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NON-COLLOCATION PROBLEMS IN DYNAMICS 

AND CONTROL OF MECHANICAL SYSTEMS 

 

TIMOTHY M. OBRZUT 

 

ABSTRACT 

 

Characteristics of mechanical systems with non-collocated sensors and actuators 

are investigated. Transfer function zeros location as a function of sensor position, zero-

pole interlacing, and re-location of zeros are discussed in a context of presented 

examples. Some of the presented examples involving non-collocation are supported by 

experimental data.  A case study involving a high speed machining spindle is examined.  

The control problems associated with non-collocation are studied along with the methods 

to solve them. 
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NOMENCLATURE 

 

a  = mass eccentricity of unbalance [ ]m  

11A  = row one, column one of stiffness matrix 

12A  = row one, column two of stiffness matrix 

21A  = row two, column one of stiffness matrix 

22A  = row two, column two of stiffness matrix 

1b  = damping of damper one 
N s

m

− 
  

 

2b  = damping of damper two 
N s

m

− 
  

 

3b  = damping of damper three 
N s

m

− 
  

 

1c  = damping of damper one 
N s

m

− 
  

 

2c  = damping of damper two 
N s

m

− 
  

 

Fφ  = constant magnitude force applied to mass one [ ]N  

(1,1)G  = transfer function relating the front bearing to the front sensor [ dim]non −  

(3,3)G  = transfer function relating the back bearing to the back sensor [ dim]non −  

1k  = stiffness of spring one 
N

m

 
  

 

2k  = stiffness of spring two 
N

m

 
  

 

3k  = stiffness of spring three 
N

m

 
  

 

K  = stiffness ratio [ dim]non −  

L  = length of modified Jeffcott rotor [ ]m  

1m  = mass one [ ]kg  

2m  = mass two [ ]kg  

2

2m aω  = unbalance force 
2

kg m

s

− 
  

 

M  = mass ratio [ dim]non −  

ip  = system poles 
rad

s

 
  

 

1q  = displacement of mass one [ ]m  

2q  = displacement of mass two [ ]m  
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u  = control force [ ]N  

iu  = output deflection  [ ]m  

ω  = frequency 
rad

s

 
  

 

iω  = thi  resonant frequency 
rad

s

 
  

 

0iω  = thi  anti-resonant frequency 
rad

s

 
  

 

1x  = displacement of mass one [ ]m  

2x  = displacement of mass two [ ]m  

( )X s  = harmonic output 
rad

s

 
  

 

iy  = input signal to the active magnetic bearing 
rad

s

 
  

 

( )Y s  = harmonic input 
rad

s

 
  

 

iz  = system zeros 
rad

s

 
  

 

sz  = axial location of sensor [ ]m  

α  = ratio between sensor offset and shaft half-span [ dim]non −  

Ω  = natural frequency normalized to critical speed of mass two [ dim]non −  
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CHAPTER I 

INTRODUCTION 

 

1.1   Background and Motivation 

Merriam Webster defines collocation as “the act or result of placing together.”  In 

the application of control systems the definition would be the act of placing the input 

force together with the sensor that controls the input force.  All actively controlled 

mechanical systems are either collocated or non-collocated.  When a sensor is placed at 

the same location as the input force, the system is said to be collocated.  There are many 

reasons why this is the preferred method of sensors and actuators placement.  These 

benefits will be discussed in the following chapters.  However, in many real life 

mechanical systems, collocation is simply not possible and this presents some unique 

problems for system control.  Some such cases include for example a high-speed 

machining spindle supported by active magnetic bearings [Sawicki 2006] or robotics 
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applications [Damaren 2000].  In both of these cases, the input force acts on the system at 

one point, and the sensor is measuring the response at another. 

 

1.2   Literature Review 

Structural engineers and control system designers know of the importance of 

natural frequencies, or poles, in a system.  Generally more importance is placed on the 

poles than on the zeros of a particular system [Preumont 2002].  When the system in 

question is non-collocated, this can present the structural engineer or control system 

designer with many issues.  Spector and Flashner [1989] investigated the sensitivity of a 

non-collocated structural model.  They found that the zeros in a system are much more 

sensitive to perturbations in the system parameters and boundary conditions than the 

poles.  Also, small variations in the sensor locations can result in interchanging the order 

of poles and zeros.  This could result in closed-loop instability.  These results were 

verified with a pinned-free beam model.  Further work has been done on studying the 

beam model in a collocated case.  Richolet [2004] investigated two control laws, position 

positive feedback and generalized predictive control.  It was found that generalized 

predictive control was suitable for damping the first vibration mode. 

Miu [1991] did work on providing a physical interpretation of the zeros.  This 

work also showed the importance of zeros in ensuring the stability of control systems.  

Furthermore, it was found that the zeros of a collocated system are the resonances of a 

substructure constrained at the sensor and actuator location.  This has the meaning that an 

additional constraint is introduced to a collocated sensor and actuator.  This additional 
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constraint is not present in a non-collocated system.  This is helpful in understanding why 

a collocated system would be stable and not a similar non-collocated system. 

Loix [1996] investigated complex zeros of non-collocated systems.  His work 

proved the existence of complex zeros in non-collocated systems.  Through analyzing a 

simply supported beam and a four mass system he found the presence of complex zeros 

can increase the sensitivity of the control system to parameter variation.  Furthermore, if 

these complex zeros occur within the operating range of the system, the system can 

become unstable. 

Theoretical work has also been done on non-collocation with respect to an 

abstract second order system, [Guo 2008].  This work studied the stabilization of multi-

dimensional wave equations under non-collocated control and observations.  Four cases 

were investigated, locally internal distributed control and observation, internal distributed 

control and boundary observation, boundary control and internal distributed control and 

observation, and locally internal distributed control and boundary observation.  This work 

was then applied to the Euler-Bernoulli beam equation, [Guo 2008].  The multiplier 

methods, Reisz basis approach, and the Lyapunov function were employed to analyze the 

stability of the partial differential equations.  It was concluded that the multiplier method 

was not effective in proving the stability of the closed-loop system that was studied. 

The flexible beam model has been employed to study a multitude of 

characteristics including non-collocation and control systems.  Sun [2001] investigated 

partial debonding of piezoelectric sensors and actuators on a cantilevered flexible beam.  

The non-collocation control was achieved by using two piezoelectric patch pairs.  The 

work centered on varying the amount of debonding in the collocated and non-collocated 
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cases.  It was found that if the debonding was located at the end of the actuator or sensor, 

the controllability of the first several modes of the beam was significantly diminished.  

Furthermore, it was stated that a single actuator is much more sensitive to debonding than 

an actuator pair in the closed-loop vibration control of the beam.   

Qiu [2009] also employed the cantilevered flexible beam model to study vibration 

suppression with non-collocated PZT actuator and accelerometer.  Phase shifting 

technology was applied to the controller to account for the non-collocation effects.  The 

proposed methods were effective in suppressing the first two bending modes of the beam. 

Lacarbonara [2006] used a slender beam to investigate the effectiveness of a non-

linear strategy for cancelling the parametrically forced skew-symmetric vibrations of a 

straight elastic beam via a non-collocated input.  Two-frequency control signals were 

found to be effective in cancelling the resonances provided that the control gains were 

within certain theoretically determined bounds. 

These ideas were further investigated in active magnetic bearings.  Active 

magnetic bearings are inherently non-collocated [Sawicki 2007].  However, they are a 

promising new technology that offers many benefits to a wide range of industries.  The 

most notable would be high-speed machining.  Current high-speed machining is limited 

to about 15,000 rpm [Zelinski 2008] and active magnetic bearings would be able to 

increase this capability to 50,000 rpm [Sawicki 2008].  In order to realize these benefits, 

robust control systems are required.  These robust control systems can only be developed 

once a good understanding of the model and non-collocation is achieved.  Active 

magnetic bearings also present some other interesting challenges.  These include accurate 

system modeling.  Accurately modeling a real life system can be challenging because 
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there are difficulties in representing some features.  One of these features is the shrink fits 

of the magnetic bearings, motor, and sensors to the rotor.  While the mass can be easily 

calculated, the stiffness is more difficult to accurately predict.  Another feature that is 

difficult to accurately represent is the laminations of the magnetic bearings and motor.  

These laminations are known to be very thin, approximately 0.1 mm and modeling each 

one individually is not a viable option.  The motor is the third feature that proves to be 

challenging to accurately model.  The motor consists of three different materials, steel, 

copper, and iron, thin laminations, and 30 copper rods pressed axially into the 

subassembly.  Understanding the interactions between all these parts and accurately 

representing them in a model is challenging.  Finally, the tool holder represents another 

source of potential inaccuracies.  The end of the spindle is counter-bored and threaded.  

The tool holder fits into the counter-bore and is secured with a bolt.   Representing the 

threaded connection with two different materials and understanding the effects on the 

stiffness is difficult.  Some of these issues could be solved by creating a very detailed 

model.  This would result in an extremely large model that might be too large to be of 

any practical value.  Therefore, there must be a trade-off between the size of the model 

and the accuracy of the model.  This issue is greatly magnified by non-collocation, 

because small inaccuracies can lead to qualitatively different system characteristics which 

can lead to inefficient or unstable control systems [Spector 1990].    

Control strategies for non-collocated systems have also been investigated.  Bruin 

[2008] looked into state feedback control systems for non-collocated mechanical motion 

systems with set-valued frictional nonlinearities.  His work obtained input-to-state 

stability with respect to perturbations on the system studied.  Nordstrom [2004] proposed 
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a time delay method to solve non-collocated input estimation problems.  His work 

showed that introducing a time delay can improve the input estimation considerably.  

Buhr [1997] considered a non-collocated passive vibration absorber for vibration 

attenuation.  The passive vibration absorber was found to be uncontrollable for certain 

frequencies.  This was solved by developing a feedback based tuning algorithm for a 

variable stiffness vibration absorber. 

 

1.3   Objectives of Thesis 

It is important to understand the benefits of collocated systems and the drawbacks 

of non-collocated systems so that a control system designer can choose a collocated 

system if at all possible.  In some cases, the control system designer has no choice and 

must use a non-collocated system.  When this occurs, it is imperative that the effects of 

non-collocation are fully understood.  With this better understanding, better and more 

accurate control systems can be designed and implemented.  With accurate control 

systems widely available, technologies such as active magnetic bearings and robotics can 

be used in a wide range of industries.  These technologies can lower cost and increase 

quality for many industries.  This thesis will examine the differences between collocated 

and non-collocated systems by solving examples and by studying a non-collocated high-

speed machining spindle. 

 

1.4   Thesis Outline 

 This thesis will contain four main chapters.  The second chapter will present the 

characteristics of a collocated system and the reasons why this is the preferred method of 
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sensor placement.  This chapter will present examples to show the differences between 

collocated and non-collocated systems.  The third chapter will describe an extended 

Jeffcott rotor supported on actively controlled magnetic bearings (AMBs).  This will 

include the effect of non-collocation on the critical speeds.  The fourth chapter will be 

devoted to a case study of a high-speed machining spindle running on AMBs.  In this 

chapter, a specific high-speed machining spindle will be presented.  A finite element (FE) 

model of the spindle rotor will be introduced with the accompanying analysis.  The 

effects of non-collocation will be clearly shown.  Finally, the fifth chapter will provide a 

summary and conclusions for the thesis and it will outline possible directions for future 

studies. 
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CHAPTER II 

  CHARACTERISTICS OF COLLOCATED  

VERSUS NON-COLLOCATED SYSTEMS 

 

2.1   Introduction 

 One of the most important characteristics of any control system is stability.  A 

collocated system is generally more stable to large perturbations of the system parameters 

than the same system without collocation.  This is true due to the alternating poles and 

zeros that are present in collocated systems.  Systems with alternating poles and zeros, 

also known as pole-zero interlacing, are stable [Preumont 2002].  Non-collocated systems 

might not have the property of pole-zero interlacing due to pole-zero flipping.  Pole-zero 

flipping often lead to unstable systems [Preumont 2002].  These characteristics are shown 

in more detail in the examples in a later section of this chapter and the following chapter. 

 The phenomenon known as anti-resonance occurs between consecutive resonant 

frequencies in collocated systems.   Bode diagrams plot the frequency response of a 
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system. The frequency response has two components, amplitude and phase.  The Bode 

diagram plots the amplitude and phase of the response over a wide range of frequencies. 

The system natural frequencies, or poles, appear as peaks and the anti-resonant 

frequencies, or zeros, appear as negative peaks.  While anti-resonance frequencies are not 

unique to collocated systems, they will always appear in collocated systems between 

consecutive resonant frequencies.  The anti-resonant frequencies are the frequencies 

where the amplitude of the frequency response function (FRF) vanishes [Preumont 2002]. 

 

2.2   Transfer Functions  

 In the field of control systems, it is customary to write the dynamics of the system 

in terms of a transfer function.  “The term ‘transfer function’ stems from the fact that by 

knowing ( )G s  we may transfer any set of force amplitudes F into a response.”  [Ginsberg 

2001].   

 

Figure 2.1   Block diagram of a single input and single output system 

 

Figure 2.1 shows a simple block diagram that graphically demonstrates a transfer 

function.  In this system, ( )Y s  is the input and ( )X s  is the output.  The transfer function 

is ( )G s .  It should be noted that the input, output, and transfer function are complex 

quantities because they consist of an amplitude and phase.  Equation (2.1) shows a 

generalized transfer function for the system in Fig. 2.1.  This clearly shows that the 

transfer function is the ratio of the output of the system over the input of the system.   

( )Y s  ( )X s  

( )G s  
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( )
( )

( )

X s
G s

Y s
=       (2.1)  

Depending on the number of inputs to the system and the number of outputs, a system 

can have numerous transfer functions.   

 Equation (2.1) is a generalized form of a transfer function for any given system.  

In the case of control systems, it is common to rewrite Eq. (2.1) as follows: 

( )
( )

( )

zeros i

poles i

s z
G s k

s p

−
=

−
∏
∏

     (2.2) 

The above equation is written in the Laplace domain and it shows the transfer function is 

a gain, k , multiplied by the system zeros and divided by the system poles.  Furthermore, 

in the case of collocated systems without damping, Eq. (2.2) can be written as:   

2 2

0

2 2

( )
( )

( )

zeros i

ipoles

s
G s k

s

ω

ω

+
=

+
∏
∏

     (2.3) 

where 0iω  denotes the thi  anti-resonant frequency and iω  denotes the thi  resonant 

frequency.  Figure 2.2 shows the Bode plot for a system described by Eq. (2.3).  Each 

peak is the transfer function magnitude at a resonant frequency described by iω  and each 

negative peak is described by 0iω .  In this case, the resonance frequencies were selected 

to be 3, 6, and 10 rad/sec.  The anti-resonance frequencies were selected to be 5 and 8 

rad/sec.  This figure is a typical case of a collocated system because it has an anti-

resonant frequency between two consecutive resonant frequencies and the phase 

oscillates between 0° and 180°. 
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Figure 2.2   Bode plot for a typical collocated system 

 

 Figure 2.3 is a typical map of the poles and zeros of an undamped collocated 

system.  In this case, the poles and zeros are located on the imaginary axis.  This is a 

result of a system that is assumed to have no damping.  If there was damping, the poles 

and zeros would be shifted into the left-hand plane.   
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Figure 2.3 Pole-zero map of a typical collocated system without damping 

 

It should be noted that the Figure 2.3 exhibits another unique feature of collocated 

systems.  This unique feature is the property of interlacing poles and zeros.  Structures 

with a collocated actuator and sensor lead to systems with poles and zeros alternating 

along the imaginary axis [Martin 1978].  Between any two resonant frequencies or poles, 

resides an anti-resonant frequency, or a zero. 

 

2.3   Examples 

2.3.1   Two Mass Collocated System 

 A two mass system is a simple system that can clearly show the effects of 

collocation.  The system of Fig. 2.4 contains two masses on a frictionless surface.  Each 



13  

mass is connected to a solid wall by a spring and damper.  A third spring and damper are 

connected between the masses.  The displacement of mass one is denoted by 1q  and the 

displacement of mass two is similarly denoted by 2q .  Since this is an actively controlled 

system, the input force, u , is applied to mass one. 

 

Figure 2.4 Two mass collocated system 

 

In this case, the displacement of mass one, 1q ,  is controlled at the same point as the input 

force, u , thus making the system collocated.   

A mathematical representation of the system in Fig. 2.4 is derived from the free 

body diagram of the system.  The equations of motion are then found from the 

application of Newton’s Second Law of motion.  Once simplified, the system can be 

described by Eqs. (2.4) and (2.5):   

1 1 1 2 1 1 2 1 2 2 2 2( ) ( )m q b b q k k q b q k q u+ + + + = + +ɺɺ ɺ ɺ    (2.4) 

2 2 2 3 2 2 3 2 2 1 2 1( ) ( )m q b b q k k q b q k q+ + + + = +ɺɺ ɺ ɺ                         (2.5) 

From here, two approaches can be taken based on Laplace transformation or state space 

representation.  This thesis will follow the Laplace transformation approach which 

readily leads to a transfer function.  Equations (2.4)-(2.5) after applying the Laplace 

transformation yield: 
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2 2 2
1 2

1 1 2 1 2

( ) ( )
( )

( ) ( )

b s k Q s U
Q s

m s b b s k k

+ +
=

+ + + +
    (2.6) 

2 2 1
2 2

2 2 3 2 3

( ) ( )
( )

( ) ( )

b s k Q s
Q s

m s b b s k k

+
=

+ + + +
    (2.7) 

By substituting Eq. (2.6) into Eq. (2.7), the open loop transfer function, G(s), for the 

displacement of mass one due to the input force at mass one is found as follows: 

2

2 2 3 2 31

4 3 2

( ( ) ( ))( )
( )

( )

m s b b s k kQ s
G s

U s as bs cs ds e

+ + + +
= =

+ + + +
    (2.8) 

where, 

1 2

1 2 3 2 1 2

1 2 3 2 1 2 1 2 3 2 3

1 2 3 2 1 3 3 1 2

1 2 3 2 3

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

a m m

b m b b m b b

c m k k m k k b b b b b

d k b b k b b k b b

e k k k k k

=

= + + +

= + + + + + +

= + + + + +

= + +

    

The roots of the numerator are referred to as the zeros of the system, while the roots of 

the denominator are considered the poles of the system.  Equation (2.8) shows that the 

system has two zeros and two pairs of poles.  Assuming the following parameters:  

1 2 1 2 310 ,  5 ,  0.05 sec ,  0.4 sec ,  0.05 sec ,m kg m kg b N m b N m b N m= = = − = − = −  

1 2 35 ,  40 ,  5 k N m k N m k N m= = =  and by employing the use of Matlab software, a 

root locus diagram shows the placement and the interaction of the poles and zeros.  

Figure 2.5 presents the root locus plot for the closed loop system where the poles and 

zeros are denoted as an “x” and as an “o”, respectively.  Also, it shows how the poles will 

move as the feedback gain is increased from 1 to infinity.  This plot demonstrates some 

of the key features of a collocated system.  The first feature is the alternating of poles and 

zeros near the imaginary axis.  It should be noted that the poles and zeros are near the 
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imaginary axis because of the low damping in the system, which is one percent of the 

stiffness.  Another key feature is the stability.  Since the stable region is the negative real 

plane (LH plane), this system is and always will be stable because the poles stay in the 

negative real plane. 
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Figure 2.5 Root locus of two-mass collocated system shown in Fig. 2.4 

 

It can be seen that by increasing the gain, the poles follow a locus and finally 

reach the zeros with which they are paired.  The root locus also reveals the damping of 

each pole along the trajectory, i.e., with the gain increase, the pole initially move away 

from the imaginary axis and the damping increases until some maximum value.  At the 

position where the pole reaches the zero, the damping is at the maximum value. 
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Figure 2.6   Step response of a two mass collocated system with the step input applied to m1 and  

measured at m1 

 

Typically, plotting the step response of a system is useful for understanding the 

system response characteristics.  Figure 2.6 shows the step response of the two mass 

collocated system.  This plot confirms the root locus and further illustrates that this 

system is stable because the amplitude of the response converges to a certain steady-state 

value.  In this case, the response converges to 0.168 m in approximately 1000 seconds.  

The time is long due to the low damping in the system. 
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Figure 2.7 Bode plot of two-mass collocated system shown in Fig. 2.4 

 

Further analysis demonstrates the characteristics of a collocated system through 

Bode plots, Fig. 2.7.  The Bode plots shows the magnitude and phase of the transfer 

function, Eq. (2.8).  Since this is a two mass system with two degrees of freedom, there 

are two peaks in amplitude which represent the natural or resonance frequencies.  A 

feature of collocated systems is the presence of an anti-resonant frequency between two 

consecutive resonance frequencies.  A harmonic excitation at an anti-resonance 

frequency produces no response at the degree of freedom where the excitation is applied.  

The structure will have the same response as a structure that has an additional restraint at 

the location of the collocated sensor and actuator.  Furthermore, the zeros of the 
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collocated system are in fact the natural frequencies of the same system with the 

additional restraint at the collocated sensor and actuator [Miu 1991].  In the case of the 

system in Fig. 2.4, this is proven to be true.  If an additional restraint is added to 1m , the 

equation of motion yield: 

2 2 2 3 2 2 3 2( ) ( ) 0m q b b q k k q+ + + + =ɺɺ ɺ     (2.9) 

Applying the Laplace transform, Eq. (2.9) becomes: 

2

2 2 3 2 3 2[ ( ) ( )] ( ) 0m s b b s k k Q s+ + + + =    (2.10) 

The roots of the above equation are the natural frequencies.  These roots are identical to 

the numerator of Eq. (2.8), which are the zeros of the entire system. 

It should be noted that anti-resonant frequencies are based on sensor and actuator 

locations.  Resonant frequencies are based on the dynamics of the system and are not 

influenced by the position of the sensors and actuators.  Between two consecutive 

resonant frequencies, only one anti-resonant frequency can exist.  This is due to the 

feature of alternating poles and zeros, commonly known as interlacing. 

The Bode diagram of Fig. 2.7 shows a 180° phase lag at every resonant frequency 

and a 180° phase lead at every anti-resonant frequency.  This is a characteristic of 

collocated systems. 

 

2.3.2   Two Mass Non-collocated System 

The previous section described a collocated system as a system that placed a 

sensor at the same location as the input force.  Therefore, a non-collocated system is a 

system where the sensor is not placed at the location of the input force.  As it was 

discussed, a collocated system has alternating poles and zeros which makes the system 



19  

stable.  However, in a non-collocated system this is not the case.  This type of system is 

not preferred, but in some cases required.  One such example is a system with active 

magnetic bearings [Sawicki 2007]. 

Consider the system shown in Fig. 2.8.  This system is the same as the system 

shown in Fig. 2.4, but the input force is acting on mass two.  The displacement of mass 

one is denoted by 1q  and the displacement of mass two is denoted by 2q .  Since this is an 

actively controlled system, the input force, u , is applied to mass two.  

   

Figure 2.8 Two-mass non-collocated system 

 

In this case, the displacement of mass one is measured at a different point than the input 

force.  This makes the system so called non-collocated.   

A mathematical representation of the system shown in Fig. 2.8 is derived from the 

free body diagram of the system.  As with the system shown in Fig. 2.4, the equations of 

motion are then found from the application of Newton’s Second Law of motion.  Once 

simplified, the system can be described by: 

1 1 1 2 1 1 2 1 2 2 2 2( ) ( )m q b b q k k q b q k q+ + + + = +ɺɺ ɺ ɺ                  (2.11) 

2 2 2 3 2 2 3 2 2 1 2 1( ) ( )m q b b q k k q b q k q u+ + + + = + +ɺɺ ɺ ɺ    (2.12) 
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After the application of Laplace transformations, Eqs. (2.11) and (2.12) become Eqs. 

(2.13) and (2.14). 

2 2 2
1 2

1 1 2 1 2

( ) ( )
( )

( ) ( )

b s k Q s
Q s

m s b b s k k

+
=

+ + + +
    (2.13) 

2 2 1
2 2

2 2 3 2 3

( ) ( )
( )

( ) ( )

b s k Q s U
Q s

m s b b s k k

+ +
=

+ + + +
    (2.14) 

By substituting Eq. (2.13) into Eq. (2.14), the open loop transfer function, G(s), for the 

displacement of mass one to the input force is found to be: 

1 2 2

4 3 2

( )
( )

( ) + + 

Q s b s k
G s

U s as bs cs ds e

+
= =

+ +
   (2.15) 

The coefficients of the denominator are the same as Eq. (2.8).  Equation (2.15) has the 

same denominator as Eq. (2.8); however, the numerator has one root at 2 2k b− .  This is 

true because the poles of any system do not depend on the sensor location.  Intuitively, 

this is accurate because the natural frequencies of a system are based on the mass and 

stiffness and not sensor and actuator locations.   



21  

-400 -300 -200 -100 0 100 200 300
-400

-300

-200

-100

0

100

200

300

400

 

Real Axis

Im
a
g
in

a
ry

 A
x
is

 

Figure 2.9   Root Locus of two-mass non-collocated system shown in Fig. 2.8 
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Figure 2.10   Close up of root locus for two-mass non-collocated system shown in Fig. 2.8 
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Figures 2.9 and 2.10 show the root locus plots for this system.  Figure 2.9 shows 

the zero location along the real axis and Fig. 2.10 shows the poles near the imaginary 

axis.  This plot is significantly different than the plot of the collocated root locus.  In the 

case of the collocated root locus, there are alternating poles and zeros due to the presence 

of imaginary zeros.  Those same imaginary zeros are no longer present; therefore, the 

system can very quickly become unstable as the poles travel into the positive RH plane.  

The step response of this system is very different than of the previous collocated 

system.  Figure 2.10 suggests that a small gain will cause the system to become unstable.   
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Figure 2.11  Step response of a two-mass non-collocated system with a gain of 50 and step input 

applied to m2 and measured at m1 
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This is confirmed in Fig. 2.11 which illustrates the step response with a gain of 50.  In 

this case, the step input is applied to 2m  and the response of 1m  is shown above.  Here 

the response begins at zero, and then the response starts to increase exponentially.  Stable 

systems will show the amplitude of the response converge to a certain value; however, in 

unstable systems, the amplitude of the response increases to infinity.   

Figure 2.12 shows the Bode plots and the absence of the anti-resonance between 

the same two resonant frequencies.  While there is still the 180° phase lag from each of 

the resonant frequencies, there is no anti-resonant frequency and therefore there is no 

180° phase lead.  This has the effect of the second resonance having a phase of -270° 

while the collocated counterpart possesses a phase of -90°. 
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Figure 2.12 Bode plot of two-mass non-collocated system shown in Fig. 2.8 
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2.3.3   Flexible Beam 

 The effects of non-collocation are not limited to simple two mass systems.  The 

same effects can be seen on more complicated structures, i.e., a flexible beam. Figure 

2.13 shows the geometry of a flexible beam.  This shows a pinned condition at 10 m from 

the left end of the beam.  The arrow represents the actuating force and it is located at 45 

m from the left end.  The small cylinders on either side of the arrow indicate the non-

collocated sensor locations.  Table I shows the properties of the beam. 

 

Length (m) 60 

Outside Diameter (m) 1 

Inside Diameter (m) 0 

Density (kg/m
3
) 7850 

Young's Modulus (GPa) 210 

Pinned Location (m) 10 

Actuator Location (m) 45 

 

Table I   Properties of the flexible beam 

 

Nine sensor locations are going to be investigated.  The first location is at the actuator to 

represent the collocated case and then moved to the right and to the left in one meter 

increments up to five meters.  Matlab along with an FEA program will be used to 

perform the analysis.  
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Figure 2.13 Flexible beam geometry, dimensions in m 
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Figure 2.14 Bode plot of flexible beam at collocated and RH non-collocated locations 

 

Figure 2.14 shows the Bode plot for the collocated sensor location and the non-collocated 

location of 5 m to the right of the actuator.  It is important to note that the peaks of the 
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45 
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plot are in the identical place.  The peaks represent the natural frequencies of the system 

and there are four of them within the frequency range being analyzed, at frequencies 763, 

2100, 3460, and 5960 rad/sec  This will always occur because only the sensor location 

was changed; therefore, the natural frequencies of the system were not altered.  However, 

the anti-resonances, or zeros, are altered.  Furthermore, each zero is affected in a different 

manner.  The first two zeros are shifted to the right, the third is essentially in the same 

place and the fourth is shifted to the left.  The first zero is on the left side of the first pole 

in the collocated case and is to the right of the pole in the non-collocated case.  This is 

due to the mode shapes, as shown in Fig. 2.15.  The node of the first mode lies between 

the sensor and actuator.  The node of a mode shape is the point at which there is zero 

response for a given input.  Therefore, as the sensor moves towards the non-collocated 

location, the zero jumps over the pole and moves to a higher frequency.  The point at 

which the zero moves to a higher frequency than the pole, is the point at which the 

property of pole-zero interlacing is lost.  This is shown in Fig. 2.17.  The same 

phenomenon is occurring to the second zero except in this case, the node of the second 

mode is just beyond the non-collocated case.  If the sensor would be moved an additional 

2 m, this zero would move to the other side of the pole as well.  The third zero doesn't 

move very much and this is due to no nodes being near the third pole.  The fourth zero is 

moving in the opposite direction.  This seems to be incorrect, but again, it is a function of 

the mode shapes.  In this case, the node of the fourth mode lies just to the left of the 

fourth pole.  Therefore, the non-collocated case is actually farther away from the node 

than the collocated case.  This results in a lower frequency.  This concept will become 

clearer later in this section when the sensor is moved to the left of the actuator.   
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Figure 2.15 Mode shapes of the flexible beam 
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Figure 2.16 Root locus of collocated flexible beam with 0.5% damping 
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Figure 2.17 Root locus of non-collocated flexible beam with sensor moved 5 m to the right 

 

 Figure 2.16 shows the root locus plot of the collocated case while Fig. 2.17 shows 

the root locus of the non-collocated case where the sensor is moved five meters away 

from the actuating force.  These two plots agree with the Bode plot.  Since the poles are 

the natural frequencies of the system, the root locus shows them unchanged.  Another 

thing to notice on the root locus plots is the phenomenon of alternating poles and zeros.  

This occurs in the collocated case but does not occur in the non-collocated case.  As a 

result, the collocated system is much more stable than the non-collocated system.  This is 

shown in the non-collocated root locus diagram.  The reason the poles of Fig. 2.17 travel 

into the unstable region is because the first zero moves to a higher frequency than the first 

non-zero pole.  Therefore, the pole at zero must travel around the first pole-zero pair to 
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cancel with the second zero.  When the poles travel to the right hand plane, the system 

becomes unstable and uncontrollable.  This does not occur in the collocated system. 
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Figure 2.18 Bode plot of flexible beam at collocated and LH non-collocated locations 

 

 The same analysis was performed when the sensor was moved in one meter 

increments to the left of the actuating force up to five meters.  Very similar results can be 

seen, with the exception of the effects on different anti-resonances.  This can be seen in 

Fig. 2.18.  In this case, the first zero is shifted to the left, the second zero is nearly 

unchanged and the third and fourth zeros are shifted to the right.  All these results are to 

be expected.  The first zero is shifted to the left because it is moving farther away from 

the node of the first mode.  The second zero is nearly unchanged because there is node 

near the second pole.  The third zero is shifted to the right because it is approaching a 
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node which is only 4 m farther away.  The fourth zero moved from the left side of the 

fourth pole to the right side.  This is due to the node of the fourth mode lying between the 

actuator and non-collocated sensor.  In this non-collocated case, the property of pole-zero 

interlacing is lost because the fourth zero is no longer between the third and fourth poles. 

 The root locus plots for the collocated case and the non-collocated case are shown 

in Figs. 2.19 and 2.20.  These appear different than the previous case, and this is due to 

damping.  The previous case had 0.5% damping added to the system and this case does 

not have any damping.  As with the previous case, the collocated system is stable because 

the poles do not travel into the right hand plane.  However, the non-collocated system can 

quickly become unstable due to the poles entering the right hand plane.  The collocated 

case shows the phenomenon of alternating poles and zeros, while the non-collocated case 

demonstrates the phenomenon of pole-zero flipping.  The reason why the collocated case 

is stable while the non-collocated case is not, is due to the flipping of the fourth non-zero 

pole and fourth zero of the non-collocated case.  This causes the fourth pole to travel into 

the right hand plane to avoid the fifth pole on its way to infinity.  Pole-zero flipping 

occurs when the zero coincides with a node of a particular mode [Preumont 2002].  In 

this case, a zero coincides with the fourth flexible mode. 
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Figure 2.19 Root locus of collocated flexible beam with no damping 
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Figure 2.20 Root locus of non-collocated flexible beam with no damping  
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Figure 2.21  Zeros of the flexible beam as a function of the sensor location at the first mode 
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Figure 2.22  Zeros of the flexible beam as a function of the sensor location at the second mode 
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Figure 2.23  Zeros of the flexible beam as a function of the sensor location at the third mode 

 

35 40 41.9 45 50 55
5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

F
re

q
u
e
n
c
y
 (

ra
d
/s

e
c
)

Beam Position [m]
 

Figure 2.24  Zeros of the flexible beam as a function of the sensor location at the fourth mode 
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 Figures 2.21 - 2.24 shows the frequency of the zeros as a function of sensor 

position.  In this case, the actuator is kept at the same location shown in Fig. 2.13, 45 m 

from the left end.  The sensor is initially located at 35 m from the left end and is moved 

in 1 m increments up to 55 m.  The first four flexible mode shapes are displayed along 

with the frequency of the poles.  As it is shown, the poles, shown as an 'x', are at the same 

frequency regardless of the sensor position; however, the zeros, shown as a 'o', are not.  

At 45 m, the sensor is at the same location as the actuator; therefore, it is the collocated 

case.  At this location there is pole-zero interlacing.  This figure also shows vertical lines.  

These correspond to the nodes of the various mode shapes.   

 

  

Natural 

Frequency 

(rad/sec) 

Node 1 

(m) 

Node 2 

(m) 

Node 3 

(m) 

Node 4 

(m) 

Node 5 

(m) 

Mode 1 762.7 10 46.5 - - - 

Mode 2 2100.5 10 29 51.9 - - 

Mode 3 3464.3 10 13.9 36.3 53.7 - 

Mode 4 5959.4 7.6 10 27 41.9 55.3 

 

Table II Axial positions of each node for each mode 

 

 Table II lists all the axial positions of the nodes of each mode shape.  At each 

node, the mode shape and zeros cross the frequency of the poles.  This is a problem 

because the property of pole-zero interlacing vanishes, and this leads to instability.  

Figure 2.25 demonstrates this phenomenon by showing the poles and zeros of the 

collocated system on the left, and the non-collocated system on the right.  The non-

collocated plot shows the system when the sensor is placed at node 52.  This location is 1 
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m beyond the node of the second mode shape.  In this case, there is pole-zero flipping 

because the order of the pole and zero is 'flipped'.  The first pole of the collocated system 

can travel along the imaginary axis to cancel with the second zero; however, in the non-

collocated case, the first pole must travel around the second pole and into the unstable 

region to cancel with the second zero.   
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Figure 2.25   Pole-zero map of the flexible beam, collocated on left and non-collocated on right  

 

2.3.4 Experimental Modal Analysis of Rotor 

 The previous examples were based on mathematical models which may represent 

real life systems.  This example compares a finite element model of a known rotor with 

experimental data.   
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Figure 2.26 Rotor with single disc and conical magnetic bearing rotors 

 

Figure 2.26 is a picture of the rotor that will be used in the analysis. The calculations 

were done with finite element software.  This rotor was sliced into 51 finite elements 

which results into 52 nodes.  Figure 2.27 shows the finite element model and locations of 

the bearings, sensor, and where both impulses are applied.  One impulse is applied at 

node 17.  This is close to the sensor; thus, replicating a collocated case.  The second 

impulse is applied at node 34.  This is far enough away from the sensor at node 15 to 

replicate a non-collocated case. 

 

Figure 2.27 Finite element model of rotor shown in Fig. 2.26 and locations of bearings, sensor, and 

two impulses 
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 The reason for the experiment is to study the effects of collocation versus non-

collocation and to replicate the modeling results returned by the FEA software.  The FEA 

software assumes the rotor to be free-free.  This simply means that the rotor is not 

constrained by bearings or anything else.  Essentially this means that it is floating in 

space.  This is replicated by supporting the rotor with two thin wires at nodes 4 and 45.  

The effects of the wires are small, but they do contribute to deviations from the FEA 

software. 

Three experimental trials were performed.  Two of the three trials were done for 

the collocated case to ensure accuracy and the third trial examined the non-collocated 

case.  These results were then plotted against the theoretical results returned by the FEA 

software.   
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Figure 2.28 Experimental and FEA frequency response 
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Figure 2.28 shows the results of the experimental collocated case plotted against the 

theoretical collocated case.  The experimental data is a close match for the first and 

second natural frequencies, while the third natural frequency is approximately 50 Hz less 

than the theoretical.  There can be many explanations why this difference exists.  The 

largest contributions would be inaccuracies between the physical part and the 

mathematical model.  Very rarely will a mathematical model be a one hundred percent 

match for the physical part.  In this case, the conical magnetic bearing rotors are pressed 

onto the main rotor.  This is difficult to accurately model in FEA software.  Also, the 

physical part has twelve 0.05 inch holes in the disc, and this is not accounted for in the 

FEA software.  A second point lies in the experiment itself.  The experiment required the 

use of wires to hold the part in place, while the FEA software assumed a free-free rotor.  

Finally, a third reason for inaccuracies would be in measuring the output signal.  The 

instrumentation is more sensitive to higher frequencies, which makes errors more likely. 

 The anti-resonances are also a close match between the experimental and the 

theoretical.  The slight differences are explained by Fig. 2.27.  The sensor is at node 15 

while the impulse was applied at node 17.  Since the difference is small, the anti-

resonances are only slightly shifted. 

 Overall, the experimental data is very repeatable which is demonstrated by Fig. 

2.29.  Three experiments were done.  Two of the three were done for the collocated case 

to ensure accuracy while the third represented the non-collocated case.  It is hard to see 

all three plots because for the most part, the lines are on top of each other.  Regardless of 

the where the impulse was applied, all three correctly show the same natural frequencies.  
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As expected, the second and third anti-resonances disappear while the first is shifted.  

Figure 2.29 also shows the coherence for the three experiments.  Coherence is a non-

dimensional value that is used to compare the various trials experiments.  When the 

coherence has a value of one, there is no variation between the trials.  The coherence is 

equal to one for most of the frequency range.  This implies the data is repeatable and the 

results are valid.  However, the coherence varies at the anti-resonances.  These variations 

are a direct result of the absence of the anti-resonances in the non-collocated experiment.  

In this case, the data from the collocated experiments is being compared to the data from 

the non-collocated experiment and this results in the coherence variations. 
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Figure 2.29 Complete frequency response of the impulse test  
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2.4   Conclusions 

 Collocated systems enjoy unique characteristics that inherently allow for greater 

stability.  This is a result of alternating poles and zeros.  When the poles and zeros are 

alternating, they will cancel each other.  When poles and zeros do not alternate, as in the 

case of non-collocated systems, the poles can travel into the RH plane of the real and 

imaginary coordinate system.  This was demonstrated in a number of examples.  Overall, 

a collocated system will exhibit the same behavior as a system with an additional restraint 

at the location of the collocated sensor and actuator.   

 It is important to note, that the system poles are not dependent on sensor location.  

However, the system zeros are completely dependent on the location of the sensor 

relative to the actuator.  The amount of influence of the sensor location is dependent on 

the mode shapes of the system.  The flexible beam example examined the effect when a 

sensor crosses a node of a mode shape.  It resulted in the disappearance of the anti-

resonance frequency due to pole-zero flipping.  The root cause of all of the phenomenon 

associated with collocation versus non-collocation can be traced back to deflection.  In 

the case of collocation, the sensor is measuring the exact deflection at the actuator.  In the 

case of non-collocation, the sensor is measuring a deflection and it is different than the 

deflection at the actuator.  The mode shapes of the system will predict what the difference 

is and direction of the deflection, positive or negative.  The most unstable scenario occurs 

when the sensor crosses a node of the mode shape.  When this occurs, the sensor is 

reading zero deflection while there actually is a deflection at the support or actuator.  The 

control system designer of a non-collocated system must be aware and take into account 

this scenario or the system will not behave as intended and become unstable [Buhr 1997]. 
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CHAPTER III 

MODIFIED JEFFCOTT ROTOR ON AMB’S 

 

3.1 Introduction 

 The Jeffcott rotor is a simple but powerful model in the understanding of 

rotordynamics.  The standard Jeffcott rotor consists of a massive unbalanced disc 

mounted between rigid supports on a flexible shaft of negligible mass [Vance 1988]. 

 

Figure 3.1 Modified Jeffcott rotor on active magnetic bearings 

1

2
m

 1

2
m

 

2m  

Sensor Location Sensor Location 

L  



42  

 

The modified Jeffcott rotor takes the analysis one step further by assuming that 

the shaft contains mass.  This additional mass is added at the bearing locations.  

Furthermore, the rotor is assumed to be supported by active magnetic bearings that have 

stiffness and damping.  Figure 3.1 shows the modified Jeffcott rotor.  In this case, the disc 

is shown at the mid-span of the shaft of length L and its mass is denoted by 2m .  The 

shaft mass is denoted by 1m  and it is split equally at the bearings.  These supports are 

active magnetic bearings that have stiffness and damping as opposed to rigid supports as 

is in the case of the standard Jeffcott rotor.  Since the modified Jeffcott rotor will be used 

to study the effects of non-collocation, the sensor locations are shown to be at a location 

different than the bearing centers. 

 

3.2 Equations of Motion 

 

 

 

 

 

 

 

 

 

Figure 3.2   Simplified representation of the modified Jeffcott rotor 
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 The system shown in Fig. 3.1 is considered to be symmetrical; therefore, it can be 

simplified as a two degree-of-freedom problem as shown in Fig. 3.2.  This simplified 

system has two equations of motion.  Equations (3.1) and (3.2) are derived from the free 

body diagram and the application of Newton’s Second Law of motion as was done in the 

previous chapter. 

2

2 2 2 2 2 2 2 2 1 2 1

i tm x c x k x m ae c x k xωω+ + = + +ɺɺ ɺ ɺ     (3.1) 

1 1 2 1 2 1 2 2 2 2 1 1

i t

s sm x c x k x F e c x k x c x k xω
φ+ + = + + − −ɺɺ ɺ ɺ ɺ     (3.2) 

where, 

1 2 1( ) sin( / 2)

/ ( / 2)

s

s

x x x x

z L

πα

α

= + −

=
     (3.3) 

zs defines the location of the sensor relative to the bearing location and α defines the ratio 

between the sensor offset and the shaft half-span.  In Eq. (3.1), there is an unbalance 

force acting on 2m  and it is denoted by 2

2

i tm ae ωω , where ω  is the angular velocity of the 

rotor and a  is the mass eccentricity of unbalance.  Since there are magnetic bearings 

supporting the rotor, there is a constant magnitude force acting on the rotor denoted by 

i tF e ω
φ  in Eq. (3.2).  This force is necessary because the rotor is assumed to be levitated.  

The deflection measured at the sensor location is denoted by sx  and it is comprised of 

two terms.  The first term is the deflection of the rotor at the bearing location and the 

second term is the difference between the deflection at the disc and the deflection of the 

rotor at the bearing location multiplied by the mode shape.  The mode shape is assumed 

to be a half-period of a sine wave.  This assumption allows the sensor deflection to be 

calculated for varying sensor positions. 
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 Substituting Eq. (3.3) into (3.1)-(3.2) and writing in matrix form yields the 

following: 

( ) ( ) ( )1 1 1

2
2 2 2 2

i t

i t

F ex x x
X Y Z

x x x m ae

ω
φ

ωω

      
+ + =                

ɺɺ ɺ

ɺɺ ɺ
   (3.4) 

where, 

 
1 1 2 1 2 1 2 1 2

2 2 2 2 2

0 (1 ) (1 )
,  ,  

0

m c c c c k k k k
X Y Z

m c c k k

β β β β− + − − + −     
= = =     − −     

   

 Assuming the solution of i tx Xe ω= , Eq. (3.4) can be written as the following: 

111 12

2
21 22 2 2

FXA A

A A X m

φ

ω

   
=          

     (3.5) 

where, 

2

11 1 2 1 2 1

12 1 2 1 2

21 2 2

2

22 2 2 2

( (1 ) ) ( (1 ))

( ) ( )

( )

sin( / 2)

A k k m i c c

A k k i c c

A k i c

A k m i c

β ω ω β

β ω β

ω

ω ω

β πα

= − + − + + −

= − + −

= − −

= − +

=

    

 

3.3 Effect of Non-Collocation on Critical Speeds 

 The critical speeds of the modified Jeffcott rotor can be found from Eq. (3.5).  

Since critical speeds depend on mass and stiffness, the damping terms, c1 and c2, are 

assumed to be zero.  Solving for the determinant yields: 

4 21 1 2 1 2
2

1 1 2 1 2

( )
(1 ) 0

k m m k k
k

m m m mm
ω β ω

 +
+ − + + = 
 

    (3.6) 
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It is useful to reduce Eq. (3.6) to Eq. (3.7), which is a non-dimensional form, because the 

results are more clearly shown.   

2 1
1 (1 (1 )) 0

K
K

M M
β Ω − + + − Ω+ =  

   (3.7) 

where, 

1 2

1 2

2

2 2( )

M m m

K k k

k m

ω

=

=

Ω =

       

By setting, 1M = , and plotting the critical speed,
2

2

k
m

ω
, versus the stiffness ratio, K, 

on a logarithmic scale yields Fig. 3.3. 
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Figure 3.3  Critical speed map of the modified Jeffcott Rotor at M = 1 
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 Figure 3.3 shows the effects of moving the sensor away from the actuating force.  

For this plot, the sensor is assumed to be moved 20% of the half-span in both directions 

from the actuating force.  The solid line indicates a collocated system, the dashed line 

indicates the sensors being outboard of the bearings, and the phantom line shows the 

result when the sensors are moved inboard of the bearings.  This figure shows that the 

first critical speed increases when the sensors are moved inboard, but decreases the 

second critical speed.  The exact opposite is true when the sensors are moved outboard.  

The first critical speed decreases while the second critical speed increases.  This is 

explained by the first and second mode shapes of the system.  Figure 3.4 shows the 

assumed first and second mode shapes.  Figure 3.2 helps to explain these mode shapes.  

Since this system has been simplified to a two mass system, there are two modes.  The 

first mode occurs when both masses are in phase and the second occurs when they are out 

of phase.   Figure 3.4 shows both modes starting and ending at a deflection of 1.  This 

represents the maximum deflection of 1m .  Then the first mode rises to a deflection of 2.  

This represents a positive maximum deflection of 2m  and shows both masses being in 

phase.  The second mode shows the deflection of 2m  going to 0.  This represents a 

negative maximum deflection of 2m  and shows both masses being out of phase.  The first 

mode takes the form of 1sin( )szX A x
L

π= + , and the second mode is described by 

1 sin( )szX x B
L

π= − .  This shows that an outside sensor would detect less deflection on 

the first mode and more deflection on the second mode.  Similarly, an inside sensor 

would detect more deflection on the first mode and less deflection on the second mode. 
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Figure 3.4  Assumed first and second modes shapes and locations of bearings and sensors of modified 

Jeffcott rotor 

 

 Another important thing to note on Fig. 3.3 is the effect of the stiffness ratio.  The 

stiffness ratio is 1 2K k k= , where 1k  is the stiffness of the bearings and 2k  is the 

stiffness of the flexible rotor.  When the ratio is small, the effects of non-collocation are 

negligible.  However, the effects quickly magnify as the stiffness ratio is increased.  This 

is explained by relative deflections.  If the shaft has much more stiffness than the 

bearings, then the position of the sensors becomes less important because the sensors will 

detect nearly the same deflection.  The system will behave more rigidly.  However, if the 

bearings have the same or more stiffness than the shaft, then the sensors will be less 

accurate the farther away they are from the actuating location. 
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 Figure 3.3 shows the behavior of critical speeds as the sensors are moved relative 

to the actuating force assuming the mass ratio, 1M = .  Figure 3.5 shows the same 

behavior of critical speeds when the mass ratio, 0.2M = .  At this mass ratio, the center 

disc has five times more mass than the mass at the bearings.  This plot is very similar to 

Fig. 3.3.  Since these two figures are similar, the effects of non-collocation are not 

dependent on the relative masses. 
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 Figure 3.5  Critical speed map of the Modified Jeffcott rotor at M = 0.2 

 

3.4 Summary 

 While the Jeffcott rotor is a simple system, it offers much insight into complicated 

systems.  Modifying the Jeffcott rotor to include active magnetic bearings allows the 

effects of non-collocation to be seen and studied.  It is important to note that the effects of 
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non-collocation do not actually change any of the system’s characteristics.  It does, 

however, change the control system’s interpretation of the system.  This occurs because 

the sensors measure a different deflection than is really occurring at the active magnetic 

bearings.  This has the effect of shifting the critical speeds.  A control system designer 

must take these effects into account to properly control their system [Kirk]. 
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CHAPTER IV 

AMB HIGH-SPEED MACHINING SPINDLE ROTOR 

 

4.1   Introduction 

 The spindle used in this investigation is shown in Fig. 4.1.  It is a high speed tool 

machine spindle supported on active magnetic bearings originally developed by Revolve 

Magnetic Bearings, a subsidiary of SKF, Inc.   

  

Figure 4.1   AMB supported high speed tool machine spindle 
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Figure 4.2   Rotor Assembly 

 

The rotor assembly is shown in Fig. 4.2.  Typically motors are thought of as an 

independent or a separate part that consists of a stator and a rotor.  However, this rotor 

has the motor rotor built into it.  This is achieved by stacking iron rings between eight 

copper rings, four on each side.  One steel ring is then placed outside the copper rings.  

The copper rings are clearly shown in Fig 4.2.  Then copper rods are pressed axially into 

these rings.   

 

Figure 4.3   Motor construction 

 

Figure 4.3 is a 3D representation of the motor.  This motor assembly is then pressed onto 

the rotor and ground to tight tolerances.  The exact construction of the motor is 

confidential and would not be divulged by SKF.   
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The rotor assembly also consists of two magnetic bearing journals with 

lamination stacks and a thrust bearing disk.  This rotor assembly is 0.464 meters in length 

and weighs 6.85 kilograms when the tool holder is attached.   

 

Figure 4.4   Cross-section of the spindle assembly without the tool holder 
 
 

 Figure 4.4 shows a cross-section of the spindle assembly.  The machine tool 

would be attached to the spindle assembly on the left hand side.  The spindle is supported 

by a front radial bearing with a static load capacity of 1400 N and a rear radial bearing 

capable of 600 N.  Axial loads are handled by the thrust bearing which is capable of 500 

N of maximum axial force.  The spindle has a maximum speed of 50,000 rpm at 10 kW.  

 

4.2   Model of Spindle Rotor 

 A finite element model was created of the spindle.  This model has 64 nodes and 

63 elements.  The model also contains a machine tool holder that is 64.95 millimeters in 

length.  The 63 elements are shown in Fig. 4.5.  This model is not an exact copy of the 

actual rotor, but it is a close approximation.  Also, the analysis assumes a free-free rotor.  

A free-free rotor assumes the system has no supports.  This would be nearly the same as 

suspending the actual rotor with wires and applying an impulse load with a hammer.  
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This assumption is valid because the rotor’s system characteristics are of interest and not 

the stiffness and damping of the supports. 

 

Figure 4.5   FEA model of high-speed machining spindle 

 

 Another model will also be examined using a different FEA software.  This 

software is capable of handling the complete detailed model.  In this analysis, the rotor 

will be broken down into approximately fifty-two thousand elements.  The results of this 

model will be compared to the previous model to gauge the accuracy of the reduced 

model.  Even though, this model will be as accurate as possible, there will still be some 

inaccuracies inherent to computer modeling.  These will be discussed in the proceeding 

sections. 
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4.3   Rotordynamic Analysis Versus Experimental Results 

4.3.1   Detailed Model Analysis 

 The rotordynamic analysis will begin with the detailed model.  The model used in 

this analysis is shown in Fig. 4.6, where the rotor assembly is shown by the different 

materials.  The material properties are listed in Appendix A.   

 

Figure 4.6   Detailed model of rotor assembly 

 

 As was previously stated, this model contains more detail than the reduced model 

and it will be used to gauge the accuracy of the reduced model.  Furthermore, the results 

will provide insight so that the reduced model will be reduced in the proper manner.  For 

all analyses, the first four modes will be studied.  These include two rigid body modes 

and the first two flexible modes.   
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Figure 4.7   First flexible mode shape of the detailed model 

 

 

Figure 4.8   Second flexible mode shape of the detailed model 

 

Figures 4.7 and 4.8 are the first and second mode shapes.  The first natural 

frequency is shown to be approximately 1047 Hz with the nodes of the first mode at 

approximately 5.060 and 13.100 inches.  The second natural frequency is found to be 

2037 Hz.  The nodes of the second mode are found to be at 2.250, 8.150 and 14.600 



56  

inches.  It should be noted that the displacements shown in Figs. 4.7 and 4.8 are relative 

and not absolute. 

 Upon closer examination of the results, an interesting detail is found.  As was 

previously mentioned, the motor and bearings are not one piece but contain many 

laminations.  Figure 4.9 shows a close up view of the motor laminations for the second 

mode.  This view shows gaps between the laminations.  Even though they are small, they 

provide valuable insight for the reduced model.  When reducing the model, two 

approaches can be taken.  The first approach is to model the laminations as part of the 

main rotor and then compensating for the different materials in the density and Young’s 

Modulus.  The second approach is to model the main rotor and add the laminations of the 

bearings and motor as added masses and then add the correct inertias to the masses.  

Figure 4.9 shows the second approach to be correct for the motor.  Since there are thirty 

copper rods through the laminations, the assumption will be that the rods are pressed 

through the laminations.  This will be shown as the laminations being bonded to the rods, 

but not each other.  The bearings are handled a little differently because there are no rods 

through them.  They are modeled as being bonded together.  This would make sense from 

an assembly point of view because the bearing laminations are known to be very thin. 
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Figure 4.9   Close up view of the motor in the second mode shape of the detailed model 

 

4.3.2   Reduced Model Analysis 

As was stated a previous section, the reduced model contains 63 elements.  The 

bearings and motor are modeled in a similar way as the detailed model.  With this 

software, the difference is that the bearings are assumed to be part of the main rotor.  

With this assumption, the density and Young’s modulus are modified based on the 

volume for each material.  On the other hand, the motor will be modeled as twelve added 

masses.  Since the diameters are known, the correct moment of inertias will be added to 

make the model as correct as possible.  The complete input file can be found in Appendix 

B.  Figure 4.10 illustrates the first and second flexible mode shapes.  This software 

returned natural frequencies of 1109 Hz and 1978 Hz.  This reflects a difference of 6% 

and 3%, respectively, from the detailed model.  The nodes of the mode shapes are also 

shown, and they are in close agreement with the detailed model.  Based on these two 

facts, the reduced model is a valid representation of the spindle. 
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Figure 4.10   First and second mode shapes of the reduced model 

 

 The reduced model is necessary because each element has two degrees of 

freedom.  Each degree of freedom leads to an equation of motion.  Therefore, a 63 

element model will have 126 equations of motion, while a fifty-two thousand element 

model will contain 104,000 equations of motion.  It simply is not practical to solve that 

many equations, and therefore, the number must be reduced.  As long as the model is 

reduced properly, very little will be lost and the results will be valid. 

 

4.3.3   Experimental Analysis Results 

 An experiment was conducted to measure the open loop transfer function of the 

levitated rotor.  The PID controller utilized dSPACE based on differential control for the 

experiment.  The hardware consisted of the DS1005 PPC Board featuring the PowerPC 

750GX.  The sampling time of the controller was 10 kHz.  This system has four inputs 

and four outputs.  Each of the two active magnetic bearings have two input signals, one 
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for each of the x- and y- planes.  The four output signals of the system are the sensor 

signals of the x- and y- planes of the front and rear sensors.  Therefore, the open loop 

transfer function would take the form: 

1 1

2 2

3 3

4 4

( )

y u

y u
G s

y u

y u

   
   
   

=   
   
      

     (4.1) 

where, ( )G s  is a 4 x 4 matrix of transfer functions relating each input to each output.  

( )G s  can be measured by performing four experiments; however, there are only two 

transfer functions of interest.  Therefore, two experiments are performed.  These two 

transfer functions are (1,1)G  and (3,3)G .  (1,1)G  relates the output of the front sensor to 

an input at the front bearing and (3,3)G  relates the output of the rear sensor to an input at 

the rear bearing.  The input and output will be in the x- plane for both cases.  In each 

experiment, one input is perturbed individually and one output is measured and recorded.  

The perturbation is a sinusoidal signal that sweeps the desired frequencies with a current 

of 0.25 Ampere.  In this case, the first and second modes are of interest; therefore, the 

frequency range is 0 to 2500 Hz.  By following this methodology, the input and output 

signals are related by: 

( ) ( ) ( )i i iY G j Uω ω ω=      (4.2) 

Therefore, the transfer function is: 

1( ) ( ) ( )i i iG j U Yω ω ω−=     (4.3) 

 



60  

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10  100  1000

C
o

m
p

lia
n

c
e

 (
n

o
n

d
im

)

Frequency (Hz)

G(1,1)

 

Figure 4.11   Open loop transfer function, G(1,1) 

 

Figure 4.11 shows the results from the first experiment.  In this case, the sinusoidal 

perturbation was applied to the front bearing, the bearing closest to the tool holder, and 

the output was at the front sensor.  These results show two resonant frequencies at 

approximately 1100 Hz and 1950 Hz and two anti-resonant frequencies at approximately 

1100 Hz and 1800 Hz.  If this were a collocated system, there would only be one anti-

resonance between two consecutive resonances.  However, this is not the case and there 

are two anti-resonances between consecutive resonances.  This is explained by the mode 

shapes.  In Fig. 4.10, the node of the first mode comes right before the sensor and 

actuator.  Figure 4.11 illustrates this with a resonance and anti-resonance at nearly the 

same frequency.   

 Another interesting point is the magnitude of the first resonant frequency.  The 

magnitude is relatively small.  This is also a result of the sensor being in close proximity 
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to the node of the mode shape.  When a sensor is near the node of a mode shape, the 

sensor will see little deflection.  This manifests itself as a small magnitude in the resonant 

frequency of that particular mode.  If the node existed at the exact same location as the 

sensor, the resonant frequency would not be identifiable.  This is a unique problem of 

non-collocated systems.  If a control system designer had to identify the natural 

frequencies of a non-collocated system and there was a node located near the sensor, then 

that natural frequency might be missed.  This could cause major issues in operation. 
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Figure 4.12   Open loop transfer function, G(3,3) 

 

 Figure 4.12 illustrates the results of the open loop transfer function when the 

sinusoidal perturbation is injected into the back bearing with the output coming from the 

back sensor.  As expected, the resonances are in close agreement with Fig. 4.11, but the 

anti-resonances are not.  The anti-resonances or zeros, are not easily identified, but are 

located at roughly 950 Hz and 1750 Hz.  They are not close to the resonances, which 



62  

suggests there is no node nearby.  This is also agrees with the mode shapes plot of Fig. 

4.10.  The first resonance, while at the same frequency of approximately 1100 Hz, is 

much more pronounced with a higher magnitude.  Without a node nearby, it is shown as 

expected. 

 

4.4   Summary 

 Active magnetic bearings offer some great advantages to a multitude of industries 

including high speed machining [Sawicki 2008].  However, due to their non-collocated 

nature, they also offer some challenges.  The first step in understanding how to control 

them properly is developing an accurate model.  This takes much time and understanding 

of the particular system.  Mistakes in creating the model can lead to instability and/or 

uncontrollability.   Also it is important to control the size of the model.  A very large 

model might be very accurate, but too large to solve.  On the other hand, a model that 

was reduced too much or in an improper way, can lead to inaccuracies.  The latter 

situation is solvable, but the results are not valid.  Once the accurate model is created, the 

resonant frequencies and mode shapes can be extracted.  The dangers of running a system 

at a resonant frequency are very well known.  However, the locations of the zeros in 

relation to the mode shapes can be just as problematic. 

 In this particular high speed machining spindle system, a detailed model was 

created and the resonant frequencies and mode shapes were shown.  This created the 

benchmark for the reduced model to attain.  The presented reduced model was very close 

on returning the correct resonances and mode shapes for the first two flexible modes.  

Finally, the experiments were performed and the results were presented.  The results of 
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the experiments were in close agreement with both models.  Furthermore, the issues of 

non-collocation were clearly shown in the results of the experiments.  It was shown how 

non-collocation can reduce the magnitude of a resonant frequency.  The magnitude could 

be reduced to the point that it essentially erases a resonant frequency.  In some cases this 

can be positive, but only if the control system designer recognizes the fact that a resonant 

is missing.  If this is not recognized and the missing resonant occurs within the operating 

range of the system, the control system will not function properly and there is potential 

for damage to equipment.  Non-collocated systems are not necessarily undesirable 

systems, but extra care must be taken to fully account for the differences. 
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CHAPTER V 

CONCLUSIONS 

 

5.1 Summary 

 Technologies that utilize non-collocated systems such as active magnetic bearings 

and robotics are becoming more and more prevalent.  These systems present the control 

system designer with some challenges.  These challenges were shown in a variety of 

theoretical examples from a simple two-mass system, a more complicated flexible beam 

system, to a modified Jeffcott rotor.  From there, a real-life example of a non-collocated 

system was analyzed.  This system consisted of a rotor with a single disc and two conical 

magnetic bearing rotors.  The results were presented and the differences between a 

collocated system and non-collocated system were illustrated.  Finally, a high-speed 

machining spindle supported by active magnetic bearings was analyzed.  The importance 

of an accurate model was shown and this system demonstrated some challenges of non-

collocation.  The major issue was found to be in identifying resonant frequencies.  If the 
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resonant frequencies are not identified properly and they are within the operating range of 

the system, the system will not function properly and possible damage can occur.  The 

damage to parts in the system can be expensive and it will cause the system to experience 

downtime for repair. 

 Non-collocation affects the zeros of the system.  The amount of the effects are 

dependent on the distance between the sensor and actuator.  It was shown that zeros play 

a key role in determining the stability of a system.  It was also shown that the poles, or 

natural frequencies, of a system are not dependent on sensor location.  The poles are only 

dependent on the dynamics of the system, notably mass and stiffness.  Control system 

designers are well aware of the importance of natural frequencies or poles, but the zeros 

can be overlooked.  Understanding the zeros and their interaction with the mode shapes 

of a system is crucial in designing a robust control system.  

 Overall non-collocated systems can be more difficult to control than a comparable 

collocated system due to stability concerns.  However, all these challenges can be 

overcome if the system designer understands the issues and plans accordingly.   

 

5.2 Further Research Directions  

 This thesis examined the differences between a collocated and non-collocated 

system through a wide variety of examples and a case study involving a high-speed 

machining spindle.  The challenges of controlling these non-collocated systems were 

presented.  It would be recommended for a control system designer to study different 

ways of overcoming the presented challenges.  Although some techniques have been 

studied, more work is required in this area.  Showing how a control system would differ 
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between a collocated system and a similar non-collocated system would be interesting, 

and this could prove to be valuable for technologies that are inherently non-collocated to 

be more widely accepted. 
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APPENDIX A 

High - Speed Machining Spindle Material Properties  

 

Material 

Density 

(lb/in
3
) 

Young's Modulus 

(ksi) 

Poisson's Ratio 

(dimensionless) 

4140 Steel 0.284 29,700 0.290 

Copper 0.323 16,000 0.343 

Hiperco 50 Fe-Co-V 0.293 30,000 0.291 

Iron 0.284 29,000 0.291 

Titanium Ti-6Al-4V 0.160 16,500 0.330 
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APPENDIX B 

Model Input File 

High Speed Machining Spindle Model 

Tim Obrzut, November 1, 2009 

0     0.4170 0.8268 0.2165 0       0       29.7    0.2840 0 0 0 0 

0.        0.3800 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0         0.3800 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0         0.3800 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0        0.3800 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0         0.6300 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0.        0.3937 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0         0.3937 0.8268 0.         0       0       29.7    0.2840 0 0 0 0 

0         0.3150 0.8249 0          0       0       29.7    0.2840 0 0 0 0 

0         0.4528 1.0236 0          0       0       29.7    0.2840 0 0 0 0 

0       0.4528 1.0236 0          0       0       29.7    0.2840 0 0 0 0 

0         0.3937 1.1654 0          0       0       29.7    0.2840 0 0 0 0 

0         0.1772 1.1654 0          0       0       29.7    0.2840 0 0 0 0 

0         0.1850 1.1654 0          0       0       29.7    0.2840 0 0 0 1 

0        0.1791 1.6929 0          0       0       30.0    0.2840 0 0 0 0 

0.        0.2411 1.4173 0          0.      0.      30.0    0.2840 0 0 0 0 

0.05192  0.2411 1.4173 0       0.      0.      30.0    0.2840 0 1 0 0 

0.        0.3150 2.5197 0  0.      0.      25.3    0.2336 0 0 0 0 

0.       0.3051 2.5197 0  0.      0.      30.0    0.2877 0 0 0 0 

0.  0.3051 2.5197 0 0.      0.      30.0    0.2877 0 0 0 0 

0.        0.3051 2.5197 0       0.      0.      30.0    0.2877 0 0 0 0 

0.        0.3051 2.5197 0       0.      0.      30.0    0.2877 1 0 0 0 

0.        0.3051 2.5197 0       0.      0.      30.0    0.2877 0 0 0 0 

0.        0.3051 2.5197 0       0.      0.      30.0    0.2877 0 0 0 0 

0.        0.3346 2.5197 0       0.      0.      25.3    0.2336 0 0 0 0 

0         0.2264 1.9685 0       0       0       29.7    0.2840 0 0 0 0 

0        0.1673 2.8740 0       0       0       29.7    0.2840 0 0 0 0 

0         0.1772 2.6969 0       0       0       29.7    0.2840 0 0 0 0 

0         0.2461 2.5197 0       0       0       29.7    0.2840 0 0 0 0 

0         0.2559 3.2520 0       0       0       29.7    0.2840 0 0 0 0 

0         0.2461 2.5197 0       0       0       29.7    0.2840 0 0 0 0 

0         0.1772 2.6969 0       0       0       29.7    0.2840 0 0 0 0 

0         0.1673 2.8740 0       0       0       29.7    0.2840 0 0 0 0 

0         0.4281 1.9685 0       0       0       29.7    0.2840 0 0 0 0 

0         0.4281 1.9685 0       0       0       29.7    0.2840 0 0 0 0 

0         0.0197 1.7717 0       0       0       29.7    0.2840 0 0 0 0 

0.2255   0.3150 1.7717 0      0.0905  0.1356 30.000  0.2840 0 0 0 0 

0.1286   0.1575 1.7717 0      0.0516  0.0765 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 
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0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 1 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1682   0.2953 1.7717 0      0.0675  0.1010 30.000  0.2840 0 0 0 0 

0.1286   0.1575 1.7717 0      0.0516  0.0765 30.000  0.2840 0 0 0 0 

0.2285   0.3150 1.7717 0      0.0905  0.1356 30.000  0.2840 0 0 0 0 

0         0.0394 1.7717 0      0       0       29.7      0.2840 0 0 0 0 

0         0.3543 1.7520 0      0       0       29.7      0.2840 0 0 0 0 

0         0.3543 1.7520 0      0       0       29.7      0.2840 0 0 0 0 

0.        0.3543 2.2047 0      0.      0.      23.6      0.2264 0 0 0 0 

0.        0.4134 2.2047 0      0.      0.      29.8      0.2820 0 0 0 0 

0.        0.4134 2.2047 0      0.      0.      29.8      0.2820 1 0 0 0 

0.        0.2953 2.2047 0      0.      0.      23.6      0.2264 0 0 0 0 

0.        0.2461 1.4173 0      0.      0.      30.0      0.2840 0 1 0 0 

0.0528   0.2461 1.4173 0.     0.      0. 30.0      0.2840 0 0 0 0 

0         0.1772 1.6929 0      0       0       30.0      0.2840 0 0 0 0 

0         0.1870 1.1654 0      0       0       29.7      0.2840 0 0 0 0 

0         0.1870 1.1654 0      0       0       29.7      0.2840 0 0 0 1 

0         0.3004 0.6102 0      0       0       29.7      0.2840 0 0 0 0 

0         0.3886 0.6102 0      0       0       29.7      0.2000 0 0 0 0 

0         0.     0.1969 0      0       0       00.0      0.0000 0 0 0 0 
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