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MOTION CONTROL OF AN OPEN CONTAINER WITH SLOSH

CONSTRAINTS

KEDAR B KARNIK

ABSTRACT

General motion control of conveyor belts does not present difficulties. When the

conveyor belt carries open containers filled with liquid, significant analysis needs to

be carried out to design controllers. The objective of this thesis was to design a

control system which will allow an open container filled with liquid to be transferred

between two stations as fast as possible and without excessive slosh causing the liquid

to spill out of the container. This control problem has applications to industrial

processing facilities, where open containers are carried by a conveyor belt. The speed

at which the open container can be transferred between stations has a direct impact

on productivity.

The thesis involves determination of the plant (conveyor belt dynamics and the

container filled with liquid) model using system identification techniques and ex-

amination of candidate control techniques. Simulation results have been shown to

validate the approach.
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CHAPTER I

INTRODUCTION

This Chapter justifies the undertaken study and introduces the research work which

is conducted in this thesis. The literature review pertinent to the subject is presented.

At the end, the organization of the thesis is given.

1.1 Overview of Sloshing

Fluid motion in partially filled tanks may cause large structural loads if the period of

tank motion is close to the natural period of fluid inside the tank. This phenomenon

is called sloshing. Sloshing means any motion of a free liquid surface inside a con-

tainer. The amplitude of the slosh, in general, depends on the nature, amplitude and

frequency of the tank motion, liquid-fill depth, liquid properties and tank geometry

[1]. Sloshing is a phenomenon that is observed in all liquid-filled containers and is of

great engineering importance. Motion-induced sloshing has been a classical control

problem. It was first encountered in the control of guided missiles. The dynamic

forces resulting from the motion of these fluid-filled missiles can be substantial and

result in instabilities. The first analytical solution to such a problem was addressed by

Westergard [6]. Liquid sloshing is a severe problem in transportation ships [3]. Lately

1
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movement of open containers carrying liquids has been investigated by Schmidt [3].

1.2 Motivation

The motivation for the research was the cost associated with the transport of liquid

filled containers. Designing a control to reduce the time to move the container between

two stations, would mean greater production capacity and hence lower per container

production cost. If the motion can be controlled such that sloshing is minimum then

the containers could be filled to a greater depth and hence reduce the packaging cost

as well.

One of the major issues in the packing industry is the machine downtime due

to maintenance. Liquid is bound to spill while packaging which results in frequent

maintenance of the machine. This research also aims at reducing the downtime by

restricting the spilling of the liquids during packaging. This increases the production

capacity.

1.3 Literature Review

The following paragraph lists several researchers’ work in relation to this thesis.

Studies have been conducted to identify the non-linear behavior of the liquid sloshing.

Mathematical models of sloshing have been identified using finite element analysis.

Akyildz used a numerical algorithm based of the volume of fluid technique to

identify the non-linearity and damping characteristic of sloshing [1]. He utilized

a moving co-ordinate system to model the complex boundary conditions. These

methods were used to compute the pressure variation due to sloshing in a partially

filled tank. It was concluded that there are two major kinds of pressures, impulsive

and non-impulsive, and the severity of sloshing depends on the tank geometry, depth
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of the liquid and excitation frequencies.

Grundelius used the method of determining the acceleration profile to control

the motion of the moving tank [3]. This control approach is typically open-loop. In

many cases, a liquid level sensor cannot be installed in each moving container. This

precludes the application of entire family of state-feedback based controllers, including

observer-based approaches. In absence of liquid sensing, an optimal input profile

approach may be used to reduce the excitation of sloshing dynamics. A linear second

order oscillator was used to model the slosh. The minimum energy approach was

used to calculate the acceleration profile (applied in open-loop fashion) which did not

satisfy the time constraint due to poor plant model estimation. This approach relies

on accurate mathematical model of the liquid container and cannot accommodate

disturbances or model errors. An assumption is also made in [3] that the transport

mechanism is (slide, conveyor belt) stiff enough to be unaffected by fluid motion.

This thesis, therefore, does not make this assumption and relies on modeling the

plant using system identification techniques. It assumes and that the liquid level

at the edge of the tank and its rate can be measured in real-time. The availability

of liquid level measurements enables the application of host of control approaches,

including a high level of robustness which are amenable to constraint handling.

1.4 Objective

This thesis is aimed at designing a control system for a moving container. The

motion is constrained due to slosh effect of the liquid inside it. Conventional methods

to determine the slosh model were either finite element methods or various fluid

mechanics methods which could be used in the absence of liquid level sensing. The

mathematical model could be used to solve the minimum time and energy problem.

This approach relies on accurate mathematical model of the plant. In this thesis a
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mathematical model for the plant is derived using system identification technique.

This would eliminate the uncertainties associated with the mathematically modeling

using various universal laws. The non-linearity of the slosh is another factor which

could be taken care of using nonlinear system identification. In this thesis, however,

we use a linear dynamic model, which is shown to be sufficiently accurate [7].

The primary task in achieving the objective was extensive collection of real time

data for frequency and time domain analysis. This data was also used in determining

the parametric model for the plant using MATLAB.

The objective was fulfilled by determining an accurate 4th order model for the

plant and devising a control using Sliding Mode Control (SMC) methods which can

be tuned to meet transfer time specification under slosh constraints.

1.4.1 Composition of Thesis

The organization of the thesis is in the following manner. The experimental setup

is introduced in Chapter 2. A schematic diagram and picture of the set up is shown.

Each component is discussed in detail. Fundamentals and steps for system identifi-

cation have been dealt with in Chapter 3. Various plots and experimental methods

have been presented for identification of the plant.

Chapter 4 considers the the closed loop control when constraints are imposed. It

talk about the SMC technique. Finally results are summarized with conclusions of

the research work conducted for the thesis being provided along with the scope for

future work in Chapter 5.



CHAPTER II

EXPERIMENTAL SETUP

2.1 Introduction

The experimental setup is shown in Figure 2.1. The figure shows a slide (repre-

senting a conveyor belt) for the motion driven by analog signal. A liquid (water for

experimental purpose) filled container is mounted on the slide. These two comprise

the cascaded plant for the experiment. The Linear Variable Differential Transformer

(LVDT) is attached to the container to measure the position of the container at any

given point. Later, the LVDT was replaced by an encoder to record the position with

greater accuracy and range. The dynamics between the analog input voltage and

slide position were obtained by standard system identification techniques. The Level

sensor is a float which slides along a stem, minimizing the frictional effects in the

sensor. A dSpace/Simulink realtime interface is used to measure signals from various

sensors, evaluate the control signal and send it to slide actuator. Figure 2.2 shows

the schematic of the experimental setup and the flow of signals. Figure 2.3 shows the

actual picture of the experimental setup.

5
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Figure 2.1: Schematic Overview
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Figure 2.2: Schematic Overview
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Figure 2.3: Actual Experimental Setup

2.2 Components

2.2.1 Slide and Tank

The tank was mounted on a linear positioning slide (Luge LM150D manufactured

by Parker-Bayside). The slide is operated from an analog input voltage in the range

of ±10 V. A steady input voltage, after transients, results in a steady slide velocity.

The DC motor driving the slide is fitted with a 2000-line rotary encoder which was

used to determine the slide position after the LVDT couldn’t give satisfactory results.

The encoder gives the slide position and velocity with an accuracy of 1/200 mm.

The inner dimensions of the tank were 305 mm by 50 mm, and the water level

at which slosh dynamics were identified was 136 mm.
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2.2.2 LVDT

The LVDT used for the experiment was from Honeywell. It was a long stroke LVDT,

model JEC-AG DC-DC. The data gathered using the LVDT was susceptible to noise

and hence needed filtering. A filter was not sufficient to clean the signal and hence

the LVDT was replaced by an encoder. In addition, the LVDT has a limited range

given by its mechanical stroke. The encoder gave accurate readings of the position of

the slide and also had a greater range.

2.2.3 Magnetostrictive Sensor

Magnetostrictive level sensors are similar to float type sensors in that a permanent

magnet sealed inside a float travels up and down a specially designed magnetostrictive

waveguide. A sonic strain pulse is induced is induced by momentary interaction of the

two magnetic fields. One is from the permanent magnet inside the float and another

from the current pulse applied along the waveguide. The position of the magnet is

determined by calculating the time elapsed between the application of current pulse

and arrival of resulting strain pulse. Figure 2.4 (www.mtssensors.com) shows the

principle of operation. Ideal for high-accuracy, continuous level measurement of a

wide variety of liquids in storage and shipping containers, these sensors require the

proper choice of float based on the specific gravity of the liquid. When choosing float

and stem materials for magnetostrictive level sensors, the same guidelines described

for magnetic and mechanical float level sensors apply.

Because of the degree of accuracy possible with the magnetostrictive technique,

it is popular for custody-transfer applications. It can be permitted by an agency of

weights and measures for conducting commercial transactions. It is also frequently

applied on magnetic sight gages. In this variation, the magnet is installed in a float

that travels inside a gage glass or tube. The magnet operates on the sensor which
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Figure 2.4: Magnetostrictive Level Sensor - Principle of operation

is mounted externally on the gage. Boilers and other high temperature or pressure

applications take advantage of this performance quality.

Fig 2.5 shows the curve for sensor output voltage and depth of the liquid. This

curve was used to calculate the liquid depth. The sensor provides an analog voltage

in the 0-5 V range with a constant sensitivity of -23.43 V/mm. The level rate was

obtained by analog differentiation using standard operational amplifier circuits.
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2.2.4 HP Spectrum Analyser

An HP 3265A spectrum analyzer was used to record the frequency response of the

plant to an input swept sine wave from 0.3 Hz to 8 Hz frequency. It helped in

determining the resonant frequencies which were later verified mathematically by the

formula[1].

2.2.5 Rapid Control Prototyping Hardware

A dSPACE RTI-1103 PPC board and Control desk software were used to create

Simulink interfaces for system identification and rapid control prototyping. Figure

2.6 shows the application window for dSpace.
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Figure 2.6: dSpace - Application Window



CHAPTER III

SYSTEM IDENTIFICATION

This Chapter describes the use of system identification techniques to obtain a math-

ematical model of the controlled plant. System identification is a general term to

describe mathematical tools and algorithms that build dynamical models from mea-

sured data. A dynamical mathematical model in this context is a mathematical

description of the dynamic behavior of a system or process.

Examples include:

• physical processes such as the movement of a falling body under the influence

of gravity

• economic processes such as stock markets that react to external influences

One could build a so-called white-box model based on first principles, e.g. a

model for a physical process from the Newton equations, but in many cases such

models will be overly complex and possibly even impossible to obtain in reasonable

time due to the complex nature of many systems and processes.

A more common approach is therefore to start from measurements of the behavior

of the system and the external influences (inputs to the system) and try to determine a

mathematical relation between them without going into the details of what is actually

12
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happening inside the system. This approach is called system identification. Two types

of models are common in the field of system identification:

• grey box model: although the peculiarities of what is going on inside the system

are not entirely known, a certain model is already available. This model does

however still have a number of unknown free parameters which can be estimated

using system identification. This is also known as semi-physical modeling.

• black box model: No prior model is available. Most system identification algo-

rithms are of this type.

System identification can be done in either the time or frequency domain [5].

3.1 Physics of Slosh Motion

This section describes the slosh phenomenon and description of different mathemat-

ical descriptions of fluid flow.

3.1.1 Related Work

In [8] the fluid is modeled in two dimensions by both the Reynolds Averaged Navier-

Stokes Equations (RANSE) for an incompressible flow and the Shallow Water Equa-

tions (SWE). Both problems are solved numerically with different finite element meth-

ods. RANSE is solved using a method called SIMAC (Semi-Implicit Marker And Cell)

which uses a fixed stretched grid. Each cell in the grid can either contain fluid or not.

The numerical solutions are compared with experiments that show good correlation

with the numerical solutions.

The problem of free surface flows in domains with moving boundaries are de-

scribed in [4]. The method handles two-fluid flows where the two fluids can both be

incompressible or one of the fluids can be compressible. Moving grids are utilized to
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accommodate the motion of the domain boundaries. The volume-of-fluid technique

is used for tracking the free surface between the two fluids.

In [10] the fluid flow is described as a potential flow using Laplace equation. The

dynamic boundary condition on the free surface is the damping-modified Bernoulli

equation. The damping in the Bernoulli equation is a simple way to include viscosity

in the model. The problem is solved using a boundary element method. The boundary

on the free surface is updated to track the motion of the surface.

The flow problem is solved analytically in [9]. The flow is described by the

Laplace equation and the boundary conditions on the free surface is described by the

Bernoulli equation. Separation of variables is used to find the horizontal and vertical

modes. The Bernoulli equation is then used to find the time dependency. In the

derivation it is assumed that the surface elevation is small. The derivation shows

that a horizontal acceleration only excite the odd numbered oscillation modes.

The above problem gives the following model of the slosh. The states are Position

of the slide, velocity of the slide, Level of the liquid and the level rate. The input to

the system is the analog signal to drive the slide. The output is the position of the

slide.

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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where,
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where a is the width of the container, h is the liquid depth, x is the position where

the slosh is measured and ωi is the oscillation frequency of the ith mode. The function

diag gives a block diagonal matrix, the function stack joins the vectors vertically and

augment joins the vectors horizontally. The damping is induced in the system from

the system identification.

The choice of slosh model depends what the model should be used for. If we want

to simulate the slosh, an advanced detailed model based on numerical solution of the

Navier-Stokes equation is very useful. However, these models are very hard to use for

controller design since they are very large and highly nonlinear. For the controller

design we would like to have a simple model that captures the most important features

of the slosh. If the model is too complex the optimal control problem is very hard to

solve.

The model found using system identification techniques is similar to the model

proposed by Venugopal and Bernstein [9] showed in Equation 3.1. Since the higher

order modes only have little influence on the surface elevation, only the first oscillation

mode has been included in the model. The direct term has been removed and damping

is added.
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The natural frequencies of the standing waves on an enclosed liquid container can

be calculated from Equation 3.1

.

ωi =

√

igπ sinh ihπ

a

a cosh hπ
a

. (3.1)

where a is the width of the container, h is the liquid depth, x is the position where

the slosh is measured and ωi is the oscillation frequency of the ith mode.

When this formula is applied to the tank used for this thesis, the fundamental

frequency is obtained as 1.506Hz. This is an excellent agreement with the value

obtained from system identification. The damping factor and the gain associated

with the fundamental mode, as well as the additional dynamics associated with the

liquid sloshing and the positioning slide are best captured by experimental means.

3.2 Frequency Domain Tests

Three different tests were carried out in the frequency domain which have been

explained in the following sections.

3.2.1 Frequency domain analysis using HP Spectrum Ana-

lyzer

The HP Spectrum analyzer as described in Chapter 2 is a device to record the

frequency response of the plant. The analog input, for the movement of slide, was

fed with a swept sine wave from 0.3 Hz to 8 Hz frequency and the response was

recorded. Figure 3.1 shows the various trials and the repeatability of the response.

This frequency plot was then used to determine a 2nd order plant model for the tank.
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3.2.2 Individual frequency tests

These tests were carried out to validate the results from the spectrum analyzer. The

slide was injected with an input sine wave signal at various frequencies, including the

resonance frequency. The output from the level sensor was recorded using an oscil-

loscope. With a known input signal and the recorded output signal, the magnitude

(in dBs) was calculated. This was compared with the Bode plot from the spectrum

analyzer. It was found that both had the same magnitude. This validated the results

from the signal analyzer.

3.2.3 Frequency domain test using Chirp signal

The other test to determine the mathematical model of the plant was to record the

real time input signal and the output signal. Here, a 1 V chirp signal with frequencies

between 0.1 Hz and 10 Hz and lasting 30 seconds was applied to the analog input port



18

of the slide.The resulting slide motion and the water level oscillations were recorded

at a sample rate of 1 kHz. The data was then used for time-domain analysis and

parametric estimation using MATLAB/Simulink System Identification Toolbox.

3.3 Parametric model for the plant

This section describes the various steps taken to derive a model for the plant using

System Identification Toolbox.

The experimental input and output were recorded using real time data acquisition

system. The data was imported into the Matlab’s System Identification Toolbox.

Using this, a parametric model was estimated which closely resembles the actual

plant. These models were then used to derive the transfer function for the plant.

Figure 3.5 shows the frequency response for the plant.

A 2nd order transfer function between the analog input and slide position was

identified using the output error method in the MATLAB System Identification Tool-

box. Conversion to continuous time with zero-order hold method yielded the desired

transfer function:

Y (s)

U(s)
=

421.43

s2 + 8.2117s + 0.2016
(3.2)

where U(s) represents the analog voltage and Y(s) represents the displacement

from an arbitrary referenced mark, in mm. Figure 3.2 shows the correlation between

modeled and experimental data. For consistency with the physics of the system, the s0

coefficient was forced to zero, without significant loss of prediction accuracy. Without

this adjustment, a zero initial velocity together with a non-zero initial position would

cause y to change under zero input, due to stiffness term 0.2016. Such behavior is

not observed in the physical system.

.
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A 4th-order transfer function of the tank subsystem between slide position and

liquid level was first obtained. This function was subsequently simplified by reduction

to 2nd-order and elimination of a large non-minimum phase zero whose presence did

not significantly affect the accuracy of predictions. The tank transfer function in

continuous time is

L(s)

Y (s)
=

0.047165s2 + 0.0632s − 0.052202

s2 + 0.19854s + 88.439
(3.3)

where L represents the water level displacement expressed in sensor volts, relative

to the baseline water level. Note that the pair of complex poles have a natural

frequency of 1.497 Hz, which is very close to the theoretical value of 1.506 Hz obtained

based on tank geometry. Figure 3.3 shows the modeled plant for position to level

sensor versus the actual data. The two real zeroes close to the origin are forced to

zero with out loss of accuracy of prediction. As with the slide, this is done to maintain

consistency with the system physics; a steady level of zero should be maintained if

the tank moves at steady velocity, hence the double differentiation at the input. Also

note that due to the nature of magnetostrictive sensor, the transfer function has a

negative DC gain (voltage decreases as the level increases and viceversa.)

3.4 Time Domain Tests

Modeling is the key to developing a control for the system and hence the model needs

to be verified for accuracy and closeness to the actual plant. The time domain tests

were carried out to compare the step response for the actual and the plant model.

3.4.1 Step response analysis

An overall 4th order model was obtained for the cascaded state space realization of

the slide and the tank transfer functions.If (As, Bs, C2, 0) and (At, Bt, C1, D1) denote
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the slide and tank systems, respectively, then the cascaded model has realization

(A, B, C, 0), with

A =







As 0

BtC2 At






=



















0.0000 1.0000 0.0000 0.0000

0.0000 −8.2117 0.0000 0.0000

1.0000 0.0000 −0.1985 −9.4042

0.0000 0.0000 9.4042 0.0000



















B =







Bs

0






=



















0.0000

421.4271

0.0000

0.0000



















Cs =

[

C2 0

]

=

[

1 0 0 0

]

C =

[

D1C2 C1

]

=

[

0.0522 0.0000 −0.0104 −0.4908

]

Figure 3.4 shows the prediction performance of the identified model on the basis

of chirp response. As can be seen from Figure 3.5, the low band-width model captures

only the fundamental resonance near 1.5 Hz, but still produces good predictions in

the time-domain. The overall 4th order model offers reasonable prediction given its

simplicity. It is readily verified that the model is marginally stable, controllable,

observable and is not numerically ill-conditioned.
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CHAPTER IV

SLIDING MODE CONTROL

In formulation of control law there will typically be discrepancies between the actual

plant and the mathematical model developed for controller design. This mismatch

may be due to unmodeled dynamics, variations in parameters or the approximation

of complex plant behavior by a straightforward model. This mismatch requires a

robust controller. SMC is a particular type of variable structure control and is robust

in nature.

Variable structure control systems (VSCS) evolved from the pioneering work in

Russia of Emel’yanov and Barbshin in early 1960’s [2]. In SMC, VSCS are designed

to drive and then constrain the system states to lie within a neighborhood of the

switching function. There are two main advantages to this approach:

• the dynamic behavior of the system may be tailored by a particular choice

switching function.

• the closed loop response becomes totally insensitive to a matched class of un-

certainty.

The latter makes it a robust control methodology.
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An example as a result of using variable structure law is given below: let,

u(t) =















−1 if s(y, ẏ) < 0

1 if s(y, ẏ) > 0

(4.1)

where the switching function is defined by

s(y, ẏ) = my + ẏ (4.2)

Equation 4.1 can be written as

u(t) = −sgn(s) (4.3)

where sgn is the sign function.

4.1 Sliding Mode Design

The design approach is first to select the coefficients of the sliding hyperplane ac-

cording to the desired performance in the ideal sliding mode. The coefficients of the

sliding hyperplane are chosen following any standard technique like the pole place-

ment or the linear-quadratic (LQ) optimization. The LQ method of Utkin and Young

was chosen for its simplicity and efficacy [2]. A feedback control law is then derived

to drive the plant’s state trajectory on the sliding manifold in the state space and

maintain the trajectory on the surface for a subsequent time. The feedback control

law is known as the switching control law. Ideally, once the sliding manifold has

been intercepted, the switching control maintains the plant’s state trajectories on the

surface and the state trajectories slide along the surface.

Consider a single-input linear plant in the state space form

ẋ = Ax + B(u(t) + ζ(t)) (4.4)

where ζ(t)ǫ[−ζ̄ , ζ̄] is a matched uncertainty, with ζ̄ > 0.
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Let s : R
n → R

m be a linear function represented as

s(t) = Sx(t) (4.5)

where S ∈ R
m×n is of full rank and let S be the switching function defined by

S = x ∈ R
n : s(x) = 0.

For describing the equivalent control, let the matched uncertainty ζ(t) = 0. For

ideal sliding motion Sx(t) = 0 and ṡ(t) = Sẋ(t) = 0 at any time t, this gives us,

Sẋ(t) = SAx(t) + SBu(t) = 0 (4.6)

We assume that square matrix SB is nonsingular, which gives us the equivalent

control

ueq(t) = −(SB)−1SAx(t) (4.7)

This gives us the ideal dynamics under the sliding motion by substituting Equation

4.7 in Equation 4.4 with ζ(t) = 0.

ẋ(t) = (In − B(SB)−1S)Ax(t) for all t ≥ ts and Sx(ts) = 0

ẋ(t) = Aeqx(t)

where, Aeq = (In − B(SB)−1S)A also, Ps = (In − B(SB)−1S) is known as the

projection operator [2].

Considering the uncertainty, we can rewrite Equation 4.7 as

ueq(t) = −(SB)−1(SAx(t) + SBζ(t)) (4.8)

From Equation 4.8 the equivalent control is dependent on the uncertainty. But

SMC has a key property, it is invariant towards the matched uncertainty. This is

shown by substituting Equation 4.8 in Equation 4.4, which gives

ẋ(t) = PsAx(t) + PsBζ(t) (4.9)
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where Ps is a projection operator.

It turns out (by simple evaluation) that PsB = 0 which gives us the dynamics of

the sliding motion as

ẋ(t) = PsAx(t) = Aeqx(t) (4.10)

From Equation 4.10, the sliding motion is invariant to the matched uncertainty.

4.1.1 Sliding Mode Control Regulator

To design the SMC, we represent Equation 4.4 in a canonical form given below [2].

ż1(t) = A11z1(t) + A12z2(t)

ż2(t) = A21z1(t) + A22z2(t) + B2u(t)

The switching function also is expressed as

s(t) = S1(t)z1(t) + S2z2(t) (4.11)

Without losing the generality, we can consider S2 = 1.

s(t) = S1(t)z1(t) + z2(t) (4.12)

The change of matrix is defined by the orthogonal matrix Tr such that

z(t) = Trx(t) (4.13)

This transformation requires controllable pair (A, B), where B is of full rank.

The matrix sub-block, namely A11, A12, A21, A22, B2, S1 and S2 can be obtained
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as

TrA(Tr)
T =







A11 A12

A21 A22







TrB =







0

B2







S(Tr)
T =

[

S1 1

]

A QR decomposition is carried out on the input distribution matrix to obtain

transformation matrix Tr and in turn obtain the sub-blocks. The MATLAB program

from decomposition is shown in Appendix 1.4.

Reachability Condition

The mathematical expression given by Equation 4.3 satisfies the reachability con-

dition in the domain Ω = (y, ẏ) : m | ẏ |< 1. The condition for reachability can

be given by ṡs < 0. Essentially this only guarantees the sliding surface is reached

asymptotically. A stronger condition, guaranteeing an ideal sliding motion, is the

η-reachability condition given by

ṡs ≤ −η | s | (4.14)

where η is a positive constant known as switching gain. The speed of convergence to

the sliding surface are directly influenced by the switching gain η.

Now we can define the control law as

u = ueq − ηsgn(s) (4.15)

where ueq is given by Equation 4.7.
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Design of Switching plane

In this thesis, the quadratic minimization approach has been taken to design the

switching hyperplane. This method was proposed by Utkin and Young in 1978. This

method enables us to place desirable weights to particular elements. Let us consider

the problem of minimizing the quadratic performance index

J =
1

2

∫

∞

ts

x(t)T Qx(t)dt (4.16)

where Q is both symmetric and positive definite and ts is the time at which sliding

motion commences. The aim is to minimize Equation 4.16 subject to the system

equation given by Equation 4.4. It is assumed that x(ts) is a known initial condition.

The matrix Q from Equation 4.16 is transformed compatibly with z:

TrQT T
r =







Q11 Q12

Q21 Q22






(4.17)

where Q21 = QT
12

. Equation 4.16 is now expressed in terms of the z co-ordinate system

as

J =
1

2

∫

∞

ts

zT
1
Q11z1 + 2zT

1
Q12z2 + zT

2
Q22z2dt (4.18)

Re-arranging the Equation 4.18 and Equation 4.4, the problem can be interpreted

as a standard linear quadratic optimal state regulator problem [2].

Boundary Layer Control and LQ Tuning

The chattering phenomenon is generally perceived as motion which oscillates about

the sliding manifold. The possible mechanisms which produce such a motion is in

the absence of switching non-idealities such as delays. The most commonly cited

approach to reduce the effects of chattering has been the so called piecewise linear

or smooth approximation of the switching element in a boundary layer of the sliding

manifold. The signum function was replaced by a linear approximation (saturation
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function) with a slope of 100 (φ = 0.01). The chattering is not eliminated but reduced

by this linear approximation.

We assume the equal weights for each input and hence we have the value of

R = 1. We define Q = diag([1 1 1e − 4 1e − 4]) with weights given to the states.

At this point in design, η = 7 was chosen by simulation to meet the a settling time

of 1.8 seconds for 400 mm transfer. The MATLAB program for Linear Quadratic

cost function is shown in Appendix 1.4. This program gives the values for sliding

manifold, S = [0.0381, 0.0024, 0.3042,−0.1197].

4.2 Simulation and Results

4.2.1 Model Simulation

The above design of SMC assumes that the target point to reach for the states is

the point of origin from any initial condition. But for the experiment considered in

this thesis, the target point is different from origin and hence Equation 4.5 for the

Sliding manifold becomes

s = S(x(t) − x̄(t)) (4.19)

where x̄ is the target point for the states to reach. Equation 4.7 for equivalent control

can be written as

ueq(t) = −(SB)−1SA(x(t) − x̄(t)) (4.20)

Figure 1.1 and Figure 1.2 (in the appendix) shows the Simulink model for digital

SMC. Figure 4.1 shows the simulation results. As we can see from the subplot, the

target position is 400 mm and not the origin. The system reaches the target position

in as little as 1.8 seconds without excessive slosh. The simulation shows that the

control signal was not saturated and the slosh is under 25mm. The limits for the

slosh are constrained by the container depth. The model was also simulated for an
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Figure 4.1: Simulation Result, SMC

external disturbance, which is visible at about 1.4 seconds after the system is at

steady state. The control action changes and accounts for it.

4.2.2 Real-Time digital SMC

A digitized SMC controller for regulation to a reference state was implemented in a

dSPACE rapid prototyping system. Level rates were low-pass filtered using a But-

terworth op-amp circuit. Since the state of the tank were not level and level rate,

a simple algebraic transformation was used to perform the the conversion from level

and level rate to tank states. Figure 4.2 shows the actual measurement plots as com-

pared to the simulations. It is visible that the model behaves very closely to the

actual plant. This plot is with a sampling rate of 10KHz and a linear approximation

of saturation function with a slope of 100 (φ = 0.01) . At this rate we see a lot of

control action called chattering, to keep the system on the sliding manifold. Figure

4.3 shows the final run with an improved control action and also with less sloshing.
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Figure 4.2: Realtime, Trial 1 - Model output from the realtime system and the

experimental setup

This run was carried out at 1KHz of sampling rate and φ = 0.5. As it can be seen the

sliding variable is robustly driven to zero, despite modeling errors from the neglected

second mode. There is lot of activity at 3Hz as a manifestation of the controller’s

effort to attenuate the second mode by using whole tank as an actuator. This effect

would be impossible to obtain using an open-loop approach based on imperfect plant

models.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This Chapter describes the inference obtained from the research work of this thesis

and also sets the path for future work. The conclusions are based on the simulation

results and experiments carried out on the system.

• The simulations show that the 4th order model obtained by system identification

technique was close to the actual plant. It can be seen that the model offers

reasonable prediction given its simplicity.

• It is also visible that the system identification technique gives a very close

prediction of the fundamental frequency when compared with the mathematical

equation (3.1).

• The SMC also offers very robust control, considering the model errors induced

by neglecting the second mode.

• In this thesis we can also see that the controller uses the whole tank as an

actuator to attenuate the second mode near 3Hz. This effect is impossible

to obtain using open loop approach, which has been fostered by Grundelius

[3] in his thesis. He relies on the accurate mathematical model of the liquid

container and cannot accommodate disturbances or model errors to obtain the

33
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acceleration profile.

• Future work can be carried out using an observer based control which will allow

us to predict the states accurately eliminate the uncertainty in measuring the

level rate of the fluid in the tank.
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APPENDIX A

MATLAB PROGRAMS AND

SIMULATION MODELS

1.1 Plant identification

%identify

load ai2lvl3

Ts=ai2lvl3.Capture.SamplingPeriod;

fs=1/Ts;

t=ai2lvl3.X.Data;

input=ai2lvl3.Y(1).Data;

output=ai2lvl3.Y(2).Data;

%Remove mean

input=input-mean(input);

output=output-mean(output);

%Compute and display FFT of input and output (for referential use)

38
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N=length(input);

df=1/Ts/N;

f=[0:N-1]*df;

values_in=fft(input);

values_out=fft(output);

subplot(2,1,1)

stem(f,abs(values_in));

subplot(2,1,2)

stem(f,abs(values_out));

%Obtain spectral estimate without filtering and superimpose to spectrum

%analyzer estimate (including gain shift due to dSPACE/Simulink settings)

load master_spectr

shift=22.59;

[Txy, F]=tfestimate(input,output,[],[],1024,1/Ts);

figure(2)

subplot(2,1,1)

semilogx(F,20*log10(abs(Txy)));

hold on

semilogx(Freq1,MagdB1+22.59,’r’,Freq2,MagdB5+22.59,’r’)

grid

subplot(2,1,2)

semilogx(F,angle(Txy)*180/pi);

hold on

semilogx(Freq1,Ph1,’r’,Freq2,Ph5,’r’)

grid

%Now low-pass filter and see if there’s improvement

fc=10;
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Wp=fc/(0.5*fs);

[B,A]=cheby1(4,1,Wp);

input_f=filter(B,A,input);

output_f=filter(B,A,output);

[Txy, F]=tfestimate(input_f,output_f,[],[],1024,1/Ts);

figure(3)

subplot(2,1,1)

semilogx(F,20*log10(abs(Txy)));

hold on

semilogx(Freq1,MagdB1+22.59,’r’,Freq2,MagdB5+22.59,’r’)

grid

subplot(2,1,2)

semilogx(F,angle(Txy)*180/pi);

hold on

semilogx(Freq1,Ph1,’r’,Freq2,Ph5,’r’)

grid

%NOTE: The low frequency slope is close to +40dB/dec, as it should be

%theoretically (steady level proportional to steady acceleration of base)

%It’s not exactly +40 due to slide dynamics, float dynamics and meas.

%errors

%The identified model must have an s^2 in the numerator!!!

%What if we pass the AI input through slide dynamics and double diff and

%work from there?

%These are the identified parameters for the slide (see files: ai2lvdt_tf.m
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%and check.mdl

%The units are AI volts to LVDT volts

num=[1108.4 0 0]; %includes double differentiation

den=[1 53.333 877.91];

td=0.038; %delay time

%Assemble matrix for use with FromWorkspace block

load ident_from_chirp

simin=[t’ input’];

%NOTE: The simulation MUST use a fixed time step, so that the resulting

%acceleration data is compatible with the experimental sample rate and time

%vector.

%A fit was obtained using the sys id toolbox

load identified_ss

%remove noise input

[Ad,Bd,Cd,Dd]=ssdata(pss10);

sys_d=ss(Ad,Bd,Cd,Dd,Ts);

%Balance the realization

sys_d=balreal(sys_d);

[Ad,Bd,Cd,Dd]=ssdata(sys_d);

%This model is fortunately stable, controllable

% and observable

%Convert to continuous-time using ’zoh’

%Since it has negative real poles, the order will increase by one

sys_c=d2c(sys_d,’zoh’,Ts);
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rank(ctrb(sys_c))

rank(obsv(sys_c))

%Conversion to continuous time using ZOH appears to introduce massive loss of

%controllability/observability

%Perform balanced model reduction to 6th order

sys_cbalred=balred(sys_c,6);

[A,B,C,D]=ssdata(sys_cbalred);

rank(ctrb(sys_cbalred))

rank(obsv(sys_cbalred))

%System has a very large rhp zero, a large lhp zero and a high-frequency complex pole

%Be careful to preserve the gain

[z,p,k]=ss2zp(A,B,C,D);

%large zeros and fast poles appears at the top

[A,B,C,D]=zp2ss(z(3:6),p,k*abs(z(1)*z(2)));

sys_cbalred=ss(A,B,C,D);

rank(ctrb(sys_cbalred))

rank(obsv(sys_cbalred))

%Throw in double derivative

tank_tf=tf(sys_cbalred);

sys_tank=series(tank_tf,tf([1 0 0],1));

%Join to slide model, including delay

s=tf(’s’);

sys_slide=exp(-td*s)*1108.4/[s^2+53.333*s+877.91];

sys_final=series(sys_slide,sys_tank);
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%Draw bode plot and superimpose to spectral data

w=logspace(log10(0.3*2*pi),log10(10*2*pi),500);

[mag,ph]=bode(sys_final,w);

figure(2)

subplot(2,1,1)

semilogx(w/2/pi,20*log10(mag(1,:)),’c--’)
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1.2 Mathematical model for tank

clear all;

%% Changing the denominator only.

%Starting with the tank transfer function achieved earlier.

%Fine tuning of frequency and damping ratio to match with the experimental

%data.

load sys_tank;

%extracting num and den from the sys.

[Num_tank,Den_tank] = tfdata(sys_tank,’v’);

%finding roots for the denominator to adjust the damping ratio and freq.

r = roots(Den_tank);

%seperating roots into two polynomials

r1(1,1) = r(1,1);

r1(2,1) = r(2,1);

r2(1,1) = r(3,1);

r2(2,1) = r(4,1);

r3(1,1) = r(5,1);

r3(2,1) = r(6,1);
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poly1 = poly(r1);

poly2 = poly(r2);

poly3 = poly(r3);

%Above data gives us the freq1,zeta1,freq2,zeta2 as follows

% zeta1 = 0.2024;

% freq1 = 281.6878;

% zeta2 = 0.01371;

% freq2 = 9.1479;

% zeta3 = 0.1447;

% freq3 = 17.795;

%Changing the values to suit the experimental data

zeta1 = 0.2024;

freq1 = 281.6878;

zeta2 = 0.02971;

freq2 = 9.1379; %9.7479

zeta3 = 0.0080;

freq3 = 17.050; %18.350

poly1mod = [1 2*zeta1*freq1 freq1^2];

r1mod = roots(poly1mod);

poly2mod = [1 2*zeta2*freq2 freq2^2];

r2mod = roots(poly2mod);

poly3mod = [1 2*zeta3*freq3 freq3^2];

r3mod = roots(poly3mod);

rmod = [r1mod;r2mod;r3mod];
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Den_tank_new = poly(rmod);

gain_num = (freq1^2*freq2^2*freq3^2)/(281.6878^2*9.1479^2*17.795^2);

% sys_tank_new = tf(gain_num*Num_tank,Den_tank_new);

%

% load sys_slide;

% [Num_slide,Den_slide] = tfdata(sys_slide,’v’);

% sys_final=series(sys_slide,sys_tank_new);

%

% %Draw bode plot and superimpose to spectral data

% load master_spectr;

%

% figure(1);

% w=logspace(log10(0.3*2*pi),log10(10*2*pi),500);

% [mag,ph] = bode(sys_final,w);

% semilogx(w/2/pi,20*log10(mag(1,:)),’c--’)

% hold on

% semilogx(Freq1,MagdB1+22.59,’r’,Freq2,MagdB5+22.59,’r’);

% hold off;

%% Changing the numerator also

%finding roots for the numerator to adjust the damping ratio and freq.

nr = roots(Num_tank);

%seperating roots into polynomials

nr1(1,1) = nr(1,1);

nr1(2,1) = nr(2,1);

nr2(1,1) = nr(3,1);
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nr2(2,1) = nr(4,1);

nr3(1,1) = nr(5,1);

nr3(2,1) = nr(6,1);

npoly1 = poly(nr1);

npoly2 = poly(nr2);

npoly3 = poly(nr3);

%Above data gives us the freq1,zeta1,freq2,zeta2 as follows

% nzeta2 = 0.1282;

% nfreq2 = 14.5589;

% nzeta3 = -0.1966;

% nfreq3 = 30.0088;

% Changing the values to suit the experimental data

nzeta2 = 0.0010;

nfreq2 = 16.10; %16.10

nzeta3 = -0.0966;

nfreq3 = 25.0088;

npoly2mod = [1 2*nzeta2*nfreq2 nfreq2^2];

nr2mod = roots(npoly2mod);

npoly3mod = [1 2*nzeta3*nfreq3 nfreq3^2];

nr3mod = roots(npoly3mod);

nrmod = [nr1;nr3mod;nr2mod];
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gain_den = (nfreq2^2*nfreq3^2)/(14.5589^2*30.0088^2);

Num_tank_new = 450*gain_num*poly(nrmod);%multiply 450

Den_tank_new = gain_den*poly(rmod);

sys_tank_new = tf(Num_tank_new,Den_tank_new);

load sys_slide;

[Num_slide,Den_slide] = tfdata(sys_slide,’v’);

sys_final=series(sys_slide,sys_tank_new);

td=0.038; %delay time (identified from the data see identify.m)

%Draw bode plot and superimpose to spectral data

load master_spectr;

figure(1);

w=logspace(log10(0.3*2*pi),log10(10*2*pi),500);

[mag,ph] = bode(sys_final,w);

semilogx(w/2/pi,20*log10(mag(1,:)),’c--’)

hold on

semilogx(Freq1,MagdB1+22.59,’r’,Freq2,MagdB5+22.59,’r’);

hold off;

%% To compare the data.

load ai2lvl3

TsLvl=ai2lvl3.Capture.SamplingPeriod;

fsLvl=1/TsLvl;
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tLvl=ai2lvl3.X.Data;

inputLvl=ai2lvl3.Y(1).Data;

outputLvl=ai2lvl3.Y(2).Data;

%% Assemble matrix for use with FromWorkspace block

load ident_from_chirp

simin=[tLvl’ inputLvl’];

%% Plotting to compare experimental and simulated data.

sim(’systemmodel’);

figure(2);

plot(tLvl,outputLvl,Time,Waterlevelvolts+3.42,’r’);
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1.3 Reduced order model

%load_test_noaccel_reduced

%Script to reduce the model and validate against experimental

%data. 02/12/08

%Load slide model in state-space, with position-velocity states

load slidematrices_w_tank %Aslide_w_tank Bslide_w_tank Cslide_w_tank (Dslide_w_tank=0)

%Need to tweak Aslide_w_tank(2,1) to zero, for compatibility with system

%physics (slide should not move under zero input, zero initial velocity and

%arbitrary initial position).

Aslide_w_tank(2,1)=0;

%Load identified tank model from position to relative level (taken at

%sensor output=2.66V

load identif_pos2level %oe441‘‘

Ts=0.001;

[Ad,Bd,Cd,Dd]=ssdata(oe441);

sys_d=ss(Ad,Bd,Cd,Dd,Ts);

sys_c=d2c(sys_d,’zoh’,Ts);

%Balance the realization

sys_cbal=balreal(sys_c);

[Atank,Btank,Ctank_level,Dtank]=ssdata(sys_cbal);

%Try eliminating the large non-minimumphase zero in the tank to simplify
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%future design. Also eliminate second resonant mode.

[z,p,k]=ss2zp(Atank,Btank,Ctank_level,Dtank);

%large zero appears at the top of z

[Atank,Btank,Ctank_level,Dtank]=zp2ss(z(2:end),p(3:4),-k*z(1)/9405);

%New modification: Moved the two zeroes to the origin for consistency with

%physics of the system. 3/18/08. Some deterioration in prediction quality

%is seen.

[Atank,Btank,Ctank_level,Dtank]=zp2ss([0 0],p(3:4),k*z(1)*z(2)*z(3)/9405);

tanksys_no_z=ss(Atank,Btank,Ctank_level,Dtank);

sys_slide=ss(Aslide_w_tank,Bslide_w_tank,Cslide_w_tank,0);

sys_final=series(sys_slide,tanksys_no_z);

%Display frequency fit

w=logspace(log10(0.3*2*pi),log10(10*2*pi),500);

[mag,ph]=bode(sys_final,w);

load aivolt2levelrun

fsize=12; %font size for all labels

lw1=1.5; %line width

lw2=1; %line width

subplot(2,1,1)

semilogx(f,20*log10(abs(sqrt(real_part.^2+imag_part.^2))),’k’,’Linewidth’,lw1);

hold on

semilogx(w/2/pi,20*log10(mag(1,:)),’k--’,’Linewidth’,lw2)
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ylabel(’Magnitude, dB’,’Fontsize’,fsize)

title(’Frequency Responses’,’Fontsize’,fsize)

legend(’Spectrum Analyzer’,’Model’,’Location’,’SW’)

grid

axis([0.5 10 -80 20])

subplot(2,1,2)

semilogx(f,atand(imag_part./real_part),’k’,’Linewidth’,lw1)

hold on

semilogx(w/2/pi,ph(1,:),’k--’,’Linewidth’,lw2);

grid

xlabel(’Frequency, Hz’,’Fontsize’,fsize)

ylabel(’Phase, deg’,’Fontsize’,fsize)

legend(’Spectrum Analyzer’,’Model’,’Location’,’SW’)

axis([0.5 10 -200 100])

%% To compare the data.

%Check for model prediction capabilities in the time domain:

load runflat

%simin in this file contains smoothed slide position information

%Using the position information consistent with Aslide(2,1)=0 modification

load run_w_filters

slide_pos=run_w_filters.Y(5).Data’;

simin2=[t in]; %the 1 Vpp chirp from 0.1 to 10 Hz, 30 seconds long

simin3=[t level]; %level data as captured (no filtering)

simin4=[t slide_pos]; %position data as captured (no filtering)

sim(’test_model’)

figure(2);
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subplot(2,1,1)

plot(t,level_filt,’k’,’Linewidth’,lw1)

hold on

plot(tsim,level_volts,’k--’,’Linewidth’,lw2)

ylabel(’Level Sensor Volts’,’Fontsize’,fsize);

legend(’Experiment’,’Model’);

subplot(2,1,2)

plot(t,slide_pos,’k’,’Linewidth’,lw1)

hold on

plot(t,pos_mm,’k--’,’Linewidth’,lw2)

ylabel(’Slide Position, mm’,’Fontsize’,fsize);

legend(’Experiment’,’Model’);

xlabel(’Time’,’Fontsize’,fsize);

%Now obtain the cascade realization

%Slide:

As=Aslide_w_tank;

Bs=Bslide_w_tank;

C2=Cslide_w_tank;

D2=0;

%Tank:

At=Atank;

Bt=Btank;

C1=Ctank_level;
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D1=Dtank;

nt=size(At,1);

ns=size(As,1);

A=[As zeros(ns,nt);Bt*C2 At];

B=[Bs;zeros(nt,1)];

Clevel=[D1*C2 C1];

Cslide=[C2 zeros(1,nt)];

%Discretized stuff

sys_slide_d=c2d(sys_slide,Ts,’zoh’);

[Aslide_d,Bslide_d,Cslide_d,Dslide_d]=ssdata(sys_slide_d);

sys_tank_d=c2d(tanksys_no_z,Ts,’zoh’);

[Atank_d,Btank_d,Ctank_d,Dtank_d]=ssdata(sys_tank_d);

save fin_model A B Clevel Cslide As Bs C2 D2 At Bt C1 D1 nt ns

save fin_modelR12 A B Clevel Cslide As Bs C2 D2 At Bt C1 D1 nt ns -V6
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1.4 Sliding Mode Control design

%Updated on 02/21/08: Use finalized models

%Run after load_test_noaccel_reduced

C=Cslide;

%Design conventional SMC regulator

%Establishing the size of input distribution matrix

[nn,mm] = size(B);

%Perform QR decomposition on the input distribution matrix

[Tr temp] = qr(B);

Tr = Tr’;

Tr = [Tr(mm+1:nn,:);Tr(1:mm,:)];

clear temp;

%Special measure to have B2=1

%Tr(4,2)=1/B(2);

%To obtain Areg,Breg

Areg = Tr*A*Tr’;

Breg = Tr*B;

%Obtain matrix sub-blocks for sliding mode controller design

A11 = Areg(1:nn-mm,1:nn-mm);

A12 = Areg(1:nn-mm,nn-mm+1:nn);

A21 = Areg(nn-mm+1:nn,1:nn-mm);

A22 = Areg(nn-mm+1:nn,nn-mm+1:nn);
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B2 = Breg(nn-mm+1:nn,1:mm);

%Sliding gain selection via LQ method (Utkin & Young, 1978)

Q=diag([1 1 1e4 1e4]); %weighs states in original coordinates

%Transform:

Qt=Tr*Q*Tr’;

Q11=Qt(1:nn-mm,1:nn-mm);

Q12=Qt(1:nn-mm,nn-mm+1:nn);

Q21=Qt(nn-mm+1:nn,1:nn-mm);

Q22=Qt(nn-mm+1:nn,nn-mm+1:nn);

Qhat=Q11-Q12*inv(Q22)*Q21;

Ahat=A11-A12*inv(Q22)*Q21;

[K,P1,E]=lqr(Ahat,A12,Qhat,Q22);

M=inv(Q22)*(A12’*P1+Q21);

S2 = -1/B(2);%/eye(mm);

S = S2*[M eye(mm)]*Tr;

%Equivalent Control Gain

G = -(inv(S*B))*S*A;

eta = 7;

%Design observer
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%Q=eye(8);

Q=eye(4);

R=1;

L=lqr(A’,C’,Q,R);

D=0;

phi=0.01;

%Auxiliary matrices to obtain states from measurements

invmatrix=inv([Ctank_level;Ctank_level*Atank]);

gain_aux=Ctank_level*Btank;

initial_pos=400;

stack=[-Dtank*initial_pos;-gain_aux*initial_pos];

TP=[initial_pos;0;invmatrix*stack];

X0=0;

%save stuff for realtime simulation

save realtime_pars Aslide_d Atank_d Bslide_d Btank_d Cslide_d Ctank_d Ctank_level

Dslide_d Dtank Dtank_d G Ts eta gain_aux invmatrix phi -V6

sim(’slosh_digital_ctrl’)

level_sens=-23.43; %in mm/volt

lw1=1.5;

lw2=1;

fsize=12;

subplot(4,1,1)

plot(T,Y,’k’,’Linewidth’,lw1);

title(’Simulation Results’,’Fontsize’,fsize)
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axis([0 2 0 420])

grid

ylabel(’Pos., mm’,’Fontsize’,fsize)

subplot(4,1,2)

plot(T,level*level_sens,’k’,’Linewidth’,lw1)

axis([0 2 -30 30])

ylabel(’Slosh in mm’,’Fontsize’,fsize)

subplot(4,1,3)

plot(DT,U,’k’,’Linewidth’,lw1)

axis([0 2 -15 15])

ylabel(’Control, V’,’Fontsize’,fsize)

subplot(4,1,4)

plot(DT,Sliding,’k’,’Linewidth’,lw1)

axis([0 2 -12 12])

ylabel(’S-Function’,’Fontsize’,fsize)

xlabel(’Time in seconds’,’Fontsize’,fsize)

grid
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1.5 Real Time plots

%realtime_plots

load prod_run %this run uses phi=0.01, Ts=1e-3;

t=prod_run.X.Data’;

level_sensor_volts=prod_run.Y(1).Data’;

level_model_volts=prod_run.Y(2).Data’;

level_rate_sensor_volts=prod_run.Y(3).Data’;

slide_pos_encoder=prod_run.Y(4).Data’;

slide_pos_model=prod_run.Y(5).Data’;

level_rate_model=prod_run.Y(6).Data’;

s=prod_run.Y(7).Data’;

tank_state1_meas=prod_run.Y(8).Data’;

tank_state2_meas=prod_run.Y(9).Data’;

tank_state1_model=prod_run.Y(10).Data’;

tank_state2_model=prod_run.Y(11).Data’;

control_signal=prod_run.Y(12).Data’;

slide_vel_encoder=prod_run.Y(13).Data’;

slide_vel_model=prod_run.Y(14).Data’;

level_sens=-23.43; %in mm/volt

lw1=1.5;

lw2=1;

fsize=12;

subplot(4,1,1)

plot(t,slide_pos_encoder,’k’,’Linewidth’,lw1);
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title(’Run with T_s=0.001 s’,’Fontsize’,fsize)

hold on

plot(t,slide_pos_model,’k--’,’Linewidth’,lw2)

axis([0 1.75 0 420])

grid

ylabel(’Pos., mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’,’Location’,’NW’)

subplot(4,1,2)

plot(t,level_sensor_volts*level_sens,’k’,’Linewidth’,lw1)

hold on

plot(t,level_model_volts*level_sens,’k--’,’Linewidth’,lw2)

axis([0 1.75 -30 30])

ylabel(’Slosh in mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’)

subplot(4,1,3)

plot(t,control_signal,’k’,’Linewidth’,lw1)

axis([0 1.75 -15 15])

ylabel(’Control, V’,’Fontsize’,fsize)

subplot(4,1,4)

plot(t,s,’k’,’Linewidth’,lw1)

axis([0 1.75 -12 12])

ylabel(’S-Function’,’Fontsize’,fsize)

xlabel(’Time in seconds’,’Fontsize’,fsize)

grid

load prod_run2 %this run uses phi=0.01, Ts=1e-4;

t=prod_run2.X.Data’;
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level_sensor_volts=prod_run2.Y(1).Data’;

level_model_volts=prod_run2.Y(2).Data’;

level_rate_sensor_volts=prod_run2.Y(3).Data’;

slide_pos_encoder=prod_run2.Y(4).Data’;

slide_pos_model=prod_run2.Y(5).Data’;

level_rate_model=prod_run2.Y(6).Data’;

s=prod_run2.Y(7).Data’;

tank_state1_meas=prod_run2.Y(8).Data’;

tank_state2_meas=prod_run2.Y(9).Data’;

tank_state1_model=prod_run2.Y(10).Data’;

tank_state2_model=prod_run2.Y(11).Data’;

control_signal=prod_run2.Y(12).Data’;

slide_vel_encoder=prod_run2.Y(14).Data’;

slide_vel_model=prod_run2.Y(15).Data’;

figure(2)

subplot(4,1,1)

plot(t,slide_pos_encoder,’k’,’Linewidth’,lw1);

title(’Run with T_s=0.0001 s’,’Fontsize’,fsize)

hold on

plot(t,slide_pos_model,’k--’,’Linewidth’,lw2)

axis([0 1.75 0 420])

grid

ylabel(’Pos., mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’,’Location’,’NW’)

subplot(4,1,2)

plot(t,level_sensor_volts*level_sens,’k’,’Linewidth’,lw1)

hold on
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plot(t,level_model_volts*level_sens,’k--’,’Linewidth’,lw2)

axis([0 1.75 -30 30])

ylabel(’Slosh in mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’)

subplot(4,1,3)

plot(t,control_signal,’k’,’Linewidth’,lw1)

axis([0 1.75 -15 15])

ylabel(’Control, V’,’Fontsize’,fsize)

subplot(4,1,4)

plot(t,s,’k’,’Linewidth’,lw1)

axis([0 1.75 -12 12])

ylabel(’S-Function’,’Fontsize’,fsize)

xlabel(’Time in seconds’,’Fontsize’,fsize)

grid

load prod_run_final %this run uses phi=0.01, Ts=1e-3;

%latest corrections

t=prod_run_final.X.Data’;

level_sensor_volts=prod_run_final.Y(1).Data’;

level_model_volts=prod_run_final.Y(2).Data’;

level_rate_sensor_volts=prod_run_final.Y(3).Data’;

slide_pos_encoder=prod_run_final.Y(4).Data’;

slide_pos_model=prod_run_final.Y(5).Data’;

level_rate_model=prod_run_final.Y(6).Data’;

s=prod_run_final.Y(7).Data’;

tank_state1_meas=prod_run_final.Y(8).Data’;
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tank_state2_meas=prod_run_final.Y(9).Data’;

tank_state1_model=prod_run_final.Y(10).Data’;

tank_state2_model=prod_run_final.Y(11).Data’;

control_signal=prod_run_final.Y(12).Data’;

slide_vel_encoder=prod_run_final.Y(13).Data’;

slide_vel_model=prod_run_final.Y(14).Data’;

figure(3)

subplot(4,1,1)

plot(t,slide_pos_encoder,’k’,’Linewidth’,lw1);

title(’Run with T_s=0.001 s’,’Fontsize’,fsize)

hold on

plot(t,slide_pos_model,’k--’,’Linewidth’,lw2)

axis([0 1.75 0 420])

grid

ylabel(’Pos., mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’,’Location’,’NW’)

subplot(4,1,2)

plot(t,level_sensor_volts*level_sens,’k’,’Linewidth’,lw1)

hold on

plot(t,level_model_volts*level_sens,’k--’,’Linewidth’,lw2)

axis([0 1.75 -30 30])

ylabel(’Slosh in mm’,’Fontsize’,fsize)

legend(’Measured’,’Model’)

subplot(4,1,3)

plot(t,control_signal,’k’,’Linewidth’,lw1)

axis([0 1.75 -15 15])

ylabel(’Control, V’,’Fontsize’,fsize)
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subplot(4,1,4)

plot(t,s,’k’,’Linewidth’,lw1)

axis([0 1.75 -12 12])

ylabel(’S-Function’,’Fontsize’,fsize)

xlabel(’Time in seconds’,’Fontsize’,fsize)

grid
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1.6 Simulink model for Digital SMC

Figure 1.1: Simulink model for digital SMC
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1.7 Simulink model for masked subsystems

Figure 1.2: Simulink model for masked subsystem
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