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STATE ESTIMATION BASED ON NESTED PARTICLES

FILTER

SWATHI SRINIVASAN

ABSTRACT

In reality many processes are nonlinear and in order to have a knowledge about

the true process conditions, it is important to make decisions based on the state of the

system. Process measurements such as pressure, temperature, and pH, are available

at time instances and this information is necessary in order to obtain the state of the

system. Filtering is a state estimation technique by which the estimate is obtained

at a time instant, given the process measurements at their respective time instances.

Several filters have been developed so far for the estimation of the states of the system.

Kalman filters are the optimal filter algorithms used for linear state and measurement

models. Approximations are made to this algorithm in order to apply to non-linear

systems.

Particle filter (PF) is one such approximation made to the Kalman filtering

technique. It involves drawing a set of samples or particles from the state of the

system. It works on the principle of importance sampling, where, the samples are

derived from a probability density function which is similar to the state model. The

particles are resampled according to their weights in order to determine the estimate.

Taking into account the difficulties in particle filtering technique, a nested particles
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filter (NPF) was developed.

NPF works in such a way that there is a set of particles under each sample

of the original particle filter, and from these nest of samples the transition prior

is updated using an extended Kalman particle filter (EKPF). The idea of nested

particle filter was developed from the unscented particles filter (UPF), which uses the

concept of local linearization to develop the importance density. Better importance

densities are formulated in this case through which better posteriori are obtained. It

is important to note that the update of the NPF can be done with any suboptimal

nonlinear filter available. This thesis work is based on developing the NPF with a

direct sampling particle filter (DSPF) update. Some modifications are made to the

unscented particle filter algorithm. The first part of the thesis is to update to NPF

with an ensemble Kalman filter update (EnKF). One mathematical example is used

to explain the working of the filter and this is compared with the working of NPF

with a DSPF update.
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CHAPTER I

INTRODUCTION

Estimation and filtering are central to a wide variety of disciplines and have

their applications in many fields such as control, communication and signal process-

ing, statistics, economics, bioengineering, and operations research. Estimation is a

process of arriving at a value for a desired and unknown variable from recent obser-

vations and measurements of other variables which are related to desired ones but

contaminated with noise. Recently, in the case of engineering, filtering theory has

become synonymous with estimation theory. It is odd to note that the word filter is

synonymous with estimator, because, in engineering, filters are physical devices that

separate the wanted from the unwanted in a mixture. In electronics, filters are named

as circuits that are in frequency-selective behavior and select the desired and unde-

sired signals according to the desired input and output. This process of separating

the desired and undesired signals is called signal processing. The undesired part of

the signal is commonly known as noise. Both the signal and noise are characterized

by their covariance functions. Kolmogorov and Wiener used probability distribution

to characterize the signal and noise and determine an optimal estimate of the sig-
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nal from the given sum of the signal and noise, statistically. In 1960s Kalman used

a model in place of the covariance of the signal process which is the fundamental

work in linear filtering theory [23]. Kalman developed a filter known as the linear

quadratic Gaussian estimation problem. The Kalman filter is also known as the best

linear unbiased estimator or the BLUE filter.

Kalman filter (KF) has led to the development of filtering techniques in many

ways. With the advent of Kalman filter, the word filtering took a different meaning

which is beyond its original literal meaning of separation from mixtures. Thus, the

word filter has a variety of functions some of which are:

? filter solves an inversion problem where the estimate is obtained from the mea-

sured outputs of the system

? filter is used as a learning tool by which a certain signal is tracked, estimated,

and predicted

? filter separates the desired signal from the noise

? filter estimates the unknown signal, which is normally a function of state and

input of system using measured outputs.

Kalman filters have a wide range of applications in control systems, tracking

and navigation of all sorts of vehicles and in the prediction of the future, such as

weather forecasting. Other applications of the Kalman filter includes satellite naviga-

tion, trajectory estimation, guidance, video and laser tracking systems, radars, and

also oil drilling, water and air quality control and geodetic surveys.

In order to understand filtering, consider an isothermal gas phase batch reactor

(Fig.[1]). The reactant A forms the product B under isothermal conditions. Once

the reactants are fed into the reactor, the concentration or the performance of the

reaction is unknown. The desire is to have some knowledge about what is happening
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in the reactor. The concentration of the reactants and products may not be measured

directly at every moment in the reactor. For example, the dissolved oxygen concen-

tration in bioreactors, temperature in non-isothermal reactors and gaseous flow rates

are available for measurement while the values of the concentrations of products, re-

actants, and biomass are often available only by analysis. So, estimation techniques

are used to predict or estimate the variables that are not measured directly. Here, the

concentration is the state of the system which is to be estimated. However, pressure

sensors are available which give information about the total pressure of the system.

This is known as the measurement or observation of the system. In order to compute

the concentration, the measurements are used in the state model or the concentration

model. A state model is the mathematical relation describing dynamics of the concen-

tration and a measurement model relates the concentrations to the partial pressures

of the system. With the knowledge of the measurement and the initial conditions

(initial concentration with which the reactor is fed) it is possible to determine the

state of the system. This scenario is known as state estimation.

The state of the system is a variable that is used to define the system math-

ematically. The state variable can be the concentration in the reactors or the flow

rates in piping . Similarly, measurements can be pressure, temperature, or pH. The

measurements are always accompanied by certain disturbances named as noise. Es-

timation can be broadly classified into three types based on the time in which the

state is evaluated. The measurement data is a set of points obtained at discrete time

intervals, which is a function of the state and accompanied by errors or noise. From

the measurement set, if the state of the system is computed at the same time instant,

then the process is called filtering. If the measurement information is used to com-

pute the state of the system in the past or the future, then it is called smoothing or

forecasting, respectively.
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Figure 1: Batch Reactor

Kalman filters are applicable for linear systems; however in reality many pro-

cesses are nonlinear. For example, the concentration dynamics in a batch reactor

can be nonlinear depending on the reaction kinetics. Several modifications have been

made to the Kalman filtering technique to make it applicable for nonlinear systems.

The probabilistic approach to nonlinear filtering was pioneered by Stratonovich

[21]. Kushner [24] and Wonham [25] also developed the continuous nonlinear estima-

tion theory. The probabilistic approach to discrete filtering was developed by Jazwin-

ski [22]. Much of the work on extended Kalman filters (EKF) are one of the earliest

approximations available for Kalman filtering technique in order to be applicable for

nonlinear systems.The nonlinear state and measurement models are linearized by tak-

ing the partial derivatives. The matrix of partial derivatives is known as the Jacobian.

When the state and the observation models are highly nonlinear, extended Kalman

filters do not hold good. The unscented Kalman filter (UKF) works on the principle

of unscented transformation by which a set of sample points called sigma points are
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chosen around the mean. These sigma points are then propagated through the state

and measurement model and the estimate is obtained. This technique is considered

to overcome the disadvantages of extended Kalman filter since it better approximates

the nonlinearity and does not involve the calculation of the Jacobian [20].

Particle filter (PF) is based on sequential Monte-Carlo method and is an ap-

proximate method for nonlinear filtering. In this method the particles at a given time

instant, k, are independent and identically distributed random vectors representing

the state vector. These particle/state vectors are used in state equation to find the

values of particles at time instant k+ 1 [1]. Particle filter works on the basis of choice

of the importance density by a method known as importance sampling. A particle

filter with a specific approximation made in the choice of the importance density is

termed as bootstrap filtering [5]. If the latest available information is not propa-

gated to the next time instant the particle filter may yield inaccurate state estimates.

The disadvantages of the bootstrap filter are taken into account which led to the

development of the nested particles filter [18].

The idea of developing a nested particles filter was initiated from the extended

Kalman particle filter and the unscented particle filter which used the local lineariza-

tion concept to obtain the importance density [19]. The unscented Kalman filter is

chosen as the importance density for each particle. This choice of importance density

allows sampling in a region of high likelihood.

Local linearization technique is used in order to obtain importance densities.

These local filters are different types of Kalman filters. Other Gaussian or non-

Gaussian pdfs can also be chosen as the local importance density [18]. In this litera-

ture, ensemble Kalman filter and direct sampling particle filter are considered as the

local importance densities and the resultant superior performance of this estimation

technique, when compared to local linearization particle filter is shown.
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CHAPTER II

SCOPE OF THESIS

2.1 OBJECTIVE

The main objective of this thesis work is to develop a local linearization particle

filter with a different choice of importance densities. Two different suboptimal filters

are used as importance densities to obtain the estimate of the state of the system

given the observation or the measurements.

2.2 HYPOTHESIS

The approximations made on the choice of the importance density in a particle

filter can be overcome by formulating local importance densities on each of the sam-

ples. It is hypothesized that the importance density thus generated out of the particles

provide accurate information regarding the a posteriori estimate of the state of the

system, provided the necessary update method.
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2.3 SPECIFIC GOALS

The specific goals or aims considered while achieving objectives of the thesis

are listed below. The basic principles involved in the estimation technique is un-

derstood using a simple mathematical example and several non-linear filters such as

extended Kalman filter, unscented Kalman filter, ensemble Kalman filter, direct sam-

pling particle filter and particle filter are applied to the state estimation problem.

Understanding the performance of these filters are very important in order to develop

the nested particles filter.

A. Goal 1:- To investigate nonlinear filters

Using a simple mathematical example, the non-linear filters can be explained

and the performance and efficiency of the filters can be compared with each other.

Additionally, simulations are performed to validate the estimations, which can be

achieved by obtaining the mean squared error between the simulation and the esti-

mation. Each nonlinear filter has to be compared with each other and their advantages

and disadvantages discussed in detail.

The mathematical example is a simple time series system which also has a

sinusoidal term to it, which adds to the nonlinearity of the system.

B. Goal 2:- To investigate the nested particles filter and two update methods

For the nested particles filtering, it is imperative to understand the logic of

unscented particle filters. After the propagation of the nest particles through the

state equation, the local importance densities should be obtained for each nest and

the optimal importance density is to be achieved. Importance weights are to be

evaluated for each nest particle using the Gaussian technique.

The possibilities of using two different update methods are to be analyzed.

The DSPF and EnKF methods are to be used in developing the update techniques

for the nested particles filter. A comparison is to be made in order to verify which of

7



the two works better.

C. Goal 3:- To explain the performance with an example

An algorithm, a comparison, and a study on the nested particle filter are to

be performed with an example. Another example that relates to the concepts of

chemical engineering has to be implemented.Proper understanding of the limitations

of the nested particles filter are to be ensured along the course of the thesis. A detailed

analysis on the limitations of the nested particles filter are to be presented.

2.4 LAYOUT

Chapter 3 explains briefly the concept of Bayesian state estimation, which is

important in the filtering problem to obtain the estimate. The algorithm to derive the

estimate and the possible assumptions of the best estimate are also explained in this

chapter. The classification of filters and the types of filters available are indicated.

Chapters 4 and 5 explain the working algorithm, theory and concept of linear

and nonlinear filters respectively. The assumptions and approximations made in

obtaining the estimate are explained for each of the filters. The linear Kalman filtering

technique and the nonlinear filters such as: EKF, UKF, PF, DSPF and EnKF are

explained in these chapters.

Chapter 6 explains a nonlinear system through a mathematical example. The

nonlinear filters, PF, DSPF and EnKF are investigated using this mathematical

model. A simulation example for the implementation of these filters and a com-

parison of their performance is also shown.

Chapter 7 and 8 explains the background and algorithm of nested particles

filter. The advantages of this technique over the other filters and a comparison of

results is shown in these chapters. A comparison between two update methods is

explained in Chapter 8.
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CHAPTER III

BAYESIAN STATE ESTIMATION

3.1 PROBABILITY THEORY

3.1.1 Probability

Probability is a measure of estimating the likelihood of a statement. Consider

an experiment that can produce many results. The collection of all the results is

known as sample space.

3.1.2 Probability of Events

Consider a random event whose sample space is S. For each event X of the

sample space S, we assume that a number P(X) is defined and satisfies the following

conditions:

? 0 ≤ P(X) ≤ 1

? P(S) = 1

9



? For a sequence of n events, X1, X2, ...Xn that are mutually exclusive, the prob-

ability of occurrence of X1, or X2, or Xn is given as:

p(∪∞n=1Xn) =
∞∑
n=1

P (Xn) (3.1)

The above equation can also be simplified as:

p(X ∪ Y ) = P (X) + P (Y ) (3.2)

where, X and Y are two mutually exclusive events.

3.1.3 Independent Events

Two events X and Y are said to be independent, if occurrence of one event

does not affect the probability of the other.

P (XY ) = P (X)P (Y ) (3.3)

3.1.4 Conditional Probability

In probability theory, a conditional probability is the probability that an event

would occur based on the condition that another specific event occurs. Let X and Y

denote two events. The conditional probability, P (X|Y ), is given as, if the probability

of event Y occurs, the probability of event X will also occur.

P (X|Y ) =
P (XY )

P (Y )
, P (Y ) 6= 0 (3.4)

where P (XY ) is the joint probability distribution. If X and Y are two random

variables in the same sample space, the joint probability distribution for X and Y is

defined in terms of both X and Y .
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3.1.5 Conditional Expectation

If X and Y are discrete random variables, the conditional probability density

function of X given that Y = y, is defined as,

px|y(x|y) = P{X = x|Y = y} (3.5)

=
P{X = x, Y = y}

P{Y = y}
(3.6)

=
p(x, y)

pY (y)
(3.7)

for all values of y such that pY=y > 0.

Similarly, the conditional probability distribution of X given that Y = y is

defined as:

FX|Y (x|y) = P{X ≤ x|Y = y} (3.8)

=
∑
a≤x

pX|Y (a|y) (3.9)

The conditional expectation of X given that Y = y is given as,

E[X|Y = y] =
∑
x

xP{X = x|Y = y} (3.10)

=
∑
x

xpX|Y (x|y) (3.11)

In case of continuous random variables, if X and Y have a joint probability

density function p(x, y), then the conditional expectation of X given that Y = y is

defined as:

E[X|Y = y] =

∫ ∞
−∞

xPX|Y (x|y)dx (3.12)

for all values of y such that PY (y) > 0.
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3.2 BAYES THEOREM

Bayesian state estimation is an important technique besed on Bayes theorem

[5]. The concept of Bayes theorem can be explained as follows.

Consider two random variables x and y, which are statistically independent.

Bayes theorem is based on the fact that joint probability is commutative, that is,

p(x, y) = p(y, x). Expanding each side with the conditional probability gives,

p(x|y)p(y) = p(y|x)p(x) (3.13)

p(x|y) =
p(y|x)p(x)

p(y)
(3.14)

If the variable x represents the state of the system and the variable y represents

the available measurements in the state of the system, then

? p(x) is the probability distribution of the state of the system which is indepen-

dent of the measurement. This is called the prior of x.

? p(y) is the probability distribution of the measurement of the system, which

is called the marginal probability or the evidence. It is generally derived as a

normalization factor.

? p(x|y) is the probability distribution of the state of the system given the mea-

surements in hand. This is termed as the posterior of the system. This is the

estimate of the system which is under consideration.

? p(y|x) is the likelihood of the system on the condition that the given model is

true.

In Bayesian theory, everything that is unknown is considered as a stochastic
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variable. The initial or the prior distribution is assumed to be known from the past

or historical data.

The terms in Eq. 3.14 can also be explained as:

posterior = (likelihood)(prior)
evidence

In simple words, Bayesian state estimation can be explained as, given the

support of, p(y|x)/p(y) and the initial degree of belief, p(x), the posterior can be

obtained having the measurements in hand.

3.3 MARKOV PROCESS

A Markov process is a stochastic process with the following property. The

conditional probability distribution of future states of the process depends only on

the present state and not on the sequence of events that preceded it. Consider a

stochastic process Xk,( where k = 0, 1, 2, ...) with finite set of values. The possible

values of the process are denoted by integers{ 0,1,... }. If Xk = i, then the process

is said to be in statei at time k. Whenever the process is in state i, there is a fixed

probability Pij that it will be in state j, that is

Pij = P{Xk+1 = j|Xk = i,Xk−1 = ik−1, ..., X0 = i0} (3.15)

This is known as the Markov chain. The value of Pij represents the probability

that the process when at state i will make a transition into state j.

3.4 STATE ESTIMATION PROBLEM

The Bayesian state estimation problem involves the calculation of the posterior

probability density function via the prediction and update stages. The probability

density function is assumed to be known. There are a number of optimal and subopti-
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mal methods of obtaining the posterior probability density function which is explained

in the following sections.

The estimation problems require the state model and the measurement equa-

tion model to be known in the probabilistic form. Let the dynamics of the state of

the system be modeled as:

xk = f(xk−1, ωk−1) (3.16)

where, xk−1 is the state vector at the time instant k − 1 and ω is the process

noise sequence, which is assumed to have a zero mean Gaussian probability density

function with known covariance. The initial condition is assumed to be a Gaussian

probability density function.

The measurement model is given as:

yk = h(xk, νk) (3.17)

Where, yk is the measurement at time instant k and ν is the measurement

noise sequence, which is assumed to have a zero mean Gaussian probability density

function with known covariance. The measurements until time k are available. The

initial probability density function of the state vector is available, that is at time

instant k = 0, called the prior. The aim is to find the posterior probability density

function at time instant k, with the given measurements.

At any time instant k, the state of a system depends only on the value of the

previous state k − 1, according to the Markov property. The above state model is

known as the hidden Markov model. The states are hidden and the measurements

are available to us.

14



3.4.1 Prediction Stage

In the prediction state, the state model is used to obtain the prior probability

density function at time instant k using the Chapman Kolmogorov equation [12]:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.18)

Here, the term p(xk|xk−1) is a Markov process of order one and the term y1:k−1

describes the measurements until the time step k − 1. The Chapman Kolmogorov

equation uses the fact that the state evolution process is a first order Markov process

and can be approximated given the state and the measurement model.

3.4.2 Update Stage

At time instant k, the measurement yk becomes available and Bayes theorem

is used to obtain the updated priors. The Bayes rule is given by:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.19)

Here, the denominator is a normalizing constant given as:

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (3.20)

The measurement at k is used to modify the prior so as to estimate the pos-

terior probability density function of the current state. The solution to the above

cannot be determined analytically except for linear Gaussian problems. So, various

optimal and suboptimal Bayesian methods are used to approximate it.

3.5 TYPES OF FILTERS

Filters can be broadly classified in three different ways, based on the Bayesian

solution, the state and the measurement model and the probability distribution func-
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tion. One mode of classification of filter is depending on the optimal solution obtained

for the filter problem and based on the algorithm. These filters are sub classified into

optimal and suboptimal filters. Kalman filters and Grid based filters are examples

of the optimal algorithms where a number of assumptions are made to obtain the

optimal solution. In the case of Kalman filters, the underlying assumption is that

the posterior probability density function is Gaussian, with parameters mean and

covariance. In the case of grid based filters, the assumption is that the state space

is discrete and contains finite number of states. In many situations, the assump-

tions made do not hold. These type of filters are called suboptimal filters. Extended

Kalman filters and particle filters are examples of suboptimal filters. The second

mode of classification is depending on the state and measurement model where the

filters are sub-classified as linear and non-linear filters. The third mode of classifi-

cation is depending on probability distribution function which are sub classified as

Gaussian and non-Gaussian filters.

Based on the Bayesian solution:

? Optimal Algorithms:

a) Kalman filters

b) Grid based methods

? Suboptimal Algorithms:

a) Extended Kalman filters

b)Approximate grid based methods

c) Particle filters

Based on the state and measurement model:

? Linear filters

? Nonlinear filters
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Figure 2: Gaussian pdf

Based on the probability distribution function:

? Gaussian

? Non-Gaussian

Figure 2 shows the Gaussian probability distribution where the mean, median,

and mode are the same. Fig. 3 shows the non-Gaussian probability distribution

where the mean, median and mode are all different from each other.

Figure 3: Non-Gaussian pdf
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CHAPTER IV

LINEAR FILTERING

4.1 KALMAN FILTER

Kalman filtering technique is named after Rudolf Kalman, who developed this

theory. Kalman filter is one of the most widely used methods for tracking and estima-

tion of the state of a linear system because it is simple, optimal, and unbiased. Hence

Kalman filter is also known as the Best Linear Unbiased Estimator or the BLUE

filter.

The Kalman filter is an algorithm that makes the optimal use of imprecise

data. It works on a linear system with Gaussian errors and continuously updates

the best estimate of the system’s current state. This theory is based on a state-space

approach where the state and measurement equations are the models of the dynamics

and noisy distorted observation respectively.

The state dynamic model is defined as:

xk = Axk−1 + ωk−1 (4.1)
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The measurement model can be expressed as:

yk = Hxk + νk (4.2)

where,

p(ωk) ∼ N(0, Q) (4.3)

p(νk) ∼ N(0, R) (4.4)

xk is the p dimensional state vector at time k. A is a p× p dimensional state

transition matrix that relates the states of the process at times k − 1 and k. ωk is

the process noise and it is assumed to be Gaussian (Eq. 4.3), and Q is the covariance

matrix or the process noise covariance of dimension p × p. yk is the m dimensional

measurement vector and H is an m × p dimensional matrix. νk is the measurement

noise assumed to be Gaussian (Eq. 4.4), and R is the covariance matrix of the

measurement noise with dimensions m× p.

4.2 ESTIMATION TECHNIQUE

The estimation technique of Kalman filter is recursive, that is, only the previous

estimate and the current measurement are required to obtain the current estimate of

the system. The algorithm for Kalman filter is best explained in Fig. 4.

The current state estimate can be obtained in the following steps [7]:

? propagate the initial condition,

? obtain the Kalman Gain,

? update the state and covariance estimate.

Consider x̂k−1 to be the prior state estimate at step k, and then the posteriori

estimate at step k is x̂k given the measurement yk. The a priori and a posteriori
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Figure 4: Kalman Filter Algorithm

state estimate errors are given as:

e−k = xk − x̂−k (4.5)

ek = xk − x̂k (4.6)

The a priori and a posteriori estimate error covariances are:

P−k = E[e−k e
−T
k ] (4.7)

Pk = E[eke
T
k ] (4.8)

It is desired to obtain the estimate x̂k, given the measurements until the time

step k. The measure of the accuracy of the estimate is given by the error covariance

matrix Pk. The equations for the Kalman filter are derived in such a way to obtain a

posteriori state estimate x̂k, as a linear combination of an a priori estimate x̂−k and a

weighted difference between the measurement yk and a measurement prediction Hx̂k.

x̂k = x̂−k +K(yk −Hx̂−k ) (4.9)
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The difference (yk − Hx̂−k ) in Eq. 4.9 is called the measurement innovation

or the residual which is the discrepancy between the predicted measurement and

the actual measurement. If the residual is zero, then both the predicted and actual

measurement are the same.

The matrix K in Eq. 4.9 is known as the Kalman gain or the blending factor

and it minimizes the a posteriori error covariance. The Kalman Gain equation is

given as,

Kk = P−k H
T (HP−k H

T +R)−1 (4.10)

The Kalman filter estimates the process state at a given time and then obtains

the feedback in the form of noisy measurements. Thus it works in the form of a

feedback control. The equations for the Kalman filter can be categorized into two

groups, the time update equations and the measurement update equations. In the

time update or the predict stage, the current state and error covariance estimates are

projected forward in time. The resultant is the a priori estimates for the next time

step. The measurement update equations incorporates the new measurement into the

a priori estimate and an improved a posteriori estimate is obtained.

4.2.1 Predict

The filter is initiated with an initial guess, the initial mean x0 and the covari-

ance P0. The predict stage equations are given as

x̂k = Ax̂k−1 (4.11)

P−k = APk−1A
T +Q (4.12)
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4.2.2 Update

With the predicted measurement available, the measurement at yk is obtained.

The measurement update equations are given in eqs. 4.10 and 4.9. The covariance

matrix of the improved posterior estimate is given as:

Pk = (1−KkH)P−k (4.13)

The assumptions made in the Kalman filter do not hold true in all situations.

Several approximations are made to the Gaussian assumption of the Kalman filter to

make it practically applicable to more filter problems. The state estimation problem

where the state and the measurement models are nonlinear are explained in the

following chapter.
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CHAPTER V

NONLINEAR FILTERING

5.1 Introduction

If the state and measurement models are linear and Gaussian, Kalman filter

can be directly applied without any arguments. But in reality many processes are

nonlinear. The optimal solution of a nonlinear problem can be achieved in a case

where all the parameters of a probability distribution are propagated. However in

case of a nonlinear system, finite number of parameters are not enough to describe

the probability density function [8].The state and the measurement model of the

nonlinear system are given as,

xk = f(xk−1) + wk−1(k) (5.1)

yk = h(xk) + vk (5.2)

In the above equations f and h are the state and measurement functions respectively.

ω and ν are the state and measurement noise which are assumed to be following

Gaussian distribution with the parameters, (0, Q) and (0, R) respectively. The initial
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guess of the filter would be x0 and P0, which is the mean and the covariance. Here is

a mathematical example where the state and the measurement model are nonlinear:

xk = 1 + sin

(
π(k − 1)

25

)
+

1

2
xk−1 + wk−1 (5.3)

yk =

{ x2
k

2
+ vk k ≤ 30,

x
2
− 2 + vk k > 30.

(5.4)

The nonlinearity in the above state and the measurement equations are given

by the sine term and the square term respectively. The system noise follows a gamma

distribution, where as the measurement noise follows a Gaussian distribution. The

parameters of these state and measurement noise distributions are described in the

following sections.

The following sections describe in detail the underlying assumptions of each

nonlinear filter, given the state and measurement model along with the initial condi-

tions.

5.2 EXTENDED KALMAN FILTER

In estimation theory the extended Kalman filter is said to be the nonlinear

version of the Kalman filter. The extended Kalman filter approach is to apply the

standard Kalman filter to nonlinear systems by performing a linearization around the

previous state starting with an initial guess. The linearization procedure is performed

while deriving the filter equations and is made on the most recent state reference

trajectory using the Taylor series approximation. The state and the measurement

models must be differentiable to obtain the first order partial derivative known as the

Jacobian.

The predict and the update steps of Kalman filter holds exactly the same,
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however the Jacobian is evaluated at every time step in the predict phase. These are

used in the Kalman filter equations to linearize the nonlinear state and measurement

probability density functions.

5.2.1 Predict

The predict phases are evaluated at the best estimate x̂k−1 as in the case of

the Kalman filter. Considering a linear Taylor approximation of f at the point x̂k−1

and that of h at the point x̂−k and ignoring the higher order terms before the first

derivative,

Fk−1 =
∂f

∂x

∣∣∣
x̂k−1

(5.5)

Hk =
∂h

∂x

∣∣∣
x̂−k

(5.6)

where, Fk−1 and Hk are Jacobian matrices. These matrices are used in the

Kalman filter equations.

x̂−k = f(x̂k−1) (5.7)

P−k = Fk−1Pk−1F
T
k−1 +Qk−1 (5.8)

5.2.2 Update

The update is exactly the same as that of the Kalman filtering technique. The

Kalman gain is evaluated with the predicted covariance and the measurement noise

covariance. The following equations correspond to the update step of the extended

Kalman filter.

x̂k = x̂−k| +Kk(ŷk −Hx̂−k ) (5.9)

Pk = (I −KkH)P−k (5.10)
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The Kalman gain is given as,

Kk = P−k H
T (HP−k H

T +R)−1 (5.11)

The term (HP−k H
T +R) is known as the innovation or the residual covariance.

5.2.3 Advantages and Disadvantages

The extended Kalman filter is not applicable to systems where the process are

inaccurately modeled. The performance of the filter may diverge or lead to suboptimal

performance when the model is inaccurate. When the nonlinearity is high in the

models, large errors may occur in obtaining the posterior mean and covariance. The

poor performance and disadvantages of the extended Kalman filter are explained in

detail by Haseltine [6]. Considering all the drawbacks the unscented transformation

was developed which overcomes the problems of linearization.

5.3 UNSCENTED KALMAN FILTER

When the state and the observation models are highly nonlinear, that is, the

functions f and h, the extended Kalman filter fails to perform. Therefore, a more

deterministic and robust technique known as the unscented transform is used in the

functioning of the unscented Kalman filter.

The unscented Kalman filter is also known as the Linear Regression Kalman

filter, where the nonlinear functions are linearized through linear regression from a

set of n points drawn from the a priori distribution of the random variable [9]. This

technique is proved to be more accurate than the Taylor series linearization since it is

derivative free alternative to the extended Kalman filter. The state of the system is

represented by a set of points which are termed as the sigma points. The unscented
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Kalman filter too follows the same steps as that of the Kalman filter, the predict and

the update, but selection of sigma points comes first before these steps.

5.3.1 Unscented Transformation

The unscented Kalman filter works on the principle of Unscented Transform,

which is given as: a method for calculating the statistics of a random variable which

undergoes a nonlinear transformation [20]. Consider the same scenario of additive

noise terms as in equation 5.1 and 5.2. Fig. 5 shows the concept of unscented trans-

formation. Based on a set of points chosen deterministically the nonlinear function

is applied to each and every point and it results in a transformed set of sigma points.

Unlike the extended Kalman filter, where linearization is used, the unscented trans-

form shows almost no error in the estimated mean. The predicted covariance matches

the true covariance very well.

For instance, consider a random variable x with dimension n. The nonlinear

function is defined as y = f(x) with the covariance Px and mean x̂. A set of points

known as sigma points are chosen such that their mean and covariance are x̂ and

Px respectively. These sigma points are propagated through the nonlinear function

y = f(x) to get the ŷ and Py.

A set of 2n+ 1 sigma points (n is the size of the state vector), called as Xi, are

selected along with their associated weights Wi. The sigma points are selected as,

X0 = x̂0 (5.12)

Xi = x̂0 + (
√

(n+ λ)Px)i i = 1, ..., n (5.13)

Xi = x̂0 − (
√

(n+ λ)Px)i−n i = n+ 1, ..., 2n (5.14)
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Figure 5: Unscented Transformation [20]

The associated weights are evaluated as,

W0 = λ/(n+ λ) (5.15)

W
(m)
0 = λ/(n+ λ) + (1− α2 + β) (5.16)

W
(c)
i = W

(m)
i = 1/{2(n+ λ)} i = 1, ..., 2n (5.17)

where, λ = α2(n+ k)− n is a scaling parameter. α is the spread of the sigma

points which is a small positive number in general. κ is another scaling parameter

set to 0. β is equal to 2 in case of Gaussian distributions. W
(m)
i and W

(c)
i are the

weights of the mean and covariance associated with the ith point.

These sigma points are propagated through the nonlinear function,

Yi = f(Xi) i = 0, ..., 2n (5.18)
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The mean and covariance of the nonlinear transformation are obtained from

these sigma points.

ŷ ≈
2n∑
i=0

W
(m)
i Yi (5.19)

Py ≈
2n∑
i=0

W
(c)
i {Yi − ŷ}{Yi − ŷ}T (5.20)

5.3.2 Predict

The prediction step in the unscented Kalman filter involves a set of 2n + 1

sigma points calculated from the previous known mean xk−1. These sigma points are

then propagated through the nonlinear state equations to find the predicted state and

covariance matrix (x̂−k and P̂−k−1) given as,

x̂−k =
2n∑
i=0

Wm
i χ

i−
k (5.21)

P−k =
2n∑
i=0

W c
i [χi−

k − χ̂
−
k ][χi−

k − χ̂
−
k ]T (5.22)

The sigma points are calculated again at this point.

5.3.3 Update

The sigma vectors are propagated through the nonlinear function,

Y i
k = h(χi

k|k−1), i = 0, ....2n (5.23)

The predicted measurement and the covariance matrix are obtained,
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ŷk =
2n∑
i=0

Wm
i Y i

k (5.24)

Py,k =
2n∑
i=0

W c
i [Y i

k − ŷk][Y i
k − ŷk]T (5.25)

The state and the measurement cross covariance matrix is,

Px,y,k =
2n∑
i=0

W c
i [χi

k|k−1 − χ̂k|k−1][Y i
k − ŷk]T (5.26)

Finally, the Kalman gain, the updated state estimate and the covariance are

given as:

Kk = Py,kP
−1
y,k (5.27)

x̂k = x̂k +Kk(yk − ŷk) (5.28)

Pk = P−k −KkPy,kK
T
k (5.29)

5.3.4 Advantages and Disadvantages

Compared to the extended Kalman filter, the unscented Kalman filter predicts

the state of the system more accurately and it is easier to implement. The unscented

Kalman filter can also consider the noise models to be non-Gaussian or non-additive.

The number of sigma points can be extended to increase the efficiency of the filter.

However, the UKF involves a complex computations and can be applicable only to

models with Gaussian noises.

5.4 PARTICLE FILTERS

Particle filter works on the principle of sequential Monte-Carlo method for solv-

ing recursive Bayesian problems. A set of random samples called particles are drawn
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from a set of sequential probability distributions. These particles are propagated over

time using two techniques: importance sampling and resampling. As the number of

particles increases to infinity a more accurate solution to the estimation problem is

obtained and the posterior density function becomes more accurate. If the number of

particles is large it increases the computational complexity, hence the number of par-

ticles is restricted. There are a number of particle filtering algorithms, for example,

sequential importance sampling, sampling importance resampling, auxiliary sampling

importance resampling and regularized particle filter [1]. The particle filter algorithm

is applicable when the process and/or the measurement noise is non-Gaussian. It does

not require the linearization technique of the state and the measurement models.

5.4.1 Sequential Importance Sampling

The sequential importance sampling algorithm is also known as the bootstrap

filtering algorithm. It involves implementing a Bayesian filter by Monte-Carlo simu-

lations [5].

The posterior density function is represented by a set of N random samples

with associated weights. Consider a set of random samples, {xi0:k, wi
k}Ni=1 that de-

note the posterior density p(x0:k|y1:k), where {xi0:k, i = 0, ..., N} is a set of support

points having the weights {wi
k, i = 1, ..., N}. The weights are normalized such that∑N

i=1w
i
k = 1. The posterior density is approximated as:

p(x0:k|Y1:k) ≈
N∑
i=1

wi
kδ(x0:k − xi0:k) (5.30)

δ is the Dirac delta function. The weights are chosen using the importance

sampling technique. Understanding the particle filter algorithm involves understand-

ing the concept of importance sampling [10].
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5.4.2 Importance Sampling

Importance sampling is a technique for estimating the properties of a partic-

ular distribution by generating samples from a different distribution than the pdf of

interest. It is assumed that it is difficult to draw samples from the probability den-

sity of interest and hence another density is used from which samples are drawn. The

importance sampling principle is described as follows: suppose p(x) is a probability

density from which it is difficult to draw samples, consider another density π(x) which

is easily evaluated, on the condition p(x) ∝ π(x). The N samples are drawn from

another density q(x), which is called the importance density. The importance density

is a kernel function, which is used to express the importance weights in a recursive

form. The associated weights, are given as [10],

wi ∝ p(xi)

q(xi)
(5.31)

where, q(xi) is the probability density function value at xi. Then:

p(x) ≈
N∑
i=1

wiδ(x− xi) (5.32)

Sequentially, at each iteration, the samples xi0:k are available and the next time

step is evaluated with the samples in hand. The weights are updated by,

wi
k ∝

p(xi0:k|y1:k)

q(x0:k|y1:k)
(5.33)

The importance density is chosen such that,

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1) (5.34)

The posterior density can be calculated as,
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p(x0:k|y1:k) =
p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)

p(yk|y1:k−1)
(5.35)

=
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
× p(x0:k−1|y1:k−1) (5.36)

∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1) (5.37)

The weight update equation is calculated as:

wi
k ∝

p(yk|xik)p(xik|xik−1)p(xi0:k−1|y1:k−1)
q(xik|xi0:k−1, y1:k)q(x0:k−1)i|y1:k−1)

(5.38)

= wi
k−1

p(yk|xik)p(xik|xik−1)
q(xik|xi0:k−1, y1:k)

(5.39)

In case of a bootstrap particle filter, the transition density is considered to

be the importance density, one kind of an assumption in choosing the importance

density [5]. The assumption is:

q(xk|x0:k−1, y1:k) = q(xk|xk−1, yk) (5.40)

Therefore the weights become:

wi
k ∝ wi

k−1
p(yk|xik)p(xik|xik−1)
q(xik|xik−1, yk)

(5.41)

Thus the posterior density becomes:

p(xk|y1:k) ≈
N∑
i+1

wi
kδ(xk − xik) (5.42)

The choice of an importance density is very important for obtaining the good

results from a particle filter. The support points of the posterior pdf must coincide

with the support points of the chosen importance density. The importance density

must be chosen in such a way that it minimizes the variance of the measurement

noise. Table I explains the algorithm for the sequential importance sampling particle

filter [1].

33



Table I: Sequential Importance Sampling Algorithm

1. Initialization - Assume set of N random samples (particles)
{xik−1 : i− 1, ..., N}
from the conditional probability density function:
p(xk−1|y1:k−1)

2. Prediction - Propagate N values
{vik−1 : i = 1, ..., N}
from the density function of process noise vk−1
Generate new sample points {xik|k−1 : i = 1, ..., N}
using: xik|k−1 = f(xik−1, v

i
k−1)

3. Update - with the measurement yk assign each a weight of xik|k−1
The calculated weight:

wi
k =

p(yk|xi
k|k−1

)∑N
i=1 p(yk|xi

k|k−1
)

The posterior probability distribution is given as

p(xk|yk) =
∑N

i=1w
i
kδ(xk − xik|k−1)

5.4.3 Degeneracy

One of the difficulties in implementing the sequential importance sampling

particle filters is the degeneracy problem. In case of a particle filter, after a number

of iterations,all but one particle will have negligible weight. Thus, with time, the

estimation of the probability distribution becomes very poor and the solution to

update the particles become trivial. The degeneracy is related to the variance and is

measured using the effective sample size Neff .

Neff =
N

1 + V ar(wi
k)

(5.43)

An approximate value of the above equation is obtained by taking the inverse

of the sum of the squared weights:

N̂eff =
1∑N

i=1(w
i
k)2

(5.44)

When Neff is less than N then the degeneracy is severe. The degeneracy
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problem can be solved by choosing a good importance density and by resampling.

Choice of good Importance Density:

The importance density is chosen in such a way that it minimizes the variance of the

importance weights, to reduce the degeneracy problem. The variance becomes zero

when the importance density is equal to the transition density:

q(xk|xi0:k−1, z0:k) = p(xk|xik=1, yk) (5.45)

The weight equation reduces to:

wi
k ∝ wi

k−1p(yk|xik) (5.46)

Resampling:

Whenever a significant degeneracy arises it can be reduced by the resampling tech-

nique. The basis of resampling is to eliminate the particles with small weights and

choose particles with larger weights. The resampling step involves generating a new

set of samples by resampling a number of times, with replacement. There are a num-

ber of resampling algorithms, out of which the most commonly used ones are listed

below [2].

? Multinomial resampling

? Residual resampling

? Stratified resampling

Multinomial Resampling :

A set of N uniform random numbers are generated and they are used to select xk

according to multinomial distribution. That is,

xk = x(F−1(uk)) = xi (5.47)
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where,

uk = uk+1ũ
1
k
k (5.48)

with ũk ∼ U [0, 1) representing the uniform random numbers. Here, F−1 is

the generalised inverse of the cumulative probability distribution of the normalised

particle weights.

Residual Resampling :

In this method for i = 1, ..., N , the number of samples is given by the following

equation,

N = bnwic+N i (5.49)

where bc denotes the integer part and is distributed according to multinomial distri-

bution and n is the number of particles that are resampled.

Stratified Resampling :

Stratified resampling is based on survey sampling and consists of pre-partitioning the

(0, 1] interval into n disjoint sets. The inversion method as in multinomial resampling

is used.

The advantages and disadvantages of a particle filter are explained in the fol-

lowing chapter. Fig. 6 shows the representation of a particle filter algorithm. Initially,

the samples are with equal weights (not shown in figure). After the importance sam-

pling, the particles are assigned with their respective weights. Resampling is done,

where the particles with low weights are discarded and replaced with other particles.

5.5 DIRECT SAMPLING PARTICLE FILTER

A direct sampling particle filter was developed for a constrained state space

problem, and works on obtaining the estimate from an approximate conditional prob-
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Figure 6: Particle Filter algorithm [19]

ability density. It can also be applied to unconstrained systems and is proved to be

working better than a particle filter under certain conditions [16]. In case of a particle

filter, if the Gaussian assumptions on the noise terms are not taken into consideration,

it is difficult to draw samples. Whereas, in case of a direct sampling particle filter,

the Gaussian assumptions on prior is taken into consideration and samples are drawn

directly from the approximate conditional density. The approximate conditional den-

sity is a normalizing product of the a priori probability density and the likelihood

function given by p(yk|xk).

p∗(xk+1|y1:k+1) =
1

c
e
−1/2(||xk+1−x̂k+1||2

P−
k+1

1
+||yk+1−h(xk+1)||2R−1 )

(5.50)

where c is a normalizing constant and p∗ is the constrained conditional proba-

bility density.

The algorithm for an unconstrained direct sampling particle filter is shown
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below:

? Samples are generated as in the case of a particle filter and they are propagated

through the system model to obtain the predicted samples, {x̂ik+1}.

? The mean and the covariance are computed for the predicted samples, given as

x̂k+1 and Pk+1 respectively.

? A bank ofN candidate samples are drawn from the support using the boundaries

of a 3-sigma rule.

? The normalized values of approximate conditional density, p∗(xk+1|y1:k+1) is

evaluated over the candidates.

? Conditional samples are drawn from the bank of candidate samples according

to the approximate conditional density and the discrete cdf.

? The mean and covariance of the posterior are computed from the samples.

The direct sampling particle filter works better than a particle filter for a con-

strained as well as unconstrained system, having both linear and nonlinear constraints.

However in some cases, the Gaussian approximation leads to a poor performance com-

pared to a particle filter [16].

5.6 ENSEMBLE KALMAN FILTER

The ensemble Kalman filters (EnKF) are generally a Monte Carlo approxima-

tion of Kalman filters which are applicable for systems where the covariance matrix

is replaced by a sample covariance. The ensemble Kalman filter can be compared to

a particle filter in one way, where the ensembles or samples of an EnKF are similar

to that of the particles of a particle filter. The underlying assumption in an EnKF is
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similar to that of a Kalman filter where the probability distributions are considered

to be Gaussian. Consider a set of ensembles,

X = [x1, ..., xN ] = [xi] (5.51)

where, X is an n × N matrix whose columns are a sample from the prior

distribution. The matrix X is called the prior ensemble. The measurement or the

observation matrix (also called the data) is replicated as a m×M matrix so that each

column consists of the measurement vector plus the random vector from the normal

distribution N(0, R), where R is the covariance matrix. The mean of the ensemble

and the sample covariance are the prior estimates in case of an EnKF.

The measurement data,

Y = [y1, ..., yN ] = [Yi] (5.52)

X̂ = X +K(Y −HX) (5.53)

The above forms a random sample set from the posterior distribution. The

ensemble Kalman filter is obtained by replacing the state covariance matrix P in the

Kalman gain matrix, K = PHT (HPHT + R)−1 by the sample covariance computed

from the ensemble and it is called the ensemble covariance. The Kalman gain is

evaluated at the update step from the sample covariance.
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5.6.1 Formulation

The ensemble mean and covariance for the above mentioned state and mea-

surement matrix are given as,

E(X) =
1

N

N∑
i=1

xi (5.54)

C =
AAT

N − 1
(5.55)

where,

A = X − E(X) = X − 1

N
(XeN×1)e1×N (5.56)

C is the sample covariance and e is the matrix of all ones of the indicated size.

The posterior ensemble is given as,

X̂ ≈ X i = X + CHT (HCHT +R)−1(Y −HX) (5.57)

The posterior ensemble consists of linear combinations of members of the prior

ensemble. R is the covariance matrix and it is always positive.

5.6.2 Implementation

A function h(x) = Hx is called the observation or the measurement function.

The posterior ensemble is rewritten as,

X i = X +
1

N − 1
A(HA)TP−1(Y −HX) (5.58)

where,

HA = HX − 1

N
((HX)eN×1)e1×N (5.59)

and

P =
1

N − 1
HA(HA)T +R (5.60)

The ensemble update is computed by evaluating the observation function h on

each ensemble member once. For a large number of measurement or observation data

points, the ensemble Kalman filter can be applicable with the modifications made [4].
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CHAPTER VI

EXAMPLE FOR NONLINEAR

FILTERING

In order to understand the working of the nonlinear filters, consider the fol-

lowing mathematical example which is a benchmark problem in the field of state

estimation. The state and the measurement models are given as,

xk = 1 + sin(
π(k − 1)

25
) +

1

2
xk−1 + wk−1 (6.1)

yk =

{ x2
k

2
+ vk k ≤ 30,

x
2
− 2 + vk k > 30.

(6.2)

The state model in the above equation has a sinusoidal term which is nonlinear.

Also the measurement model has a switch term in it, which provides two set of

measurements. The state and measurement noise terms are additive, which provides

randomness to the system.

The initial conditions of the filter are given as x0 is 1 and the covariance P0 is

1. The system noise follows a Gamma distribution with parameters (3, 0.5) and the

measurement noise follows a Gaussian distribution with parameters (0, 10−5). With
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Table II: Performance of the nonlinear filters

Filters MSE×100 STD×100 CPUtime in ms

PF 50.5 14.92 0.55

DSPF 41.17 14.28 0.43

ENKF 394.88 107.87 0.018

this information in hand, the true simulation of the state and the measurement model

can be seen in Figs. 7 and 8.

Using this example EnKF, particle filter and DSPF nonlinear filters are illus-

trated. The performance of the filters are shown separately and the obtained Mean

Square Error values are also shown in Table II. MSE is a measure of the error between

the simulated and the estimated values.

MSE =
1

Kn

K∑
k=1

(xk − x̂k)T (xk − x̂k) (6.3)

whereK is the number of realizations considered. The MSE values are averaged

over 100 realizations. In case of the particle filter, DSPF and the EnKF, the sample

size was chosen as 200. To achieve a proper comparison, the estimated values and

the true values are plotted together and the extent of coincidence between them is

observed.

The simulation plot in the Fig. 7 shows the state of the system at each of the

60 time steps. The estimates obtained from each of the method is compared with

this number and the mean square error between these values are estimated. This is

the meassure for the filter performance.

Table II shows the comparison between the performances of a particle filter,

a direct sampling particle filter and an ensemble Kalman filter. The standard devi-

ation of the MSE values are also displayed in the table. The CPU time denotes the
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Figure 7: Simulation of the state

computational time taken by Matlab to compute each of the filtering algorithms on a

2.30 GHz processor. Since the linear Kalman filter approximations hold in the ENKF

it shows poor performance compared to the particle filter and DSPF. It is clear that

the DSPF works better than a particle filter in this case as discussed in the previous

chapters.

Fig. 9 represents the true simulation values and the estimated values of the

state of the system.
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Figure 8: System measurement

From the table and the figures, it is seen there are a number of factors which

influence each of the filters and it is difficult to justify the difference or the poor

performance of each of the filter with just one parameter. The sample size, the

covariance and the random numbers generated are all important in influencing the

performance of a filter. However, under certain conditions, a comparison between

these filters can be made. For instance, in the above example, the measurement and

the process noise covariances are kept the same for each of the filter. The sample

44



Figure 9: Particle Filter- DSPF - EnKF

size is also kept constant in all three of the filters. Under these conditions, the direct

sampling particle filter and the ensemble Kalman filter’s performance is greater than

the particle filter.
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CHAPTER VII

NESTED PARTICLES FILTER

7.1 BACKGROUND

The idea of the nested particles filter first originated with the unscented parti-

cles filter [19]. This algorithm involves the unscented Kalman filter (UKF) to generate

the importance density for the particle filter. The UKF uses the most recent measure-

ment to obtain the importance density for each of the samples in the particle filter.

The availability of importance densities leads to better performance of the particle

filter. This led to the development of unscented particle filter due to shortcomings of

the extended Kalman filter and the unscented Kalman filter.

The application of the ensemble Kalman filter or the direct sampling particle

filter is not the only idea behind the development of nested particles filter. It also

revolves around updating the group of particles branched under one particular parent

particle, called the nest, along with the parent particles. The resampling method in

the particle filter discards the unwanted samples and replicates the samples according

to its weights. Here, the same method is employed to both the parent particles and
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group of particles branched under the parent particles which will be explained later.

The choice of the importance density plays a vital role for particle filters. A

special case, where the importance density is chosen to be the transition prior has

several drawbacks to it. The generalized particle filter, or the bootstrap particle

filter is the type of the particle filter, that chooses the transition prior to be the

importance density on the condition that they lie on the same support points as

those of the posterior density.

7.2 DRAWBACKS IN CHOOSING THE TRAN-

SITION PRIOR

The choice of the transition prior as the importance density has two major

problems concerning the likelihood.

? Narrow or peaked likelihood In Fig. 10, the likelihood is narrow compared to

the transition prior, which explains the area of overlapping between the two

regions. Thus the area of overlapping is less which is called narrow or peaked

likelihood.

? Little overlap with likelihood In Fig. 11 the likelihood and transition prior have

an area of intersection, this explains the overlapping to be less compared to

narrow of peaked. Thus it is called little overlap with likelihood.

There are different ways to overcome the drawbacks. One way to choose better

transition prior is to enhance the choice of importance density. With no information

about what the likelihood is, it is difficult to arrive at a conclusion about the optimal

choice of an importance density. The nested particles filter was developed in order to

overcome these shortcomings of a particle filter.
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Figure 10: Narrowed or peaked likelihood

7.3 UNSCENTED PARTICLE FILTER

As mentioned in earlier sections, using the transition prior as proposal distri-

bution is inefficient for certain cases. It is important to shift the particles to a region

of higher likelihood. In order to achieve this, the unscented Kalman filter is used as

the proposal density or the importance density.

The new filter that results from using an extended Kalman filter for proposal

density within the particle filter framework is called extended Kalman particle filter

shown in Table III. Similarly if the unscented Kalman filter is used as the proposal

density in the particle filter, then the resulting filter is called unscented particle filter,

shown in Table IV.

This method used here results in a better sampling algorithm [19], where the

variance of each proposal distribution changes with time. The extended Kalman filter

obtains an estimated value closer to the likelihood, when 0the underlying Gaussian
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Figure 11: Little overlap with likelihood

assumption still remains the same. The unscented particle filter was developed to

overcome some of the drawbacks of the extended Kalman particle filter.

The unscented Kalman filter propagates the mean and covariance of the Gaus-

sian approximation to the state distribution more accurately compared to that of the

extended Kalman particle filter. More accurate estimates of the true covariance are

obtained from the unscented Kalman filter. This filter generates distributions which

provide a more solid support or there is more overlap between the true posterior

distribution and the distributions generated by the unscented Kalman filter.

7.4 NESTED PARTICLES

A set of N random samples are considered which are distributed according

to the posterior density. These particles are known as the parent particles of the

system. Consider another set of N particles which individually contain M number
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Table III: Extended Kalman Particle Filter

1. Initialization - The particles xi0 are drawn from the prior p(x0)

2. Importance Sampling -
- Compute the Jacobians of the process and the measurement models
- The particles are updated with the EKF algorithm
- The importance weights are evaluated
- The importance weights are normalized

3. Selection - The particles are multiplied with their respective importance weights
to obtain the N random particles

4. The final estimate is similar to the sequential importance sampling particle filter

of nest particles under each of them. The nested particles are related to the parent

particles in such a way that the samples mean is the parent particle.

xik+1|k+1 = x̂ik+1|k+1 =
1

M

M∑
j=1

xijk+1|k+1 (7.1)

The N nested particles generate the local importance densities from the measurement

information available at the given time step. The nest particles are propagated in

time forward with the state of the system. The nest is further updated with the

measurement and any suboptimal filter can be used at this stage for updating. The

nested particles are now used to evaluate the local importance density from which

the weights are evaluated and further resampling is done for both parent and nest

particles.

7.5 ALGORITHM

The algorithm for the nested particles filter is explained in this section. The

first step in the nested particles filter estimation is to initialize the parent particles

which are sampled from the probability density function of the state of the system,
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Table IV: Unscented Particle Filter

1. Initialization - The particles xi0 are drawn from the prior p(x0)

2. Importance Sampling -
- Compute the Sigma points
- The particles are propagated into the posterior

using the time update steps of the UKF
- The new observation or the measurement update is obtained
- The sample and the set are both updated
- The importance weights are computed and normalized

3. Selection - The particles are multiplied with their respective importance weights
to obtain the N random particles

4. The final estimate is similar to the sequential importance sampling particle filter

such that {xik|k : i = 1, ..., N}. For each of the parent particle, the child nests are

sampled in such a way that, {xijk|K : 1, ...,M}. The initial conditions are given at time

instant k = 0.

At this stage, a nest consisting of the parent particle and the corresponding

child particles are obtained. This setup can be visualized as a matrix of the order

M ×N . The next step is to propoagate the nest particles using the system equation

and the random samples generated by the noise parameters.

xijk|k−1 = f(xijk|k) + wij
k−1 (7.2)

The measurement nest is computed using the measurement equation and the noise

parameters.

yijk|k−1 = h(xijk|k−1) + vijk (7.3)

The child particles are updated using the measurement equation. This update

is similar to the Kalman filter algorithm, which results in the updated particles as

follows:

51



xijk|k = xijk|k−1 + T i
k|k−1(S

i
k|k−1)

−1(yk − yij
k|k−1) (7.4)

where, Si
k|k−1 is the innovation covariance or the covariance matrix of the mea-

surement model. T i
k|k−1 is the cross covariance between the process and the measure-

ment distributions.

The next step is the choice of the importance density. The importance density

chosen is the Gaussian importance density, which is given by,

πi(xk|xk−1, Yk) ≈ N (xk : x̂ik|k, P
i
k|k) (7.5)

The parent particles are sampled from the importance density and the importance

weights are computed using

w̃i
k ∝ w̃i

k−1
p(yk|xik|k)p(xik|k|xk−1)

πi(xk|xk−1, Yk)
(7.6)

The importance weights are normalized,

wi
k =

w̃i
k∑N

i=1 w̃
i
k

(7.7)

The parent particles are resampled according to the importance weights and

particles are replicated or discarded according to the weights being low or high. The

corresponding nests are also replicated or discarded along with the parent particles.

The child particles are shifted to a new mean value with respect to the new

resampled parent particles. The mean of the parent particles are computed, which is

the final estimate.

xijk|k = xijk|k − x̂
ij
k|k + xik|k (7.8)

x̂k|k =
1

N

N∑
i=1

xik|k (7.9)
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7.6 CHOICE OF THE UPDATE

In the above algorithm, the update method used for updating the parent par-

ticles can be modified and a different update technique can be used. The ensemble

Kalman filter and the direct sampling particle filter are the two choices considered

for the update of the parent particles. The basic algorithm of both these filters were

explained in the previous chapters. The extent to which the choice of the update

method influences the nested particle filter performance is analyzed and the limita-

tions of using this nested particle filter with the two update method is discussed in

detail in the following chapter.
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CHAPTER VIII

ANALYSIS OF A NESTED PARTICLE

FILTER

8.1 NPF WITH EnKF

The nested particles filter has been formulated for the same time series example

described in Chapter VI. The filter is initialized with the initial conditions x0 = 1

and P0 = 1. The estimation is run for one hundred realizations and the average of

the root mean square error (RMSE) values are determined.

The RMSE is defined as,

RMSE =

√√√√ 1

Kn

K∑
k=1

(xk − x̂k)T (xk − x̂k) (8.1)

Fig. 12 shows a comparison between the particle filter and the nested particle

filter that uses an ensemble Kalman filter for the update of the parent particles.

In Fig. 12, the particle filter and the nested particle filter both are very close

to the simulated values. The sample size is one among the number of factors that
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Figure 12: Comparison between Particle Filter and NPF

influence the performance of the filter. The number of parent particles and nest

particles are important to achieve more accurate posterior density functions. In the

above situation, the particle filter is run at a particle size of 200, whereas the nested

particle filter was run at 200 parent particles with 50 child particles for each parent.

The performance of a nested particles filter with an EnKF update is shown in

Table V. The ensemble Kalman filter is run at different sample sizes and the effect of

the sample size on the estimate is evaluated.The number of the parent particles varies
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from 25 to 500. Similarly the number of the nest child particles varies from 25 to 200.

The RMSE value and the standard deviation is obtained for each of the case. As the

sample size increases, a general trend of increase in accuracy of the estimation is seen.

The RMSE value tends to decrease with an increase in the number of particles.

Table V: Performance of a nested particles filter-EnKF

Filter RMSE×100 (STD×100)

NPF- EnKF N=25 N=50 N=100 N=200 N=500

M=25 4.09 (1.04) 3.09(0.68) 2.45(1.04) 1.92(0.62) 1.18(0.48)
M=50 3.7(0.73) 3.25(0.64) 2.65(0.76) 1.45(0.56) 1.01(0.32)
M=100 3.51(0.59) 2.83(0.56) 2.58(2.25) 2.2(0.62) 0.49(0.28)
M= 200 3.69(0.37) 3.13(0.63) 2.32(0.81) 1.27(0.26) 0.35(0.19)

Fig. 13 is an example of the poor performance of an nested particle filter,

where the measurement noise covariance is set a high value, 0.01. The plot shows

that some of the estimated values do not match or overlap with the true simulated

values, which will increase the RMSE. If the measurement noise covariance is high, it

means that there is very less confidence placed on the system. Under such situations

the nested particles filter loses its accuracy. The estimated values are not close to the

simulated values.

8.2 EFFECT OF THE MEASUREMENT NOISE

COVARIANCE

An analysis is made by varying the measurement noise covariance values for

different particle sizes. The original value for the measurement noise covariance is

1×10−5. This measurement noise covariance value is increased in steps from 1×10−5

to 1. The RMSE value in accordance to each of the specified particle size are observed.

Tables VI and VII show the variation in the RMSE value with respect to the size of
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Figure 13: High measurement noise covariance

the parent particle as well as the size of the nest particle. First the number of parent

particles are fixed and the number of nested child particles is varied, and the process

is reversed.

Things to be noted from the two tables is that, as the measurement covariance

value increases, to some extent, the RMSE value decreases. This trend breaks after

some point, which makes it significant that at higher sample size and high measure-

ment noise covariance, with very high values of the RMSE. This is illustrated in Fig.
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Table VI: Variation of RMSE with respect to measurement
noise covariance (constant number of parent parti-
cles)

RMSE ×100

Covariance 0.00001 0.0001 0.001 0.01 0.1 1

PF 51.54 36.39 28.48 25.44 48.26 73.19
M = 25 1.92 2.53 4.99 13.83 54.23 185.57
M = 50 1.45 2.35 4.79 13.92 53.3 178.88
M = 100 2.2 2.02 5.44 13.94 54.19 175.92
M = 200 1.27 2.7 5.13 14.61 53.2 180.55

14, where R denotes the measurement noise covariance. The sample size and the

confidence placed on the measurement plays an important role in the performance of

a nested particles filter.

It can also be seen that, up to a certain particle size and variance, the RMSE

value decreases but suddenly it increases after further increase in the particle size.

This can be interpreted as an indication that an optimum particle size is achieved in

such cases.

8.3 NPF WITH DSPF

The nested particles filter can be updated with different suboptimal filters. The

direct sampling particle filter is another choice that can be made in order to update

the nested particles filter. The same example as discussed in the previous sections

is considered here. Fig. 15 is the outcome of the performance of the nested particle

filter with a DSPF update equation. Comparing Figs. 15 and 12, the algoritm that

uses the DSPF update equation seems to yield more accurate estimates, i.e., closer

to the simulated values. This is further supported by Table VIII. Comparing the
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Table VII: Variation of RMSE with respect to measurement
noise covariance (constant number of nested parti-
cles )

RMSE ×100

Covariance 0.00001 0.0001 0.001 0.01 0.1 1

PF 51.54 36.39 28.48 25.55 48.26 73.19
N = 25 3.69 3.27 5.72 15.1 46.94 116.45
N = 50 3.13 2.8 5.27 14.68 48.51 130.08
N = 100 2.32 2.85 5.01 14.64 52.24 155.78
N = 200 1.27 1.9 4.82 14.61 53.2 180.55

results of an EnKF with the DSPF the DSPF tends to perform more accurate than

the EnKF, when the sample size is low.

In general, it is observed that, the more number of particles the better the

estimate is. However, large sample sizes leads to computational complexity [13].

When a nested particles filter is coupled with the DSPF better results are achieved

compared to the ensemble Kalman filter.

Table VIII: Performance of a nested particles filter -DSPF

Filter RMSE×100 (STD×100)

NPF- DSPF N=25 N=50 N=100 N=200 N=500

M=25 3.33 (0.98) 3.29(0.78) 2.14(1.03) 1.52(0.62) 1.08(0.54)
M=50 3.19(0.84) 3.15(0.59) 2.72(0.84) 2.15(0.56) 0.91(0.39)
M=100 2.51(0.47) 2.34(0.46) 1.58(1.15) 1.3(0.62) 0.39(0.18)
M= 200 2.69(0.22) 2.13(0.32) 1.32(0.51) 1.27(0.26) 0.25(0.09)

8.4 BATCH REACTOR

Consider a three state batch reactor whose reversible reactions are given by,
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Figure 14: Effect of measurement noise covariance on RMSE

A
 B + C (8.2)

2B 
 C (8.3)

The rate constants of the forward reactions are given by k1, k3 respectively and

the rate constants of the backward reactions are k2, k4 respectively.

The rate constants are given by,

k =

[
0.5 0.05 0.2 0.01

]T
(8.4)

The stoichiometry is given by,

ν =

−1 1 1

0 −2 1

 (8.5)
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Figure 15: Nested Particle Filter- DSPF

The reaction rates are given by,

γ =

k1cA − k2cBcC
k3c

2
B − k4cC

 (8.6)

The state vector and the measurement equations are given as,

x =

[
cA cB cC

]T
(8.7)

y =

[
RT RT RT

]
x (8.8)
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where c denotes the concentration of the species, R is the gas constant and

T is the reactor temperature. It is assumed that ideal gas law holds good for this

system.

The model for a well mixed, constant volume, isothermal batch reactor is

ẋ = f(x) = νTγ (8.9)

x0 =

[
0.5 0.05 0

]T
(8.10)

The state of this system is estimated using the following parameters which are

also the initial conditions:

∆t = tk+1 − tk = 0.25 (8.11)

Π0 = diag(0.52, 0.52, 0.52) (8.12)

Gk = diag(1, 1, 1) (8.13)

Qk = diag(0.0012, 0.0012, 0.0012) (8.14)

Rk = 0.252 (8.15)

x̄ =

[
0 0 4

]T
(8.16)

where, ∆t is the time step between two time instances, x̄ is the initial conditions

for the filter, Qk and Rk are the state and the measurement noise covariances. The

aim of this example is to provide consolidation to the fact that nested particle filter

with direct sampling particle filter as its update equation shows good results when

compared with any other filter.

The Fig. 16 illustrates how the nested particles filter performs when direct

sampling particle filter is the update equation.
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Figure 16: NPF- DSPF Batch reactor
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CHAPTER IX

CONCLUSIONS

The main aim of the thesis was to obtain an algorithm for the nested particles

filter, which works on the concept of local linearization. Several topics were discussed

in detail in order to achieve best understanding of estimation techniques such as,

unscented transform, Monte-Carlo method, importance sampling, resampling, and

local linearization.

Direct sampling particle filter, ensemble Kalman filter and unscented particle

filter were discussed in detail. An example that describes each of the system and a

comparisons among estimation techniques was also provided.

The nested particles filter was analyzed for the possibilities of using an ensemble

Kalman filter and/or the direct sampling particle filter as an update method and the

advantages of one technique over the other were explained.

An examplewas performed where all nonlinear filters were analyzed and com-

pared with respect to that scenario. A detailed comparison of why an unscented

Kalman filter is better than an extended Kalman filter was made in order to under-

stand the approximations made.
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The choice of the importance density and the significance of choosing the tran-

sition prior as the proposal density were explained in detail. This lays the foundation

for the development of the nested particles filter which, in turn, uses the DSPF and

EnKF along with the concept of local linearization.

Finally, the algorithm for the nested particle filter with respect to both the

update methods was explained, and a comparison was made. Even though each of

the filters showed to have their own disadvantages, the direct sampling particle filter

appears as the one with more accurate results. The reason for this performance can

be attributed to, the ensemble Kalman filter, still using the Gaussian assumption as

in the case of an Kalman filter. Whereas, the direct sampling particle filter is termed

to perform on a constrianed state space model which does not involve any Gaussian

assumptions or the approximations made in the other nonlinear filters.
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1 Matlab files for nonlinear filter

Code for the three filters- PF, DSPF, EnKF

MSE_part= [];

MSE_dspf = [];

MSE_enkf = [];

%MSE_ekf = [];

for count = 1:100

% SIMULATION

% Initial state

x =1;

n = length(x);

m = 1;

% Noise covariances

A = 3;

B = 0.5;

R = 0.00001;

% Number of time steps

ts = 60;

t = [1:ts];

k = 1;

Y = zeros(size(R,1),ts);

X = zeros(size(x,1),ts);

x_function = @tseries_x;

X(:,1) = feval(x_function, x,1) + gamrnd(A,B,1);

% Non-linear equations

for k = 2:ts
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X(:,k) = feval(x_function, X(:,k-1),k) +gamrnd(A,B,1);

end

for k = 1:ts

if k <=30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

Y(k) = feval(y_function,X(:,k))+ R^0.5*randn;

end

[X_part,CPUT_part ] = particlefilter(X, Y, k,A, B, R );

mse_part = sum((X-X_part).^2)/ts;

MSE_part = [MSE_part; mse_part];

[X_dspf,CPUT_dspf ] = dspf(X, Y, k,A, B, R );

mse_dspf = sum((X-X_dspf).^2)/ts;

MSE_dspf = [MSE_dspf; mse_dspf];

[X_enkf,CPUT_enkf ] = enkf(X, Y, k,A, B, R );

mse_enkf = sum((X-X_enkf).^2)/ts;

MSE_enkf = [MSE_enkf; mse_enkf];

end

Particle = [mean(MSE_part’), std(MSE_part’),sqrt(mean(MSE_part)),CPUT_part]

DSPF = [mean(MSE_dspf’), std(MSE_dspf’),sqrt(mean(MSE_dspf)),CPUT_dspf]

ENKF = [mean(MSE_enkf’), std(MSE_enkf’),sqrt(mean(MSE_enkf)),CPUT_enkf]

plot (t,X,t,X_part,’x’,t,X_dspf,’:’,t,X_enkf,’o’);

xlabel(’time, k’);

ylabel(’true value, estimated value’);
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title(’Tseries system-Particle Filter, DSPF, EnKF’);

legend(’X’, ’Estimate- PF’,’Estimate- DSPF’, ’Estimate-EnKF’);

%tseries x.m

function x_out = tseries_x(x,k)

n = k(1);

x_out = 1+ sin(pi*(n-1)/25) + 0.5*x;

%tseries1 y.m

function y_out = tseries1_y(x)

y_out = 0.5*x.^2;

%tseries2 y.m

function y_out = tseries2_y(x)

y_out = 0.5*x - 2*ones(size(x));

%particlefilter.m

% ESTIMATION

% Particle Filter

function [X_est,CPUT ] = particlefilter(X, Y, k,A, B, R )

xp = 1;

P = 1;

S = 200;

ts = 60;

t = [1:ts];

x_function = @tseries_x;

XP = xp + (P^0.5)*randn(1,S);
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X_est = zeros(size(xp,1),size(Y,2));

P_est= zeros(size(xp,1),size(Y,2));

XP_particles =[];

tt = clock;

for k = 1:ts

if k <=30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

XP = feval(x_function,XP,k)+ gamrnd(A,B,1,S);

YP = feval(y_function, XP)+ R^0.5*randn ;

% weights and normalized weights

w = 1/sqrt(2*pi*R) * exp(-(Y(k)-YP).^2 / (2 * R));

w = w/sum(w);

%resampling

[Index]= resampleResidual(w);

XP = XP(Index);

XP_particles(:,k) = XP;

xp = mean(XP);

P = cov(XP);

% estimated x

X_est(:,k) = xp’;

P_est(:,k)= P;

end

CPUT = etime(clock,tt);
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%dspf.m

%direct sampling particle filter

function [X_est,CPUT ] = dspf(X, Y, k,A, B, R )

xp = 1;

P = 1;

S = 200;

ts = 60;

t = [1:ts];

XP = xp + (P^0.5)*randn(1,S);

x_function = @tseries_x;

X_est = zeros(size(xp,1),size(Y,2));

P_est= zeros(size(xp,1),size(Y,2));

XP_particles =[];

tt = clock;

for k = 1:ts

if k <=30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

XP = feval(x_function,XP,k)+ gamrnd(A,B,1,S);

YP = feval(y_function, XP)+ R^0.5*randn ;

mu =mean(XP’);

c = cov(XP’);

sigma = (diag(c)^0.5);

a = mu - 3*sigma;
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b = mu + 3*sigma;

XP = a+(b-a)*rand(1,S);

Pk = sigma.^2;

W = exp(-0.5*(((XP-mu).^2/sigma^2) + (Y(k)-feval(y_function, XP)).^2/R));

W = W/sum(W);

[Index]= resampleResidual(W);

XP = XP(:,Index);

xp = mean(XP);

P = cov(XP);

% estimated x

X_est(:,k) = xp’;

P_est(:,k)= P;

end

CPUT = etime(clock,tt);

%enkf.m

% ensemble kalman filter

function [X_est,CPUT ] = enkf(X, Y, k,A, B, R )

xp = 1;

P = 1;

S = 200;

ts = 60;

t = [1:ts];

XP = xp + (P^0.5)*randn(1,S);

X_est = [];

% prior mean and covariance

tt = clock;

75



x_function = @tseries_x;

for k = 1:ts

if k <=30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

XP = feval(x_function,XP,k)+ gamrnd(A,B,1,S);

YP = feval(y_function, XP)+ R^0.5*randn ;

SAMP =[XP’,YP’];

covariance = COV(SAMP);

Pxx = covariance(1,1);

Pyy = covariance(2,2);

Pxy = covariance(1,2);

K = Pxy’*inv(Pyy);

XP = XP+ K*(Y(k) - YP);

X_est = [X_est,MEAN(XP’)];

end

CPUT = etime(clock,tt);

%resampleResidual.m

function [ indx ] = resampleResidual( w )

M = length(w);

% "Repetition counts" (plus the random part, later on):

Ns = floor(M .* w);

% The "remainder" or "residual" count:

R = sum( Ns );
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% The number of particles which will be drawn stocastically:

M_rdn = M-R;

% The modified weights:

Ws = (M .* w - floor(M .* w))/M_rdn;

% Draw the deterministic part:

i=1;

for j=1:M,

for k=1:Ns(j),

indx(i)=j;

i = i +1;

end

end;

% And now draw the stocastic (Multinomial) part:

Q = cumsum(Ws);

Q(M)=1; % Just in case...

while (i<=M),

sampl = rand(1,1); % (0,1]

j=1;

while (Q(j)<sampl),

j=j+1;

end;

indx(i)=j;

i=i+1;

end
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2 Nested particles filter matlab files

Comparison between EnKF and DSPF update

% DSPF update and ENKF update comparison

clc;

clear all;

MSE_enkf = [];

RMSE_enkf =[];

STDN_enkf = [];

MSE_dspf = [];

RMSE_dspf =[];

STDN_dspf = [];

for count= 1:100

% SIMULATION

% Initial state

x =1;

n = length(x);

m = 1;

% Noise covariances

A = 3;

B = 0.5;

R = 0.01;

% Number of time steps

ts = 60;

t = [1:ts];

k = 1;

Y = zeros(size(R,1),ts);
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X = zeros(size(x,1),ts);

x_function = @tseries_x;

X(:,1) = feval(x_function, x,0) + gamrnd(A,B,1);

for k = 2:ts

% Non-linear equations

X(:,k) = feval(x_function, X(:,k-1),k) + gamrnd(A,B,1);

end

for k = 1:ts

if k <=30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

Y(k) = feval(y_function,X(:,k))+ R^0.5*randn;

end

N = 50;

M = 500;

[X_enkf, CPUT_enkf] = npf_enkf(X,Y, A, B,R,ts,k,N,M);

mse_enkf = sum((X-X_enkf).^2)/(ts*n);

rmse_enkf = sqrt(mse_enkf);

MSE_enkf = [MSE_enkf,mse_enkf’];

RMSE_enkf = [RMSE_enkf,rmse_enkf’];

[X_dspf, CPUT_dspf] = npf_dspf(X,Y, A, B,R,ts,k,N,M);

mse_dspf = sum((X-X_dspf).^2)/(ts*n);

rmse_dspf = sqrt(mse_dspf);

MSE_dspf = [MSE_dspf,mse_dspf’];
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RMSE_dspf = [RMSE_dspf,rmse_dspf’];

end

NPF_ENKF = [mean(MSE_enkf’),mean(RMSE_enkf’),std(MSE_enkf’),CPUT_enkf]

NPF_DSPF = [mean(MSE_dspf’),mean(RMSE_dspf’),std(MSE_dspf’),CPUT_dspf]

%npf enkf.m

% NPF_EnKF_Gaussian proposal

function [X_est,CPUT] = npf_enkf(X,Y, A, B,R,ts,k,N,M)

xp = 1;

P = 1;

x_function = @tseries_x;

X_est = zeros(size(xp,1),size(Y,2));

P_est= zeros(size(xp,1),size(Y,2));

XP = xp + (P^0.5)*randn(1,N);

% xprop = XP;

% pprop = P*XP.^0;

XN = [];

XN = repmat(XP, M,1) + P^0.5*randn(M,N);

tt = clock;

for k = 1:ts

if k <= 30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

XN = feval(x_function,XN,k)+ gamrnd(A,B,M,N);

YN = feval(y_function,XN) + R^0.5*randn(M,N);
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SAMP = cov([XN YN]);

Pxy = diag(SAMP(1:N,N+1:2*N))’;

Pyy = diag(SAMP(N+1:2*N,N+1:2*N))’;

XN = XN + repmat(Pxy./Pyy,M,1).*(repmat(Y(:,k),M,N)-YN);

xprop = mean(XN);

pprop = var(XN);

XP_new = xprop + (pprop.^0.5).*randn(1,N);

dummy = XP_new - feval(x_function, XP,k);

tp = (dummy.^(A-1).*exp(-dummy/B)/(A^B*gamma(A)))’;

lk = (exp(-(Y(:,k)-feval(y_function,XP_new)).^2./(2*R)))’;

prop = (exp(-(XP_new-xprop).^2./(2*pprop)))’;

w = lk.*tp./prop;

w = w/sum(w);

ind = resampleResidual(w);

XP = XP_new(:,ind);

xp = mean(XP’);

P = cov(XP’);

X_est(:,k) = xp’;

P_est(:,k) = P;

XN = XN(:,ind);

XN = XN - repmat(mean(XN),M,1) + repmat(XP,M,1);

end

CPUT = etime(clock,tt);

%npf dspf.m

% NPF with an DSPF update

function [X_est,CPUT] = npf_dspf(X,Y, A, B,R,ts,k,N,M)
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xp = 1;

P = 1;

x_function = @tseries_x;

X_est = zeros(size(xp,1),size(Y,2));

P_est = zeros(size(xp,1),size(Y,2));

XP = xp + (P^0.5)*randn(1,N);

% xprop = XP;

% pprop = P*XP.^0;

XN = [];

Ind = [];

XN = repmat(XP, M,1) + P^0.5*randn(M,N);

tt = clock;

for k = 1:ts

if k <= 30

y_function = @tseries1_y;

else

y_function = @tseries2_y;

end

XN = feval(x_function,XN,k)+ gamrnd(A,B,M,N);

YN = feval(y_function,XN) + R^0.5*randn(M,N);

mu = mean(XN);

c = var(XN);

sigma = sqrt(c);

a = mu-3*sigma;

b = mu+ 3*sigma;

for loop = 1:N
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XN(:,loop) = a(:,loop)+(b(:,loop)-a(:,loop))*rand(M,1);

w(:,loop) = exp(-0.5*(((XN(:,loop)-mu(:,loop)).^2)./sigma(:,loop).^2 ...

+ ((Y(k) - feval(y_function,XN(:,loop))).^2*R^(-1))));

w(:,loop) = w(:,loop)/sum(w(:,loop));

[Index] = resampleResidual(w(:,loop));

Ind(:,loop) = Index’;

end

% update

XN = XN(Ind);

% Importance density

xprop = mean(XN);

pprop = var(XN);

XP_new = xprop + (pprop.^0.5).*randn(1,N);

% weights

dummy = XP_new - feval(x_function, XP,k);

tp = (dummy.^(A-1).*exp(-dummy/B)/(A^B*gamma(A)))’;

lk = (exp(-(Y(:,k)-feval(y_function,XP_new)).^2./(2*R)))’;

prop = (exp(-(XP_new-xprop).^2./(2*pprop)))’;

W = lk.*tp./prop;

W = W/sum(W);

ind = resampleResidual(W);

XP = XP_new(:,ind);

xp = mean(XP’);

P = cov(XP’);

X_est(:,k) = xp’;

P_est(:,k) = P;
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XN = XN(:,ind);

XN = XN - repmat(mean(XN),M,1) + repmat(XP,M,1);

end

CPUT = etime(clock,tt);
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