
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2014

Bio-Inspired Optimization of Ultra-Wideband
Patch Antennas Using Graphics Processing Unit
Acceleration
Brian Vyhnalek
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Vyhnalek, Brian, "Bio-Inspired Optimization of Ultra-Wideband Patch Antennas Using Graphics Processing Unit Acceleration"
(2014). ETD Archive. 831.
https://engagedscholarship.csuohio.edu/etdarchive/831

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/831?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

BIO-INSPIRED OPTIMIZATION OF

ULTRA-WIDEBAND PATCH ANTENNAS USING

GRAPHICS PROCESSING UNIT

ACCELERATION

BRIAN VYHNALEK

Bachelor of Science in Physics

Bachelor of Science in Mathematics

Cleveland State University

December, 2009

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL

ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

April, 2014

We hereby approve the thesis for

Brian Vyhnalek

Candidate for the Master of Science in Electrical Engineering degree

This thesis has been approved for the

Department of

Electrical and Computer Engineering

and the

CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Dr. Dan Simon, Chairperson

Department & Date

Dr. Fuqin Xiong

Department & Date

Dr. Miron Kaufman

Department & Date

April 2, 2014

Date of Defense

To Liz and Alexander

ACKNOWLEDGEMENTS

I would like to thank my committee members: first Dr. Dan Simon for

his willingness and guidance as my supervisor, Dr. Fuqin Xiong for his

encouragement, and Dr. Miron Kaufman for his support over the years.

In addition I would like to thank everyone at the NASA Glenn Research

Center for the opportunities. I would also like to thank my wife and son

for their support and understanding.

BIO-INSPIRED OPTIMIZATION OF

ULTRA-WIDEBAND PATCH ANTENNAS USING

GRAPHICS PROCESSING UNIT

ACCELERATION

BRIAN VYHNALEK

ABSTRACT

Ultra-wideband (UWB) wireless systems have recently gained considerable

attention as effective communications platforms with the properties of low

power and high data rates. Applications of UWB such as wireless USB

put size constraints on the antenna, however, which can be very difficult

to meet using typical narrow band antenna designs. The aim of this the-

sis is to show how bio-inspired evolutionary optimization algorithms, in

particular genetic algorithm (GA), particle swarm optimization (PSO) and

biogeography-based optimization (BBO) can produce novel UWB planar

patch antenna designs that meet a size constraint of a 10 mm × 10 mm

patch. Each potential antenna design is evaluated with the finite difference

time domain (FDTD) technique, which is accurate but time-consuming.

Another aspect of this thesis is the modification of FDTD to run on a

graphics processing unit (GPU) to obtain nearly a 20× speedup. With the

combination of GA, PSO, BBO and GPU-accelerated FDTD, three novel

antenna designs are produced that meet the size and bandwidth require-

ments applicable to UWB wireless USB systems.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF FIGURES . ix

CHAPTER

I. Introduction 1

1.1 Motivation . 1

1.2 Organization . 5

II. Overview of Ultra-Wideband Technology 8

2.1 History . 8

2.2 Ultra-Wideband Applications 10

2.3 Microstrip Antennas 11

2.4 Bandwidth Widening Methods 14

III. Antenna Simulation Using Finite Difference Time Domain 18

3.1 Introduction . 18

3.2 The Yee Algorithm 19

3.3 Boundary Conditions 22

3.4 Source Conditions 27

3.5 Microstrip Patch Antenna Simulation 29

IV. Generalized Computing on Graphics Processing Units Us-

ing OpenCL 33

vi

4.1 Overview of Computation on Graphics Processing

Units . 33

4.2 Introduction to OpenCL 35

4.2.1 OpenCL Program Flow 36

4.2.2 Memory Management and Kernel Optimiza-

tion . 38

4.3 Application of OpenCL to the Finite Difference

Time Domain Method 39

V. Bio-Inspired Optimization 43

5.1 The Genetic Algorithm 43

5.1.1 Selection . 44

5.1.2 Recombination and Mutation 47

5.2 Particle Swarm Optimization 50

5.3 Biogeography–Based Optimization 52

5.4 Optimization Example 56

5.4.1 Rastrigin Function Minimization 56

5.4.2 Parameter Considerations 59

VI. Design of UWB Antennas 63

6.1 Design Strategy . 63

6.2 Results of Computer Simulation and Optimization 66

6.2.1 Genetic Algorithm Optimization 66

6.2.2 Particle Swarm Optimization 69

6.2.3 Biogeography–Based Optimization 70

6.2.4 Discussion of Results 72

VII. Concluding Remarks and Future Possibilities 74

7.1 Conclusion . 74

7.2 Future Work . 75

vii

References. 77

Appendix A. Finite Difference Time Domain Update Equations 90

A.1 D-field Update . 90

A.2 E -field Update . 91

A.3 B -field Update . 92

A.4 H -field Update . 93

viii

LIST OF FIGURES

Figure Page

2.1 Pulsed signal in the time-domain and frequency-domain . . . 9

2.2 Rectangular patch antenna with microstrip feed line 12

2.3 Broadband antenna with coupled coplanar resonators 15

2.4 Aperture-coupled stacked broadband antenna 15

2.5 Microstrip antenna with U-slot and E-patch 16

2.6 Pixelated patch antenna . 17

3.1 Yee cell . 19

3.2 Intersecting electric and magnetic field contours 22

3.3 Diagram of a perfectly matched layer 23

3.4 Total field/scattered field schematic 28

3.5 Simulated microstrip antenna 29

3.6 Incident Ez component 2D contour 30

3.7 Total Ez component 2D contour 31

3.8 Return loss for retangular patch 32

4.1 CPU and GPU functional schematics 34

4.2 OpenCL platform model . 36

4.3 OpenCL platforms, devices, and contexts relationship 37

4.4 OpenCL memory model . 38

4.5 Diagram of data partitioning 41

4.6 FDTD CPU vs GPU . 42

5.1 Diagram of chromosomes . 44

ix

5.2 Roulette–wheel selection example 45

5.3 GA crossover methods . 48

5.4 GA flowchart . 49

5.5 PSO flowchart . 51

5.6 BBO flowchart . 55

5.7 Rastrigin function with n = 2 56

5.8 Rastrigin function with GA population distribution after 5

generations . 57

5.9 Rastrigin function with GA population distribution after 50

generations . 57

5.10 Rastrigin function convergence, for n = 30. Best solutions. . 58

5.11 Rastrigin function convergence, for n = 30. Average solutions. 59

5.12 GA average best fitness for variable parameters 60

5.13 BBO average best fitness for variable paramters 61

5.14 PSO average best fitness for variable paramters 62

6.1 Example patch antenna configuration 64

6.2 GA convergence . 67

6.3 GA optimized UWB patch antenna 67

6.4 Return loss for GA optimized patch 68

6.5 PSO convergence . 69

6.6 PSO optimized UWB patch antenna 69

6.7 Return loss for PSO optimized patch 70

6.8 BBO convergence . 71

6.9 BBO optimized UWB patch antenna 71

6.10 Return loss for BBO optimized patch 72

x

CHAPTER I

INTRODUCTION

1.1 Motivation

Wireless technology has become an essential part of communications over

the past century, especially in the last twenty years with the rapid growth

of mobile telephones and networks. More recently there has been a tremen-

dous development of networked computers in a variety of forms such as lap-

tops, tablets, ebook readers, netbooks, and especially mobile smartphones.

Along with the development of such devices, there have been advancements

in network technology with the development of wireless sensor networks [1],

personal area networks [2], body area networks [3], and ambient networks

in general [4].

With this evolution there has been an enormous growth in both de-

vice connectivity and pervasive computing [5]. Wi-Fi, WiMAX, and other

WPAN technologies such as Bluetooth, RFID, Z-Wave, Ultra-Wideband

(UWB), and ZigBee have allowed for increasingly seamless operation and

connectivity between devices in close proximity [6]. Furthermore, WPAN

technology allows not only for device interconnectivity, but also for con-

nectivity to higher level networks and the internet [7].

Related to the advancements in wireless personal area networking, there

has also been development in wireless device peripherals. In the same way

that USB technology has offered fast, interoperable and secure connections,

1

wireless USB (WUSB), based on UWB protocols, allows for the same fea-

tures, but with the convenience and ease of use of wireless [8]. Computer

peripherals such as wireless keyboards and mice have been on the mar-

ket for some time, however the development of WUSB and advancements

in WPAN technology have allowed for the development of wireless com-

puter monitors, printers, hard disk drives, game controllers, printing of

digital pictures from cameras, and efficient transfer of data from digital

camcorders [9].

As wireless communication technology becomes more pervasive, the

need for systems optimized for high data rates becomes increasingly more

important. According to the Shannon-Hartley theorem [10], the maximum

possible data rate, or capacity, for an idealized band-limited channel per-

turbed by additive white Gaussian noise (AWGN) is

C = B log2

(
1 +

S

N

)
(1.1)

where C is the transmission data rate (capacity), B is the channel band-

width, and S/N is the signal power to noise power ratio.

From (1.1) it can be understood that the channel capacity is related to

both the bandwidth and transmission power, and that increasing either one

will increase the maximum data rate. However, increasing power is costly,

especially for wireless devices that are typically dependent upon battery

power. Additionally, due to the linear relationship to bandwidth and loga-

rithmic relationship to power, doubling the channel capacity would require

doubling the bandwidth, but a four times increase in power. Therefore,

the most efficient solution is to increase the available bandwidth. Unfortu-

nately, increasing bandwidth may not always be possible due to the careful

regulation of the radio frequency spectrum, which seeks to minimize the

potential interference between transmissions from adjacent sections of the

spectrum [11].

2

Ultra-wideband (UWB) technology has the potential to meet the re-

quirements for low power and high data rates by spreading information over

a very large bandwidth, 3.1-10.6 GHz. This is feasible due to the unique

nature of UWB compared with traditional transmission systems. Typically

associated with impulse radio, or high-speed spread-spectrum radio, UWB

operates fundamentally different than traditional narrow band tranmission

systems that transmit information by varying the power, frequency or phase

of a signal [12]. Instead, UWB transmission systems operate at power lev-

els at essentially the noise floor – or below, using low power ultra-short

information bearing pulses [13]. In this way, UWB systems can operate si-

multaneously with other RF communications systems without interference.

Due to the short duration of the transmission pulses, UWB systems are

able to achieve extremely high data rates, on the order of several Gbps at

distances of a few meters, far exceeding the levels of comparable technology

such as Bluetooth [14]. Besides the advantage of high data rates and low

power, the operation of UWB at noise floor levels provides better secu-

rity, lower potential radio frequency health hazards, and coexistence with

narrowband systems [15]. In addition, single band direct sequence UWB

signals do not suffer from multipath (Rayleigh) fading degradations that

are seen in traditional narrowband signals [12].

One of the most critical issues in the design of a UWB system is the

antenna component. Unlike typical narrowband antennas, in which the

antenna is tuned to resonate at a specific frequency over a fractional band-

width of less than a few percent, a UWB antenna must resonate well over

the entire 3.1-10.6 GHz band – a fractional bandwidth of over 100 percent.

Although broadband antennas have been in use for decades, even as early

as the nineteenth century, current development has focused on smaller,

planar antennas that can easily be integrated onto printed circuit boards

[16].

3

Considerable attention has been given to planar monopole microstrip

patch antennas. The main advantages of these antennas are their low

profile, ease of fabrication, and simplicity of integration. However, the main

disadvantage, in particular for UWB applications, is the relatively narrow

impedance bandwidth. Several techniques for improving the impedance

bandwidth have been reported, such as parasitic elements [17], beveling

[18], multiple feeds [19], shorting pins [20], and semi-circular bases [21].

Typically these designs have resulted in antennas that are too large or

unsuitable for circuit board integration. Several other studies have shown

suitable designs, typically by cutting notches and adding slots in selective

ways [22, 23, 24, 25, 26, 27, 28, 29].

The use of genetic algorithm (GA) optimization, and other related bio-

inspired heuristic optimizers, such as particle swarm optimization (PSO),

have generated some very novel antenna designs. In particular, the idea of

a “pixelated” rectangular patch antenna in which the rectangular region

is divided into small squares of either metalization or air, whose geome-

try is then optimized by a GA or PSO, has been successful in the design

of antennas for specific frequencies [30], multi-resonances [31], bandwidth

broadening [32], as well as UWB applications [33]. However, the GA opti-

mized UWB antennas thus far have dimensions that are still too large for

use in many of the intended applications of UWB such as wireless USB.

Optimization using methods such as GA have a distinct advantage in

that they are relatively easy to configure for single objectives, such as

bandwidth widening only, or multiple objectives such as bandwidth widen-

ing plus radiation pattern symmetry. By properly defining the objective

function, a designer can generate solutions that are potentially globally op-

timal, as in the single objective case, or possibly globally optimal along a

parameterized curve or surface, as in the multiobjective case. In this way,

optimal designs can be determined without costly redesign and testing.

4

Although bio-inspired optimization in antenna design has been very

successful, one of the major drawbacks is the amount of time needed to

complete an optimization run. This is due to the fact that designs must

be evaluated by full-wave electromagnetic simulation, such as the finite

element method (FEM), method of moments (MoM), or the finite difference

time domain (FDTD) method, which typically require several minutes for

completion. However, when thousands of function calls are needed for an

optimization run, the time needed can become prohibitive, on the order

of several weeks [34]. Thus it is necessary for the success of the technique

that suitable ways be determined to speed up evaluation time.

1.2 Organization

Chapter 2 provides some history and background on ultra-wideband tech-

nology, in particular how UWB technology began with the radio pioneers

of the late nineteenth and early twentieth century. In addition, some of

the applications of UWB, such as radar, through-wall imaging and sensor

networks are described. Next a brief overview of microstrip patch anten-

nas is given, along with some of the ways in which bandwidth has been

increased. Finally chapter 2 concludes with a description and examples of

UWB antennas found in the literature, as well as an explanation of the

“pixelation” method for antenna design.

Next, Chapter 3 discusses the algorithmic formulation of the finite dif-

ference time-domain method for computational electromagetics, and how

this is applied in particular to microstrip antennas. It begins with Maxwell’s

equations, and follows with how the equations are discretized on a uniform

lattice according to the Yee algorithm. Next, a brief discussion of bound-

ary conditions is given, in particular the uniaxial perfectly matched layer

(UPML). After the section on boundary conditions, source conditions are

described, techniques in which an electromagnetic excitation is simulated

5

and energy is added into the computational domain. Lastly, an example

of an application of the method is detailed, showing how FDTD can be

used to obtain information on antenna parameters, specifically impedance

bandwidth, and showing how well the FDTD code developed for this study

compares with a commercial MoM solver.

Chapter 4 gives an basic overview of generalized computing on graphic

processor units (GPUs), particularly how the FDTD algorithm can be im-

plemented using OpenCL (Open Compute Language). Some information is

given regarding host programming and fundamental data structures, data

transfer and partitioning, kernel programming, and device memory. Ad-

ditionally, the algorithmic structure of the FDTD method implemented

as an OpenCL kernel is outlined, showing how partitioning data correctly

between GPU global memory and local memory can result in enormous

speedups.

Chapter 5 introduces the concepts of bio-inspired optimization, how it

differs from classical, calculus-based optimization, as well as other non-

linear methods, and outlines genetic algorithms (GA), particle-swarm opti-

mization (PSO), and biogeography-based optimization (BBO). Beginning

with a description of the binary genetic algorithm, the ideas of fitness, se-

lection, and recombination are elaborated. Next, PSO is described, and

then its binary variant is detailed, since unlike a GA or BBO, PSO is not

trivially implemented in binary form. Following PSO, BBO is outlined,

discussing the concpets of islands, immigration and emigration, and how

the interplay of these lead to data exchange and generate optimal solutions.

Finally, there is an example of the application of the GA, PSO, and BBO

to a benchmark function.

Chapter 6 details how the GPU-accelerated FDTD and optimization

methods were combined for the specific application of designing a UWB

antenna. The best results obtained by each optimization method are pre-

6

sented. These are the main contributions of this study. Specifically, the

application of BBO to a UWB antenna optimiation problem. The combi-

nation of GPU–accelerated FDTD method and bio-inspired optimization,

which can reduce the time for antenna optimization by a large factor mak-

ing the method more feasible. Lastly, three UWB patch antennas are de-

signed with the patch constrained to be 10 mm × 10 mm, such that can

be fit into a USB dongle, for example.

Chapter 7 concludes the thesis and discusses some possible extensions

to the study. In particular, the most immediate extension would be a

multi-objective optimization, and the calculation of Pareto-optimal solu-

tions. There are several variables that are part of a complete UWB antenna

design, with bandwidth being one of the most important, but also gain sta-

bility over the 3.1-10.6 GHz range, as well as phase linearity, and polariza-

tion, for example. Additional possibilites regarding antenna miniturization

are mentioned, and also the implications of multi GPU-accelerated opti-

mization using GPU clustering.

7

CHAPTER II

OVERVIEW OF ULTRA-WIDEBAND TECHNOLOGY

2.1 History

Ultra-wideband technology dates back to the original radio pioneers of the

late nineteenth and early twentieth century. In particular, the short, pulsed

transmissions of spark-gap radio were UWB. However, the usage of spark-

gap radio was mainly due to the technological limitations of transmitters

and receivers of the time, as radio pioneers had already considered the con-

cept of narrowband, multi-channel systems [16]. As technology advanced,

and narrowband communications became feasible, spark-gap UWB systems

fell out of favor. Eventually, due to transmission interference and the lack

of regulatory ability, by 1924 spark-gap radio was outlawed [35].

While narrowband radio technology evolved and flourished throughout

the remainder of the twentieth century, patents for UWB related technol-

ogy were being granted, most of the fundamental theoretical constructs of

UWB signals and systems were developed, and several academic research

programs were founded to specialize in UWB technology [36]. Much of the

theoretical progress of UWB occurred in the 1960s and 1970s, largely due

to the need to characterize the impulse response of microwave networks in

the time-domain. By using short, pulsed signals, system responses over a

large frequency range could be analyzed simultaneously using Fourier tech-

niques, in contrast to measuring the system response to each individual

8

frequency [37]. Figure 2.1 shows an example of how a signal that is narrow

in time is wide in frequency.

0 1 2 3 4 5
Time (ns)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Signal in Time

0 2 4 6 8 10 12 14
Frequency (GHz)

0.0

0.2

0.4

0.6

0.8

1.0
Signal in Frequency

Figure 2.1: Pulsed signal in the time-domain and frequency-domain

Although the theoretical work indicated the utility of impulse tech-

niques, it was not until advances in testing and measurement tools that

UWB became practically feasible. Particularly important was the develop-

ment in 1962 of the sampling oscilloscope, which allowed the direct mea-

surement of microwave network impulse responses. Other UWB-enabling

technologies developed during the 1960s and 70s were sample-and-hold re-

ceivers, useful for UWB signal averaging, short-pulsed radar, threshold

receivers, pulse train generators and modulators, switching pulse train gen-

erators, detection receivers, wideband antennas, and the Hewlett-Packard

network analyzer [38].

Much of the work in the 1980s was practical development, typically

military radar applications, and the 1990s saw applications to commercial

wireless communications systems as component technology improved and

costs were reduced [12]. Although UWB had moved into the commercial

sector by this time, there was not wide acceptance. Lack of an industry

standard and implementation difficulty certainly contributed, but the most

important reason for the stagnation of UWB was the lack of a specific FCC

frequency allocation [38].

9

In February 2002, this situation changed. The FCC issued its First

Report and Order, Revision 15, defining ultra-wideband, and allocating

the 3.1 GHz to 10.6 GHz frequency band [39]. In this way, UWB radio

could be operated simultaneously with existing RF systems, since one of

the primary advantages of UWB radio is its ability to operate at extremely

low power, essentially at the noise floor [13]. Since the FCC allocation of

the 3.1-10.6 GHz frequency band for unlicensed use, a large research effort

has been made to improve and commercialize UWB technology.

2.2 Ultra-Wideband Applications

There are several important applications of UWB technology. Historically,

UWB systems have been utilized by the military for low probability of de-

tection (LPD) radar. Unlike conventional radar, UWB radar demonstrates

superior accuracy and range capabilities because of the shorter time du-

rations of the pulses, and resulting shorter spatial lengths. Due to the

increased resolution, target recognition is enhanced. Furthermore, UWB

radar is relatively unaffected by typical atmospheric propagation elements

such as rain, fog, or snow [40, 41], and is more secure becuase of the spec-

tral broadening. Another advantage of UWB radar is that it can detect

slowly moving or stationary objects [41].

Commercially, the most important and prevalent usage of UWB is as a

physical layer for wireless personal area networks (WPANs), also known as

in-home networks [13]. UWB technology is known for extremely high data

rates over a short distance, while operating at power levels at or below

the noise floor. These features are well suited for wireless personal area

networks, which interconnect low power, battery operated, typically mobile

devices, operating over distances of a few meters. Wireless peripherals, like

computor monitors, USB, hard drives, scanners, etc., are all possible due to

the very large data rates associated with UWB, virtually eliminating office

10

and household clutter due to wires. UWB implementation can provide data

rates high enough for wireless transmission of high definition video [42, 43].

Similarly, UWB has found applications for wireless sensor networks

(WSN) [44, 13]. Wireless sensor networks are arrangements of autonomous

sensors grouped into nodes for the purposes of monitoring a large variety of

environmental, medical, and industrial phenomena, such as temperature,

pressure, air pollution content, heart rate, blood pressure, machine health,

etc., [45, 46]. UWB technology is uniquely advantageous to such networks

mainly due to low power consumption, since the sensors of a WSN typically

are either battery powered, or powered through energy harvesting. Also,

the large bandwidth and corresponding high transmission capacity enables

the transfer of large amounts of data from diverse sensor architectures. Fi-

nally, the advantages of UWB in radar applications are also useful in the

context of WSN applied to geolocation and remote sensing [47].

Other radar applications of UWB besides covert military operations are

for imaging systems, due to short pulses whose lengths are less than the

target dimensions, and the related sensitivity of scattering. This has been

used for radar systems, as previously mentioned, but also for underground

imaging [48, 49], through-wall imaging [50], ocean imaging [51, 52], and

medical diagnosics [53].

2.3 Microstrip Antennas

A microstrip antenna, also called a patch antenna, consists of a patch of

metal on top of a grounded substrate. The metal patch can be a variety of

shapes, but typically rectangular or circular are most common. Figure 2.2

shows an illustration of a rectangular patch antenna.

11

Ground plane

Feed line

Dielectric substrate

Metallic patch

Figure 2.2: Rectangular patch antenna with microstrip feed line

Radiation occurs when the patch is excited by a feed, and a charge dis-

tribution is induced between the ground plane and the patch area. The

largest charge density distributions are around the edges, resulting in fring-

ing fields. It is the fringing fields that are responsible for the radiation.

There are many advantages of patch antennas, including light weight

and low volume, low profile planar configuration – which can be made con-

formal – minimal fabrication cost, support of linear and circular polariza-

tion, easy integration with microwave integrated circuits, multi-frequency

operation capability, and general mechanical robustness.

Microstrip patch antennas tend to have a number of disadvantages,

however. Some of the shortcomings of a patch antenna are small band-

width, low radiation efficiency, low gain, extraneous radiation from feeds

and junctions, low power handling, and surface wave excitation [54].

There are a variety of feeding methods for patch antennas, each of which

has an effect on the size, fabrication, impdedence and bandwidth. The most

prominent methods are microstrip line, coaxial probe, aperture coupling

and proximity coupling. A microstrip feed, consisting of a conducting strip

extending from the edge of the patch, etched directly on the substrate,

has the advantage of simplicity and a low profile configuration, but can

suffer from spurious radiation. The coaxial and aperture coupled feed both

produce narrow bandwidths. Unlike the coaxial and aperature feeds, the

12

proximity feed provides a high bandwidth, and is also free from spurious

radiation. However, the proximity fed patch antenna has the disadvantages

of fabrication complexity and overall increased thickness [55]. Thus, for

applications requiring a low profile configuration, the microstrip feed line

is essential.

Due to the complexity of obtaining analytical solutions of Maxwell’s

equations for the boundary conditions associated with the antenna geome-

tries, two prominent models are used to characterize microstrip antennas

– the transmission line model and the cavity model. The transmission line

model is conceptually easier and less complex than the cavity model; how-

ever, the transmission line model is less accurate. Even so, useful results for

certain patch antenna parameters have been obtained, such as a formula

for the resonant frequency for any transverse magnetic (TM) propagation

mode where there is only an electric field component along the direction of

propagation [56],

f0 =
c

2
√
εr,eff

[(
m

L

)2

+

(
n

W

)2] 1
2

(2.1)

where c is the speed of light in vacuum, L is the patch length, W is the

patch width, m and n are the resonant mode numbers along L and W,

respectively, and εr,eff is the effective (relative) dielectric constant, which

is given by [57]

εr,eff =
εr + 1

2
+
εr − 1

2

[
1 + 12

h

W

]− 1
2

(2.2)

where εr is the relative dielectric constant and h is the dielectric thickness.

An effective dielectric constant is used to model the fact that the fring-

ing fields are not fully contained within the dielectic substrate. From the

13

cavity model a useful formula for bandwidth is given by [54]

BW =
16

3
√

2

p

er

1

εr

h

λ0

W

L
q (2.3)

where h is the substrate thickness, λ0 = 2πc/ω, and er is the radiation

efficiency. Also,

p = 1− 0.16605

20
(k0W)2 +

0.02283

560
(k0W)4 − 0.009142(k0L)2 (2.4)

where k0 = ω/c, and

q = 1− 1

εr
+

2

5ε2r
(2.5)

These formulas give physical insight into the dependence of the antenna

characteristics on the patch geometry, as well as the thickness and dielectric

constant of the substrate. Generally speaking, the bandwidth increases

with the substrate thickness, the patch aspect ratio (W /L), and decreasing

values of the substrate dielectic constant.

2.4 Bandwidth Widening Methods

Microstrip patch antennas are inherently narrowband, and accordingly,

much effort has gone into determining special techniques to increase band-

width. Although bandwidth is directly related to the thickness and ma-

terial parameters of the dielectric substrate, increasing the thickness and

using a low εr material is a limited approach due to increased surface wave

power [54], resulting in poor radiation efficiency, spurious feedline radia-

tion, impedance matching difficulty, distortions in radiation patterns and

impedance characteristics.

Successful broadbanding of microstrip patch antennas typically is ac-

complished through the addition of coplanar multiresonating parasitic el-

ements to the main patch configuration (Figure 2.3), stacking multires-

14

onators (Figure 2.4), or electromagnetically coupled multilayers [58].

Feed point

Patch

Resonator

Resonator

εr

Figure 2.3: Top view of broadband microstrip antenna with directly coupled coplanar
resonators. The main patch is coaxially fed from underneath

εr1

εrf

εr3

εr2Upper patch

Lower patch

Aperture slot

Feed lineFeed substrate

Ground plane

Figure 2.4: Exploded view of aperture-coupled stacked broadband microstip patch an-
tenna. The upper patch and lower patch are slightly different in size in order to produce
different resonant frequencies

The essential idea in each of these cases is to combine muliple radiating

elements that are tuned to resonate at frequencies staggered across the

band of interest, thereby increasing the overall bandwidth through their

overlap and summation.

These methods have produced fractional bandwidths of up to 60%, sig-

nificant improvements over the typical 1 – 3% of a standard configura-

tion. However, an important drawback is that regardless of technique, the

antenna size is increased tremendously, and therefore cannot be used for

15

applications requiring a compact geometry. Additionally, the bandwidth

improvements are not enough for UWB applications.

For compact antennas, effective broadbanding solutions have been to

cut a either a ”U”-shaped slot into the patch (Figure 2.5 (a)) [59, 60], or

use an ”E”-shaped patch (Figure 2.5 (b)) [61].

εr

Feed point

(a)

Feed point

εr

(b)

Figure 2.5: Top view of microstrip patch antennas with (a) U-slot, and (b) E-shaped
patch

In these cases, the patch and the slot are designed to resonate at slightly

different frequencies, to obtain overlapping multiresonances as in the pre-

vious cases. Fractional bandwidths of over 30 % have been reached with

this design, while maintaining a compact profile.

A much more novel design that has produced bandwidth enhancements

is the pixelated patch antenna. This type of antenna features a rectangular

patch discretized into a grid of subsquares that are either metalized (ON),

or air (OFF) (Figure 2.6).

16

εr

(a)

εr

(b)

Figure 2.6: Top view of patch antennas (a) Metallic patch divided into 6x7 grid of
ON/OFF pixels, before optimization, and (b) hypothetical design after genetic algorithm
optimization

The binary description of the geometry lends itself to optimization by a

genetic algorithm, in which trial geometries are evaluated and combined

according to fitness. This novel technique has been used to design anten-

nas for specific resonances, multi-resonances, increased bandwidth, or a

combination [62, 63, 64, 65].

17

CHAPTER III

ANTENNA SIMULATION USING FINITE DIFFERENCE

TIME DOMAIN

3.1 Introduction

Antenna analysis and design has been greatly improved by the use of full

wave modeling. Analytical solutions of Maxwell’s equations for patch an-

tenna configurations have been unattainable, and general microstrip an-

tenna analysis is accomplished using approximate models. These models

have the advantage of closed-form solutions, numerical simplicity, and ad-

ditive complexity.

However, the approximate models have several shortcomings, including

limited domains of application, typically for very thin substrates, geometric

and feeding method restrictions, lack of anisotropic substrate modeling, and

overall accuracy [54]. Full wave modeling, providing numerical solutions to

Maxwell’s equations, overcomes all of the shortcomings of the approximate

models.

The finite-difference time-domain (FDTD) scheme is a one of the most

popular computational methods for microwave problems; it is relatively

simple to program compared to finite- element based solvers, highly effi-

cient, and easily adapted to deal with a variety of problems. The FDTD

scheme is typically formatted on a structured Cartesian grid and it dis-

cretizes Maxwell’s equations formulated in the time domain. This tech-

18

nique was first introduced by K.S. Yee in the 1960s [66], resulting in the

Yee algorithm in which the electric and magnetic field components are de-

fined in an interleaving way, both in three dimensional space, and in time.

3.2 The Yee Algorithm

The Yee Algorithm defines the electric and magnetic fields in an interleav-

ing way, in a three-dimensional Cartesian space, as shown in Figure 3.1.

Figure 3.1: Yee cell

Each magnetic field component is surrounded by four electric field com-

ponents, and similarly each electric field component is surrounded by four

magnetic field components. Thus, the partial derivative of an electric or

magnetic field component with respect to time at a particular point on

the grid can be approximated by the central differences of the surrounding

magnetic or electric field components, according to Maxwell’s curl equa-

tions:

∇× E = −µ∂H
∂t

(3.1)

∇×H = J + ε
∂E

∂t
(3.2)

19

where E is the electric filed, H is magnetic field, µ is the magnetic per-

meability of the medium, J is the current density, and ε is the electric

permittivity of the medium.

Consider an arbitrary funciton u(x), and its Taylor’s series exapansion

about the point x0 to the points x0 + ∆x and x0 −∆x:

u(x0 + ∆x) ≈ u(x0) + ∆x
∂u

∂x

∣∣∣∣
x0

+
(∆x)2

2

∂2u

∂x2

∣∣∣∣
x0

+ . . . (3.3)

u(x0 −∆x) ≈ u(x0)−∆x
∂u

∂x

∣∣∣∣
x0

+
(∆x)2

2

∂2u

∂x2

∣∣∣∣
x0

− . . . (3.4)

Combining (3.3) and (3.4) and rearranging gives the second-order central-

difference approximation to the first partial derivative of u,

∂u

∂x
≈ u(x0 + ∆x)− u(x0 −∆x)

2∆x
. (3.5)

To apply this to Maxwell’s equations, first denote a space point on a uni-

form rectangular grid at a particular time as

(i, j, k, n) = (i∆x, j∆y, k∆z, n∆t) (3.6)

where ∆x,∆y,∆z are the spatial increments in the x, y, and z coordi-

nate directions, ∆t is the time increment, and i, j, k and n are integers.

Furthermore, denote a function of space and time, u, and its derivative, as

u(i∆x, j∆y, k∆z, n∆t) = uni,j,k (3.7)

∂u

∂x
(i∆x, j∆y, k∆z, n∆t) =

uni+1/2,j,k − uni−1/2,j,k

∆x
. (3.8)

Note that in the Yee formulation, ∆x is replaced by ∆x/2.

Applying (3.8) to the x -component of (3.2), and assuming no current

20

sources (J=0) gives

Ex
∣∣n+1/2

i,j+1/2,k+1/2
− Ex

∣∣n−1/2

i,j+1/2,k+1/2

∆t
=

1

εi,j+1/2,k+1/2

(Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

∆y
−
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i,j+1/2,k

∆z

)
(3.9)

and rearranging produces the update equation for Ex

Ex
∣∣n+1/2

i,j+1/2,k+1/2
= Ex

∣∣n−1/2

i,j+1/2,k+1/2
+

∆t

εi,j+1/2,k+1/2

(Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

∆y
−
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i,j+1/2,k

∆z

)
.

(3.10)

Analogously, for the z -component of the magnetic field we have

Hz

∣∣n+1

i,j+1,k+1/2
= Hz

∣∣n
i,j+1,k+1/2

+
∆t

µi,j+1,k+1/2

×

(Ex∣∣n+1/2

i,j+3/2,k+1/2
− Ex

∣∣n+1/2

i,j+1/2,k+1/2

∆y
−
Ey
∣∣n+1/2

i+1/2,j+1,k+1/2
− Ey

∣∣n+1/2

i−1/2,j+1,k+1/2

∆x

)
.

(3.11)

The basic update equations for Ey, Ez, Hx, and Hy can be derived similarly.

Figure 3.2 illustrates the spatial relationship between the components in the

update equations for Ex and Hz, and shows a geometrical interpretation of

the electric and magnetic fields as “chain-linked” arrays.

21

Ex|i,j+1/ 2,k+1/ 2
n-1/ 2

Hy|i,j+1/ 2,k+1
n

Hz|i,j+1,k+1/ 2
n

Hy|i,j+1/ 2,k
n

Hz|i,j,k+1/ 2
n

Ex|i,j+1/ 2,k+1/ 2
n-1/ 2

Ey|i-1/ 2,j+1,k+1/ 2
n-1/ 2

Ey|i+1/ 2,j+1,k+1/ 2
n-1/ 2

z

x
y

Figure 3.2: Intersecting electric and magnetic field contours

3.3 Boundary Conditions

Computing resources are limited, and therefore so is the size of the com-

putational domain. Eventually the simulated electric and magnetic fields

will propagate to the edge of the domain, and reflect back into the com-

putational space. For antenna simulation and scattering problems, field

reflections from the boundaries are unphysical and very undesirable. A

number of formulations have been proposed and utilized, however the most

successful has been Berenger’s Perfectly Matched Layer (PML).

The idea of the PML is is to surround the computational volume with

a layer that is both impedance matched to the interior, so that minimal

reflection occurs, and is also lossy, so that the electric and magnetic fields

that impinge upon it decay to negligible amplitudes before encountering

the lattice edge. As diagrammed in Figure 3.3, this is accomplished by

adding fictitious conductivities in the absorbing layer which are direction-

ally dependent, and overlapping at the corners.

22

Radiation source

PML(σx2)

PML(σx2,σy1)PML(σy1)
PML(σx1,σy1)

PML(σx1)

PML(σy2)
PML(σx1,σy2) PML(σx2,σy2)

Perfect
electric
conductor

x

y

Figure 3.3: Diagram of a perfectly matched layer

In this way reflections are minimized for both normal and oblique incidence

[67],[68].

The implementation of the PML splits each electromagnetic field com-

ponent into two subcomponents along orthogonal directions. For example,

the x -component of the electric field would be written as Ex = Exy + Exz,

and Maxwell’s curl equations would double to 12 when written in compo-

nent form.

An alternative approach to the PML, called the uniaxial PML (UPML),

avoids this field splitting by introducing the loss parameters into a general

constitutive tensor, thereby utilizing a physical model rather than a mathe-

matical model. The UPML also has the advantage of reduced complexity in

that the boundary conditions are incorporated into the field update equa-

tions, instead of as a special case along the boundaries. To see how this

works, (3.1) and (3.2) are written in time-harmonic form as [69]

∇× Ẽ = −jωµsH̃ (3.12)

23

and

∇× H̃ = jωεsẼ (3.13)

where

s =


syszs

−1
x 0 0

0 sxszs
−1
y 0

0 0 sxsys
−1
z

 (3.14)

and

sx = κx +
σx
jωε

(3.15a)

sy = κy +
σy
jωε

(3.15b)

sz = κz +
σz
jωε

(3.15c)

Additionally, there are also the constitutive relations

D̃x = ε
sz
sx
Ẽx (3.16a)

D̃y = ε
sx
sy
Ẽy (3.16b)

D̃z = ε
sy
sz
Ẽz (3.16c)

and

B̃x = µ
sz
sx
H̃x (3.17a)

B̃y = µ
sx
sy
H̃y (3.17b)

B̃z = µ
sy
sz
H̃z (3.17c)

Substituting (3.15a,b,c) and (3.16a,b,c) into (3.13), and using only the Dx

component as an example gives

jωsyD̃x =
∂H̃z

∂y
− ∂H̃y

∂z
(3.18)

24

Transforming to the time domain jω → ∂/∂t,

κy
∂Dx

∂t
+
σy
ε
Dx =

∂Hz

∂y
− ∂Hy

∂z
(3.19)

Similarly, the Ex equation can be derived by substituting (3.15a) and

(3.15b) into (3.16a), and then transforming to the time domain,

ε

[
κz
∂Ex
∂t

+
σz
ε
Ex

]
= κx

∂Dx

∂t
+
σx
ε
Dx (3.20)

The discretized update equation for Dx is obtained by applying (3.8) to

(3.19) producing,

κy

(Dx

∣∣n+1/2

i,j+1/2,k+1/2
−Dx

∣∣n−1/2

i,j+1/2,k+1/2

∆t

)
+

σy
ε

(Dx

∣∣n+1/2

i,j+1/2,k+1/2
+Dx

∣∣n−1/2

i,j+1/2,k+1/2

2

)

=

(Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

∆y
−
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i,j+1/2,k

∆z

)
(3.21)

where the time approximation Dn
x ≈ (D

n+1/2
x +D

n−1/2
x)/2 was used. Rear-

ranging gives

Dx

∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Dx

∣∣n−1/2

i,j+1/2,k+1/2
+

(
2ε∆t

2εκy + σy∆t

)
×

(Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

∆y
−
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i,j+1/2,k

∆z

)
(3.22)

25

The Ex update follows similarly from (3.20),

Ex
∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
Ex
∣∣n−1/2

i,j+1/2,k+1/2
+

[
2εκx + σx∆t

(2εκz + σz∆t)ε

]
Dx

∣∣n+1/2

i,j+1/2,k+1/2
−
[

2εκx − σx∆t
(2εκz + σz∆t)ε

]
Dx

∣∣n−1/2

i,j+1/2,k+1/2

(3.23)

An analogous procedure is used to derive the B and H -component update

equations. A full listing can be found in Appendix A.

The form of the components of s, sx, sy, andsz guarantee the condition

of perfect impedance continuity [70]. However, for the method to succeed,

the values of κ and σ must be chosen appropriately. It follows that in the

interior region of the simulation space, where there is no absorption, κxyz =

1 and σxyz = 0, but in the absorbing region κxyz and σxyz are increasing

functions along the direction normal to the interface. This way, the incident

fields gradually decay before impringing on the edge of the computational

lattice, thereby reducing reflections to a minimum.

Typically, σ and κ use either polynomial grading or geometric grading

[69]. Polynomial grading is given by

σx(x) = (x/d)mσmax, σmax = −(m+ 1) ln(Γerr)

2ηd
(3.24)

and

κx(x) = 1 + (κmax − 1)(x/d)m (3.25)

where d is the length of the PML, η is the impedance of the medium, Γerr

is the reflection error tolerance, and κmax and m are parameters. Similarly,

geometric grading is defined by

σx(x) = (g1/∆x)xσx,0, σx,0 = − ln(Γerr) ln(g)

2η∆x(gd/∆x − 1)
(3.26)

26

and

κx(x) = (g1/∆x)x (3.27)

where as before d is the length of the PML, η is the impedance of the

medium, Γerr is the reflection error tolerance, and g is a scaling factor.

3.4 Source Conditions

Another important topic regarding the FDTD method is the question of

how energy is introduced into the space-time lattice. Generally, this can be

accomplished in three different ways: either as a hard-source, an additive-

source, or the total field/scattered field (TFSF) formulation. Hard-sources

and additive sources are easier to implement, but are limited in scope

whereas the TFSF source is much more generally applicable.

As a hard-source, a time dependent function is specified at a point

which represents either electric field components or current distributions.

This function is typically Gaussian, or a Gaussian derivative, which takes

advantage of the wide-band nature of the FDTD simulation, but can also

be sinusoidal for steady state applications. However, the major drawback

of the hard-source, especially if a sinusoidal function is specified, is that

the evolution of the fields at the source point is not subject to Maxwell’s

equations and therefore unphysical. This has the effect of causing spurious

reflections, polluting the solution.

The additive source is essentially the same as the hard-source, only the

field or current distribution is added each time step to the source location.

Most importantly, the electric and magnetic fields at the source evolve

according the Yee scheme, avoiding unphysical reflections and corruption.

Unfortunately both the additive source and hard source cannot simulate

incident plane wave sources effectively [71].

For situations when plane waves are needed, such as for scattering prob-

27

lems, radar cross section calculations, or to more accurately simulate prop-

agation along a microstrip feed line, for example, the total field/scattered

field source formulation is the most useful. In this case the computational

domain is divided into two areas, the total field region and the scattered

field region as shown in Figure 3.4. In addition, a one dimensional lattice

is constructed on which the plane wave is generated.

PML

Total field region

Scattered field region

Electromagnetic
structure

Incident plane
wave

Plane wave is
subtracted here

Fields scattering
off material

One dimensional
incident array

Source point

x

y

Figure 3.4: Schematic of total field/scattered field source [71]

The reason for the one dimensional buffer is that in one dimension

the discretized wave equation is an exact solution of the continuous wave

equation, not just an approximation [69], and also the boundary conditions

are perfect [71]. At each time step, the incident wave is calculated as in

additive source on the auxiliary one dimensional lattice, the results of which

are then added into the three dimensional domain at one end of the total

field/scattered field interface. The plane wave then propagates through the

total field region using the three dimensional update equations as previously

described, interacts with the structures of interest, and then is subtracted

out at the other end of the TFSF interface using the field values from the

one dimensional buffer.

28

3.5 Microstrip Patch Antenna Simulation

To demonstrate the utility of the FDTD method, as well as test the ac-

curacy of the developed code, a microstrip patch antenna was simulated.

The simulated antenna [72] is rectangular with a 12.45 mm width, 16.0 mm

length, and a 0.794 mm height. Additionally, the feedline is 2.46 mm wide,

20.0 mm long and is offset from the patch edge by a width of 2.09 mm. The

conductive elements, patch, feedline, and ground plane, are considered to

have a thickness equal to a single discretization unit along the z direction.

Figure 3.5 shows the geometry of this antenna.

12.45mm

16mm

0.795mm
2.09mm

20mm

2.46mm

εr = 2.2

4mm

Figure 3.5: Rectangular microstrip antenna

The discretization used was ∆x = 0.149 mm, ∆y = 0.149 mm, and ∆z =

0.1 mm. For numerical stability, the time increment must satisfy [69],

∆t ≤ 1

c
√

1
∆x2

+ 1
∆y2

+ 1
∆z2

(3.28)

where c is the speed of light in vacuum. In this case the time incrememt

upper limit is ∆t ≤ 0.2148 ps, however the actual time increment used was

∆t = ∆z/2c = 0.1667 ps. Additionally, the source function was a Gaussian

monocycle,

E(t) = −
(
t− t0
σ2

)
e−

1
2

(t−t0)2/σ2

(3.29)

with the time offset t0 = 150∆t and the pulse width σ = 20∆t.

29

To characterize the antenna, it is necessary to determine the return loss,

which is the ratio of the reflected voltage to the input voltage at the input

port, given by

S11(f) = −20 log

(
Vref (f)

Vin(f)

)
(3.30)

Therefore, it is necessary to perform two simulation runs. The first run

is performed without the patch included, instead extending the strip line

through to the end of the computational domain. Figure 3.6 shows 2-D

plots on the xy plane of the Ez component at a height just below the top

conducting layer after 200 time steps, and 400 time steps.

0 10 20 30 40 50 60

0

20

40

60

80

100

120

(a)

0 10 20 30 40 50 60

0

20

40

60

80

100

120

(b)

Figure 3.6: Incident pulse electric field z-component, top view at (a) t = 200, and (b) t
= 400 time steps

The Ez component of the electric field is recorded at a single point on the

source plane at the location just underneath the top conductive strip, at

each time step.

Similarly, on the second run the Ez component is once again recorded

at each time step at the same location, but with the conductive patch

30

included in the geometry. Figure 3.7 shows 2-D plots on the xy plane of

the Ez component with the patch included after 600 and 1000 time steps.

These graphs illustrate the complex geometrical patters of the electric field

as it resonates in the antenna.

0 10 20 30 40 50 60

0

20

40

60

80

100

120

(a)

0 10 20 30 40 50 60

0

20

40

60

80

100

120

(b)

Figure 3.7: Electric field z-component with patch, top view at (a) t = 600, and (b) t =
1000 time steps

The field obtained from the second simulation can be considered a super-

position of the incident field and the reflected field. To obtain the reflected

field, the incident field calculated in the initial simulation run is simply

subtracted.

Once the reflected field is determined, the frequency dependence of

the incident and reflected fields are calculated through the fast Fourier

transform. Equation 3.30 is then applied, slightly modified to use electric

fields instead of voltages, which gives the same result since it is a ratio.

The result plotted versus frequency is shown in Figure 3.8 along with the

results using a commercial software IE3D.

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Frequency (GHz)

30

25

20

15

10

5

0

S
11

 (d
B)

FDTD
IE3D

Figure 3.8: Return loss for retangular patch

It can be seen that there is some notable differences in the curves, but

some discrepancy is expected since IE3D simulates electromagnetic systems

in a completely different manner. IE3D is a method–of–moments (MoM)

solver, which solves boundary–value integral equations through matrix in-

version. This is a frequency domain solution method, as the solution must

be calculated at specific frequencies over a range. In contrast, the FDTD

method produces direct solutions to Maxwell’s equations in the time do-

main, and obtains frequency information through Fourier transformation.

From Figure 3.8, there would appear to be less than a 10% difference

in the predicted locations of the S11 peaks from the two different methods.

Therefore it can be said that the agreement between the two is very good.

Additionally, the cavity model for microstrip antennas predicts a resonant

mode at a frequency of 7.6 GHz, also in good agreement.

32

CHAPTER IV

GENERALIZED COMPUTING ON GRAPHICS

PROCESSING UNITS USING OPENCL

4.1 Overview of Computation on Graphics Processing Units

Graphics processing units (GPUs) have become increasingly recognized as

a powerful platform on which to perform scientific computing. GPU com-

puting has found its way into a wide variety of applications such as digital

image and signal processing [73, 74], climate research [75], molecular mod-

eling [76], bioinformatics [77], ray tracing [78], etc., essentially anywhere

where typical CPU cluster-based supercomputing has been employed. The

main advantage of using a GPU for computations that are traditionally

handled by a central processing unit (CPU) is the potentially enormous ac-

celerated computation time, for a small cost, and little system complexity.

Speed-ups on the order of 30× – 200× CPU implementations, have been

reported [79, 80], encouraging continued research in this exciting nascent

field.

In an effort to understand how a single GPU can achieve the same, or

greater, level of performance as a CPU cluster, it is important to have an

awareness of the basic architectures of both CPUs and GPUs. For example,

CPUs are designed for minimum latency, in order to respond to user action

(keystrokes, mouse clicks, etc.), whereas GPUs are designed for maximum

throughput, so as to able to process millions of pixels simultaneously. For

33

the same size chip, basic models of CPU and GPU architecture are shown

in Figure 4.1.

Control
ALU

ALU

ALU

ALU

Cache

DRAM

(a)

DRAM

ALUControl

Cache

(b)

Figure 4.1: Functional schematics of (a) CPU and (b) GPU

A CPU requires a large cache, for instruction pre-fetch, out-of-order

execution, etc., in order to reduce the average time to access memory.

In addition, a control unit is needed to implement and manage various

instructions. The remaining space on a CPU chip not being used by either

the cache or control unit is filled with arithmetic logic units (ALUs), which

perform the actual computations.

Graphics processors, as mentioned previously, are designed for high

throughput. Since latency can be tolerated, unlike a CPU, a large memory

cache is not necessary. The result is the extra chip space that is not being

used for cache can be used for more computing units.

For parallel processing, CPUs use task parallelism in which different

instructions (tasks) are run on different threads. Each thread must be

individually programmed, and each thread must also be explicitly managed

and scheduled. GPUs use data parallelism, however, the Single Instruction

Multiple Data (SIMD) model, in which the same instructions are copied

onto each of the processors, only each processor operates on different sets

of data. In this way, programming is done for batches of threads instead

of for each thread individually, and threads are managed and scheduled by

the hardware instead of explicity by the programmer.

34

4.2 Introduction to OpenCL

Although examples GPU accelerated computations have been in the litera-

ture for at least ten years [81], little progress was made due to the complex-

ity of programming graphics processors. The complexity results from the

fact that prior to the release of the Compute Unified Device Architecture

(CUDA) language by NVIDIA in 2007, and the Open Computing Language

(OpenCL) by the Khronos Group in 2008, researchers had to recast scien-

tific calculations in such a way as to be implemented through the GPU

graphics pipeline. This amounted to mapping computational algorithms

to geometrical objects such as polygons and triangles, and executing in

terms of vertex assembly, shading, rasterization, pixel shading, blending,

etc. In addition, this had to be accomplished through a device-dependent

assembly language interface.

With the release of CUDA by NVIDIA, general purpose GPU program-

ming could be done with relative ease. This is because CUDA is a high

level software platform that abstracts from the GPU hardware, and also

maintains a low learning curve due to its syntactic relationship and com-

patibility with the C programming language. The problem with CUDA,

however, is that it can only be run on NVIDIA graphics cards.

Alternatively, OpenCL was developed for heterogenous computing ap-

plications. The concept of heterogenous computing is a framework for code

that is written once, but can be run on any platform – CPU, GPU, dig-

ital signal processor (DSP), field programmable gate array (FPGA), etc.,

or all available platforms depending on the application. Released in 2008,

OpenCL is maintained by the Khronos Group, a consortium of companies

such as AMD/ATI, Apple, Intel, NVIDIA, etc., promoting open standards

and dynamic media application programming interfaces (APIs).

For use with GPUs, OpenCL application code can be divided into two

35

separate but interdependent regimes. First, there is the host code, which is

written in standard C/C++, and executed in serial on the CPU. Secondly,

there is the device code, called a kernel, which is written in an OpenCL-

specific C, and executes in parallel on the GPU. Figure 4.2 diagrams the

relationship between host and device.

Figure 4.2: OpenCL platform model [82]

4.2.1 OpenCL Program Flow

All OpenCL applications begin with a series of steps that set up an in-

terface between the CPU and GPU. First, a platform is determined, so

that the OpenCL runtime is specified for a particular vendor’s implemen-

tation. Next, a context is created, an abstraction layer to which specific

operations are associated with specific devices, such as memory allocation,

or compiling and running programs. After a context is created, the next

initialization step is the creation of a device, which is basically a handle

with which to reference a particular CPU, GPU, etc. Program compilation

and kernel execution happen on a per device basis. Figure 4.3 shows the

relationship between platforms, contexts, and devices.

36

Figure 4.3: Platforms, devices, and contexts [83]

The next step in an OpenCL application is to create a program object.

In OpenCL, a program contains either source code or binaries loaded from

disk, which consists of the actual code that is intended to be run. This code

can either be a single file with several functions, or from multiple source

files. Additionally, the program contains a list of target devices, as well

as build options. Next, the program is compiled for a specific device, or

devices, on which it is intended to be run. This build process happens at

runtime, using a particular OpenCL command.

A program contains entry points, called kernels, which are the functions

intended to be executed on the device(s). Each kernel must be associated

with a specific kernel object, so as to facilitate the transfer of function argu-

ments. However, unlike function calls in the C language, each individual ar-

gument of a kernel must be separately set with a call to kernel.setArg(),

which takes the index and value to the particular argument.

Kernel execution is first queued through a command queue, which is

a virtual interface between the host and a specific device. Actual execu-

tion of a kernel proceeds with a call to queue.enqueueNDRangeKernel(),

which takes several arguments specifying the dimension of the data to be

processed by the kernel, as well as information regarding how the kernel is

to be processed.

37

The process just described is executed on the host, and is essentially the

same for all OpenCL applications. Particular modifications would need to

be made to kernel arguments and command queue arguments for a specific

application. Other modification involving synchronization would have to

be made if multiple devices and command queues were being utilized.

4.2.2 Memory Management and Kernel Optimization

To achieve the best performance of a GPU, it is essential to carefully man-

age the usage of memory. As implemented in OpenCL, a GPU arranges its

memory as shown in Figure 4.4.

Figure 4.4: OpenCL memory model [83]

Data is passed from host to device by allocating memory buffers on

the device. In terms of the model, the data that is passed from the host

to the device memory buffers sits in the device’s global memory. Each

computation on data performed by a kernel is called a work–item. When

a kernel executes, work–items execute in parallel, up to some maximum

number that is device–dependent, and data is accessed from global memory.

38

However, the latency involved in global memory read/write operations can

significantly reduce the potential gains of parallel operation performed by

the GPU.

Optimizing GPU computation involves prodigious use of local memory.

This can be taken advantage of by first dividing the work–items into work–

groups. Typically the maximum number of work–items that can be placed

into a work–group is 128, 256, 512, etc. This is the total number of work–

items that can be executed simultaneously. Local memory is specific to

a work–group, and read/write operations are on the order of 100x faster

than global memory. All memory management is explicit in OpenCL, and

the key to fast parallel processing on a GPU is to move data from global

to local memory when possible, so that computations are not burdened by

memory latency.

4.3 Application of OpenCL to the Finite Difference Time Do-

main Method

The FDTD method is inherently parallel in nature. This is due to the

fact that the update equations for a particular field component are only

dependent upon the component’s value at a previous time, as well as spatial

values of other field components. Thus, there is not a spatial relationship

of a component with itself.

Parallel implementation of the FDTD on CPU distributed memory clus-

ters has been in practice for many years, [84, 85, 86, 87]. However, there is

a limiting factor in the number of processors that can be used simultane-

ously, and the possible speedups are less than proportional. Also, memory

management and data distribution becomes extremely complex.

Due to the highly parallel nature of computation on a GPU, there has

been much recent attention to the application of GPU processing to the

FDTD method [79, 80, 81, 88, 89]. This is especially important as the

39

need grows for increasing accuracy of 3–D simulations of finely detailed

structures at high frequencies. In order to obtain better accuracy and

numerical stability, a fine spatial grid and small time increment is required.

However, since the time increment must be made smaller, the number of

iterations must be increased, and with the addition of a fine spatial grid

the computational burden becomes very demanding.

Effective GPU implementation of FDTD requires careful GPU mem-

ory management in order to maximize computational time while minimiz-

ing memory reading and writing. Reported implementations have seen

speedups of 12× over CPU clustering environments [88], to over 200× a

CPU implmentation [80]. However, it is important to note that expected

speedups depend heavily on the problem level of detail and requirements

for accuracy, the hardware used, and the amount of implementation opti-

mization.

In applying OpenCL to the FDTD method, each field component array

is allocated on the host, and memory buffers are allocated on the GPU to

facilitate data transfer. The host code program flow previously described

is implemented, with the creation of a platform, context, command queue,

etc.

For the electric and magnetic field time-stepping, each component up-

date is called as a separate kernel function. This is to simplify the passing

of function arguments, since each kernel argument must be set as a sepa-

rate function call. Next, the data is partitioned into work–groups in order

to take advantage of the GPU parallelism.

Specifically, for this study, the patch antenna from Chapter 3 was sim-

ulated on a 128 × 256 × 32 grid, using an AMD Radeon HD 6450 GPU.

This GPU is limited to 256 work–items that can be processed in parallel.

Therefore, the data was partitioned in the x,y plane into 256 work–groups

of size 8 × 16. At each time step, for a particular component, each work–

40

group transfers data from global memory to local memory, and executes

its 256 work–items in parallel, although each work–group itself executes

sequentially over the x,y plane, as shown in Figure 4.5. This procedure

then repeats at each z location.

x

y

z

work-item
work-groups

z "slices"

Figure 4.5: Diagram of data partitioning

For the plane wave source, using the TFSF method, the 1–dimensional

plane wave propagates along the y–axis. Since the y–axis size is 256, the

entire axis fits into GPU local memory. Thus, the 1D plane wave is updated

everywhere simultaneously. However, the process of injecting the 1D plane

wave into the 3D grid of the antenna is not as easily partitioned, so this

part of the calculation was carried out sequentially.

A comparison of the 1D temporal output of the FDTD method between

the CPU and GPU implementation is shown in Figure 4.6.

41

0 200 400 600 800 1000
Time Step

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

E
z

CPU
GPU

Figure 4.6: Output of FDTD method as run on a CPU and a GPU (first 1000 time
steps)

Here it can be observed that the output from the GPU is about 90% of

the CPU curve, and shifted left by about 9%. Overall, this is a systematic

difference, probably due to the limits of the GPU as a single-precision

processor. The time to complete a single run on the CPU was about 1542

seconds, while on the GPU the calculation took nearly 76.6 seconds. Thus,

the GPU FDTD method was able to process about 20x faster than a single

CPU.

42

CHAPTER V

BIO-INSPIRED OPTIMIZATION

5.1 The Genetic Algorithm

Genetic algorithms are a class of adaptive stochastic optimization algo-

rithms which attempt to produce optimal solutions by mimicking basic

evolutionary processes observed in nature. In a typical genetic algorithm

(GA), a population of some fixed size N is defined, in which each mem-

ber of the population is a binary sting called a chromosome. The chro-

mosome population represents possible solutions for a particular problem,

and through evolutionary operations such as selection, recombination, and

mutation, new and potentially better solutions are generated.

From biology, strings of DNA form chromosomes which function as a

”blueprint” for an organism. Furthermore, chromosomes can be subdivided

into genes, as shown in Figure 5.1(a), each of which encode a particular

protein that controls a trait, such as eye color. In a genetic algorithm, each

chromosome is a string of numbers, usually fixed in length, where each gene

is represented by a grouping of numbers as shown in Figure 5.1(b), usually

binary, but can be integers or floating point.

43

10110110101011101010011001110101

Gene

Figure 5.1: Diagram of (a) human X-chromosome [90] and (b) GA chromosome

In a way similar by which genes control trait expression, each ”gene” of

a GA represents the value of a parameter. With an appropriate decoding

scheme, the genes of a chromosome are converted from binary strings to

elements of a real-valued vector. This vector is then evaluted by a fitness

function, which is the optimization function of interest. Each chromosome

is assigned a level of fitness, depending on its evaluation by the fitness

function.

A population of potential solutions (chromosomes) produces new can-

didate solutions by combining elements in a way similar to that of genetic

recombination. The new solutions are evaluated, and then replace the old

solutions. However, often the best solutions from the previous generation

are retained and replace the worst solutions from the current generation.

Known as elitism, this aspect of a GA mimics a basic form of natural

selection. Thus, an initial population of candidate solutions, through sim-

ulated mating and natural selection, “evolve” towards increasingly better

solutions.

5.1.1 Selection

The process of recombination begins with selection. Chromosomes are se-

lected from the population for reproduction, in such a way that chromo-

somes with a higher fitness level are more likely to be chosen. A very com-

44

mon method of selection is fitness-proportionate selection, which is simply

implemented with “roulette–wheel sampling” [91]. In roulette–wheel sam-

pling, each chromosome is assigned a probability of selection based on its

fitness level by pi = fi/
∑N

j=1 fj, where fi is the fitness of the ith chro-

mosome, and N is the population size. It can be imagined that each

chromosome has a slice of a circular “roulette wheel”, and that the size

of each slice is proportional to each chromosome’s probability of selection

as illustrated in Figure 5.2.

No Chromosome X Fitness f(X) % of Total

1
2
3
4
5

010101010010
001011101001
111011001011
010110001011
100010010110

(2.56, 0.865)
(1.876, 5.16)
(15.12, 1.59)
(8.67, 10.35)
(22.5, 0.26)

2.53
3.85
6.17
1.1

1.89

16
25
40
7
12

Totals 15.54 100

1

2

3

4

5

0, 1.0

0.16

0.41

0.81

0.88

Figure 5.2: Roulette–wheel selection example

A spin of the wheel is simulated by generating a random number r

between 0 and 1. Next, the slice in which r resides is determined from

the cumulative selection probabilities,
∑i−1

j=1 pj ≤ r ≤
∑i

j=1 pj. The ith

chromosome corresponding to this slice is then selected for mating. This

process is then repeated until all of the selections have been made.

While roulette wheel sampling is easy to implement and has an intuitive

sense of fitness-proportionate selection, in practice chromosomes are not

always selected according to their probabilities [92]. This is due to the

fact that GA populations are typically small, less than 50 individuals in

45

most cases, and roulette wheel selection probabilities are the statistical

expectation values that would be obtained after many samples from a large

population. Therefore, there is a possibility that less fit chromosomes could

be selected disproportionately.

Another fitness-proportionate selection method is stochastic universal

sampling [93]. In stochastic universal sampling (SUS), a random number

is generated, and a chromosome is selected as in roulette–wheel sampling.

However, instead of generating a new random number every time a chromo-

some is to be selected, a predetermined fixed amount is cumulatively added

to the random number for each selection. In this way, less fit members are

neither disproportionally dominated by more fit solutions, nor dispropor-

tionally selected due to a statistically insufficient population size, as in

roulette–wheel sampling. However, SUS as well as roulette–wheel sam-

pling have a drawback in that population variances can decrease quickly,

resulting in a stagnating evolution before an optimal solution is reached.

Besides roulette–wheel sampling, SUS, and other finess-proportionate

selection methods, there are also alternative selection methods such as rank

selection and tournament selection. Rank selection assigns a value from 1 to

N, to each member of the population based on increasing fitness. Selection

probabilies are then linearly assigned according to

pi = Min+ (Max−Min)
i− 1

N − 1
(5.1)

where Min is the reproduction rate of the worst individual, and Max = 2−

Min. Probabilities can also be assigned by exponential ranking, according

to

pi =
cN−i∑N
j=1 c

N−j
(5.2)

where c is a parameter, and 0 < c < 1. The advantage of rank selection is

that diversity is maintained, resulting in a larger sampling of the solution

46

space. However there are speed disadvantages since the entire population

must be sorted to produce the rankings.

Tournament selection involves randomly selecting M members of the

population, 1 ≤ M ≤ N , and then selecting the most fit individual from

this group. The procedure is then repeated N times. Selection pressure

is easily adjusted by changing the tournament size, M. With a small tour-

nament size, less fit individuals have more opportunity, but as M → N ,

better fit solutions dominate. Note that M = 1 is equivalent to purely

random selection.

5.1.2 Recombination and Mutation

After the selection process, the selected individuals exchange portions of

their binary strings in process called recombination or crossover. The bio-

logical process of recombination occurs during the first stage of meiosis, in

which chromosomes form pairs and exchange different segments of genetic

material. New combinations of DNA are created, which are a significant

source of genetic variation, and may result in beneficial new combinations

of alleles (variations of a gene). Finally, these offspring are subject to muta-

tion, where single elementary bits of DNA (nucleotides) are changed, often

as a result of copying errors.

Similarly, in a GA recombination is implemented typically through

single–point crossover, double–point crossover, or uniform crossover. Single–

point crossover is the simplest method and entails generating a random

number, r, r < M − 1, where M is the length of the parents’ binary string,

to be the crossover position, and then exchanging the respective parts of

the parents (Figure 5.3(a)).

47

(a) (b) (c)

Figure 5.3: Diagrams of GA crossover methods, (a) single–point, (b) double–point, and
(c) uniform

This method does have problems, however, in particular “positional bias”

and “endpoint effect” [92], in which the length of the strings being ex-

changed can disrupt potentially good solutions, and the strings exchanged

always contain the endpoints.

Using double–point crossover, two crossover positions are selected at

random, and everything between the two points in the parent chromosomes

is swapped to create the child chromosomes (Figure 5.3(b)). In this way,

some of the biasing observed in single–point crossover can be mitigated.

The single–point and double–point crossover methods can be regarded as

special cases of a generalized n–point crossover method. Increasing the

number of crossover points can potentially result in a more exploratory

search. However too many crossover points can be highly disruptive of

good solutions, resulting in a very slow convergence, or no convergence to

an optimal solution [92].

In the case of uniform crossover (Figure 5.3(c)), each position in a par-

ent string is assigned a probability for exchange. A random number r is

generated, and if r ≤ pi, where pi is the probability for exchange at chro-

mosome position i, then an exchange occurs. Uniform crossover explores

the solution space more effectively than single or double–point crossover,

however can be disruptive to strings that form solutions with high fitness.

After selection and crossover, offspring are subject to mutation. Muta-

tion in biology is a small change in DNA; similarly in a GA, mutation is

implemented as a bit flip at a random position in a string. The effect is

to maintain some amount of diversity in the population in order to avoid

48

solutions converging to a local extremum. However, mutation is considered

as a background operator to the main operation of recombination [94]. The

process of selection, recombination and mutation repeats until either a set

number of iterations is reached, or a minimum fitness level is attained.

Figure 5.4 illustrates the process.

Start

Initialize Random
Population of N
Chromosomes

Evaluate Fitness

Exceed max number
of generations, or

min fitness?
Stop

Increment
generation

Selection
(roulette­wheel,

tournament, rank, etc.)

Recombination /
Crossover

(single, double, etc.)

Mutation

Yes

No

Figure 5.4: Diagram of a GA process

49

5.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is another population–based adaptive

stochastic optimization method like the GA. However, unlike the GA, there

are no evolutionary operators such as selection, crossover, or mutation. In-

stead, PSO is based on the collective swarm intelligence observed in the

social behavior of bees, birds, fish, etc., [95], as they search for the best

feeding locations. Potential solutions are referred to as particles, and in-

stead of evolving towards optimal solutions, they “fly” through the problem

space along trajectories determined by the best positions encountered by

both an individual particle, and the swarm as a whole.

In PSO, each particle represents a possible solution to the optimization

problem, with an associated position or location, and velocity. A fitness

function is used to evaluate the potential solutions, and determines which

are the best locations. Each particle keeps track of its own personal best

location (pBest), as well as the global best (gBest), the best location visited

by the entire swarm. If a particle’s current position has a better fitness

value than it’s pBest, its current position replaces its pBest, and if any of

the pBesti are better than the current gBest, it is also replaced.

A particle’s position and velocity are updated according to

vk+1
i = wkvki + c1r

k
1,i(p

k
i − xki) + c2r

k
2,i(g

k − xki) (5.3)

xk+1
i = xki + vk+1

i ∆t (5.4)

where vki is the velocity, wk is the inertial weight, which determines the

influence of the particle’s previous trajectory, pki is the location of the ith

particle’s pBest, and gk is the location of gBest. The superscript k refers

to the kth iteration. The parameters c1 and c2 are the cognitive weight,

and the social weight, which determine whether a particle has a tendency

50

towards pBest or gBest. Finally, rk1,i and rk2,i are uniformly distributed

random numbers between 0 and 1, and ∆t is the time step, where it is

standard for ∆t = 1. The basic algorithm is shown in Figure 5.5.

Start

Initialize random
population of N

particles

Evaluate fitness

Exceed max number
of generations, or

min fitness?
Stop

Increment
time step

Compare each particle's
own fitness to obtain

each pBest

Compare each particle's
fitness with population

best to obtain gBest

Yes

No

Update each particle's
velocity and position

Figure 5.5: PSO algorithm

Unlike a typical GA, PSO is usually implemented using floating point

representations of solutions, instead of binary codings. However, PSO does

have binary variants. In binary PSO (BPSO), [96], the velocity update

equation (5.3) remains the same, but is given a new interpretation. Instead

51

of a velocity of a particle, the vi represent the probability that the bit xi

will take the value 1. Thus, from (5.3), vki is constrained to the interval

[0.0, 1.0], and xki , pki , and gki are binary strings. The other parameters

remain the same.

The other modification to PSO for its binary variant is the position

update equation, as (5.4) is no longer valid since velocities are now prob-

abilites. This is accomplished by use of a sigmoid function to normalized

the velocities,

Sig(v) =
1

1 + e−v
(5.5)

and then to update the binary string representing position,

xk+1
ij =


1, if rij < Sig(vk+1

ij)

0, otherwise

(5.6)

where rij is a uniformly distributed random number over the interval [0.0,

1.0].

5.3 Biogeography–Based Optimization

Biogeography is the study of the distribution of plant and animal species

and ecosystems in both space and time. Combining research from ecology,

evolutionary biology, geology and geography, biogeography is an integrative

field that attempts to understand how species are distributed across geo-

graphical areas, and in particular how environmental dynamics influence

evolution.

Like the GA and PSO, biogeography–based optimization (BBO) is a

stochastic–adaptive, population–based, heuristic optimizer that models the

process of optimization on the natural dynamics of biogeography, specifi-

cally island biogeography. Island biogeography studies species diversifica-

tion not only of actual islands, but any isolated natural environment such

52

as mountains or lakes surrounded by deserts, isolated forests, etc. The

main tenet of island biogeography is that the number of species found on

an undisturbed island is determined by immigration, emigration, and ex-

tinction [97]. Furthermore, immigration and emigration are affected by

distance to neighboring islands or the mainland, while the size of the is-

land itself has an effect on the extinction rate. In addition to environmental

and geographical effects, there is also the genetic evolution of the species

themselves.

BBO attempts to find optimal solutions to problems by simulating the

dynamics of species immigration and emigration. Similar to a GA, poten-

tial solutions are encoded as binary strings, where in this case, each string

is considered an island. The bits themselves can be envisioned as species

of plants or animals living on a particular island, or some quality of hab-

itability. In the language of BBO, a bit, or island element, is referred to

generally as a suitability index variable (SIV). All of the potential solutions

together form a population of islands, or an archipelago.

As in the case of other population–based heuristic optimizers, the qual-

ity of a potential solution is determined by a fitness function. For BBO,

the quality of a solution is known as its habitat suitability index (HSI). The

optimization process is then analogous to finding an island that has a high

HSI, and is therefore very habitable.

Each potential solution, or island, has an associated immigration rate

λ, and emigration rate µ, determined by

λi−1 =
i

N
(5.7a)

µi−1 = 1− λi−1 (5.7b)

where i = 1, 2, ...N, N is the size of the population, and the population

is sorted from best to worst. Thus, islands with a high HSI have a high

53

emigration rate and a low immigration rate, and correspondingly, islands

with a low HSI have a low emigration and a high immigration rate.

Information is exchanged between islands through a selection process

similar to a GA, where immigrating and emigrating islands are chosen prob-

abilistically using roulette–wheel selection. Next, elements of an island are

selected to be modified according to immigration rates, and the emigration

rates of the other islands are used to determine which solutions migrate

a randomly selected element [98]. After all island updates are completed,

mutation can be applied like in a GA (Figure 5.6).

54

Start

Initialize random
population of N

islands

Evaluate fitness

Exceed max number
of generations, or

min fitness?
Stop

Increment
time step

Selection
(roulette­wheel)

Migration

Yes

No

Mutation

Determine immigration
and emigration rates

Determine immigration
and emigration rates

Sort population

Figure 5.6: BBO flowchart

55

5.4 Optimization Example

5.4.1 Rastrigin Function Minimization

As a demonstration of the effectiveness of the GA, BBO, and PSO, consider

the Rastrigin function [99],

f(x) = 10N +
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
(5.8)

where the topology of this function is shown in Figure 5.7 for n = 2.

−4
−2

0
2

4 −4
−2

0
2

4

10
20
30
40
50
60
70
80

Figure 5.7: Rastrigin function with n = 2

The Rastrigin function is highly multimodal, with frequent local min-

ima. Its global minimum is f(x) = 0, for xi = 0, i = 1, ..., n. Also, the

search area is restricted to −5.12 ≤ xi ≤ 5.12.

For the two dimensional case, N = 2, a GA was run with a population

size of 45, 16 bits per variable, 0.50 elitism rate, and 0.008 mutation rate.

56

Each set of 16 bits was decoded to a real number through the mapping

g(x) = Min+

(
Max−Min

2L − 1

) L−1∑
j=0

2L−1−jxj (5.9)

where (Min,Max) = (−5.12, 5.12), and L = 16, the number of bits per

variable. Figure 5.8(a) shows the initial random population distribution,

and (b) shows the population after 5 generations, where some of the solu-

tions have gathered around a few local minima.

4 2 0 2 4

4

2

0

2

4

(a)

4 2 0 2 4

4

2

0

2

4

(b)

Figure 5.8: Rastrigin function contour with GA population distribution (a) initial (b)
after 5 generations

As seen in Figure 5.9(a), after 27 generations some of the solutions have

converged on the global minimum, and after 50 generations (Figure 5.9(b)),

most of the solutions have converged.

4 2 0 2 4

4

2

0

2

4

(a)

4 2 0 2 4

4

2

0

2

4

(b)

Figure 5.9: Rastrigin function contour with GA population distribution (a) after 27
generations (b) after 50 generations

57

Now consider an example of the Rastrigin function where the problem

dimension is 30. Here, the GA, PSO, and BBO were run for 10000 iter-

ations. The population size for each method was 45, and the number of

bits was 480, so that each variable had a 16–bit representation. The GA

parameters were an elitism rate of 0.4, and a mutation rate of 0.008. Also,

roulette–wheel sampling and double–point crossover were used. For BBO,

the same elitism and mutation rates were used. The PSO paramters were

w = 0.75, c1 = 2.0, and c2 = 1.75. Figure 5.10 shows the convergence of

the best solutions and Figure 5.11 shows the average fitness values.

100 101 102 103 104

Number of Iterations

0

100

200

300

400

500

600

Fi
tn

es
s

Va
lu

e

GA
PSO
BBO

Figure 5.10: Rastrigin function convergence, for n = 30. Best solutions.

58

100 101 102 103 104

Number of Iterations

0

100

200

300

400

500

600

Fi
tn

es
s

Va
lu

e

GA
PSO
BBO

Figure 5.11: Rastrigin function convergence, for n = 30. Average solutions.

From Figures 5.10 and 5.11 it can be observed that the best and aver-

age solutions obtained by each method increasingly improve each iteration.

However, the rate of improvement slows down considerably after an ini-

tial period. For example, the GA had an initial fitness of 411.233 which

improved by almost 80% to 97.396 after only 50 iterations, but another ap-

proximately 80% improvement from 97.396 to 19.947 took 9,857 iterations.

PSO and BBO show similar fitness improval rates. The final fitness values

after 10,000 iterations were 19.479 for the GA, 31.064 for PSO and 8.415

for BBO, so in this case BBO outperformed both.

5.4.2 Parameter Considerations

Evolutionary optimization algorithms such as the GA, BBO, or PSO have

several parameters that must be selected at the start of the optimization

process. The choice of population size, elitism and mutation rate, etc., all

affect the ability of the algorithm to converge to optimal values. In order to

understand some of the effects of parameter values the previous example

of the Rastrigin function optimization was repeated, but with different

59

parameters.

Figure 5.12 shows the results of GA optimization for variable elitism

rate, mutation rate, and population. Since the ranges of the parameters

values differ significantly, all values were rescaled from 0 to 1 so that trends

could be easily compared.

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Value

0

20

40

60

80

100

120

140

Fi
tn

es
s

Variable Elitism
Variable Mutation
Variable Population

Figure 5.12: GA average best fitness for variable parameters

In each of the three cases the parameters that were not varying were fixed

at the values used in the previous example. The fitness values are the

average of 25 optimization runs using a particular set of parameters, and

the error bars are 1 standard deviation. The elitism parameter ranged from

0.15 to 0.95, mutation from 0.001 to 0.2, and population from 10 to 330,

with 32 data points total for each.

It is clear from Figure 5.12 that in general low mutation rates and larger

populations give the best results. Although the average fitness improves

as the population size increases, most improvement is seen as the popula-

tion increases from 10 to 30, and only slowly for larger values. Mutation

rates between 0.007 and 0.02 gave the best results, and gave increasingly

worse results as mutation rate increased. As elitism rate increases and

60

more solutions are used in recombination, the average fitness does not vary

appreciably until about an elitism value of 0.725, afterwhich the average

fitness rapidly worsens. Also, the sizes of the error bars indicate that over-

all the optimization results are consistent for a certain set of parameters,

except for a few isolated cases.

Figure 5.13 shows the results of an identical procedure to test BBO.

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Value

0

20

40

60

80

100

120

140

Fi
tn

es
s

Variable Elitism
Variable Mutation
Variable Population

Figure 5.13: BBO average best fitness for variable paramters

Generally for BBO there is more variability in the average fitness values,

and a greater sensitivity to mutation than the GA. Also, fitness improved

as population was increased from 10 to 30, as for the GA, but fitness did

not continue to improve for increasing populations. The lowest mutation

rates, 0.001 and 0.007, gave the best results, while results quickly worsened

as mutation increased until about a value of about 0.06, where the fitness

reached a plateau with respect to increased mutation. The effects of elitism

were minimal until an elitism value of 0.475, afterwhich solutions rapidly

became less fit with greater variability.

PSO has a different set of parameters than either the GA or BBO, so

a direct comparison of the effects of elitism and mutation is not possible.

61

Figure 5.14 shows the output of varying PSO parameters on the Rastrigin

function, using the same procedure as for the GA and BBO.

0.0 0.2 0.4 0.6 0.8 1.0
Parameter Value

0

20

40

60

80

100

120

140
Fi

tn
es

s
Variable Cognitive
Variable Social
Variable Inertia
Variable Population

Figure 5.14: PSO average best fitness for variable paramters

In this case, the cognitive weight c1 and social weight c2 varied from 1.0 to

9.0, the inertial weight w from 0.5 to 8.5, and the population from 10 to 330.

Unlike the GA or BBO there are not as obvious discernable trends, other

than some slow improvement as c1 or c2 is increased from 2.25 to 4.25.

From Figure 5.14 it can be observed that on average, PSO consistently

outperforms the GA and BBO with respect to variation of parameters.

However, the error bars show a large variability, therefore PSO would not

necessarily outperform the GA or BBO in isolated cases.

62

CHAPTER VI

DESIGN OF UWB ANTENNAS

6.1 Design Strategy

The main constraint in compact antenna design is the size, which limits the

bandwidth and gain. However, using optimization techniques such as the

genetic algorithm, or particle swarm optimization, it has been shown that

novel geometries are possible that can overcome apparent limitations [65].

The overall strategy in antenna design using a GA, or related method, is

to first determine the parameters for a given design goal, such as antenna

dimensions. Next, the GA (PSO, BBO, etc.) generates a set of possible

solutions. Each of these possible solutions is evaluated by electromagnetic

simulation, such as with the FDTD method, to determine the performance

of the antenna for the given paramters. If a solution meets the design

criteria, the optimization loop ends. Otherwise, new potential solutions

are generated according to the evolution rules of the chosen optimization

method, and the process repeats.

In designing antennas with a GA, the optimal geometry is completely

unknown. The designer specifies certain constraints and design objectives,

but allows the optimization routine to determine the specifics of the geome-

try. Therefore it is possible for the optimizer to generate novel designs that

meet the performance objectives, but are not likely to have been discovered

through traditional design methods.

63

For the application of a compact ultra–wideband patch antenna, the

design method is to fix certain size constraints, but then allow the opti-

mization method to explore uncommon patch geometries. In this case, the

fixed parameters were patch width W = 10.0 mm, length L = 10.0 mm,

and substrate thickness H = 0.794 mm. Also, the feedline width Wf = 1.2

mm, feedline length Lf = 20.0 mm, the feedline offset from the patch offset

= 5.0 mm, and the substrate dielectric constant εr = 2.2. Figure 6.1 shows

the layout of the antenna configuration.

Lf

Wf

offset

W

L

Pixel ON Pixel OFF
εr

Figure 6.1: Example patch antenna configuration

The patch is divided into a 15 × 15 grid of pixels where a pixel is

either ”ON” (metalized) or ”OFF” (air). Each pixel is 0.66 mm × 0.66

mm. For optimization with a GA, PSO, or BBO, a population of potential

geometries is generated randomly. Every member of the population is a

binary string of length 15 × 8 = 120 bits, representing a patch geometry

where a 1 means a pixel is ”ON” and a 0 means a pixel is ”OFF”. Only

120 bits are needed instead of 15 × 15 = 225 bits is because the geometry

is mirrored across the central line, lengthwise.

In the design of an UWB antenna, there are several antenna param-

eters that can be optimized including bandwidth, radiation pattern, etc.

However, the focus was only for the optimization of bandwidth, since the

bandwidth of patch antennas is very small, and for UWB applications, po-

tentially the most difficult optimization parameter. The fitness function

64

for the optimization routines was defined as

f(x) =
N−1∑
n=0

(S11(x)|fn < −10dB) (6.1)

where x is a binary string representing a patch geometry, S11(x) is the

return loss for the particular geometry, fn is the nth frequency in the

range 3.1 GHz to 10.6 GHz, and N is the number of frequency points in

that interval. The sum is for S11 < −10dB because that is the value below

which an antenna is generally consdered to be resonant. The bandwidth is

then the difference between the frequencies for which S11 is below -10 dB.

The return loss, S11 is evaluated using the FDTD method, as described

in Chapter 3. Initially, a pulse is sent down the antenna feedline without the

patch antenna present. The electric field z–component Ez,inc is recorded for

every time step at some location near the entry point to the microstrip feed

line. Then, a patch geometry is generated from a binary string representing

a potential optimal geometry. A pulse is again sent down the feedline

and Ez,total is recorded at the same location. The reflected electric field is

Ez,ref = Ez,total − Ez,inc. Fourier transforms are taken of the incident field

and reflected field, and

S11(f) = −20 log

(
Ez,ref (f)

Ez,inc(f)

)
dB (6.2)

The entire process repeats for each trial solution, with the exception of the

calculation of the incident pulse. This needs only happen once, since it is

the same for all possible solutions. New solutions are generated according

to the rules of the optimization method.

65

6.2 Results of Computer Simulation and Optimization

The optimization process begins by first setting the FDTD paramters. In

this case, the cell discretization was ∆xyz = 0.132 mm, and ∆t = 0.22 ps.

Thus, the total number of cells along each axis was X = 128, Y = 256, and

Z = 28. However, the z–direction was then zero padded such that Z = 32,

to ensure proper computation using the GPU. Thus, the total number of

cells was 128 × 256 × 32 = 1048576.

The incident pulse,

E(t) = −
(
t− t0
σ2

)
e−

1
2

(t−t0)2/σ2

(6.3)

has t0 = 400∆t and σ = 100∆t. To map a trial solution to the FDTD

grid, each bit represented a pixelated section of the patch antenna. On

the FDTD grid each pixel contained 25 grid points, to reduce numerical

inaccuracies. Simulations were run for 10000 timesteps to ensure that the

total energy in the grid had reached a steady state minimum.

6.2.1 Genetic Algorithm Optimization

For optimization with a GA several parameters were chosen. First, the

population size was 30, and the number of bits/variables was 120. Since

the antenna geometries were represented directly by binary numbers, no

decoding of the bit strings to real decimal numbers was necessary. An

elitism rate of 0.45 was used, along with a 0.005 mutation rate. Roulette–

wheel selection and double–point crossover were used. The optimization

was run for 200 iterations.

Running on an AMD Radeon HD 6450 GPU, a single fitness function

evaluation took approximately 1.25 min, and an entire GA optimization

run took about 5 days. Three GA runs were completed and the best result

66

is presented. The normalized convergence of the GA is shown in Figure 6.2,

the optimized antenna geometry is shown in Figure 6.3, and the antenna

S11 is shown in Figure 6.4.

0 50 100 150 200
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fi
tn

es
s

Va
lu

e

Global Best
Average Fitness

Figure 6.2: GA convergence

Figure 6.3: GA optimized UWB patch antenna

67

0 1 2 3 4 5 6 7 8 9 10 11 12
Frequency (GHz)

30

25

20

15

10

5

0

S
11

 (d
B)

Figure 6.4: Return loss for GA optimized patch

The fitness of the GA steadily converged to the final design, as shown

in Figure 6.2. From Figure 6.4 it can be seen that where S11 drops below

-10 dB, the antenna bandwidth does not cover the entire range of 3.1 GHz

– 10.6 GHz, but still covers a large portion, from about 6.5 GHz – 9.5 GHz,

as well as a lower band around 4.5 GHz – 5 GHz.

It is not always necessary for an UWB antenna to cover the entire 3.1

GHz - 10.6 GHz frequency band. UWB systems that utilize multiband or-

thogonal frequency division multiplexing (MB-OFDM) divide the 3.1 GHz -

10.6 GHz spectrum into nonoverlapping subbands of 528 MHz each. These

subbands are then grouped into 5 band groups, and UWB applications may

only band groups. For example, in an MB-OFDM system band group #4

comprises the frequency band 6.6 GHz - 7.7 GHz and band group #5 com-

prises 8.2 GHz - 9.24 GHz [38]. The GA designed antenna which covers the

6.5 GHz - 9.5 GHz range could therefore find applications in an MB-OFDM

system in which devices were using band groups #4 and #5.

68

6.2.2 Particle Swarm Optimization

As with the GA, the population size was 30, and the number of bits/variables

was 120. For the PSO, the social parameter was set to 1.4, the cognitive

paramter was 1.6, and the inertial weight was 0.65. The optimization was

run for 200 iterations, as before, with the best results of 3 runs presented.

The normalized convergence of the PSO is shown in Figure 6.5, the

optimized antenna geometry is shown in Figure 6.6, and the antenna S11

is shown in Figure 6.7.

0 50 100 150 200
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fi
tn

es
s

Va
lu

e

Global Best
Average Fitness

Figure 6.5: PSO convergence

Figure 6.6: PSO optimized UWB patch antenna

69

0 1 2 3 4 5 6 7 8 9 10 11 12
Frequency (GHz)

30

25

20

15

10

5

0

S
11

 (d
B)

Figure 6.7: Return loss for PSO optimized patch

Unlike the GA which steadily improved its fitness levels, PSO improved

in two large jumps–after 50 iterations and again after 137 iterations–as

shown in Figure 6.5. From Figure 6.7 it can be observed that the bandwidth

of the antenna designed covers most of the 3.1 GHz to 10.6 GHz UWB

range, specifically from 2.94 GHz – 9.57 GHz. In terms of total bandwidth

PSO outperformed the GA with a bandwidth of 6.63 GHz versus 2.95

GHz–more than double.

6.2.3 Biogeography–Based Optimization

The BBO parameters were once again a population of 30, with 120 vari-

ables, the elitism rate was 0.38, the mutation rate was 0.008, and the

number of iterations was 200.

After 3 optimizations over the course of 15 days, the normalized con-

vergence of the best result of BBO is shown in Figure 6.8, the optimized

antenna geometry is shown in Figure 6.9, and the antenna S11 is shown in

Figure 6.10.

70

0 50 100 150 200
Number of Iterations

0.0

0.5

1.0

1.5

2.0

Fi
tn

es
s

Va
lu

e

Global Best
Average Fitness

Figure 6.8: BBO convergence

Figure 6.9: BBO optimized UWB patch antenna

71

0 1 2 3 4 5 6 7 8 9 10 11 12
Frequency (GHz)

30

25

20

15

10

5

0

S
11

 (d
B)

Figure 6.10: Return loss for BBO optimized patch

Like PSO the BBO design covers most of the UWB range from about

3.4 GHz to 9.92 GHz, with a separate 300 MHz peak centered at 10.6 GHz.

The total bandwidth of the BBO design was 6.52 GHz, slighly less than

the PSO design and more than twice the GA optimized design.

6.2.4 Discussion of Results

The results of the optimization processes were very favorable, with each

of the methods producing designs that could potentially be used in UWB

systems. PSO and BBO found antenna configurations with bandwidths of

over 6.5 GHz that covered most of the UWB range, and therefore could

be used for a variety of UWB applications. The GA, however, produced a

design with a smaller bandwidth of approximately 3 GHz which could be

used in an MB-OFDM USB system. It should be noted that these results

do not necessarily imply that PSO and BBO are superior to the GA for

this application, due to the effects of parameter variation. Therefore it

is quite possible that the GA could find other optimal geometries given

72

certain parameters settings, number of iterations, etc.

Typical wireless system antenna design begins with a standard design

which is then modified through educated guesswork, trial and error, or

by accident to arrive at a suitable design for a given system [100]. This

is a time-consuming process, the results of which cannot be guaranteed

to meet fabrication or manufacturing constraints. Additionally, a design

methodology successful in one particular situation cannot necessarily be

reused in another design.

Bio-inspired evolutionary optimization procedures can overcome most

of these difficulties, as the results show. Constraints are built into the opti-

mization process, and the same process can be used for differenct problems.

It is only a matter of redefining the goals and constraints. The results are

nonintuitive designs that still result in excellent performance.

However, these optimization algorithms can also be time-consuming

which potentially outweighs the benefits. On a single Intel Core i5-2320

3.0 GHz CPU, a fitness function took nearly 26 min, and with the pop-

ulation sizes used would have taken nearly 108 days to complete a single

optimized design. Clearly this is not acceptable, since it is possible that

several optimization runs maybe required.

Parallel processing using a GPU can significantly speedup the time for

computation, however, without the need for a large investment in hardware.

As was shown an AMD Radeon HD 6450, a low-end GPU costing less than

$40, provided enough computational ability to speedup the process so that

it could complete in 5 days instead of 108. With increased computational

power further speedups could be realized, resulting in a very practical and

relatively simple design method that can be applied in potentially any

situation to produce novel designs in an evolutionary way.

73

CHAPTER VII

CONCLUDING REMARKS AND FUTURE

POSSIBILITIES

7.1 Conclusion

This study has shown the benefits of using bio-inspired optimization for

the development of UWB antennas, in particular BBO, which has not been

applied to this type of problem before. A typical patch antenna has a very

narrow bandwidth, and traditional geometries must be modified to achieve

the bandwidth needed for UWB applications. Usually this must be done

through a process of trial and error, where a basic design is created and

then incrementally modified. This process can be very time consuming and

potentially expensive, however. By using optimization algorithms such as

a GA, PSO, or BBO that makes no assumptions about the design, very

unorthodox geometries can be generated to meet certain design criteria.

Although bio-inspired optimization can produce effective results that

are very unlike typical design methods, they are usually very time con-

suming as well. Especially for antenna or microwave designs where each

potential design must be evaluted with a three dimensional computational

electromagnetic solver. However, through effective use of GPU program-

ming, some of the time pitfalls can be alleviated. Specifically, it was shown

by the development of a GPU-accelerated FDTD method coupled with an

evolutionary optimizer, the time for an optimized result can be reduced

74

substatially.

The overall time for an optimized result was about 5 days, which is

about a 20x improvement over what could be expected from a single CPU

performing the same computations. It is possible to achieve a similar speed

up by using parallel CPUs, however that increases complexity and would

require a dedicated system. By utilizing a GPU, which most machines come

equipped with, no additional special hardware is required and complexity

is lessened.

Each optimizer considered performed about equally well in generating

an antenna geometry that can be used for UWB applications. In par-

ticular, the sizes of the patch antennas were constrained to 10 mm x 10

mm, a size that could be fit inside a USB dongle, for instance. This is

another contribution, since patch antennas for UWB applications are typ-

ically larger. In summary, bio-inspired optimization methods can be very

useful for generating nontraditional antenna geometries that perform in

applications where a typical design would fail, but is only really practical

when used with a method for accelerating computations. GPU acceleration

has great potential for designers, since they are available on most systems

without modification.

7.2 Future Work

The most immediate extension to this study would be a multi-objective

evolutionary optimization (MOEA). In MOEA, more than one fitness func-

tion is defined, and the optimization algorithm seeks to find solutions that

give the best fitness for each simultaneously. Alternatively, a single fitness

function can be defined that is a weighted sum of the individual fitness

functions.

Several variables are part of a complete UWB antenna design, not only

bandwidth, but also gain stability over the 3.1-10.6 GHz range, as well as

75

phase linearity, and polarization, for example. In an MOEA, however, it

is not always possible to find a solution that is optimal for all variables

simultaneously. Instead, a distribution of solutions are found, where each

solution is more or less optimal for a particular variable.

Another possible extension is regarding patch antenna miniturization.

Instead of fixing the lengths and width of the patch and feedline, each of

those parameters could also be variable, but with upper bounds for design

constraints. Then it would be a matter of scaling the pixelating process

accordingly.

Finally, it would be worth looking into the potential of multi GPU-

accelerated optimization using GPU clustering. A typical motherboard

and power supply can accomodate up to 4 GPUs. In the single GPU case,

the fitness function (FDTD) is processed in parallel, but each potential

solution is processed serially. Using multiple GPUs, trial solutions could

be processed simultaneously. Assuming linear speedup, the 5 days needed

to complete an optimization could be reduced to slighly over 1 day.

76

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Sur-

vey on Sensor Networks,” IEEE Communications Magazine, vol. 40,

no. 9, pp. 102–114, August 2002.

[2] A. Molisch, J. Foerster, and M. Pendergrass, “Channel Models for

Ultrawideband Personal Area Networks,” IEEE Wireless Communi-

cations, vol. 10, no. 6, pp. 14–21, 2003.

[3] D. Smith, D. Miniutti, T. Lamahewa, and L. Hanlen, “Propagation

Models for Body–Area Networks: A Survey and New Outlook,” IEEE

Antennas and Propagation Magazine, vol. 55, no. 5, pp. 97–117, 2013.

[4] N. Niebert, A. Schieder, H. Abramowicz, G. Malmgren, J. Sachs,

U. Horn, C. Prehofer, and H. Karl, “Ambient Networks: An Archi-

tecture for Communications Networks Beyond 3G,” IEEE Wireless

Communications, vol. 11, no. 2, pp. 14–22, April 2004.

[5] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”

IEEE Personal Communications, vol. 8, no. 4, pp. 10–17, August

2001.

[6] C. Park and T. Rappaport, “Short–Range Communications for Next–

Generation Networks: UWB, 60 GHz, Millimeter–Wave WPAN, and

ZigBee,” IEEE Wireless Communications, vol. 14, no. 4, pp. 70–78,

August 2007.

77

[7] I.-H. Kim, H.-J. Kim, J.-T. Ihm, G.-M. Jeong, and K.-D. Chung,

“WPAN Platform Architecture and Application Design for Hand-

set,” 2008 International Conference on Consumer Electronics (ICCE

2008), pp. 1–2, January 2008.

[8] K. Kang, D. Kang, K. Ha, and J. Lee, “Android Phone as Wire-

less USB Storage Device Through USB/IP Connection,” 2011 IEEE

International Conference on Consumer Electronics (ICCE), pp. 289–

290, January 2011.

[9] W. Jones, “No Strings Attached,” IEEE Spectrum, vol. 43, no. 4, pp.

16–18, April 2006.

[10] C. Shannon, “A Mathematical Theory of Communication,” Bell Sys-

tems Technology Journal, vol. 27, pp. 379–423 and 623–656, July and

October 1948.

[11] J. E. Nuechterlein and P. J. Weiser, Digital Crossroads: Americal

Telecommunications Policy in the Internet Age. MIT Press, 2005.

[12] G. R. Aiello and G. D. Rogerson, “Ultra-Wideband Wireless Sys-

tems,” IEEE Microwave Magazine, pp. 36–47, June 2003.

[13] L. Yang and G. B. Giannakis, “Ultra-Wideband Communications, An

Idea Whose Time Has Come,” IEEE Signal Processing Magazine, pp.

26–54, November 2004.

[14] R. Rashid and R. Yusoff, “Bluetooth Performance Analysis in Per-

sonal Area Network (PAN),” 2006 International RF and Microwave

Conference, pp. 393–397, 2006.

[15] H. Lau, “High-Speed Wireless Personal Area Networks: An Appli-

cation of UWB Technologies,” in Novel Applications of the UWB

Technologies, D. B. Lembrikov, Ed. InTech, 2011.

78

[16] H. G. Shantz, “Three Centuries of UWB Antenna Development,”

ICUWB, pp. 506–512, 2012.

[17] X. Jiang, S. Li, and G. Su, “Broadband Planar Antenna With Para-

sitic Radiator,” Electronics Letters, vol. 39, no. 23, 2003.

[18] X. Qiu, H. Chiu, and A. Mohan, “Symmetrically Beveled Ultra-

Wideband Planar Monopole Antenna,” 2005 IEEE Antennas and

Propagation Society International Symposium, vol. 2A, pp. 504–507,

2005.

[19] E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, and

A. Valero-Nogueira, “Wideband Double-Fed Planar Monopole An-

tennas,” Electronics Letters, vol. 39, no. 23, November 2003.

[20] D. Guha and Y. Antar, “Circular Microstrip Patch Loaded With

Balanced Shorting Pins for Improved Bandwidth,” IEEE Antennas

and Wireless Propagation Letters, vol. 5, no. 1, pp. 217–219, 2006.

[21] V. Sadeghi, C. Ghobadi, and J. Nourinia, “Design of UWB Semi-

Circle-Like Slot Antenna With Controllable Band-Notch Function,”

Electronics Letters, vol. 45, no. 25, pp. 1282–1283, 2009.

[22] Z. Low, J. Cheong, and C. Law, “Low-Cost PCB Antenna for UWB

Applications,” IEEE Antennas and Wireless Propagation Letters,

vol. 4, pp. 237–239, 2005.

[23] J. Liang, C. C. Chiau, X. Chen, and C. Parini, “Study of Printed

Circular Disc Monopole Antenna for UWB Systems,” IEEE Trans-

actions on Antennas and Propagation, vol. 53, no. 11, pp. 3500–3504,

November 2005.

[24] Y. Lin and K. Hung, “Compact Ultrawideband Rectangular Aper-

ture Antenna and Band-Notched Designs,” IEEE Transactions on

79

Antennas and Propagation, vol. 54, no. 11, pp. 3075–3081, November

2006.

[25] Y. Cho, K. Kim, D. Choi, S. Lee, and S. Park, “A Miniture UWB

Planar Monopole Antenna With 5-GHz Band-Rejection Filter and

the Time-Domain Characteristics,” IEEE Transactions on Antennas

and Propagation, vol. 54, no. 5, pp. 1453–1460, May 2006.

[26] P. Li, J. Liang, and X. Chen, “Study of Printed Elliptical/Circular

Slot Antennas for Ultrawideband Applications,” IEEE Transactions

on Antennas and Propagation, vol. 54, no. 6, pp. 1670–1675, June

2006.

[27] Z. Chen, T. See, and X. Qing, “Small Printed Ultrawideband An-

tenna With Reduced Ground Plane Effect,” IEEE Transactions on

Antennas and Propagation, vol. 55, no. 2, pp. 383–388, February

2007.

[28] A. Abbosh and M. Bialkowski, “Design of Ultrawideband Planar

Monopole Antennas of Circular and Elliptical Shape,” IEEE Trans-

actions on Antennas and Propagation, vol. 56, no. 1, January 2008.

[29] K. G. Thomas and M. Sreenivasan, “A Simple Ultrawideband Pla-

nar Rectangular Printed Antenna With Band Dispensation,” IEEE

Transactions on Antennas and Propagation, vol. 58, no. 1, January

2010.

[30] R. Azadegan and K. Sarabandi, “A Novel Approach for Miniaturiza-

tion of Slot Antennas,” IEEE Transactions on Antennas and Propa-

gation, vol. 51, no. 3, pp. 421–429, 2003.

[31] B. Porter, G. Noakes, and S. Gearhart, “Design on Dual-Band Dual-

Polarized Wire Antennas Using a Genetic Algorithm,” IEEE Anten-

80

nas and Propagation Society International Symposium, 1999, vol. 4,

pp. 2706–2709, 1999.

[32] G. Zhao, W. Shen, and M. Wu, “Monopole Antenna Design Using a

Genetic Algorithm With Dual-Band and Widebad Operations,” 2008

China-Japan Joint Microwave Conference, pp. 241–244, 2008.

[33] L. Lizzi, F. Viani, R. Azaro, and A. Massa, “A PSO-Driven Spline-

Based Shaping Approach for Ultrawideband (UWB) Antenna Syn-

thesis,” IEEE Transactions on Antennas and Propagation, vol. 56,

no. 8, pp. 2613–2621, 2008.

[34] M. John and M. Ammann, “Wideband Printed Monopole Design Us-

ing a Genetic Algorithm,” IEEE Antennas and Wireless Propagation

Letters, vol. 6, 2007.

[35] H. G. Shantz, “A Brief History of Ultra-Wideband Antennas,” IEEE

Conference on UWBST, pp. 209–213, November 2003.

[36] T. Barrett, “History of Ultra Wideband (UWB) Radar and Com-

munications: Pioneers and Innovators,” Proceedings of Progress in

Electromagnetics Symposium 2000(PIERS2000), July 2000.

[37] C. Bennett and G. F. Ross, “Time-Domain Electromagnetics and Its

Applications,” Proceedings of the IEEE, vol. 66, no. 3, March 1978.

[38] R. Aiello and A. Barta, Ultra Wideband Systems: Technologies and

Applications. Elsevier, 2006.

[39] First Report and Order, Revision of Part 15 of the Commission’s

Rules Regarding Ultra-Wideband Transmission Systems, FCC, Febru-

ary 2002.

81

[40] R. J. Fontana, “Recent System Applications of Short-Pulse Ultra-

Wideband (UWB) Technology,” IEEE Transactions on Microwave

Theory and Applications, vol. 52, no. 9, September 2004.

[41] I. Immoreev and D. Fedotov, “Ultra Wideband Radar Systems: Ad-

vantages and Disadvantages,” Proceedings of the IEEE Ultra Wide-

band Systems and Technology Conference, May 2002.

[42] M. Ho, L. Taylor, and G. Aiello, “UWB Technology for Wireless

Video Networking,” ICCE. International Conference on Consumer

Electronics, 2001.

[43] J. Kim, S. Lee, Y. Jeon, and S. Choi, “Residential HDTV Distri-

bution System Using UWB and IEEE 1394,” IEEE Transactions on

Consumer Electronics, vol. 52, no. 1, 2006.

[44] Z. Jinyun, P. Orlik, Z. Sahinoglu, and A. Molisch, “UWB Systems for

Wireless Sensor Networks,” Proceedings of the IEEE, vol. 97, no. 2,

2009.

[45] S. Gezici, T. Zhi, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor,

and Z. Sahinoglu, “Localization Via Ultra-Wideband Radio: a Look

At Positioning Aspects for Future Sensor Networks,” IEEE Signal

Processing Magazine, vol. 22, no. 4, 2005.

[46] V. Gungor and G. Hancke, “Industrial Wireless Sensor Networks:

Challenges, Design Principles, and Technical Approaches,” IEEE

Transactions on Industrial Electronics, vol. 56, no. 10, 2009.

[47] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Rang-

ing with Ultrawide Bandwidth Signals in Multipath Environments,”

Proceedings of the IEEE, vol. 97, no. 2, 2009.

82

[48] S. Dai, L. Liu, and G. Fang, “A Low–Cost Handheld Integrated

UWB Radar For Shallow Underground Detection,” 2010 IEEE In-

ternational Conference on Ultra–Wideband (ICUWB), pp. 1–4, Sept.

2010.

[49] G. Ji, X. Gao, H. Zhang, and T. Gulliver, “Subsurface Object De-

tection Using UWB Ground Penetrating Radar,” IEEE Pacific Rim

Conference on Communications, Computers, and Signal Processing,

pp. 740–743, August 2009.

[50] M. H. Ucar, A. Sondas, and Y. E. Erdemli, “Design of 2 × 2 UWB

Printed Antenna Array for See-Through-Wall Imaging,” 2013 Com-

putational Electromagnetics Workshop (CEM), pp. 26–27, 2013.

[51] P. Hansen, K. Scheff, and E. Mokole, “Dual Polarized, UWB Radar

Measurements of the Sea at 9 GHz,” 1998 Ultra–Wideband Short–

Pulse Electromagnetics 4, pp. 335–348, June 1998.

[52] M. Levy, D. Kumar, and A. Dinh, “A Novel Fractal UWB Antenna

for Earthquake and Tsunami Prediction Application (LETPA),” 2013

26th Annual IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), pp. 1–4, May 2013.

[53] E. Pancera, L. Xuyang, M. Jalilvand, and T. Zwick, “UWB Medi-

cal Diagnostics: In–Body Transmission Modeling and Applications,”

Proceedings of the 5th European Conference on Antennas and Prop-

agation (EUCAP), pp. 2651–2655, April 2011.

[54] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna

Design Handbook. Artech House, 2001.

[55] D. M. Pozar and B. Kaufman, “Increasing the Bandwidth of a

Microstrip Antenna by Proximity Coupling,” Electronics Letters,

vol. 23, no. 8, pp. 368–369, 1987.

83

[56] J. James, P. Hall, and C. Wood, Microstrip Antenna Theory and

Design. Peter Peregrinus Ltd, 1981.

[57] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley

and Sons, Inc, 2005.

[58] G. Kumar and K. Ray, Broadband Microstrip Antennas. Artech

House, 2003.

[59] Y. Jang, “Broadband T-shaped Microtrip–Fed U-slot Coupled Patch

Antenna,” Electronics Letters, vol. 38, no. 11, pp. 495–496, May 2002.

[60] J. Ansari, N. Yadav, A. Mishra, K. Singh, and A. Singh, “Broadband

Rectangular Microstrip Antenna Loaded With a Pair of U-Shaped

Slots,” 2010 International Conference on Power, Control and Em-

bedded Systems (ICPCES), pp. 1–5, Nov. 2010.

[61] A. Deshmukh and G. Kumar, “Compact Broadband E-shaped Mi-

crostrip Antennas,” Electronics Letters, vol. 41, no. 18, pp. 989–990,

Sept. 2005.

[62] J. Kovitz and Y. Rahmat-Samii, “Micro–Actuated Pixel Patch An-

tenna Design Using Particle Swarm Optimization,” 2011 IEEE Sym-

posium on Antennas and Propagation, pp. 2415–2418, July 2011.

[63] H. Choo and H. Ling, “Design of Multiband Microstrip Antennas

Using a Genetic Algorithm,” IEEE Microwave and Wireless Compo-

nents Letters, vol. 12, no. 9, pp. 345–347, Sept. 2002.

[64] F. Villegas, T. Cwik, Y. Rahmat-Samii, and M. Manteghi, “Parallel

Genetic–Algorithm Optimization of a Dual–Band Patch Antenna for

Wireless Communications,” 2002 Antennas and Propagation Society

International Symposium, pp. 334–337, 2002.

84

[65] Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, “Nature–

Inspired Optimization Techniques in Communication Antenna De-

signs,” Proceedings of the IEEE, vol. 100, no. 7, pp. 2132–2144, July

2012.

[66] K. Yee, “Numerical Solution of Initial Boundary Value Problems In-

volving Maxwell’s Equations In Isotropic Media,” IEEE Transactions

on Antennas and Propagation, vol. 14, pp. 302–307, 1966.

[67] J. Berenger, “A Perfectly Matched Layer for the Absorption of Elec-

tromagnetic Waves,” Journal of Computational Physics, vol. 114, pp.

185–200, 1994.

[68] ——, “Three-Dimensional Perfectly Matched Layer for the Absorp-

tion of Electromagnetic Waves,” Journal of Computational Physics,

vol. 127, pp. 363–379, 1996.

[69] A. Taflove and S. C. Hagness, Computational Electrodynamics: The

Finite-Difference Time-Domain, 2nd ed. Artech House, 2000.

[70] Z. Sacks, D. Kingsland, R. Lee, and J. Lee, “A Perfectly Matched

Anisotropic Absorber for Use as an Absorbing Boundary Condition,”

IEEE Transactions on Antennas and Propagation, vol. 7, pp. 1460–

1463, December 1995.

[71] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method.

IEEE Press, 2000.

[72] D. Sheen, S. Ali, M. Abouzahra, and J. Kong, “Application of the

Three-Dimensional Finite-Difference Time-Domain Method to the

Analysis of Planar Microstrip Circuits,” IEEE Transactions on Mi-

crowave Theory and Techniques, vol. 38, no. 7, pp. 849–857, July

1990.

85

[73] W. Bozejko, A. Dobrucki, and M. Walczynski, “Parallelizing of Dig-

ital Signal Processing With Using GPU,” Signal Processing Algo-

rithms, Architectures, Arrangements, and Applications Conference

Proceedings (SPA), pp. 29–33, Sept 2010.

[74] N. Zhang, Y. shan Chen, and J.-L. Wang, “Image Parallel Processing

Based on GPU,” 2010 2nd International Conference on Advanced

Computer Control (ICACC), March 2010.

[75] W. Vanderbauwhede and T. Takemi, “An Investigation Into the Fea-

sibility and Benefits of GPU/Multicore Acceleration of the Weather

Research and Forecasting Model,” 2013 International Conference on

High Performance Computing and Simulation (HPCS), July 2013.

[76] C. Yang, Q. Wu, J. Chen, and Z. Ge, “GPU Acceleration of High-

Speed Collision Molecular Dynamics Simulation,” Ninth IEEE Inter-

national Conference on Computer and Information Technology, Oct.

2009.

[77] A. Bustamam, K. Burrage, and N. Hamilton, “Fast Parallel Markov

Clustering in Bioinformatics Using Massively Parallel Graphics Pro-

cessing Unit Computing,” 2010 Ninth International Workshop on

Parallel and Distributed Methods in Verification, Sept. 2010.

[78] D. Barboza and E. Clua, “GPU-Based Data Structure for a Paral-

lel Ray Tracing Illumination Algorithm,” 2011 Brazilian Symposium

on Games and Digital Entertainment (SBGAMES), pp. 11–16, Nov.

2011.

[79] C. Y. Ong, M. Weldon, S. Quiring, L. Maxwell, M. Hughes, C. Whe-

lan, and M. Okoniewski, “Speed It Up,” IEEE Microwave Magazine,

pp. 70–78, April 2010.

86

[80] Z. Bo, X. Zheng-hui, R. Wu, L. Wie-ming, and S. Xin-qing, “Accel-

erating FDTD Algorithm Using GPU Computing,” 2011 IEEE In-

ternational Conference on Microwave Technology and Computational

Electromagnetics (ICMTCE), pp. 410–413, May 2011.

[81] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics Pro-

cessor Unit (GPU) Acceleration of Finite-Difference Time-Domain

(FDTD) Algorithm,” Proceedings of the 2004 International Sympo-

sium on Circuits and Systems, May 2004.

[82] J. Hensley, “OpenCL Specification Overview.” SIGGRAPH Asia

2009, 2009.

[83] M. Scarpino, OpenCL in Action. Manning Publications Co., 2012.

[84] S. Gedney, “Finite–Difference Time–Domain Analysis of Microwave

Circuit Devices on High Performance Vector/Parallel Computers,”

IEEE Transactions on Microwave Theory and Techniques, vol. 43,

no. 10, pp. 2510–2514, October 1995.

[85] W. Yu, Y. Liu, Z. Su, N.-T. Hunag, and R. Mittra, “A Robust Par-

allel Conformal Finite–Difference Time–Domain Processing Package

Using the MPI Library,” IEEE Antennas and Propagation Magazine,

vol. 47, no. 3, pp. 39–59, June 2005.

[86] Y. Lu and C. Chen, “A Domain Decomposition Finite–Difference

Method for Parallel Numerical Implementation of Time–Dependent

Maxwell’s Equations,” IEEE Transactions on Antennas and Propa-

gation, vol. 45, no. 3, pp. 556–562, March 1997.

[87] C. Guiffaut and K. Mahdjoubi, “A Parallel FDTD Algorithm Us-

ing the MPI Library,” IEEE Antennas and Propagation Magazine,

vol. 43, no. 2, pp. 94–103, April 2001.

87

[88] P. Sypek, A. Dziekonski, and M. Mrozowski, “How to Render FDTD

Computations More Effective Using a Graphics Accelerator,” IEEE

Transactions on Magnetics, vol. 45, no. 3, pp. 1324–1327, 2009.

[89] S. Adams, J. Payne, and R. Boppana, “Finite Difference Time Do-

main (FDTD) Simulations Using Graphics Processors,” 2007 DoD

High Performance Computing Modernization Program Users Group

Conference, pp. 334–338, 2007.

[90] “Ncbi map viewer,” http://www.ncbi.nlm.nih.gov/projects/mapview,

accessed: 01-18-2014.

[91] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, 1st ed. Addison-Weasley Professional, 1989.

[92] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press,

1996.

[93] J. Baker, “Reducing Bias and Inefficiency in the Selection Algo-

rithm,” Proceedings of the Second International Conference on Ge-

netic Algorithms and Their Applications, pp. 14 – 21, 1987.

[94] S. Sivanandam and S. Deepa, Introduction to Genetic Algorithms.

Springer, 2008.

[95] Eberhart and Kennedy, “Particle Swarm Optimization,” IEEE Inter-

national Conference on Neural Networks, 1995.

[96] J. Kennedy and R. Eberhart, “A Discrete Binary Version of the Par-

ticle Swarm Optimization,” IEEE International Conference on Sys-

tems, Man, and Cybernetics, 1997.

[97] R. MacArthur and E. O. Wilson, The Theory of Island Biogeography.

Princeton University Press, 1967.

88

[98] D. Simon, “Biogeography–Based Optimization,” IEEE Transactions

on Evolutionary Computation, vol. 12, no. 6, pp. 702 – 713, December

2008.

[99] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming Made

Faster,” IEEE Transactions on Evolutionary Computation, vol. 3,

no. 2, July 1999.

[100] J. M. Johnson and Y. Rahmat-Samii, “Genetic Algorithm and

Method of Moments (GA/MOM) for the Design of Integrated An-

tennas,” IEEE Transactions on Antennas and Propagation, vol. 47,

no. 10, pp. 1606–1614, October 1999.

89

APPENDIX A

FINITE DIFFERENCE TIME DOMAIN UPDATE

EQUATIONS

This appendix contains the full listing of the electromagnetic field and

constitutive field update equations, as derived based on the discussion in

Section 3.3. The examples from that section are repeated for completeness.

A.1 D-field Update

Dx

∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Dx

∣∣n−1/2

i,j+1/2,k+1/2
+

(
2ε∆t

2εκy + σy∆t

)
×

(Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

∆y
−
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i,j+1/2,k

∆z

)
(A.1)

Dy

∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
Dy

∣∣n−1/2

i,j+1/2,k+1/2
+

(
2ε∆t

2εκz + σz∆t

)
×

(Hx

∣∣n
i,j+1/2,k+1

−Hx

∣∣n
i,j+1/2,k

∆z
−
Hz

∣∣n
i+1/2,j+1/2,k+1/2

−Hz

∣∣n
i−1/2,j+1/2,k+1/2

∆x

)
(A.2)

90

Dz

∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκx − σx∆t
2εκx + σx∆t

)
Dz

∣∣n−1/2

i,j+1/2,k+1/2
+

(
2ε∆t

2εκx + σx∆t

)
×

(Hy

∣∣n
i+1/2,j+1/2,k+1/2

−Hy

∣∣n
i−1/2,j+1/2,k+1/2

∆x
−
Hx

∣∣n
i,j+1,k+1/2

−Hx

∣∣n
i,j,k+1/2

∆y

)

(A.3)

A.2 E -field Update

Ex
∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
Ex
∣∣n−1/2

i,j+1/2,k+1/2
+

[
2εκx + σx∆t

(2εκz + σz∆t)ε

]
Dx

∣∣n+1/2

i,j+1/2,k+1/2
−
[

2εκx − σx∆t
(2εκz + σz∆t)ε

]
Dx

∣∣n−1/2

i,j+1/2,k+1/2

(A.4)

Ey
∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκx − σx∆t
2εκx + σx∆t

)
Ey
∣∣n−1/2

i,j+1/2,k+1/2
+

[
2εκy + σy∆t

(2εκx + σx∆t)ε

]
Dy

∣∣n+1/2

i,j+1/2,k+1/2
−
[

2εκy − σy∆t
(2εκx + σx∆t)ε

]
Dy

∣∣n−1/2

i,j+1/2,k+1/2

(A.5)

Ez
∣∣n+1/2

i,j+1/2,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Ez
∣∣n−1/2

i,j+1/2,k+1/2
+

[
2εκz + σz∆t

(2εκy + σy∆t)ε

]
Dz

∣∣n+1/2

i,j+1/2,k+1/2
−
[

2εκz − σz∆t
(2εκy + σy∆t)ε

]
Dz

∣∣n−1/2

i,j+1/2,k+1/2

(A.6)

91

A.3 B -field Update

Bx

∣∣n+1

i,j+1,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Bx

∣∣n
i,j+1,k+1/2

−
(

2ε∆t

2εκy + σy∆t

)
×

(Ez∣∣ni,j+3/2,k+1/2
− Ez

∣∣n
i,j+1/2,k+1/2

∆y
−
Ey
∣∣n
i,j+1,k+1

− Ey
∣∣n
i,j+1,k

∆z

)
(A.7)

By

∣∣n+1

i,j+1,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
By

∣∣n
i,j+1,k+1/2

−
(

2ε∆t

2εκz + σz∆t

)
×

(Ex∣∣ni,j+1,k+1
− Ex

∣∣n
i,j+1,k

∆z
−
Ez
∣∣n
i+1/2,j+1,k+1/2

− Ez
∣∣n
i−1/2,j+1,k+1/2

∆x

)
(A.8)

Bz

∣∣n+1

i,j+1,k+1/2
=

(
2εκx − σx∆t
2εκx + σx∆t

)
Bz

∣∣n
i,j+1,k+1/2

−
(

2ε∆t

2εκx + σx∆t

)
×

(Ey∣∣ni+1/2,j+1,k+1/2
− Ey

∣∣n
i−1/2,j+1,k+1/2

∆x
−
Ex
∣∣n
i,j+1/2,k+1/2

− Ex
∣∣n
i,j−1/2,k+1/2

∆y

)

(A.9)

92

A.4 H -field Update

Hx

∣∣n+1

i,j+1,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
Hx

∣∣n
i,j+1/2,k+1/2

+

[
2εκx + σx∆t

(2εκz + σz∆t)µ

]
Bx

∣∣n+1

i,j+1/2,k+1/2
−
[

2εκx − σx∆t
(2εκz + σz∆t)µ

]
Bx

∣∣n
i,j+1/2,k+1/2

(A.10)

Hy

∣∣n+1

i,j+1,k+1/2
=

(
2εκx − σx∆t
2εκx + σx∆t

)
Hy

∣∣n
i,j+1/2,k+1/2

+

[
2εκy + σy∆t

(2εκx + σx∆t)µ

]
By

∣∣n+1

i,j+1/2,k+1/2
−
[

2εκy − σy∆t
(2εκx + σx∆t)µ

]
By

∣∣n
i,j+1/2,k+1/2

(A.11)

Hz

∣∣n+1

i,j+1,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Hz

∣∣n
i,j+1/2,k+1/2

+

[
2εκz + σz∆t

(2εκy + σy∆t)µ

]
Bz

∣∣n+1

i,j+1/2,k+1/2
−
[

2εκz − σz∆t
(2εκy + σy∆t)µ

]
Bz

∣∣n
i,j+1/2,k+1/2

(A.12)

93

	Cleveland State University
	EngagedScholarship@CSU
	2014

	Bio-Inspired Optimization of Ultra-Wideband Patch Antennas Using Graphics Processing Unit Acceleration
	Brian Vyhnalek
	Recommended Citation

	tmp.1461159725.pdf.kcqYk

