 



Starkman M.N., Giordani B, Gebarski S.S., & Schteingart D.E. (2003) Improvement in 

learning associated with increase in hippocampal formation volume. Society of 

Biological Psychiatry 53, 233-238.  

Stein-Behrens B, Mattson M.P., Chang I, Yeh M, & Sapolsky R. (1994) Stress 

exacerbates neuron loss and cytoskeletal pathology in the hippocampus. The 

Journal of Neuroscience 14, 5373-5380. 

Stewart M.G., Davies H.A., Sandi C., Kraev I.V., Rogachevsky V.V., Peddie C.J., 

Rodriguez J.J., Cordero M.I. Donohue H.S., Gabbot P.L.A., & Popov V.I. (2005) 

Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A 

three-dimensional ultrastructural study of thorny excrescences and their 

postsynaptic densities. Neuroscience 131, 43-54. 

Stokes P.E. (1995) The potential role of excessive cortisol induced by HPA hyperfunction 

in the pathogenesis of depression. European Neuropsychopharmacology 

Supplement, 77-82. 

Strohle A. (2009) Physical activity, exercise, depression and anxiety disorders. Journal of 

Neural Transmission 116, 777-784. 

Tollenaar M.S., Elzinga B.M., Spinhoven P, & Everaerd W.A.M. (2008) The effects of 

cortisol increase on long-term memory retrieval during and after acute 

psychosocial stress. Acta Psychologica 127, 542-552. 

Torasdotter M, Metsis M, Henriksson B.G., Winblad B, & Mohammed A.H. (1998) 

Environmental enrichment results in higher levels of nerve growth factor mRNA 

in the rat visual cortex and hippocampus. Behavioural Brain Research 93, 83-90. 

 

 

81 



Van Praag H. (2009) Exercise and the brain: Something to chew on. Trends in 

Neurosciences 32, 283-290. 

Vaynman S, Ying Z, & Gomez-Pinilla F. (2004) Hippocampal BDNF mediates the 

efficacy of exercise on synaptic plasticity and cognition. European Journal of 

Neuroscience 20, 2580-2590. 

Willner P. (1997) Stress and depression: Insights from animal models. Stress Medicine 

13, 229-233. 

Willner P. (1997) The chronic mild stress procedure as an animal model of depression: 

valid, reasonably reliable, and useful. Psychopharmacology 134, 371-377. 

Winter B, Breitenstein C, Mooren F.C., Voelker K, Fobker M, Lechtermann A, Krueger 

K, Fromme A, Korsukewitz C, Floel A, & Knecht S. (2007) High impact running 

improves learning. Neurobiology of Learning and Memory 87, 597-609. 

Wolf O.T. (2008) The influence of stress hormones on emotional memory: Relevance for 

psychopathology. Acta Psychologica 127, 513-531. 

Wright R.L., & Conrad C.D. (2008) Enriched environment prevents chronic stress-

induced spatial learning and memory deficits. Behavioural Brain Research 187, 

41-47. 

Xu Q, Li-Tao Y, Pan Y, Wang X, Li Y.C., Li J.M., Wang C.P., & Kong L.D. (2008)  

Antidepressant-like effects of the mixture of honokiol and magnolol from the 

barks of Magnolia officinalis in stressed rodents. Progress in Neuro-

Psychopharmacology & Biological Psychiatry 32, 715-725. 

 

 

 

 

 

 

82 



 

 

 

 

 

 

 

 

 

 

 


	Cleveland State University
	EngagedScholarship@CSU
	2011

	The Efficacy of Hippocampal Stimulation in Preventing Depressive Symptoms
	Timothy B. Patrick
	Recommended Citation


	THE EFFICACY OF HIPPOCAMPAL STIMULATION IN THE PREVENTION OF DEPRESSIVE SYMPTOMS INDUCED BY CHRONIC MILD STRESS

