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HYDROGENASE INHIBITION BY O2: 

DENSITY FUNCTIONAL THEORY/MOLECULAR 

MECHANICS INVESTIGATION 

DANIELA B. DOGARU 

ABSTRACT 

 
 [Fe-Fe]-hydrogenases are enzymes that reversibly catalyze the reduction of protons 

to molecular hydrogen, which occurs in anaerobic media. In living systems, [Fe-Fe]-

hydrogenases shift the reversible reaction towards H2 formation. The [Fe-Fe]-

hydrogenase H-cluster is the active site, which contains two iron atoms (Fep-Fed, i.e., 

proximal and distal iron). Because most experimental and theoretical investigations 

confirm that the structure of di-iron air inhibited species is Fep
II-Fed

II-O-O-H-, O2 has to 

be prevented from binding to Fed in all di-iron subcluster oxidation states in order to 

retain a catalytically active enzyme. By understanding the catalytic processes of 

metalloenzymes, researches are enabled to produce an excellent source of fuel and energy 

storage (H2) for the future, which is clean and highly energetic when reacted with 

oxygen.  

H-cluster oxidation in gas phase, and in aqueous enzyme phase, has been 

investigated by means of quantum mechanics (QM) and combined quantum mechanics-

molecular mechanics (QM/MM).  

The inhibitory process occurs at the coordination site, distal iron (Fed), of the 

catalytic H-cluster. The processes involved in the H-cluster oxidative pathways are O2 
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binding, e- transfer, protonation, and H2O removal. We found that oxygen binding is non-

spontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe 

atoms have oxidation state II; however, it is spontaneous for the partially oxidized and 

reduced clusters in both phases. Hence, in the protein environment the O2-inhibited H-

cluster is obtained by means of exergonic reaction pathways.  

A unifying endeavor has been carried out for the purpose of understanding the 

thermodynamic results vis-à-vis several other performed electronic structural methods, 

such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), 

and H-cluster geometrical analysis.  

Since hydrogenases become O2 inactivated, residue mutations were carried out in 

order to make them O2 resistant. Residue mutations consist of deletions and substitutions 

8 Å radially outward from Fed. In order to screen the polar residues (in the 8 Å 

apoenzyme layer), individual residue deletions were carried out to determine what 

residue substitutions should be made to improve O2 inhibition. Residue deletions and 

substitutions were performed for three di-iron subcluster oxidation states, Fep
II-Fed

II, 

Fep
II-Fed

I, and Fep
I-Fed

I of [Fe-Fe]-hydrogenase. From the screened residues, two 

deletions (ΔThr152, and ΔSer202) were found most effective in hindering O2 binding to 

Fed. The two-residue deletions, ΔThr152and ΔSer202, on Fep
II-Fed

II hydrogenase, gave 

ΔGQM/MM = +5.4 kcal/mol, which evidently hinders O2 binding. An improvement in 

Gibbs’ energy (+4.4 kcal/mol) has also been found for Fep
I-Fed

I hydrogenase. Comparing 

the simultaneous residue deletions (ΔThr152 and ΔSer202) with the dual residue 

substitutions (Thr152Ala, and Ser202Ala), a small difference in Gibbs’ energy has been 

found (ΔGQM/MM  ~ +2 kcal/mol), for O2 binding, which is attributed to an overall charge 
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of approximately zero for alanine. The eventual propose hydrogenase mutation in 

molecular biology laboratory should avail researchers in using it for the full cells of the 

future. 
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CHAPTER I 

THE CHEMISTRY OF THE H-CLUSTER INHIBITION BY O2 

 

1.1. General Considerations 

 

The goal of the present research is to engineer an O2 resistant (H2 producing) 

hydrogenase that is found in Desulfovibrio desulfuricans (DdH). Moreover, the 

endeavour is to understand the chemistry of O2 inhibition of [Fe-Fe]-hydrogenase H-

cluster (where the latter is the active site), by identifying the chemical species involved in 

the aerobic inhibition:  

1. Finding reaction intermediates, their molecular structure (bond lengths, angles, 

dihedrals, etc.), thermodynamic functions for different reaction steps (reaction 
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enthalpies,), i.e., investigate the potential energy surface of H-cluster inhibition 

by O2 in vacuum. 

2. Investigating the potential energy surface of H-cluster inhibition by O2 in 

solution. 

3. Identifying the essential structural moieties of the enzyme (e.g., amino acid 

residues), which are responsible for the enzymatic inhibition. 

The current undertaking ensues because DdH has a great turnover number in an 

anaerobic milieu1 (9000 s-1). However, it is economically desirable to set off DdH to 

function aerobically for the purpose of H2 evolution*. 

Finally, burning hydrogen as fuel will benefit our convalescing planet from the 

current deleterious plight is currently in.   

 Calculations in vacuum yield basic information regarding the reaction steps and 

intermediates i.e., molecular geometry, electronic structure (e.g., partial charges), 

vibrational frequencies, and thermodynamic functions. Moreover, such calculations 

provide an expedient way of mapping the potential energy surfaces of the reaction 

mechanisms. Because the in-vacuum (or, gas phase) calculations are inexpensive relative 

to the enzyme matrix calculations, it is reasonable that the initial calculations be carried 

out in gas phase. To achieve the current aim, the following studies are performed: 

1. Thermodynamic analysis of H-cluster and O2 inhibitory process in gas phase 

and water. 

2. Electronic structure examination of the H-cluster in order to ascertain the 

thermodynamics analysis. 

                                                 
* It is cost effective to work in the ambient atmosphere rather then an artificial (N2) atmosphere. 
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Furthermore, since gas phase results (Chapter I and II) confirm that the reaction 

mechanism of H-cluster and O2 is reversible, the next investigation shall perforce deal 

with the inhibitory mechanism of H-cluster by O2 using hybrid classical mechanics and 

quantum mechanics calculations for the enzyme matrix. Thus, three examinations need to 

be performed, i.e., Chapter 3 and 4. 

1. Perform calculations on the inhibitory mechanism of [Fe-Fe]-

hydrogenase by O2. 

2. Evaluate the inhibitory effect of O2 for the wild type hydrogenase.    

3. Engineer an [FeFe]-hydrogenase, which shall not react with O2, via 

residue mutations. 

 

1.2.  Background and Significance 

 
 

1.2.1. Hydrogenases Structure and Function 

 
 

[Fe-Fe]-hydrogenases as well as [Ni-Fe]-hydrogenases are enzymes that are 

implicated in H2 metabolism (2H+ + 2e- ⇄ H2), which occurs in anaerobic media. Of these 

two bi-metal enzymes, [Fe-Fe]-hydrogenases are most attractive for H2 production, with 

a reactivity of up to 2 orders of magnitude larger than [Ni-Fe]- hydrogenases 1,2. In 

hydrogenases, H2 evolution, emerging from proton reduction (2H+ + 2e- → H2), is 

essential in the disposal of excess electrons*. Low-molecular weight biomolecules such as 

                                                 
* The excess electrons are generally low potential electrons that are also involved in fermentation. 
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ferredoxins, cytochrome c3, and cytochrome c6 can act as physiological electron 

acceptors or donors3.  

The hydrogenase H-cluster is the active site and is comprised of two subunits, the 

2Fe subunit, and the cubane, [Fe4-S4]2+, subunit. The 2Fe subunit is composed of two iron 

atoms (Fep-Fed, i.e., proximal and distal iron) that are bridged by 1,3-di(thiomethyl)amine 

(DTMA) chain, and are coordinated by endogenous ligands, i.e., two cyanides, two 

terminal carbonyls, and a bridging carbonyl (COb). Moreover, the Sγ (of Cys382) is the 

connecting atom from an Fe atom of the (proximal) cubane subunit and the Fep of the 2Fe 

subunit. 

The reason for studying biological H2 production is because the eventual 

elucidation of the mechanism (for hydrogen synthesis) may help researchers to produce 

clean fuel through using certain anaerobic prokaryotes4-8. 

Previous Density Functional Theory (DFT) as well as hybrid quantum mechanics/ 

molecular mechanics (QM/MM) calculations2,9-16 have been successful in clarifying  

some aspects of the catalytic properties of the H-cluster.  

As in similar computational studies2,9, cysteine is substituted with CH3-S-, whereas 

cubane is replaced∗ with a H+.  

Furthermore, computational and experimental2,9,14,16-41 [Fe-Fe]-hydrogenase H-

cluster (and synthetic H-cluster-like compounds) research sheds light on the potential 

redox states of the 2Fe H-cluster subunit, Fep-Fed, where Fep
I-Fed

I is the reduced 2Fe H-

                                                 
∗ The truncation of the cubane, [Fe4-S4]2+, and its replacement by a H+ (as well as the replacement of CH3-S- 

for cysteine-S) had been done in order to obtain the best compromise with regard to the computational cost. 
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cluster subunit, Fep
II-Fed

I is the partially oxidized enzyme subunit, and Fep
II-Fed

II is the 

fully oxidized, inactive enzyme H-cluster subunit.  

The fully oxidized H-cluster, Fep
II-Fed

II, has a H2O molecule, OOH- or an OH- 

bound to the Fed
II. In our previous investigation21, we have inferred that a vacant (fully 

oxidized) Fep
II-Fed

II (Figure 1-1) could also be a viable intermediate in H2 synthesis. 

Regardless of the 2Fe H-cluster subunit redox states, the proximal cubane – or more 

precisely a cuboid (point group: D2d) – always retains a 2+ oxidation state, [Fe4-S4]2+.  

The partially oxidized H-cluster (Fep
II-Fed

I, Figure 1-1), Hox, is the active form of 

the hydrogenase enzyme∗. The reduced H-cluster (Fep
I-Fed

I, Figure 1-1) has both iron 

atoms in oxidation states I (being an intermediate in H2 metabolism). According to Liu 

and Hu9, 6 is the cluster having great affinity for protonation (6 → 8), in capturing  a 

proton from the side chain of a near by amino-acid, such as Lys237.  

X-ray crystallography and spectroscopic studies of hydrogenases, with the latter 

having been obtained from Clostridium pasteurianum (CPI)43  and Desulfovibrio 

desulfuricans (DdH)31 (Figure 1-1), led to a better understanding of the biochemical roles 

of these enzymes. The X-ray crystal structure of CPI hydrogenase shows an oxygen 

species that may be OH-, or H2O bound to the Fed of the H-cluster. Based on the 

computational results of Liu and Hu2 (CPI has OH- in its inactive form according to X-

ray crystal structure), we try to ascertain whether the air oxidized H-cluster (Fep-Fed-O2) 

converts to Fep-Fed-OH species21.  

                                                 
∗ Voltametric42 studies show the transition of Hox

inact to Hox
cat occurring via a reversible e- transfer process to 

the hydrogenase transient state followed by a putative two e- transfer (with the latter not reaching the 

bimetals of the H-cluster). 
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1.2.2.  Desulfovibrio Desulfuricans Hydrogenase Structure 

 

DdH31 is an enzyme comprised of two types of FeS clusters, i.e., an H-cluster 

(Fe4S4-Fe2S2) and two cubanes (Fe4S4). It also consists of 511 amino acids (amino acids) 

with an approximate molecular weight of 53,000 g/mol. Furthermore, DdH consist of two 

chains, one being light and the other heavy (Figure 2-1). 
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Figure 1-1. A depiction of the prosthetic groups located in [Fe-Fe]-hydrogenase H-

cluster, and cubanes, where the atom colors, for the H-cluster and cubanes, are red = O, 

green = C, blue = N, lighter orange = S, and darker orange = Fe (from the X-ray crystal 

structure protein data bank code 1HFE31). 

 

 

 

 

 

 

H-Cluster  

Cubanes 
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Theses FeS clusters are situated in the heavy chain and are bound to twelve 

cysteines, i.e., four cysteines are bound to each FeS cluster and bridge the gap between 

the polypeptide (heavy) chain and the FeS clusters groups.  

Hydrogenases catalyze the reversible reduction of protons to hydrogen molecules 

(2H+ + 2e- ⇄ H2) in anaerobic media. The hydrogen molecule acts as physiological energy 

storage. One way to produce hydrogen is by harnessing the hydrogenase enzyme. The 

eventual elucidation of the catalytic mechanism of hydrogen synthesis may help 

researchers to produce clean hydrogen fuel for the future using certain organisms*4-8. 

 

1.2.3. Desulfivibrio Desulfuricans Hydrogenase Biosynthesis 

 

The translation of DdH occurs mostly on the ribosomes of the rough endoplasmic 

reticulum, where the FeS clusters are covalently bound to the rest of the polypeptide, 

which is mediated by certain enzymes called accessory proteins. The FeS-polypeptide 

joining occurs during the enzymatic folding while the FeS cluster groups are buried 

inside DdH. Molecular chaperons also contribute to the folding of DdH44,45. Furthermore, 

after being assembled and folded, the (periplasmic) DdH enzyme is delivered to the cell 

membrane.  

 

 

                                                 
* Hydrogenases are ubiquitous; they are encountered from the depths of the ocean to the surface of the 

earth (e.g. in eukaryotes like green algae). 
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Figure 1-2. DdH is comprised of the ferrodoxin-like domains (blue spheres), and of the 

H-domain (greenish background), with the small, red chain surrounding the former 

domains (from the X-ray crystal structure protein data bank code 1HFE31). 
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1.2.4. Desulfivibrio Desulfuricans Hydrogenase Main Domains  

The active domain (H-domain) has a hydrogen-bond network extending from the H-

cluster to the surface of the molecule (Figure 1-3).  This hydrogen-bond network is 

potentially involved in the H+ transfer, which is a vital step in H2 synthesis (2H+ + 2e- ⇄ 

H2). 

The cubane clusters are found buried inside ferrodoxin-like domains. These cubane 

clusters, as well as the small chain, are crucial in the electron transfer mechanism and are 

interconnected with redox partners1,46 such as cytochrome c3 or c6.  
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Figure 1-3. Hydrogen-bond network (dashed lines) extends from the H-cluster to the 

surface of the [Fe-Fe]-hydrogenase; Thr-90 residue belongs to the small chain, while the 

visible amino acid residues consist of the large chain (as presented in references 29 and 

31). 
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CHAPTER II 

COMPUTATIONAL ANALYSIS OF H-CLUSTER AND O2 

INHIBITORY PROCESS IN GAS PHASE AND WATER 

 

2.1. General Considerations 

 

Computational and experimental1-23 [Fe-Fe]-hydrogenase H-cluster (and synthetic 

H-cluster-like compounds) research elucidates the potential hydrogenase O2 inhibition 

pathways. 

Density Functional Theory∗ (DFT24-28) methodology is used to calculate the 

geometry and the electronic structure of the intermediates in the O2 inhibition pathways. 

Previous calculations29-34 using DFT have also been successful in elucidating some 

                                                 
∗ Density functional theory (DFT) is a quantum mechanical method, which studies the electronic structure 

of many-body systems, specifically molecules and the condensed phases. 



   

 
 

 17 

aspects of the catalytic properties of H-cluster. 

 

2.2. Methodology 

 

The electronic structure of the hydrogenase active site is investigated by the B3LYP 

functional of DFT, with 6-31+G(d,p)** basis set (implemented in Gaussian35 software). 

For Fe an effective-core36-38 potential with a double zeta polarization basis set 

(LANL2DZ) was used to replace the interaction of core electrons. In accordance with 

experimental39-42 and in-silico data19, low spin states (singlet, and doublet), and low 

oxidation states (I, and II) for the iron atoms have been selected.  

Finally, calculations are performed for the polarized continuous model∗∗∗ (PCM43-45) 

of the solvent and then have been checked against the gas phase calculations46. 

 

2.3. Thermodynamics of the H-cluster Oxidation 

 
Figure 2-4 represents different O2 inhibition pathways of the hydrogenase H-cluster. 

Reaction 1 → 2 (path I) is slightly exothermic for the gas phase (∆Hgas = -0.94 kcal/mol;  

 

                                                 
** B3LYP/6-31+G(d,p) = Becke-style 3-Parameter Density Functional Theory (using the Lee-Yang-Parr 

correlation functional) with the orbitals 6-31+G(d,p). 

∗∗∗ PCM model performs calculations in the presence of a solvent that uses the Polarized Continuum 

(overlapping spheres) model of Tomasi et al. 
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Figure 2-1. The H-cluster and its subunits, i.e., the cubane, and the 2Fe (or di-iron) 

subunit (as presented in references 17, 19 and 41). 
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Figure 2-2. Compound 9 is a key compound because it most closely resembles the active 

site of CPI obtained by X-ray crystallography17. Selected distances (Å) of the H-luster, 

theoretical model vs. X-ray crystallographic structure: Fe5-Fe4 2.605 (2.617), S6-N3 2.877 

(2.702), S7-N3 2.848 (2.642), Fe4-Cb 2.225 (2.100), Fe5-Cb 1.883 (2.043). 
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Figure 2-3. The general oxidation mechanisms for H-clusters that are fully oxidized (1), 

partially oxidized (5), and reduced (6) 
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Figure 2-4. O2 binding mechanisms to H-clusters that are fully oxidized (1), partially oxidized (5) and reduced (6). The charges and 
multiplicities are given in square brackets. The first enthalpy value (kcal/mol) is for gas phase, and the second is for aqueous phase.  
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Figure 2-5. Reaction mechanism for H2O elimination from the inhibited H-cluster. The 

H2O is being removed from a closed-shell cluster. 
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Figure 2-6. Reaction mechanism for H2O removal from the inhibited H-cluster. The H2O 

is eliminated from an open-shell cluster. 
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gas = gas phase) as well as for the aqueous phase (∆Haq = -1.65 kcal/mol; aq = aqueous 

phase) when O2 binds to the fully oxidized H-cluster (1). 

Subsequently, the reduction 2 → 3 (∆Hgas = -109.93 kcal/mol; ∆Haq = -133.81 

kcal/mol) as well as the protonation 3 → 4 (∆Hgas = -136.22 kcal/mole; ∆Haq = -29.30 

kcal/mol) proceed exothermically. In reactions 2 → 3 and 3 → 4, the enthalpy 

differences in gas versus aqueous phases is due to the solvation free energy (∆Gsol) of H-

clusters 2, 3, and 4, and also from the solvation free energy of the hydronium ion (H3O+) 

in 3 → 4 (Table 2-1). In particular, the solvation free energy is larger for H-cluster 3 

because it has a more negative charge (-1 a.u.) relative to 2 and 4 (which are neutral). 

Regarding gas versus aqueous phases, the above trend in enthalpy differences is observed 

for all pathways involving O2 inhibition (Figure 2-4, Figure 2-5, and Figure 2-6), i.e., the 

reaction enthalpy increases for the electron transfer and decreases for protonation. 

Furthermore, cluster (4) undergoes reduction, and the reaction 4 → 9 proceeds 

exothermically as well (∆Hgas = -80.21 kcal/mole; ∆Haq = -109.64 kcal/mol). The iron 

binding of O2 (Fed
I-O2) 5 → 3 (path II) is much firmer (∆Hgas = -48.47 kcal/mole; ∆Haq = 

-44.48 kcal/mol) than the binding in 1 → 2 (Fed
II-O2, path I). The remaining two 

reactions 3 → 4, and 4 → 9 (path II) are identical to the last two steps of path I. In path 

III, 6 → 7, the heat of reactions (∆Hgas = -48.89 kcal/mole; ∆Haq = -41.67 kcal/mol) are 

almost identical to the enthalpies of reaction 5 → 3. The enthalpy similarities may ensue 

from the fact that both loci of oxygen binding (Fed
I-O2) are on similar oxidized species, 

Fed
I. In path III, the protonation reaction (7 → 9) is, once again, exothermic for both 

phases (∆Hgas = -243.17 kcal/mole; ∆Haq = -60.63 kcal/mol). Finally, in path IV, the 

protonation 6 → 8 is the second most exothermic reaction in the gas phase (∆Hgas = -
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220.08 kcal/mole), compared to 7 → 9, while in the aqueous phase is less exothermic 

(∆Haq = -33.53 kcal/mol). The enthalpy differences (∆Hgas = -220.08 kcal/mole vs. ∆Haq 

= -33.53 kcal/mol), between the above phases in 6 → 8, are attributed to the large 

solvation free energy (∆Gsol = -167.46 kcal/mol) of cluster 6, which has a –2 a.u. charge. 

In the final step 8 → 9 of path IV (∆Hgas = -71.99 kcal/mole; ∆Haq = -68.77 

kcal/mol), O2 is interposed between Fed and the exogenous hydride (Fed
I-O2-H, 9). 

Furthermore, path IV shows that the oxidation of Fep-Fed H-cluster is similar* to the 

Nip-Fed hydrogenase H-cluster obtained from experimental data47. 

Thus, from the above thermodynamic results, it is observed that every reaction of 

each path is exothermic and leads to the oxidized species 9. Each vacant H-cluster (1, 5, 

or 6), regardless of its oxidation state, gets poisoned aerobically.   

 

2.4. NBO Charges and Geometry Modification of Intermediates in the 

Oxidation of H-cluster   

 

The atoms of the vacant H-clusters 1, 5, and 6 have similar natural bond orbital 

(NBO) charge distributions. For instance, for cluster 1 the NBO charges of Fep-Fed are 

qFep = 0.137 and qFed = -0.096 a.u., whereas in 5, the partial charges are somewhat 

reversed, i.e. -0.024 on Fep and 0.078 on Fed. Then the NBO charges for the Fep-Fed in 

                                                 
* The similarity for these clusters is they are first found as hydride containing H-clusters, and then undergo 

oxidation. 
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cluster 6 are more negative, qFep = -0.104, and qFed = -0.117 a.u. because both metals are 

in a reduced state (Figure 2-4), unlike clusters 1 and 5.  

As for charges on the nitrogen atom, N3, (of the DTMA bridge), one can see even 

more charge similarities among clusters 1, 5, and 6, than for the Fep-Fed atoms 

mentioned above; the partial charges for N3 are approximately -0.700 a.u., which makes 

this nitrogen a relatively strong base within the H-cluster.  

The non-bridging sulfur (Snb) is positively charged for 0.204 a.u. (1), 0.142 a.u. (5), 

and 0.079 a.u. (6). A drop in NBO charges can be seen for Snb belonging to clusters 1 to 

5 and 5 to 6, with a concomitant increase in the negative charge of Fep.  

When H-cluster 1 is in an oxidized state, Fep
II- Fed

II, the COb shifts towards the 

Fed
II, and becomes bonded to the Fed

II20. The shifted COb (measured from its bridging 

carbon, Cb, to the iron atoms) bond distance between Cb—Fep
II is 3.067 Å, whereas Cb—

Fed
II is 1.819 Å. When the carbonyl is close to Fed

II, COb-Fed
II, the fully oxidized H-

cluster 1 becomes  more stable which can also be seen from the NBO charge on C in 

COb, (0.664 a.u.). This is caused by charge repulsion between qCb (0.664 a.u.) and qFep 

(0.137 a.u.), whereas the COb migration towards Fed ensues due to the attraction between 

qCb and qFed (-0.096 a.u.). For clusters 5 and 6, the partial charges (qCb = 0.462 and qCb = 

0.466 a.u., respectively) are less then in 1 because COb  is bonded to both iron atoms. 

Comparing the heat of reactions for O2 binding which renders clusters 2, 3, and 7, 

one may notice that 3 and 7 are more stable than 2. The reason for this stability is mostly 

due to the formation of a hydrogen bond between the exogenous oxygen and the 

hydrogen H9 (bonded to N of the DTMA bridge) in 3 and 7. The hydrogen bond length is 

2.016 Å in 3, and 1.765 Å in 7, which correlates with the NBO charges on exogenous 
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oxygen and H9; the partial charges on oxygen are qO1 = -0.235 in 3, and qO2 = -0.493 a.u. 

in 7, whereas the charge on H9 is 0.439 in 3, and 0.454 a.u. in 7. Note that COb is located 

almost symmetrically in clusters 2, 3, and 7.  

Structurally, clusters 4 and 9 are similar in that both have a hydrogen bond 

(H9…O1), whereas COb is found to reside quasi-symmetrically in 9, but asymmetrically 

in 4 bound only to  Fep
II. 

 

2.5. Thermodynamics of H2O Removal from the Oxidized H-cluster  

 

Figure 2-5 depicts a series of reactions (9 → 9', 9' → 10, 10 → 11, 11 → 12, 12 

→ 13, and 13 → 14) which present the net conversion of 9 to 14.  

The compounds 9 and 9' are isomers, with 9' being more stable by +44.17 

kcal/mole (due to hydrogen bond formation between H2O and the N3 of DTMA bridge 

(N3…H-OH)). The hydrogen bond length, N3…H, is 1.939 Å (and the angle formed by 

N3…H-O is 168.7°). The distance between the iron atoms is larger in 9' (2.796 Å) than in 

9 (2.605 Å). During reaction 9 → 9', COb moves away from Fep
II (i.e., for Cb∼Fep

II 2.225 

Å (9) → 2.771 Å (9')). The protonation of 9' (9' → 10) produces a quaternary 

ammonium (NR4
+) in the DTMA bridge, and is exothermic for both phases (∆Hgas = -

131.60 kcal/mole;  ∆Haq = -27.63 kcal/mol). Species 9' possesses a charge of -1.0 a.u., 

which is responsible for its relatively large proton affinity. In 10 → 11, H2O is removed 

from N3 by means of hydrogen bond breaking; this reaction (vs. 9' → 10) proceeds 
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endothermically in gas phase (∆Hgas = +12.31 kcal/mole), however in the aqueous phase 

it barely proceeds exothermically (∆Haq =  -1.11 kcal/mol). 

The first reduction 11 → 12 (Figure 2-5) is subjected to an increase in the partial 

charge of the exogenous oxygen (qO1 = -0.568 a.u (11) → -0.594 a.u. (12); ∆Hgas = -

68.72 kcal/mole; ∆Haq = -99.12 kcal/mol). Regarding geometrical changes in 11 (11 → 

12), the bond distance between Fep
II-Fed

II is increasing from 2.792 Å to 3.261 Å, while 

the COb departs from Fep
II (for Cb- Fep

II 2.766 Å (11) → 3.183Å (12)).  Due to the high 

negative charge on O1 (12), the latter readily captures a proton (12 → 13; ∆Hgas = -

150.55 kcal/mole; ∆Haq = -29.04 kcal/mol).  Finally, in Figure 2-5, an e- is acquired by 

the OH group (13 → 14; ∆Hgas = -77.33 kcal/mole; ∆Haq = -115.06 kcal/mol). Note that 

the H-cluster 1419,20 is the starting compound in the reactivation pathway, which ends in 

the reduced H-cluster 6 (Fep
I-Fed

I). 

In Figure 2-6, an alternative pathway (9' → 15, 15 → 16, 16 → 12, 12 → 13, and 

13 → 14) has been investigated.  The pathway starts with an electron transfer rather than 

a proton transfer. Reaction 9' → 15 is slightly endothermic for the gas phase (∆Hgas = 

+1.15 kcal/mole), but highly exothermic for the aqueous phase (∆Haq = -90.08 kcal/mol), 

since 15 has higher solvation free energy than 9' (Table 2-1). Cluster 15 has a high 

proton affinity (15 → 16) particularly for the gas phase (∆Hgas = -201.72 kcal/mole; ∆Haq 

= -37.99 kcal/mol) because 15 has a charge of -2 a.u. For 16 → 12, the heat of reaction 

for the gas phase is endothermic (∆Hgas = +12.57 kcal/mole) whereas for the aqueous 

phase it is only slightly endothermic (∆Haq = +0.21 kcal/mol). Note that both 10 (Figure 

2-5) and 16 (Figure 2-6) lead to the same compound (12) by H2O elimination. The 

thermodynamic data are similar for both reactions (10 → 12 and 16 → 12) because Fed 
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is found in the same oxidation state (Fed
I) in both 10 and 16, but Fep (being further away 

from the reaction center) has different oxidation states (Fep
II (10); Fep

I (16)). Next, 

reactions 12 → 13, and 13 → 14 proceed exothermically [(∆Hgas = -150.55 kcal/mol; 

∆Haq = -29.04 kcal/mol), and (∆Hgas = -77.33 kcal/mol; ∆Haq = -115.06 kcal/mol), 

respectively], as previously discussed in Figure 2-5.  Unlike 10 → 12 (Figure 2-5), 16 → 

12 is endothermic in both phases (∆Hgas = +12.57 kcal/mol; ∆Haq = +0.21 kcal/mol) 

which indicates (Figure 2-6) that the oxidation of H-cluster has difficulties proceeding to 

14 in both phases. 

From above, it can be seen that there is only one exothermic path from the oxidized 

H-cluster 9' to the hydroxylated cluster 14. A path starts with H+ transfer, while the other 

begins by e- transfer. The gas phase H2O elimination from the oxidized H-cluster 9' 

proceeds endothermically in both pathways, whereas the aqueous phase H2O removal is 

slightly exothermic for one path (Figure 2-5) and slightly endothermic for the other path 

(Figure 2-6).   
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Table I. H-cluster Quantum Mechanical, EQM, and Solvation Free Energies, ΔGsol 

Clusters 

&ligands ΔGsol
a 

EQM
b 

gas phase 

EQM 

solution Ea,c %a,d 

1 -24.01 -2141.7418 -2141.7938 -32.64 35.95 

2 -27.91 -2292.0094 -2292.0639 -34.23 22.65 

3 -47.53 -2292.1845 -2292.2771 -58.11 22.27 

4 -21.26 -2292.6753 -2292.7247 -30.97 45.68 

5 -53.25 -2141.8412 -2141.9388 -61.22 14.96 

6 -167.46 -2141.7980 -2142.0681 -169.49 1.21 

7 -158.33 -2292.1419 -2292.4019 -163.15 3.05 

8 -55.61 -2142.4224 -2142.5224 -62.73 12.81 

9 -50.84 -2292.8032 -2292.8994 -60.40 18.80 

9' -48.38 -2292.8735 -2292.9710 -61.19 26.47 

10 -27.45 -2293.3570 -2293.4159 -37.00 34.78 

11 -37.31 -2216.9033 -2216.9693 -41.40 10.95 

12 -66.92 -2217.0128 -2217.1272 -71.80 7.29 

13 -22.27 -2217.5265 -2217.5744 -30.07 35.01 

14 -62.57 -2217.6497 -2217.7577 -67.80 8.36 

15 -137.81 -2292.8717 -2293.1146 -152.42 10.60 

16 -60.00 -2293.4669 -2293.5760 -68.46 14.10 

O2 1.91 -150.2661 -150.2675 -0.88 -146.08 

H3O+ -87.90 -76.7078 -76.8493 -88.81 1.04 

H2O -8.06 -76.4340 -76.4484 -9.03 12.03 

a Kcal/mol 

b Hartrees/molecule 

c Between gas and aqueous phases 

d Percent difference between the solvation free energy and ΔE. 
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2.6. Study the H-Cluster Electronic Structure to Ascertain the 

Thermodynamics Analysis 

Electronic contributions are now presented which are adduced by the frontier 

orbitals in conjunction with the previously presented enthalpies of reaction.  

Upon reduction of most open-shell H-clusters, it is observed that an e- is obtained 

by a virtual molecular orbital (SOMO), while the closed-shell clusters receive an e- into 

the lowest virtual molecular orbital (LUMO).  

However, when a H+ is in the proximity of an open-shell H-cluster, it forms a σ-

bond through the interaction of the e- in the highest occupied molecular orbital (HOMO), 

or through the contributions of both HOMO and SOMO, with the proviso that the SOMO 

is sufficiently low in energy relative to HOMO. Alternatively, when a H+ is near a closed-

shell cluster, the σ-bond ensues mainly due to the contribution of e-s from HOMO with 

the H+.  

Thermodynamic properties, of the reactions in Figures 2-4, 2-5, and 2-6, are now 

examined with regard to frontier molecular orbitals (FMO). Thus, in 2 the LUMO 

(Figure 2-7) is localized on the exogenous O2 and NDTMA, which is also corroborated by 

an increase of NBO charges on O2 and NDTMA (N3) in 3 upon reduction of H-cluster 2 

(qO1 = -0.046 a.u (2) → -0.235 a.u. (3); qN3 = -0.568 a.u (2) → -0.717 a.u. (3)).  

For open-shell clusters, unrestricted B3LYP calculations have been performed 

which resulted in different quantum mechanical (QM) energies and molecular orbital 

(MO) coefficients for α and β electrons. 
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The HOMOα (the lower energy HOMO containing a spin up e-) of 3 is 

predominantly localized on the exogenous O2, where the protonation also occurs. 

However, the HOMOβ (the higher energy HOMO with its spin down e-) is localized on 

the DTMA bridge (Figure 2-7).  

The SOMOα of compound 4 is mostly localized on the DTMA bridge, partially on 

the exogenous oxygen and the iron atoms. SOMOβ (the higher energy virtual SOMO) is 

more delocalized than SOMOα (Figure 2-7). The main change in partial charges occurs 

on the iron atoms (qFep = -0.141 a.u (4) → -0.003 a.u. (9); qFed = 0.464 a.u (4) → 0.025 

a.u. (9)). The above NBO observed changes in 4 → 9 can be corroborated by LUMOα (4; 

Figure 2-7). It is noteworthy that the e- is transferred into the LUMOα (-0.15381 

Hartrees), for its energy is lower than that of SOMOβ (-0.14425 Hartrees). 

The HOMO of 6 is localized on the Fed and the COb, whereas the HOMO of 7 is 

primarily localized on the exogenous O2 but is less diffused over COb (Figure 2-7). The 

high proton affinity (especially in gas phase) of clusters 6 (Path IV) and 7 is explained 

because the HOMO orbital is localized on proton binding loci.  In particular, 7 shows 

clearly as to where the protonation ought to occur; the exogenous O2 captures the H+ 

(Figure 2-7). Antithetically, in 6, in spite of the fact that both Fed and the COb are 

engulfed in an about similar size MOs, Fed seems to have the propensity for capturing a 

H+. 

The HOMO of 9', which is delocalized throughout the cluster, has a smaller proton 

affinity than 6 and 7. However, higher HOMO amplitude is found on the exogenous O1, 

DTMA bridge, and the two irons and this may explain why the N3 is protonated in this 

case. For cluster 11, the LUMO is more localized over the Fep than on Fed, extending 
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from the irons towards the COb via a linear combination between the eg orbitals of the 

iron atoms with the COb π orbitals48, thus the e- transfer 11 → 12 shall  change the 

oxidation state of Fep. Both HOMOα and HOMOβ of 12 are generally localized on the 

Fep (Figure 8). However, in this case the protonation does not occur at the Fep, instead it 

occurs at the exogenous O1 since its NBO charge is very negative, i.e., qO1 = -0.594 a.u. 

as opposed to qFep = 0.126 a.u..  
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Figure 2-7. Frontier molecular orbitals for H-clusters LUMO (2), HOMOα (3), HOMOβ 

(3), LUMOα (4), LUMOβ (4), SOMOα (4), SOMOβ (4), HOMO (6), HOMO (7) (where 

the atom colors, for the H-clusters, are O = red, C = grey, N = blue, S = yellow, Fe = 

burgundy, and H = white). 
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Figure 2-8. Frontier molecular orbitals for H-clusters HOMO (9'), LUMO (9'), LUMO 

(11), HOMOα (12), HOMOβ (12), SOMOα (12), LUMOα (13), SOMOβ (13), HOMOα 

(15). 
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In the reduction process of H-cluster 13, the in silico data clearly shows that the 

orbital energy of LUMOα (ELUMOα = -0.14850 Hartrees) is lower than the energy of 

SOMOβ  (ESOMOβ = -0.13886 Hartrees). Thus, upon reduction of cluster 13, the e- goes 

into LUMOα having lower orbital energy relative to SOMOβ (Figure 2-8). Analyzing the 

NBO charges of cluster 13 and 14, it is noticeable that the OH and Fed of 14 acquire 

most of the partial charge ceded by Fep and the reductive process 13 → 14. H-cluster 15 

undergoes a protonation reaction on NDTMA, which is substantiated by the NBO negative 

charge decrease on NDTMA (qN3 = -0.267 a.u (15) → -0.187 a.u. (16)).  

 

2.7. Perform Calculations on the Inhibitory Mechanism of [Fe-Fe]-

Hydrogenase by O2 

 

The subsequent investigation deals with the inhibition mechanism of H-cluster by 

O2, which uses the hybrid ONIOM* method on the enzyme matrix. 

 

 

 

 

                                                 
* ONIOM scheme (Acronym: Our owN n-layered Integrated molecular Orbital + molecular mechanics 

Method) is a fast hybrid method developed by Morokuma et al.2,3 to execute different levels of theory on 

the same molecule. The algorithm consists of high-level (QM) calculations that are performed on a small 

part of the system (e.g., active site of an enzyme), and low-level (classical mechanics) calculations for the 

influence of the rest of the system. 
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2.7.1. Evaluation of the inhibitory effect of O2 for the wild type [Fe-Fe]-

hydrogenase 

 

The ONIOM method is a QM/MM method. The QM methods of calculations are 

described above. However, the MM49-52 method* uses a universal force field53-55 (UFF**), 

described by Rappe et al.56, comprised of simple point charges (SPC). In order to use 

ONIOM, the enzyme is solvated in water and, then, is subjected to energy minimization 

procedures via QM/MM algorithm. The total charge of the DdH hydrogenase is –6 a.u., 

and, therefore, counterions, such as Na+
 cations, are added in order to render the enzyme 

neutral57,58. Within the H-domain, the existent hydrogen bonds, are encountered between 

the H-cluster and the juxtaposed key amino acids, are monitored implementing Chem3D, 

Molden, and Pymol software programs59-61:  

1. Discover the sole amino acids possessing the least O2 binding potential for [Fe-

Fe]-hydrogenase. 

2. Monitor the hydrogen bonds during the energy minimization process.  

                                                 
* Molecular mechanics makes use of Newtonian mechanics for the purpose of modeling molecular systems. 

MM (ignores electrons) is based on a model of molecules as a collection of atoms (balls) held together by 

bonds (springs). By changing the molecular geometry until the lowest energy is attained, one finds a 

(molecular) geometry optimization. 

  The shapes of molecules - bond lengths, angles, and dihedrals. 

** A force field consists of a mathematical form of terms, such as bond stretching, angle bending, dihedral 

angles, and nonbonded interactions, and the parameters in them describing the potential energy of a system 

of particles. 
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2.7.2. Engineer an [Fe-Fe]-hydrogenase which shall not react with O2 via 

conservative mutations 

 

QM gives relatively precise results, but it is rather time consuming, hence costly 

from a computational point of view. However, one can still use this method, especially on 

small enzyme residues such as the hydrogenase H-cluster. Moreover, for the whole 

enzyme, ONIOM calculations are performed, and thus intermediate structures of the 

enzyme are obtained which are energetically minimized. These intermediate structures 

are then studied implementing QM procedures, such as FMO.  

The technique below follows the subsequent steps: 

1. Solvate the enzyme by adding H2O molecules within and around the enzyme, 

where the surrounding layer is 1 nm. 

2. Perform energy minimizations using ONIOM by implementing QM 

calculations on the H-cluster, and MM computational analysis on whole 

enzyme.  

3. Carry out exploratory mutations on the key amino acids (Figure 2-9, to know 

which residues posses the least O2 binding potential for [Fe-Fe]-hydrogenase) 

of the H-domain by turning off their charges.  

4. Within a given class of amino acids, mutations are being tried on the amino 

acids that was found to have the least O2 binding potential for the referred to 

enzyme. 

To summarize, mutations deal with amino acid substitutions within the same class, 

(i.e., amino acids that have similar chemical (polar) properties - conservative mutations) 
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or residue substitutions in different classes. Such mutations should not drastically change 

the enzymatic stability and function, but could accelerate the O2 removal process, which 

is a desideratum in order to enhance H2 formation. Once mutations have been achieved 

(for the purpose of enzymatic stability and proper function) the ambient amino acids have 

to be studied also in detail62. 
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Figure 2-9. The key amino acid residues that are contiguous with the H-cluster (as 

presented in reference 63) 
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CHAPTER III 

INACTIVATION OF [FE-FE]-HYDROGENASE BY O2. 

THERMODYNAMICS AND FRONTIER MOLECULAR ORBITALS 

ANALYSES 

 

3.1. General Considerations 

 

H-cluster1-83 oxidation in gas phase, and in aqueous enzyme phase, has been 

investigated by means of quantum mechanics (QM) and combined quantum mechanics-

molecular mechanics (QM/MM). Several potential reaction pathways (in the above 

mentioned chemical environments) have been studied, wherein only the aqueous enzyme 

phase has been found to lead to an inhibited hydroxylated cluster. Specifically, the 

inhibitory process occurs at the distal iron (Fed) of the catalytic H-cluster (which is also 
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the atom involved in H2 synthesis). The processes involved in the H-cluster oxidative 

pathways are O2 binding, e- transfer, protonation, and H2O removal.  

We found that oxygen binding is non-spontaneous in gas phase, and spontaneous 

for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is 

spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the 

protein environment the hydroxylated H-cluster is obtained by means of completely 

exergonic reaction pathway starting with proton transfer.  

A unifying endeavor has been carried out for the purpose of understanding the 

thermodynamic results vis-à-vis several other performed electronic structural methods, 

such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), 

and H-cluster geometrical analysis.  

Our investigation is composed of three different parts. 1). Thermodynamic analysis, 

for every reaction path mechanism (Figures 3-1a, 3-1b, 3-2 and 3-3), implicated in the 

eventual H-cluster 14 inhibition by means of O2 → OH-. 2). Electronic analysis, for the 

same paths referred to above, which deals with Natural Bond Orbitals (NBO), as well as 

Frontier Molecular Orbitals (FMO). 3). Geometrical analysis carried out only for 

appropriate bond breaking, and bond formation. 

From the investigated subdivisions, thermodynamics analysis (Figure 3-2, and 3-3) 

is of pivotal importance since it shows that there is just an exergonic path from H-cluster 

9' to the hydroxylated cluster 14 occurring in the aqueous enzyme phase. However, from 

the thermodynamic results (Figure 3-1a), it is observed that most reaction steps proceed 

exergonically (except 1 → 2, gas phase), leading to the oxidized cluster 9. Moreover, at 
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the end of each path, every vacant H-cluster 1, 5, and 6, in spite of its oxidation states, 

becomes aerobically inactivated, 9.  
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Figure 3-1a. Reaction pathways I and II: Oxidation mechanisms of H-clusters that are 

fully oxidized (1), partially oxidized (5). The charges and multiplicities are given in 

square brackets. The first Gibbs’ energy value is for gas phase, and the second is for 

ONIOM calculations. Fep is the proximal iron, and Fed is the distal iron. 
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Figure 3-1b. Reaction pathways III and IV: Oxidation mechanisms of H-cluster that is 

reduced (6). The charges and multiplicities are given in square brackets. The first Gibbs’ 

energy value is for gas phase, and the second is for ONIOM calculations. Fep is the 

proximal iron, and Fed is the distal iron. 
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Figure 3-2. Reaction mechanism for isomerization, protonation, H2O elimination, and 

reduction of the inhibited [Fe-Fe]-hydrogenase H-cluster. The H2O is being removed 

from a closed-shell cluster (the charges, multiplicities, and energy values are presented as 

in Figure 3-1a). 
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Figure 3-3. Reaction mechanism for reduction, protonation, and H2O removal from the 

inhibited [Fe-Fe]-hydrogenase H-cluster. Here, the H2O is being eliminated from an 

open-shell cluster (the charges, multiplicities, and energy values are presented as in 

Figure 3-1a). 
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3.2. Quantum Mechanics/ Molecular Mechanics Hybrid Method 

 

In the current study, both QM [DFT (in gas phase)] and QM/MM [DFT/UFF84 (in 

aqueous enzyme phase)] methodologies have been used. The ONIOM85 method (DFT for 

the QM region, and the universal force field, UFF, for the MM region, implemented in 

Gaussian0386) has been applied to determine the reaction thermodynamics, i.e., ΔG, for 

the inactivation pathways of the H-cluster, and the [Fe-Fe]-hydrogenase H-cluster 

(positioned within the enzyme matrix). Subsequently, the DFT results have been 

compared with the ONIOM calculations. The electronic structure of the hydrogenase 

active site (except the proximal cubane) is investigated by quantum mechanics (Gaussian 

03) using DFT method (B3LYP functional87,88), and QM/MM with 6-31+G(d,p) basis set. 

For Fe an effective-core potential with a double zeta polarization basis set 

(LANL2DZ89,90) was used for DFT gas phase calculations, and a 6-31+G(d,p) basis set 

for the ONIOM calculations. In accordance with experimental and in-silico data low spin 

states (singlet, and doublet), and low oxidation states (I, and II) have been selected for the 

Fe atoms2,14,35. Gromacs program91,92 was employed to add hydrogen atoms, water, and 

counter ions to the X-ray crystal structure of DdH [Brookhaven Protein Data Bank 

id.1HFE]. Hydrogen atoms and a 1 nm layer of water (2043 molecules) have been added 

to the PDB DdH structure. Moreover, Na+ ions have been randomly inserted* into the 

solvent to neutralize the negative charges encountered therein, e.g., the -2 a.u. found on 

                                                 
* In a real biological system, a protein has counter ions in its proximity.  
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the cubane/cysteine moieties*93. For both basic and acidic amino acids, charges were 

assigned by Gromacs algorithm to be at pH 7. ONIOM geometry optimizations have been 

performed on the DdH, with the low layer (MM region) being frozen**, with the 

exception of the proximal cubane, while the high layer (QM) had only the iron atoms, 

Fep-Fed, and the N3, (of the DTMA bridge) kept frozen; “freezing atoms” is practiced to 

reduce computational time. The low layer consists of all the hydrogenase amino acids as 

well as its constituent cubanes, i.e., proximal, medial, and distal.  The high layer is 

comprised of 2Fe subunit, (which is the moiety of the H-cluster), and Cβ and Sγ 

(appertaining to the bridging Cys382). Moreover, two linking hydrogen atoms were added 

between Cα and Cβ of Cys382, and between Sγ and an Fe atom of the proximal cubane. The 

charge equilibration method of the UFF was used to describe the electrostatic interactions 

within the low layer of the system94. The DdH partial charges were obtained using the 

charge equilibration method, whereas the solvent charges were acquired from literature94 

(qO = -0.706 a.u. and  qH = 0.353 a.u.). 

 

3.3. H-cluster Thermodynamics for O2 Binding, Reduction, and Protonation  

 
Figure 3-1a illustrates different O2 inhibition pathways of the hydrogenase H-

cluster; the H-clusters, 1, 5, 6, and 82,9,21, of the pathways are obtained in the reversible 

catalysis of H2. Reaction 1 → 2 (path I) is endergonic for the gas phase (ΔGgas = +9.8 

kcal/mol; gas = gas phase) when O2 binds to the fully oxidized H-cluster (1). ONIOM 
                                                 
* Each of the three cubane/cysteine moieties (found in DdH) is comprised of a cubane plus four 

surrounding, depotonated cysteines which are bound to the four iron atoms of every cubane. 

** Where “frozen” means that the x, y, z coordinates for the atoms are kept fixed 
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calculations, on the other hand, show that O2 binding occurs exergonically (ΔGQM/MM = -

16.6 kcal/mol), shedding light on the sensitivity of hydrogenases to O2
95.  

Reduction 2 → 3 (ΔGgas = -110.2 kcal/mol) as well as protonation 3 → 4 (ΔGgas = -

136.0 kcal/mol) proceed exergonically; ONIOM calculations, for the hydrogenase matrix, 

show that e- transfer is considerably less exergonic (ΔGQM/MM = -80.4 kcal/mol) relative to 

protonation which is more exergonic (ΔGQM/MM = -154.1 kcal/mol). The free energy 

differences, in gas vs. aqueous enzyme phases for reactions 2 → 3 and 3 → 4, ensue 

from the effect of the electric field of the protein on the H-clusters 2, 3, and 4, and from 

the different phase geometries.  

Cluster 4 undergoes reduction, and it (4 → 9) proceeds exergonically in both gas 

and aqueous hydrogenase phase (ΔGgas = -79.1 kcal/mol; ΔGQM/MM = -78.3 kcal/mol).  

Path II starts with the partially oxidized H-cluster 5, (Fep
II-Fed

I). The binding of O2 

to FeI (Fed
I-O2), 5 → 3, is firmer (ΔGgas = -36.1 kcal/mol) than for FeII in 1 → 2 (Fed

II-O2, 

path I). In contrast, ONIOM results show that O2 binds to the partially oxidized H-cluster 

(Fep
II-Fed

I, ΔGQM/MM = -7.9 kcal/mol) as well as to the fully oxidized cluster (Fep
II-Fed

II, 

ΔGQM/MM = -16.6 kcal/mol, 1 → 2, path I). The remaining two reactions 3 → 4, and 4 → 

9 (path II) are the same as the last two steps of path I.  

In path III (Figure 3-1b), 6 → 7, which starts with the fully reduced H-cluster 6, 

(Fep
I-Fed

I), the reaction spontaneity (ΔGgas = -36.0 kcal/mol) is almost identical to the free 

energies of reaction 5 → 3. The gas phase free energy similarity may ensue because both 

loci of oxygen binding (Fed
I-O2) are on similar oxidized species, Fed

I. However, ONIOM 

calculations show smaller reaction spontaneity difference between aqueous enzyme 

(ΔGQM/MM = -20.7 kcal/mol) and gas phase results (ΔGgas = -36.0 kcal/mol, 6 → 7), than 
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for O2 binding in path I and II. In path III, protonation (7 → 9) is, once again, largely 

exergonic for both phases (ΔGgas = -241.9 kcal/mol; ΔGQM/MM = -244.9 kcal/mol). 

Moreover, from Figures 3-1a and 3-1b, the above ONIOM calculations show the highest 

H+ affinity because H-cluster 7 has a charge of -2 a.u., and also the H+ binds to a rather 

electronegative atom, viz., oxygen.  

In the final path (IV), protonation 6 → 8 is the second most exergonic reaction in 

gas phase (ΔGgas = -220.6 kcal/mol) mostly because of the over-all charge of -2 on the H-

cluster 6. ONIOM data (as in 7 → 9) show very high H+ affinity (ΔGQM/MM = -219.2 

kcal/mol) for the hydrogenase H-cluster (in spite of the fact that the H+ is seized by the 

Fed as opposed to the more electronegative Fed-O2, 7 → 9), which is comparatively 

similar to the gas phase result (ΔGgas = -220.6 kcal/mol).  

In the last step (8 → 9; path IV), O2 is interposed between Fed and the hydride 

(Fed
I-O2-H, 9). For this insertion reaction, the O2 binding occurs exergonically in both 

ONIOM (ΔGQM/MM = -46.4 kcal/mol) and the gas phase (ΔGgas = -57.3 kcal/mol) results.  

N.B., path IV shows that oxidation of Fep-Fed H-cluster is similar* to the Nip-Fed 

hydrogenase H-cluster obtained from experimental data96. 

From the above thermodynamic results, most reaction steps proceed exergonically 

(except 1 → 2, gas phase), leading to oxidized cluster 9. At the end of every path, each 

vacant H-cluster 1, 5, or 6, in spite of its oxidation states, becomes aerobically 

inactivated. 

 
                                                 
* The similarity for these clusters is they are first found as hydride containing H-clusters, and then undergo 

oxidation. 
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3.4 NBO Charges and Geometry Adjustment of Intermediates in the 

Oxidation of H-cluster  

 

The atoms of the vacant H-clusters 1, 5, and 6 have slightly different natural bond 

orbital (NBO) charge distributions. For instance, for cluster 1 the NBO charges of Fep-Fed 

are qg
Fep

** = 0.137 a.u. (qe
Fep = -0.230 a.u.) and qg

Fed = -0.096 a.u. (qe
Fed = 0.187 a.u.), 

whereas in 5, the sign of the partial charges are reversed only in gas phase, i.e. qg
Fep = -

0.024 a.u. (qe
Fep = -0.227 a.u.) and qg

Fed = 0.078 a.u. (qe
Fed = 0.061 a.u.). Then, the NBO 

charges for the Fep-Fed in cluster 6 (in both phases) are more negative, qg
Fep = -0.104 a.u. 

(qe
Fep = -0.297 a.u.), and qg

Fed = -0.117 a.u. (qe
Fed = -0.160 a.u.) because both metals are in 

a reduced state, unlike clusters 1 and 5. Regarding charges on the nitrogen, N3, (of the 

DTMA bridge), similarities are seen amongst clusters 1, 5, and 6; the NBO charges for 

N3 are approximately -0.700 a.u., making this amine (within the above H-clusters) a 

relatively important H+ acceptor/donor (vs. amino acids with similar function in the 

juxtaposed enzyme matrix, e.g., Lys237) as suggested by Liu and Hu9. The non-bridging Sγ 

(of Cys382) has the following charges: for 1 qg
Sγ = 0.204 a.u. (qe

Sγ = 0.474 a.u.), for 5 qg
Sγ = 

0.142 a.u. (qe
Sγ = 0.425 a.u.), and for 6 qg

Sγ = 0.079 a.u. (qe
Sγ = 0.285 a.u.). Comparing 

clusters 1, 5 and 6, a sequential drop in NBO charges for Fep and Sγ is observed.  

When H-cluster 1 is in an oxidized state (in gas phase), Fep
II- Fed

II, the COb shifts9 

towards the Fed
II, and becomes bonded to Fed

II. The shifted COb bond distance (measured 

from its bridging carbon, Cb, to the iron atoms) between Cb—Fep
II is 3.067 Å, whereas 

                                                 
** The NBO charges and bond lengths are found in the supporting information addendum. qg represents the 

charges for the gas phase, while qe stands for the aqueous enzyme phase charges. 
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Cb—Fed
II is 1.819 Å. When the carbonyl is close to Fed

II, COb-Fed
II, the fully oxidized H-

cluster 1 becomes relatively stable vs. the quasi-symmetric cluster21 (ΔH = 14 kcal/mol), 

which is also shown by the NBO charge on Cb in COb, (0.664 a.u.). This may be due to 

repulsion of charges between qg
Cb (0.664 a.u.) and qg

Fep (0.137 a.u.), whereas for the 

clusters 5 and 6, the partial charges (qg
Cb = 0.462 a.u., and qg

Cb = 0.466 a.u., respectively) 

are less then in 1 because COb is bonded to both iron atoms. However, in the enzyme 

phase less shifting of the bridging carbonyl occurs, with the charges on Cb being similar 

(qe
Cb = 0.536 a.u. for 1, qe

Cb = 0.497 a.u. for 5, and qe
Cb = 0.493 a.u. for 6). Comparing the 

reaction spontaneity for O2 binding (in gas phase), which renders clusters 2, 3, and 7, one 

may observe that 3 and 7 are more stable than 2. The reason for this stability is 

essentially due to the formation of a hydrogen bond between the exogenous O2 and the 

hydrogen H9 (bonded to N3 of the DTMA bridge) in both 3 and 7. The O1—H9 bond 

distance is 2.016 Å in 3, and O2—H9 bond distance is 1.765 Å in 7, which correlates 

with the NBO charges on the mentioned oxygens and hydrogens; the partial charges on 

oxygens are qg
O1 = -0.235 a.u. in 3, and qg

O2 = -0.493 a.u. in 7, whereas the charge on H9 

is 0.439 a.u. in 3, and 0.454 a.u. in 7. Note that COb is located almost symmetrically in 

clusters 2, 3, and 7. Structurally, clusters 4 and 9 are similar in view of the fact that both 

possess a hydrogen bond (H9…O1), whereas COb is found to reside quasi-symmetrically 

in 9, but asymmetrically in 4 bonded only to Fep
II. In the enzyme phase both hydrogen 

bonds (in clusters 3 and 7) are formed between H9 and O2 of the exogenous oxygen (qe
O2 

= -0.210 a.u. in 3, qe
O2 = -0.452 a.u. in 7, qe

H9 = 0.443 a.u. in 3, and qe
H9 = 0.445 a.u. in 7; 

O2—H9 bond distance is 1.890 Å in 3, and O2—H9 bond distance is 1.760 Å in 7). 
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3.5. Thermodynamics and NBO Charges Relationship for H2O Removal from 

the Oxidized H-cluster  

 

Figure 3-2 depicts a series of reactions (9 → 9', 9' → 10, 10 → 11, 11 → 12, 12 

→ 13, and 13 → 14), which present the net conversion of 9 to 14. The compounds 9 

and 9' are isomers; 9' is more stable by 47.2 kcal/mol, [which may be, to a certain extent, 

attributed to the hydrogen bond formation between H2O and the N3 of DTMA bridge 

(N3…H-OH; i.e., 2 bonds being broken vs. 3 being formed for 9 → 9', respectively)]. 

The hydrogen bond length, N3…H, is 1.939 Å (and the angle formed by N3…H-O is 

168.7°). The distance between the iron atoms is larger in 9' (2.796 Å) than in 9 (2.605 Å). 

During reaction 9 → 9', COb moves away from Fep
II [i.e., for Cb-Fep

II 2.225 Å (9) 

→  2.771 Å (9')]. Also, in Figure 3-2 (hydrogenase H-cluster 9, and 9’), ONIOM 

geometry optimizations for 9, and 9’ resulted in in the same structure for the hydrogenase 

H-clusters (ΔGQM/MM corresponding to 9 → 9’ is 0 kcal/mol). The protonation of 9' (9' → 

10) produces a quaternary ammonium ion (NR4
+) within the DTMA bridge, which is 

exergonic for both phases, viz., ΔGgas = -130.7 kcal/mol, and ΔGQM/MM = -138.4 kcal/mol. 

To wit, the observed high reaction spontaneity for both phases is attributed to the 

negatively charged H-cluster 9’. In 10 → 11, H2O is removed from N3 by means of 

hydrogen bond breaking; this reaction (vs. 9' → 10) occurs slightly endergonically in gas 

phase (ΔGgas = +3.3 kcal/mol), while for QM/MM results, the H2O removal step, 10 → 

11, is exergonic (ΔGQM/MM = -24.1 kcal/mol).  

Reduction 11 → 12 (Figure 3-2) is subjected to an increase in the partial charge of 

the exogenous oxygen (qg
O1 = -0.568 a.u. (11) → -0.594 a.u. (12); ΔGgas = -72.8 
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kcal/mol). Regarding geometrical changes in 11 → 12, the bond distance between Fep
II-

Fed
I is increasing from 2.792 Å to 3.261 Å, while the COb departs from Fep

II [for Cb-Fep
II 

2.766 Å (11) → 3.183 Å (12)]. For the aqueous enzyme phase result, 11 → 12 occurs 

with a relatively large free energy (ΔGQM/MM = -95.4 kcal/mol; compared to other neutral 

H-cluster reductions), versus the gas phase outcome (ΔGgas = -72.8 kcal/mol); the charge 

remains constant on the exogenous oxygen [qe
O1 = -0.530 a.u. (11) → -0.527 a.u. (12)]. 

Due to excess electron density accumulation on O1 (12), the latter readily captures a 

proton (12 → 13; ΔGgas = -148.9 kcal/mol).  ONIOM calculations, 12 → 13, confirm 

the high H+ affinity (in Figure 3-2, ΔGQM/MM = -141.6 kcal/mol) for the hydrogenase H-

cluster, which is close to the gas phase result (ΔGgas = -148.9 kcal/mol). The free energy 

differences between the given protonations, 12 → 13 vs. 9’ → 10, may arise because of 

the greater stability of cluster 13 vs.10. 

Finally, in Figure 3-2, an e- is acquired by the hydroxyl group (13 → 14; ΔGgas = -

77.4 kcal/mol; ΔGQM/MM = -86.3 kcal/mol). Note that the H-cluster 142,21 is the starting 

compound in the reactivation pathway that ends in the reduced H-cluster 6 (Fep
I-Fed

I).  

In Figure 3-3, an alternative pathway (9' → 15, 15 → 16, 16 → 12, 12 → 13, 

and 13 → 14) has been investigated. The pathway starts with a reductive step, rather 

than with a protonation. Reaction 9' → 15 is slightly exergonic for the gas phase (ΔGgas = 

-1.8 kcal/mol), while ONIOM calculations indicate an endergonic process (ΔGQM/MM = 

+25.6 kcal/mol). 9’ → 15 is another O2 inhibitory step (in addition to 10 → 11 for the 

gas phase, Figure 3-2) which seems to explain the O2 sensitivity of wild type DdH. 

Therefore, mutagenic studies ought to be performed on [Fe-Fe]-hydrogenase H-cluster 9’ 

to eliminate its inhibitory path (viz., 9’ → 15). When a H+ is in the vicinity of H-cluster 
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15, 15 → 16 proceeds with the greatest spontaneity (of Figures 3-2 and 3-3) in gas phase 

(ΔGgas = -199.7 kcal/mol) because 15 has a net charge of -2 a.u. Note that the ONIOM 

findings, for step 15 → 16, confirm the highest free energy (ΔGQM/MM = -259.9 kcal/mol) 

of all the potential reaction mechanisms analyzed for the [Fe-Fe]-hydrogenase H-cluster, 

while the gas phase result is about 60 kcal/mol less exergonic. Water elimination in gas 

phase, (16 → 12) is slightly endergonic (ΔGgas = +1.3 kcal/mol), whereas for the aqueous 

enzyme phase it is significantly exergonic (ΔG QM/MM = -23.6 kcal/mol). Note that both 

10 (Figure 3-2) and 16 (Figure 3-3) lead to the same compound (12) by H2O elimination. 

The thermodynamic data are similar for both reactions, 10 → 11 and 16 → 12, because 

Fed is found in the same oxidation state (Fed
I) in both 10 and 16, but Fep (being further 

away from the focal catalytic locus, Fed) has different oxidation states [Fep
II (10); Fep

I 

(16)]. The in silico ONIOM result of the H2O removal step (Figure 3, 16 → 12), is 

exergonic (ΔGQM/MM = -23.6 kcal/mol), just like in step 10 → 11, (Figure 3-2, ΔGQM/MM 

= -24.1 kcal/mol). Also, close free energies are observed for the gas phases of 16 → 12 

(ΔGgas = +1.3 kcal/mol) and 10 → 11 (ΔGgas = +3.3 kcal/mol). Next, reactions 12 → 13, 

and 13 → 14 proceed exergonically [(ΔGgas = -148.9 kcal/mol; ΔGQM/MM = -141.6 

kcal/mol), and (ΔGgas = -77.4 kcal/mol; ΔGQM/MM = -86.3 kcal/mol), respectively], just as 

(previously discussed) in Figure 3-2. The following reactions, 10 → 11 (Figure 3-2) and 

16 → 12 (Figure 3-3), show that the entire (oxidative inhibitory H-cluster) path has 

difficulties proceeding to 14 in gas phase.  

From the above, it can be seen that there is only one exergonic path (Figure 3-2) 

from the oxidized H-cluster 9' to the hydroxylated cluster 14 in aqueous enzyme phase. 

A path starts with H+ transfer (Figure 3-2), while the other begins by e- transfer (Figure 
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3). The gas phase H2O elimination, from the oxidized H-cluster, proceeds endergonically 

in both pathways (Figure 3-2 and 3-3).  

 

3.6. Frontier Molecular Orbital Analysis 

 

Electronic contributions are now presented for both phases, which are adduced by 

the frontier molecular orbitals in conjunction with the previously presented free energies.  

Upon reduction of open-shell H-clusters, it is observed that an e- is obtained by a 

semi-occupied molecular orbital (SOMO), while the closed-shell clusters receive an e- 

into the lowest virtual molecular orbital (LUMO). However, when a H+ is in the 

proximity of an open-shell H-cluster, it can form a σ-bond probably through the 

interaction of the e- in the highest occupied molecular orbital (HOMO), or through the 

contributions of both HOMO and SOMO, with the proviso that the SOMO is sufficiently 

low in energy relative to HOMO. Alternatively, when a H+ is near a closed-shell cluster, 

the σ-bond probably ensues mainly due to the contribution of e-s from HOMO with the 

H+.  

Gas phase thermodynamic properties, of the reactions in Figures 3-1a, 3-1b, 3-2, 

and 3-3, are being examined with regard to frontier molecular orbitals (FMO). Thus, in 2 

the LUMO (Figure 3-4) is mostly localized on the exogenous O2 and N3, which is also 

corroborated by an increase of NBO charges on O2 and N3 in 3 upon reduction of H-

cluster 2 [qg
O1 = -0.046 a.u. (2) → -0.235 a.u. (3); qg

N3 = -0.568 a.u. (2) → -0.717 a.u. (3)].  

Aqueous enzyme phase thermodynamic properties are next being examined for the 

reactions of Figs. 3-1, 3-2, and 3-3 relative to the frontier molecular orbitals (FMO).  
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Figure 3-4. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO 

(2), HOMOα (3), HOMOβ (3), LUMOα (4), LUMOβ (4), SOMOα (4), SOMOβ (4), 

HOMO (6), and HOMO (7). 
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Figure 3-5. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters HOMO 

(9), LUMO (9), LUMO (11), HOMOα (12), HOMOβ (12), SOMOα (12), LUMOα (13), 

SOMOβ (13), and HOMOα (15). 
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For 2, LUMO [Figure 3-4, (compare gas phase)] is mostly localized on Sγ of Cys382 

(as opposed to cluster 2 in gas phase) owing to the electronic contribution of the proximal 

cubane. Additionally, the localization of LUMO is supported by a decrease of NBO 

charge on Sγ in 3 upon reduction of H-cluster 2 [qe
Sγ = 0.471 a.u. (2) → 0.388 a.u. (3)]. 

For open-shell clusters, unrestricted B3LYP calculations have been performed 

which resulted in different quantum mechanical (QM) energies and molecular orbital 

(MO) coefficients for α and β electrons. 

In gas phase, the HOMOα (the lower energy HOMO containing a spin up e-) of 3 is 

predominantly localized on the exogenous O2, where the protonation also occurs. 

However, the HOMOβ (the higher energy HOMO with its spin down e-) is localized on 

the DTMA bridge (Chapter II). 

For the aqueous enzyme phase, the HOMOα of 3 is less localized on the exogenous 

O2 (relative to the gas phase situation), but this orbital is essentially localized on the 

DTMA bridge.  

The HOMOβ, relative to the gas phase electronic distribution, is more localized on 

the exogenous O2 (Figure 3-4), supporting the greater spontaneity of H+ transfer (3 → 4).  

The SOMOα of compound 4, in gas phase, is mostly localized on the DTMA 

bridge, and, to some extent, on the exogenous O2 and the Fe atoms (Figure 4). SOMOβ is 

more delocalized than SOMOα. Following the e- transfer 4 → 9, the main change in 

partial charges occurs on the iron atoms [qg
Fep = -0.141 a.u. (4) → -0.003 a.u. (9); qg

Fed = 

0.464 a.u. (4) → 0.025 a.u. (9)]. The change in NBO charges in 4 → 9 can be 

corroborated by LUMOα. It is noteworthy that the e- is transferred into the LUMOα (-

0.15381 Hartrees), for its energy is lower than that of SOMOβ (-0.14425 Hartrees). For 
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the hydrogenase, LUMOα (4, Figure 3-4) is also lower in energy than SOMOβ (4, Figure 

3-4) (ELUMOα
Enzyme

 = -0.35944 Hartrees, ESOMOβ
Enzyme

 = -0.35907 Hartrees), implying that the 

e- is transferred to and localized on Sγ of Cys382. However, this difference in electron 

localization is not reflected in the reaction thermodynamics, because 4 → 9 is similarily 

exergonic in both phases. 

The HOMO of 6, in gas phase, is localized on the Fed and the COb, whereas the 

HOMO of 7 is primarily localized on the exogenous O2 but is less diffused over COb 

(Chapter II). The proton binds with high affinity to Fed of H-clusters 6 (Path IV) and 7 

(Path III) because the HOMO orbitals of these clusters are localized on Fed and 

exogenous O2, respectively. In particular, 7 manifestly displays where protonation 

occurs, viz., on the exogenous O2 (Figure 3-1b).  

In aqueous enzyme phase, similar electron orbital distributions are encountered for 

clusters 6 (Path IV) and 7 (Path III), except that Sγ (of Cys382) incurs MO distributions, 

which may be sustained by the proximal cubane (that facilitates the e- transfer). 

The HOMO of 9', is delocalized throughout the cluster and, has smaller proton 

affinity in comparison to 6 and 7. However, higher HOMO 9' amplitude is found on the 

exogenous O1, DTMA bridge, and the two irons which may explain why the N3 is being 

protonated in this case.  

For cluster 11, the LUMO is more localized over the Fep than on Fed, extending 

from the irons towards the COb via a linear combination between the eg orbitals of the 

iron atoms with the COb π orbitals9, thus the e- transfer, 11 →  12, changes the oxidation 

state of Fep. However, for ONIOM, the LUMO is localized on Sγ which is being bereft of 
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e-s via an inductive effect of the vicinal cubanes [qe
Sγ = 0.464 a.u. (11) vs. 0.333 a.u. 

(12)]. 

Both HOMOα and HOMOβ, of 12, are generally localized on the Fep (Figure 5). 

However, in this case, the protonation does not occur at the Fed, instead it occurs at the 

exogenous O1 since its NBO charge is very negative, i.e., qg
O1 = -0.594 a.u. as opposed to 

qg
Fed = 0.126 a.u.  On the other hand, for the aqueous enzyme phase, both HOMOα and 

HOMOβ, of 12, differ in their distribution, especially HOMOα having orbital amplitude 

on the exogenous oxygen, making it a good H+ acceptor.  

Cluster 13 is an open-shell cluster, so upon its reduction an e- may either enter a 

LUMOα, or a SOMOβ depending on their relative orbital energies. In the reductive 

process of H-cluster 13 (for gas phase), the in silico data explicitly shows that the orbital 

energy of LUMOα (ELUMOα
gas = -0.14850 Hartrees) is lower than the energy of SOMOβ 

(ESOMOβ
gas = -0.13886 Hartrees). Nevertheless, these energies are almost identical in the 

aqueous enzyme phase (ELUMOα
enzyme

 = -0.35177 Hartrees, ESOMOβ
enzyme

 = -0.35185 Hartrees). 

Thus, upon reduction of cluster 13, the e- could enter into LUMOα (Figures 5 and 7 of 

both phases). Upon analysis of the NBO charges of clusters 13 and 14, the OH- and Fed 

of 14 acquire most of the partial charge ceded by Fep during the reductive process 13 → 

14.  

Finally, in gas phase H-cluster 15 undergoes a protonation reaction on N3, which is 

substantiated by the NBO negative charge decrease, for both phases, on N3 [qg
N3 = -0.267 

a.u. (15) → -0.187 a.u. (16)], while in protein environment the exogenous O2 is 

protonated [qe
O2 = -0.510 a.u. (15) → -1.024 a.u. (16)]. 
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In conclusion, several possible pathways have been investigated for the oxidation 

of [Fe-Fe]-hydrogenase H-cluster, and they all proceed spontaneously to cluster, 9. Each 

pathway is initiated by an intermediate (1, 5, 6, and 8) of the catalytic cycles in H2 

metabolism.   

In gas phase, O2 binding is endergonic for the fully oxidized H-cluster 1 and 

exergonic for 8; however, it is exergonic for the partially oxidized 5 and reduced 6 

clusters. But for aqueous enzyme phase, the O2 binding is exergonic for all oxidation 

states. This suggests that the fully oxidized state of the H-cluster 1 in enzyme 

environment is more sensitive to O2 inhibition. 

Our calculations show that in the protein environment (Figure 3-2, and 3-3) the 

hydroxylated H-cluster 14, which is the end product of hydrogenase inhibition, is 

obtained from 9 via the fully exergonic reaction pathway that starts by means of 

protonation (Figure 3-2). Antithetically, the reaction pathway  that is initiated by means 

of reduction (Figure 3-3, aqueous enzyme phase) does not proceed to the hydroxylated H-

cluster 14 due to this very endergonic step (ΔGQM/MM = +25.6 kcal/mol ). 

The inhibitory steps in gas phase (Figure 3-2, and 3-3) consist of water removal 

from a closed shell, 10, and an open shell, 16, H-cluster (ΔGgas = +3.3 and +1.3 kcal/mol, 

respectively), while in the aqueous enzyme phase there is one inhibitory step, i.e., an e- 

transfer from an open shell H-cluster (9', ΔGQM/MM = +25.6 kcal/mol ). 

From gas phase geometrical analysis COb shows a displacement away from Fep
II (9 

→ 9'), but in the aqueous enzyme phase this COb translocation is not observed; the 

observed different phase behavior in the protein environment may be due to the imposed 

immobility on the iron atoms (by means of "freezing" them).  
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For the gas phase, cluster 11, LUMO is more localized over the Fep than on Fed, 

extending from the iron atoms towards the COb via a linear combination between the eg 

orbitals of the iron atoms with the COb π orbitals9, thus the e- transfer, 11 →  12, changes 

the oxidation state of Fep. However, for the protein environment, the LUMO is localized 

on Sγ which is being bereft of e-s via an inductive effect of the vicinal cubanes [qe
Sγ = 

0.464 a.u. (11) vs. 0.333 a.u. (12)]. 

Lastly, an interesting result from the FMO gas phase analysis is that an e- is 

transferred to a virtual α orbital rather than to the virtual β orbital. We also found that O2 

inhibited [Fe-Fe]-hydrogenase H-cluster has OH- bonded to the Fed, and that OH- is the 

end product of O2 metabolism, with all aqueous enzyme phase reaction pathways 

proceeding exergonically.  
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CHAPTER IV 

RESIDUE MUTATED [FE-FE]-HYDROGENASE IMPEDES O2 

BINDING: A QM/MM INVESTIGATION 

 

4.1. General Considerations 

 

[Fe-Fe]-hydrogenases are enzymes that catalyze the reversible reduction of protons 

to hydrogen (2H+ + 2e- ⇄ H2) in anaerobic media2,3, and are considered one of the oldest 

enzymes in nature4.The eventual elucidation of the catalytic mechanism of hydrogen 

synthesis may avail researches produce clean hydrogen fuel, using certain prokaryotes 

and eukaryotes5-50.   

The hydrogenase H-cluster (Figure 2-1) is the active site and is comprised of two 

iron atoms (Fep-Fed, i.e., proximal and distal iron).  The di-iron atoms are coordinated by 

endogenous ligands, i.e., two cyanides, two terminal carbonyls, and a bridging carbonyl 
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(COb). Also, 1,3-di(thiomethyl)amine (DTMA) and propanedithiolate (PDT) are 

considered potential bidentate ligands of the di-iron subcluster51-53.  

A cubane cluster, [4Fe-4S] (which also belongs to the H-cluster), is bonded to Sγ of 

Cys382, while the former (Sγ) is bound to Fep of the H-cluster.  

Previous Density Functional Theory (DFT) as well as hybrid quantum 

mechanics/molecular mechanics (QM/MM) calculations2,54-62 have been successful in 

clarifying  some aspects of the catalytic properties of the H-cluster. As in similar 

computational studies2,55, CH3-S is substituted for cysteine, and a H+ is exchanged for the 

proximal cubane. Furthermore, computational and experimental1,2,51,53,55,60,62-88 [Fe-Fe]-

hydrogenase H-cluster (and synthetic H-cluster-like compounds) research sheds light on 

the mechanism and the potential redox states of the [Fe-Fe]-hydrogenase H-cluster 

subunit, Fep-Fed; Fep
I-Fed

I is the reduced hydrogenase H-cluster subunit, Fep
II-Fed

I is the 

partially oxidized enzyme subunit, and Fep
II-Fed

II is the fully oxidized, inactive enzyme 

H-cluster subunit.  

The oxidized H-cluster, Fep
II-Fed

II, has a OOH-, H2O molecule or an OH- bound to 

the Fed
II1,55. In our previous investigation67, we have inferred that a vacant Fep

II-Fed
II could 

also be a viable intermediate in H2 synthesis. Regardless of [Fe-Fe]-hydrogenase H-

cluster subunit redox states, the proximal cubane always retains a 2+ oxidation state, 

[Fe4S4]2+. The partially oxidized H-cluster (containing Fep
II-Fed

I), Hox, is also the active 

species of the hydrogenase enzyme. According to Liu and Hu55, Fep
I-Fed

I is also the 

cluster having a tendency for protonation, when a proton is captured from the side chain 

of a near by amino acid, such as Lys237.  
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Hydrogenase X-ray crystallography and spectroscopic studies, with the latter 

having been obtained from Clostridium pasteurianum (CP)52  and Desulfovibrio 

desulfuricans (Dd)53, led to a more detailed understanding of the biochemical role of 

these enzymes.  

The X-ray crystal structure of CPI hydrogenase shows an oxygen species that may 

be OH-, or H2O bound to Fed of the H-cluster. However, based on computational results 

of Tye et al.1, and according to X-ray crystal structure, CPI has OOH- in its inactive form. 

Hence, we attempt to ascertain if oxygen binding to distal iron (Fed-O2) can be hindered 

by residue mutations within the surrounding apoprotein of the catalytic site.  

The current investigation is comprised of three parts. (1) Wild-type and residue 

mutated [Fe-Fe]-hydrogenase thermodynamic analysis for O2 hindering reactions (from 

binding to Fed) for the three different oxidation states of the di-iron subcluster, viz., Fep
I-

Fed
I, Fep

II-Fed
I, and Fep

II-Fed
II. (2) Geometrical analyses that were carried out for 

significant interatomic distances of Fed-O2 and the extrinsic ligand, O-O, and of COb 

bond distances to the di-iron atoms. The remaining subdivision, (3), is the electronic 

analysis which discusses the frontier molecular orbitals.  

 

4.2. Methodology 

 

In the current investigation, QM/MM [DFT/UFF89] methodologies have been used 

for [Fe-Fe]-hydrogenase. The ONIOM90 method (DFT for the QM region, and the 

universal force field, UFF, for the MM region, implemented in Gaussian0391) has been 
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used to determine the reaction thermodynamics, i.e., ΔG, for the oxygen binding reactions 

to the [Fe-Fe]-hydrogenase H-cluster (situated within the enzyme matrix).  

The electronic structure of H-cluster (except the proximal cubane) is investigated by 

QM (Gaussian 03) using DFT method (B3LYP functional92,93), with 6-31+G(d,p) basis 

set. In accordance with experimental and in silico data, low spin states (singlet, and 

doublet) and low oxidation states (I, and II) have been selected for the Fe atoms2,60.  

The Gromacs software program94,95 was employed to add hydrogen atoms, water, 

and counter ions to the X-ray crystal structure of DdH [Brookhaven Protein Data Bank 

(id.1HFE)]. Hydrogen atoms and 1 nm layer of water (2043 H2O molecules) have been 

added to the PDB DdH structure. Na cations have been randomly inserted into the solvent 

to neutralize the negative charges encountered in DdH, e.g., the -2 a.u. found on the 

cubane/cysteine moieties, or in the H-cluster (when needed)96. For both basic and acidic 

amino acids, charges were assigned by Gromacs algorithm to be at pH 7. ONIOM 

geometry optimizations have been performed on DdH, with the low layer (MM region) 

being frozen∗, with the exception of the proximal cubane; for the high layer (QM), only 

the iron atoms, Fep-Fed, and the N (of the DTMA bridge) have been kept frozen∗∗. 

The low layer consists of all metalloenzyme residues as well as its constituent 

cubanes, i.e., proximal, medial, and distal.  The high layer is comprised of 2Fe subunit, 

                                                 
∗Where “frozen” means that x, y, z atom coordinates are kept fixed to reduce computational time. 

∗∗ For the fully and partially oxidized vacant di-iron subunits, additional optimizations have been carried 

out by freezing these atoms: Fep-COt (where COt stands for terminal carbonyl). The extra optimizations 

have been done because the above mentioned di-iron subunits are more likely to undergo COb migration. 
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(which is a moiety of the H-cluster), and Cβ and Sγ (of the bridging Cys382). Two linking 

hydrogen atoms were added between Cα and Cβ of Cys382, and between Sγ and an Fe atom 

of the proximal cubane.  

The charge equilibration method of the UFF was used to describe the electrostatic 

interactions within the low layer of the system97. The DdH partial charges were obtained 

using the charge equilibration method (QEq), whereas the solvent charges were acquired 

from literature97 (qO = -0.706 a.u. and  qH = 0.353 a.u.). 

Residue mutations were carried out within the adjacent apoenzyme environment (to 

H-cluster) in order to hinder O2 from binding to the open coordination site (Fed) of DdH 

H-cluster.  

Residue mutations are comprised of deletions and substitutions which are 

performed 8 Å radially outward from Fed. In order to screen the thirty polar residues 

located in the 8 Å apoenzyme layer, individual residue deletions are carried out to 

ascertain what residue substitutions should be made in order to impede O2 from bonding 

to Fed.   

Residue deletions and substitutions are performed for the three di-iron subcluster 

oxidation states, viz., Fep
II-Fed

II, Fep
II-Fed

I, and Fep
I-Fed

I of [Fe-Fe]-hydrogenase H-cluster. 

 

 4.3. [Fe-Fe]-hydrogenase H-cluster Thermodynamics for O2 Binding 

 

        In Table II, two values are given for the wild-type DdH. The first row presents 

Gibbs’ energies (ΔGc
QM/MM) for the wild-type enzyme with all the charges obtained by 

means of QEq method for the MM layer, which include the neighboring charges of 2Fe 
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subunit, viz., over proximal cubane∗, MM section of Cys382, C (of the peptide bond) from 

Gly381, and over N of Val383 (all MM charges are provided in the supplementary material). 

The second wild-type DdH energy values (ΔGQM/MM) have also been calculated [by the 

same QM/MM method as in the first row calculations], but the neighboring charges of 

the 2Fe subunit have been deleted. 

The deletion of the neighboring charges of the 2Fe subunit is carried out in order to 

remove the wavefunction distortions. However, the effects of the neighboring charges are 

investigated because they exist in the studied enzyme.   

The difference in the wave function polarization (with or without neighboring 

charges) is quantified by natural bond orbital charges (NBO, Figure 1a, and 1b). The 

strongest effect of the MM electric field is on the NBO charges of Sγ of Cys382, and the 

linking atom (HL) attached to it. 

 First, in the presence of the neighboring charges, abnormal NBO charge 

differences are observed between Sγ and HL. This charge differences provide highly 

positive charges on Sγ (ranging from 0.285 to 0.474 a.u.) and highly negative charges on 

HL (ranging from -0.443 to -0.262 a.u.), which is essentially due to the negatively charged 

sulfurs of the proximal cubane. When no neighboring charges are used for MM layer, the 

charge differences between Sγ and HL are much smaller [than in the presence of the 

neighboring charges; (NBO charges of HL range from 0.219 to 0.288 a.u.; NBO charges 

of Sγ range from 0.051 to 0.148 a.u.)], for the electronegativity of H is ca. 2.1 and for S is 

ca. 2.598. 

                                                 
∗ Except for the cubane sulfur (Sc,d) situated diagonally from  the cubane Fe, which is bound to cysteinyl 

sulfur of Cys382. 
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Table II. Wild-type and Residue Removed DdH - First 14 Amino Acids - Gibbs’ 

Energies for O2 Binding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Gibbs’ energies (kcal/mol) for the wild-type enzyme; the MM layer include the 

neighboring charges of 2Fe subunit, viz., over proximal cubane (except Sc,d), MM section 

of Cys382, C (of the peptide bond) from Gly381, and over N of Val383. 

**Residue removed DdH;  s = small chain. 

 

 

Reaction: FeII-FeII +O2 FeII-FeI +O2 FeI-FeI +O2 

Wild-type DdH* -16.6 -7.9 -20.7 

Wild-type DdH -10.6 +2.6 -20.5 

ΔSer62s** -9.0 +2.5 -20.4 

ΔArg111 -11.2 +2.2 -22.9 

ΔTyr112 -10.8 -3.2 -21.1 

ΔAsp144 -8.4 +4.6 -20.5 

ΔThr145 -11.1 +3.9 -21.5 

ΔGlu146 -8.7 +2.7 -21.6 

ΔThr148 -10.9 +2.1 -21.2 

ΔAsp150 -9.4 +1.9 -22.8 

ΔThr152 -9.2 +4.1 -18.6 

ΔGlu155 -11.1 +2.2 -21.0 

ΔThr176 -10.1 +3.0 -19.6 

ΔSer177 -10.8 +4.4 -21.3 

ΔGln183 -10.8 +2.9 -19.7 

ΔSer198 -10.5 +2.7 -20.3 
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Table III. Residue Removed DdH - Next 16 Amino Acids - Gibbs’ Energies  for O2 

Binding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Residue removed DdH; the Gibbs’ energies are given in kcal/mol. 

Reaction: FeII-FeII +O2 FeII-FeI +O2 FeI-FeI +O2 

ΔLys201* -10.6 +2.5 -20.9 

ΔSer202 -7.9 +3.9 -17.3 

ΔAsn207 -10.3 +2.6 -21.1 

ΔSer230 -10.3 +2.9 -19.8 

ΔLys237 -10.0 -2.7 -24.5 

ΔLys238 -11.7 +2.2 -21.0 

ΔGlu240 -10.7 +3.6 -20.9 

ΔThr257 -10.7 -2.9 -20.5 

ΔThr259 -11.2 -3.0 -20.7 

ΔThr260 -10.5 +2.7 -20.3 

ΔSer289 -10.3 -2.9 -20.7 

ΔThr294 -10.1 +3.2 -20.1 

ΔThr299 -10.5 -2.8 -20.5 

ΔGlu374 -10.1 +4.7 -21.5 

ΔTyr375 -10.4 +2.7 -20.7 

ΔGln388 -10.8 +2.5 -20.4 
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Figure 4-1a. The NBO charges of 2Fe subunit with (MM layer) neighboring charges. 
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Figure 4-1b. The NBO charges of 2Fe subunit without (MM layer) neighboring charges. 
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For the Fe atoms of the vacant di-iron subunits, Fep
I-Fed

I, Fep
II-Fed

I, and Fep
II-Fed

II, 

the following trend is observed. When using neighboring charges, the NBO charges of 

Fep (for all di-iron subunit oxidation states) become more negative. However, the 

opposite NBO charge trend is observed for Fed (with neighboring charges).   

On the other hand, for the Fe atoms of the O2 inactivated di-iron subunits, Fep
I-Fed

I, 

Fep
II-Fed

I, and Fep
II-Fed

II, a similar trend is observed for NBO charges (as for the vacant 

di-iron subunits) of both Fep and Fed, except that NBO charges shift  less.   

In both cases, with or without neighboring charges, the NBO charges found on the 

exogenous O2, of Fep
II-Fed

II, remain relatively constant. However, for the Fep
I-Fed

I, Fep
II-

Fed
I, the NBO charges located on the extrinsic O2, become less negative due to 

neighboring charge induction, hence hindering O2 from leaving.    

Finally, for both vacant and O2 inactivated di-iron subunits, the C charges of COb 

remain relatively constant upon utilizing neighboring charges. 

Generally, the effect of the neighboring charges on Gibbs’ energy (for Fep
I-Fed

I, 

Fep
II-Fed

I, and Fep
II-Fed

II) is to increase the spontaneity for O2 binding. However, this 

effect is rather small for the reduced di-iron subcluster.  

Thus, the more realistic approach of O2 inactivation for the di-iron subunits, is when 

the MM layer is bereft of neighboring charges, for, as shown in the crystal structure of 

DdH, Fep
II-Fed

I has little propensity for O2 bonding53. 

In Figure 4-2, O2 inhibition pathways are presented, in which three different 

oxidation states, for the examined H-clusters, are studied, i.e., Fep
II-Fed

II (1), Fep
II-Fed

I (3), 

and Fep
I-Fed

I (5), where (1), (3), and (5), are the cluster identifiers. 
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Figure 4-2. Oxidation reactions of O2 with the fully oxidized (1), partially oxidized (3), 

and reduced (5) di-iron subunits. Also the protonation with the reduced (5) di-iron 

subunit is depicted. The charge and multiplicity are provided in square brackets.   
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In gas phase, the 1st reaction, 1 → 2, is endergonic (ΔGgas = +9.8 kcal/mol; gas = 

gas phase) when O2 binds to the fully oxidized H-cluster (1). Hybrid QM/MM 

calculations in aqueous enzyme phase, on the other hand, show that O2 binding occurs 

exergonically (ΔGc
QM/MM = -16.6 kcal/mol; ΔGQM/MM = -10.6 kcal/mol), reconfirming the 

affinity of hydrogenases for O2
99.  

In gas phase, the 2nd reaction, 3 → 4, starts with the partially oxidized H-cluster 

(3), (Fep
II-Fed

I), and the bonding of O2 to Fed
I, in this case, occurs rather exergonically 

(ΔGgas = -36.1 kcal/mol) relative to step 1 → 2.  

Alternatively, ONIOM results show that O2 binding occurs spontaneously when 

neighboring charges are used (Fep
II-Fed

I, ΔGc
QM/MM = -7.9 kcal/mol) to the partially 

oxidized H-cluster, but when the MM layer is deprived neighboring charges, then O2 is 

barred from binding to the coordination site (ΔGQM/MM = +2.6 kcal/mol). 

In gas phase, the 3nd reaction, 5 → 6, starts with the reduced H-cluster 5, (Fep
I-Fed

I); 

the process occurs spontaneously (ΔGgas = -36.0 kcal/mol), which is almost identical to 

the Gibbs’ energy of reaction 3 →  4. The gas phase Gibbs’ energy similarity (between 5 

→ 6 and 3 →  4) may result because both loci of oxygen binding (Fed
I-O2) are on similar 

oxidized species, Fed
I.  

However, the hybrid QM/MM calculations 5 → 6 show a small free energy 

difference between the aqueous enzyme (ΔGc
QM/MM = -20.7 kcal/mol; ΔGQM/MM = -20.5 

kcal/mol) and gas phase results (ΔGgas = -36.0 kcal/mol). 

In gas phase, Figure 4-2, the protonation reaction, 5 → 7, is very exergonic (ΔGgas 

= -220.6 kcal/mol), essentially because the charge on H-cluster 5 is -2 a.u.. ONIOM 

calculations also show a very high H+ affinity (ΔGc
QM/MM = -219.2 kcal/mol) for the 
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hydrogenase H-cluster, which is considerably close to the gas phase result (ΔGgas = -220.6 

kcal/mol). 

From Figure 4-2, thermodynamic results show that most reactions considered 

proceed exergonically with the exception of 1 → 2 (gas phase).  

Residue screening on an 8 Å layer surrounding the H-cluster has been carried out. 

First residue deletions and then residue substitutions were performed.  

For O2 binding to Fed
II (of the oxidized biferrous hydrogenase H-cluster subsite, 

Fep
II-Fed

II, (1)), results were obtained that are a function of stereoelectronic effects from 

the juxtaposed residues on the catalytic site. Both neutral polar and charged polar residue 

deletions gave good results, e.g., ΔSer62s∗, ΔAsp144, ΔGlu146, ΔAsp150, ΔThr152, and ΔSer202, 

with  ΔGQM/MM = -9.0 kcal/mol, ΔGQM/MM = -8.4 kcal/mol, ΔGQM/MM = -8.7 kcal/mol, 

ΔGQM/MM = -9.4 kcal/mol, ΔGQM/MM = -9.2 kcal/mol, and ΔGQM/MM = -7.9 kcal/mol, 

respectively.  

Moreover, by carrying out residue deletions within the previously mentioned 

apoenzyme layer, it is observed that O2 is hindered from binding to Fed
I of the partially 

oxidized di-iron subsite (Fep
II-Fed

I). 

Specifically, successful and, therefore, endergonic residue deletion results have 

been obtained for all tried residues (Table II and III), except for the following: ΔTyr112, 

ΔLys237, ΔThr257, ΔThr259, ΔSer289, and ΔThr299, with  ΔGQM/MM = -3.2 kcal/mol, ΔGQM/MM = 

-2.7 kcal/mol, ΔGQM/MM = -2.9 kcal/mol, ΔGQM/MM = -3.0 kcal/mol, ΔGQM/MM = -2.9 

kcal/mol, and ΔGQM/MM = -2.8 kcal/mol, respectively.  

                                                 
∗s = DdH small chain  
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An improving trend has been observed (towards impeding O2 binding) for residue 

deletions, relative to the wild-type enzyme (Table II and III), that hinder O2 from binding 

to Fed
I, of the fully reduced di-iron subsite (Fep

I-Fed
I), which gave the following results: 

ΔThr152, and ΔSer202, with  ΔGQM/MM = -18.6 kcal/mol, and ΔGQM/MM = -17.3 kcal/mol, 

respectively.  

With the positive results obtained from residue deletions, we were now enabled to 

carry out residue substitutions (Table IV).   

Therefore, by carrying out the two residue deletions, ΔThr152 and ΔSer202, favorable 

Gibbs’ energy have been obtained, which were followed by mutations to alanine, i.e., 

Thr152Ala, and Ser202Ala. 

The dual residue deletions, ΔThr152 and ΔSer202, gave successful Gibbs’ energy 

results (ΔGQM/MM = +5.4 kcal/mol) for the H-cluster subsite Fep
II-Fed

I, which obviously 

impede O2 binding.  However, for the H-cluster subsite, in oxidation states Fep
II-Fed

II and 

Fep
I-Fed

I, only a slight (O2 inhibition) improvement for Gibbs’ energy has been observed, 

viz., +2.2 kcal/mol and +4.4 kcal/mol respectively. 

For the simultaneous mutations to alanine, i.e., Thr152Ala, and Ser202Ala, of the di-

iron H-cluster subsite, improved Gibbs’ energy results (ΔGQM/MM = -9.2 kcal/mol for Fep
II-

Fed
II, ΔGQM/MM = +4.2 kcal/mol for Fep

II-Fed
I and ΔGQM/MM = -18.1 kcal/mol for Fep

I-Fed
I), 

were also obtained for O2 inhibition. 

The rationale for choosing the two residues (Thr152 and Ser202) is that their deletions 

gave good results for all oxidation states of the di-iron H-cluster subsite. 
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Table IV. Wild-type and Residue Mutated DdH Gibbs’ Energies for O2 Binding 

*The Gibbs’ energies are given in kcal/mol  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction: FeII-FeII +O2 FeII-FeI +O2 FeI-FeI +O2 

Wild-type DdH -10.6* +2.6 -20.5 

ΔThr152,ΔSer202 -8.4 +5.4 -16.1 

ΔThr152,ΔSer202 (at 100oC) -5.6 +7.9 -12.9 

Thr152Ala,Ser202Ala -9.2 +4.2 -18.1 
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Additionally, it is known that certain organisms containing [Fe-Fe]-hydrogenases 

thrive around suboceanic thermal vents4. Hence, at a temperature of 100 °C intercalated 

with hydrogenase mutations (Table IV), QM/MM results indicate that the extrinsic O2 

metalloenzyme inactivation is reduced (ΔGQM/MM = -5.6 kcal/mol for Fep
II-Fed

II, ΔGQM/MM = 

+7.9 kcal/mol for Fep
II-Fed

I and ΔGQM/MM = -12.9 kcal/mol for Fep
I-Fed

I), 

 

4.4. DdH Geometrical readjustment upon Oxidation  

 

Here, the wild-type DdH Gibbs’ energies are correlated with geometrical 

parameters, such as interatomic distances and bond angles.  

The iron-carbon distances, Fep-COb, are now assessed for the three oxidation states 

of the di-iron subsites (Table V).  

For the Fep
II-Fed

II subsite, the iron-carbon distance, Fep-COb, becomes smaller 

(1.925 Å (1) → 1.807 Å (2)) upon enzyme oxidation, occurring with a concomitant bond 

elongation (1.942 Å (1)  → 2.287 Å (2)) between Fed-COb, which generally indicates an 

increased bonding strength for an exogenous ligand67.  

For the oxidation state of the di-iron subsite, Fep
II-Fed

I, the interatomic bond 

distance, Fep-COb, becomes smaller (1.939 Å (3) → 1.924 Å (4)), once again, upon 

enzyme oxidation, while a bond elongation is observed (1.908 Å (3) → 1.924 Å (4)) for 

Fed-COb. 

Upon DdH oxidation, for the reduced di-iron subcluster (Fep
I-Fed

I), the Fep-COb 

interatomic bond distance becomes smaller (1.942 Å (5) → 1.935 Å (6)), as the bond Fed-

COb increases (1.826 Å (5)  → 1.945 Å (6)). 
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Table V. Interatomic Distances for Wild-Type Ddh, Between Fep and Cob, Fed and Cob, 

Fed and OI, And OI-OII Before and After O2 Binding - the Angle (Fed-OI-OII) Is also Given 

Before O2 
binding 

FeIIFeII FeIIFeI FeIFeI 

COb-Fep 1.925* 1.939 1.942 

COb-Fed 1.942 1.908 1.826 

After O2 binding    

COb-Fep 1.807 1.924 1.935 

COb-Fed 2.287 1.924 1.945 

OI-Fed 1.729 1.840 1.808 

OI-OII 1.276 1.281 1.373 

Fed-OI-OII 137.0 160.6 126.0 

*The distances are given in Å 
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From the above considerations, it is observed that a similar trend occurs for fully 

and partially oxidized, and reduced di-iron subcluster. That is, the bond between the 

carbon of the bridging carbonyl and the distal iron becomes longer upon O2 binding to the 

catalytic site.  

Following, an analysis is presented for interatomic distances between distal iron and 

oxygen, and between oxygen atoms, Fed-OI-OII, relative to Gibbs’ energy for all three di-

iron oxidation states. 

For the Fep
II-Fed

II subcluster, the iron-oxygen distance, Fed-OI, is rather small (1.729 

Å; Table V), which suggests a strong bonding (ΔGQM/MM = -10.6 kcal/mol; 1 → 2) 

between the distal iron and the oxygen atom bound to it. The inter-oxygen (OI-OII) bond 

distance is 1.276 Å, which corresponds to a bond order between a single and double 

bond. 

In the case of  the active di-iron subcluster, Fep
II-Fed

I, the Fed-OI bond distance is ca. 

6% longer (1.840 Å) than Fed-OI interatomic distance of the fully oxidized di-iron 

subcluster, giving rise to a weaker bond (ΔGQM/MM = +2.6 kcal/mol; 3 → 4) between the 

distal iron and the oxygen. The OI-OII bond distance is 1.281 Å, which is relatively close 

to the OI-OII bond for Fep
II-Fed

II subcluster. 

The OI-OII bond distance is relatively larger, 1.373 Å, which suggests that π-

backdonation occurs between a filled d-orbital of Fed and the empty π* orbital on O2.  

Out of the three di-iron oxidation states, the reduced di-iron subcluster (Fep
I-Fed

I) 

has most attributes of π-backdonation, i.e., the O2 bond order has been reduced, and 

lengthening of the OI-OII bond to 1.373 Å.  
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The more e--rich Fep and Fed, can explain why the reduced di-iron subcluster has 

more π-backdonation than any of the other*. 

Finally, the Fed-OI-OII angle varies as the oxidation states decrease, viz., for Fep
II-

Fed
II-OI-OII the ∠ = 137.0°, for Fep

II-Fed
I-OI-OII the ∠ = 160.6°, and for Fep

I-Fed
I-OI-OII the 

∠ = 126.0° in conjunction with effects of the nearby electric field of the apoprotein.  

    

4.5. Frontier Molecular Orbital Analysis 

 

Here, the electronic contributions of the frontier molecular orbitals, for the aqueous 

enzyme phase, are presented relative to the formerly presented Gibbs’ energies. 

Upon O2 binding to Fed of the closed-shell H-cluster (1), Figure 4-3, the lone pair of 

electrons residing on the incoming O2 are transferred into the vacant Fed d-orbital. 

For Fep
II-Fed

II subcluster (Figure 4-2, 1 → 2), the empty lowest unoccupied 

molecular orbital (LUMO) is essentially composed of an empty d-orbital of Fed (where 

O2 bonding occurs); it also extends over the π-orbital of COb (Figure 4-3). Therefore, 

LUMO for Fep
II-Fed

II subcluster is favorable for O2 bonding (which is confirmed by 

Gibbs’ energy, viz., -10.6 kcal/mole, 1 → 2).  

                                                 
* This π-backdonation agrees with Gibbs’ energy results form Table II. For example, the Fep

II-Fed
II 

subcluster has an exergonic Gibbs’ energy (ΔGQM/MM = -16.6 kcal/mol), which can be improved however by 

DdH mutations such as residue deletions and substitutions, since there is only slight π-backdonation 

present. The bond Fed-OI is still relatively weak (ΔG = -7.9 kcal/mol) for Fep
II-Fed

I subsite. However, for the 

reduced Fep
I-Fed

I subsite, the π-backdonation makes the oxygen bond very strong, thus making its 

elimination rather difficult (even by means of DdH mutations, Table IV). 
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Figure 4-3. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO 

(1), HOMO (2), LUMOα (3), LUMOβ (3),  HOMOα (4), HOMOβ (4), LUMO (5), and 

HOMO (6) (where the atom colors, of the H-clusters, are O = red, C = grey, N = blue, S 

= yellow, Fe = burgundy, and H = white). 

 

 



 99 

Once the O2 binding has occurred, the e-s do not necessarily remain localized on 

Fed
100, Figure 4-3, as the e- density is predominantly delocalized on the DTMA bidentate 

ligand.  

For the open shell Fep
II-Fed

I subcluster, both LUMOα and LUMOβ show large virtual 

orbitals surrounding their Fed, some e- delocalization over the terminal ligands of Fed, 

COb, and over Fep. As for LUMOα, some e- delocalization is observed on cysteinyl sulfur 

of Cys382.  

It seems, in retrospect, that LUMO of Fep
II-Fed

II subcluster, having a more localized 

orbital on Fed, than LUMOα and LUMOβ (of Fep
II-Fed

I subcluster), favors the above 

mentioned spontaneous reaction (ΔGQM/MM = -10.6 kcal/mole, 1 → 2) with O2.  

Again, (Figure 4-2, 3 → 4) once O2 bonding occurs, for the open shell Fep
II-Fed

I 

subcluster, HOMOα,, and HOMOβ are delocalized over the DTMA bridge, over the 

bonded O2 (slightly more by HOMOβ), and over Fep
II-Fed

I (especially by HOMOα). Thus, 

again, once O2 bonding occurs, the e-s migrate away from Fed (Figure 4-3) in the Fep
II-Fed

I 

subcluster.  

For Fep
I-Fed

I subcluster (Figure 4-2, 5), LUMO is found to be delocalized near the  

cubane/cysteines moiety. Nevertheless, in spite of the empty orbital shape (LUMO, 

Figure 4-3), the binding occurs between the distal iron and exogenous ligand, Fed
I-O2 (5). 

In cluster 6 (Figure 4-3), π-backdonation seems to occur between the filled d-orbitals of 

Fep
I-Fed

I and the π*-orbital of the exogenous O2.   

As formerly mentioned, the (electron lone pair) π-backdonation for the reduced 

Fep
I-Fed

I subsite makes the iron-oxygen bond (in Fed
I-O2) rather strong (ΔGQM/MM = -20.5 

kcal/mol), thus making its removal difficult even by means of DdH mutations, Table IV. 
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4.6. Conclusion 

 

Because it is expensive to work with the wild-type DdH in anaerobic conditions, we 

have in silico mutated [Fe-Fe]-hydrogenase, thus preventing or weakening the bonding of 

exogenous O2 to the active site. 

The [Fe-Fe]-hydrogenase mutations have been carried out in two steps on an 8 Å 

layer surrounding the H-cluster using residue screening. First, residue deletions have 

been performed, one by one. Then, from clues obtained from these residue deletions, 

residue substitutions have been performed on the wild-type DdH.  

For DdH residue deletions, regarding O2 binding to Fed
II   (of hydrogenase H-cluster 

subsite, Fep
II-Fed

II), both neutral polar residue and charged residue deletions gave 

enhanced results ΔSer62s, ΔAsp144, ΔGlu146, ΔAsp150, ΔThr152, and ΔSer202, with  ΔGQM/MM = 

-9.0 kcal/mol, ΔGQM/MM = -8.4 kcal/mol, ΔGQM/MM = -8.7 kcal/mol, ΔGQM/MM = -9.4 

kcal/mol, ΔGQM/MM = -9.2 kcal/mol, and ΔGQM/MM = -7.9 kcal/mol, respectively.  

Then, by carrying out residue deletions, on the partially oxidized di-iron subcluster 

(Fep
II-Fed

I), it is observed that O2 is hindered from binding to Fed
I, in most cases.  

Specifically, successful (or endergonic) residue deletions have been obtained for 

most assessed residues; several of the endergonic (successful) residue deletions are 

ΔGlu374, ΔAsp144, ΔSer177, and ΔThr152, giving ΔGQM/MM = +4.7 kcal/mol, ΔGQM/MM = +4.6 

kcal/mol, ΔGQM/MM = +4.4 kcal/mol, and ΔGQM/MM =  +4.1 kcal/mol, respectively (Table 

II). 

For several residue deletions, a successful trend has been observed in hindering O2 

binding to Fed
I (Fep

I-Fed
I), relative to the wild-type enzyme (Table II), which gave the 
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following results for ΔThr152, and ΔSer202 DdH mutants, giving ΔGQM/MM = -18.6 kcal/mol, 

and ΔGQM/MM = -17.3 kcal/mol, respectively. 

Results for residue substitutions are now presented (for they were carried out after 

residue deletions with clues thereof). Therefore, by carrying out residue deletions for 

ΔThr152 and ΔSer202, and finding improvements in Gibbs’ energy, the subsequent 

mutations to alanine were carried out, viz., Thr152Ala, and Ser202Ala. 

The two-residue deletions, ΔThr152and ΔSer202, on Fep
II-Fed

I hydrogenase, gave 

successful Gibbs’ energy; the O2 binding is hindered by +5.4 kcal/mol.  Also, for Fep
I-Fed

I 

hydrogenase, a small (O2 inhibition) improvement for Gibbs’ energy has been found, viz., 

+4.4 kcal/mol. 

The difference between the two residue deletions (ΔThr152and ΔSer202) and two 

residue substitutions (Thr152Ala, and Ser202Ala) with alanine is small (ΔGQM/MM  ~ +2 

kcal/mol), for O2 binding, and it is attributed to the overall charge of alanine which is 

approximately zero. However, this closeness in Gibbs’ energy for deletions and 

substitutions is unlikely to be found for mutations using charged amino acids (e.g. 

Thr152Glu, and Ser202Glu). Hence, DdH mutations open up new research opportunities 

along these lines.  

Finally, from FMO and geometrical analysis, evidence exists for π-backdonation, 

especially for Fep
I-Fed

I species. The strong observed Fed
I-O2 bonding is likely to be 

influenced by π-backbonding between the filled d-orbitals of distal iron and π* orbital on 

oxygen.  
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