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A LEFT VENTRICULAR MOTION PHANTOM FOR CARDIAC MAGNETIC 

RESONANCE IMAGING 

 

 

MEHMET ERSOY 

 

ABSTRACT 

The mammalian left ventricle (LV) has two distinct motion patterns: wall 

thickening and rotation. The purpose of this study was to design and build a low-cost, 

non-ferromagnetic LV motion phantom, for use with cardiac magnetic resonance imaging 

(MRI), that is able to produce physiologically realistic LV wall thickening and rotation.  

Cardiac MRI is continuously expanding its range of techniques with new pulse 

sequences, including new tissue tagging techniques which allow intra-myocardial 

deformation to be visualized. An essential step in the development of new cardiac MRI 

techniques is validating their performance in the presence of motion. MRI-compatible 

dynamic motion phantoms are of substantial benefit in the development of cardiac 

specific-magnetic resonance imaging techniques. These phantoms enable the 

investigation of motion effects images by mimicking the three dimensional motion of the 

heart. To date, no single study has succeeded in duplicating both LV motion patterns, in 

an MRI-compatible cardiac motion phantom. In addition, a phantom that is 100% MRI-

compatible with low cost to build would be desirable to researchers. 

We have built two MRI-compatible phantoms, housed within a common 

enclosure and each filled with MRI-visible dielectric gel (as a surrogate to myocardium), 
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which model the wall thickening and rotation motions of the left ventricle independently. 

The wall motion phantom is pneumatic, driven by a custom non-ferromagnetic pump 

which cyclically fills and empties a latex balloon within the phantom. The rotation 

phantom is manually driven by a plastic actuator which rotates the phantom through a 

specified angular rotation. Each phantom also generates a TTL pulse for triggering the 

MRI scanner. Although this circuitry contains ferromagnetic materials, it can be located 

outside the scanner bore. 

 The wall thickening motion phantom has been tested using segmented cine, real 

time cine and grid tagged MRI acquisition sequences. Results were significant with 4% 

average variability and physiologically realistic wall motion. 

In a separate experiment, the rotation phantom has been imaged using a triggered 

grid-tagged sequence during a series of repeated 15, 20 and 35 degree rotations. As 

above, results matched the expected rotation only with 5% average variability. 

In conclusion, we have designed and built a low-cost left ventricular motion 

phantom, capable of accurately modeling both wall and rotation motions of the left 

ventricle, with up to 96% repeatability and accuracy for use in evaluating new MRI pulse 

sequences. 
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CHAPTER I 

INTRODUCTION 

 

Cardiovascular disease is the main cause of death for 17.1 million people every year in 

the world [1]. Because the heart is an electro-mechanical pump, assessment of its 

mechanical function plays an important role for the diagnosis and prognosis in patients 

with cardiovascular disease. To this end, researchers have sought to evaluate the left 

ventricular (LV) function and quantitatively assess the heart’s functionality by analysis of 

wall deformation [2, 3]. Many Magnetic Resonance Imaging techniques have been 

developed to help researchers meet this goal [4]. However, these techniques can be 

difficult to apply to patients or volunteers for validation because of the long examination 

time and lack of sufficient accuracy and repeatability of motion patterns in vivo, 

especially with breath hold scanning sequences. 

 Many of these limitations can be overcome with the design and construction of 

moving MRI- compatible heart models called dynamic cardiac phantoms. These 

phantoms duplicate the motion patterns of the heart in vitro, assuring the control of the 

motion without time or comfort limitations. In addition, the constant physiology of 
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phantoms is superior when compared to the deformation patterns encountered in vivo. 

Thus, phantoms have become a valuable tool in the validation of new cardiac-specific 

MRI techniques. 

 Although cardiac phantoms have improved research into cardiac-specific MRI 

techniques, most of the existing cardiac phantoms are expensive and complicated. 

Additionally, researchers have not yet built a sophisticated 3D dynamic phantom that 

duplicates both the wall and rotation motion patterns of the left ventricle of the heart. 

 We believe that a dynamic cardiac phantom with the capability of accurately 

modeling both wall thickening and rotation motions of the left ventricle will be a valuable 

tool in evaluating new pulse sequences. The aim of this study, therefore, was to design 

and build a low-cost, non-ferromagnetic dynamic left ventricle phantom with sufficient 

accuracy and repeatability for use with cardiac MRI. In addition, we sought to validate 

this phantom using a variety of commonly used cardiac MRI imaging techniques. 

 The remainder of this thesis is organized as follows: 

 Chapter 2 describes the relevant background material, including reported 

discussion of previously reported cardiac motion phantoms. Chapter 3 describes the 

design requirements for LV motion phantom. Chapter 4 describes the LV wall thickening 

motion phantom. Chapter 5 describes the LV rotation motion phantom.  Chapter 6 

includes the conclusion and future work of the current study. 
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CHAPTER II 

BACKGROUND 

 

2.1 Cardiovascular Function 

 From the first studies of the heart, it is well known that the heart functions like a 

pump to circulate blood through the body. Its structure and its function are inseparable 

aspects. The heart embodies four cardiac components: right and left atria, and right and 

left ventricles. Each component has its specific features and its own structural 

characteristics [5]. By the contraction of the ventricles, the right side of the heart pumps 

blood through the lungs and the left side pumps blood through the aorta to the peripheral 

organs. During the filling of the heart, the atria assist to move blood into ventricles [6]. 

Heart function has two distinct phases: systole and diastole. The systolic and the diastolic 

function of the heart consist of ventricular motions of thinning, shortening, lengthening, 

widening and twisting. Myocytes cause the ventricular contraction. The clock wise and 

anti-clockwise spiral muscle pattern causes the ventricular twisting [5]. The heart has 

three distinct layers of tissue: epicardium (external layer), myocardium (middle layer) 
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and endocardium (inner layer). Changes in volume in the different layers of the heart due 

to the ventricular motion are not in equal amount to each other.  

2.1.1  Left Ventricular Function 

The best way to understand left ventricular function is to be familiar with its 

structure. The electrophysiological and elastomechanical performance of the left ventricle 

is created by the structural features of the heart [7].  The left ventricle walls consist of a 

collagenous matrix and branching myocytes. The myocytes are lined up well, branched, 

and are also fixed within the collagenous matrix. In the anchored structured formation of 

muscles, there are gaps between the neighboring myocytes. In fact, it is believed that 

those gaps are necessary for wall thickening during the systolic phase [8]. The normal 

mechanical events of a cycle of the left ventricle can be defined as one complete 

sequence of contraction and relaxation. The ventricular muscle contraction phase is 

referred as systole and the ventricular muscle relaxation phase is referred as diastole. At a 

normal resting heart rate, the heart spends around two thirds of the cardiac cycle in 

diastole and one third in systole. According to this physiological behavior of heart, 

volume change in the left ventricle during the systole and diastole phase is shown as 

Figure 1 [5]. 
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Figure 1. Time frames of systole and diastole with the measurements of 

intravascular pressure in the aorta, LV, left atrium (LA), and LV volume. (From 

[5]. Used with permission. See appendix) 

 The change in the LV intravascular pressure is due to multi-directional ventricular 

motions within the LV wall. Overall, these ventricular motions can be defined as two 

distinct motion patterns: wall thickening and rotation motion. The wall thickening and 

rotation motion patterns are explained according to events of a cycle of the left ventricle: 

the ventricular systole and the ventricular diastole.  
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2.1.2 The Left Ventricular Systole 

 The ventricular systole begins with the result of electrical stimulation which 

causes myocytes contraction and results in high fiber tension and short fiber length. This 

change in fibers causes thickening in the ventricular wall and decrease in ventricular 

volume thus sequential ventricular emptying happens [5]. During the contraction of left 

ventricle, the epicardium does not have noticeable change in its wall thickness while the 

endocardium contracts towards its center and increases the thickness of myocardium 

wall. The amount of blood ejected from the left ventricle during a single cycle is called 

stroke volume. The stroke volume is the difference between the ventricular end diastolic 

volume and ventricular end systolic volume. The left ventricle reaches its minimum or 

end systolic volume at the end of systole. For a healthy heart, the normal end systolic 

ventricular volume range is 16 to 143 ml and typical value is 50 ml [9]. 

2.1.3 The Left Ventricular Diastole 

 The ventricular diastole is the phase during which the myocardium and 

endocardium returns to its initial length and tension relationship [10]. During the diastole, 

the relaxation of the fibers result in widening of the endocardium and decrease in the wall 

thickness of the myocardium. Thus, pressure and volume increase. The normal left 

ventricular diastolic function is defined as the ability of ventricle to fill to a normal end-

diastolic volume [10]. The left ventricle reaches its maximum or end diastolic volume at 

the end of diastole. For a healthy heart, the normal end diastolic ventricular volume range 

is 65 to 240 ml and typical value is 120 ml [9]. When the typical end diastolic ventricular 
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volume is subtracted from the typical end systolic ventricular volume, the typical stroke 

volume is found as 70 ml and according to age and body size it ranges from 55 to 100 ml. 

 When the end systolic and the end diastolic endocardial and epicardial contours 

are examined in the MR images, the rotation motion is observed in the left ventricle of 

the heart. The rotation motion of the left ventricle is created by the clockwise and anti-

clockwise spiral muscles. The counterclockwise rotation of the apex (bottom part of the 

heart) and clockwise rotation of the base (upper part of the heart) occurs during the 

muscle’s contraction of the left ventricle. Then, this rotation motion reversely occurs to 

create a phase of relaxation (diastole). Systolic and diastolic cardiac images which show 

the rotation motion are shown in Figure 2 [5]. 

 

 

Figure 2. Systolic and diastolic cardiac images by the use of MRI phase contrast 

velocity mapping technique.(From [5]. Used with permission. See appendix) 
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Observed and quantified left ventricular rotation at the wall surface is 5.1±1.2 

degrees in clockwise direction at base and 11±1.2 degrees anti-clockwise direction at 

apex. According to measurement at apex and base, the total amount of twist created by 

the each beat of heart is 16±2.4 degree. During the systole and diastole periods of heart, 

the rotational degrees are also represented as in Figure 3 [5]. 

 

Figure 3. Rotation degrees of heart during systole and diastole.(From [5]. Used 

with permission. See appendix) 

 

2.2 Magnetic Resonance Imaging  

 Magnetic resonance imaging (MRI) is a non-invasive imaging modality that uses 

powerful magnets and radio waves. A single proton in each hydrogen nucleus has an 

electric charge and spin around its axis. The 63% of the human body consists of hydrogen 
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atoms and spins of hydrogen protons in the human body are aligned by the high-strength 

static magnetic field. These aligned spins are excited and detected with coils. The two 

different relaxation times, proton density, flow and motion, changes in susceptibility, 

molecular diffusion, magnetization transfer, etc. affect the signal arising from the tissues 

[6]. The image contrast is determined by the excitation pulses and magnetic field. The 

four main principles of MRI are called: excitation, relaxation, localization and data 

acquisition. 

 In general, the small magnetic fields, which are produced by the spinning of each 

proton around its axis at water nucleus, are randomly oriented. By the existence of an 

external large magnetic field (such as an MRI scanner), protons will be aligned parallel to 

the long axis of the external magnetic field (B0). The addition of all the small magnetic 

fields of the protons will create an equilibrium magnetization which is much smaller than 

B0. The interaction of the external large magnetic field and equilibrium magnetization is 

via a property called “spin”. The precession of this spin with a specific frequency is 

formulated by Larmor Equation [6]. The frequency of precession (depends on a 

constants called the gyromagnetic ratio (and the magnetic field strength (B0). The 

gyromagnetic ratio for hydrogen is 42.7 MHz/Tesla. 

 = B0                                 Eq. 2.1 

A higher magnetic field strength will result in a higher precession frequency.  

The magnetic moment of each proton has two perpendicular components, called 

longitudinal and transverse. The sum of the all components results in only longitudinal 
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magnetization by the cancellation of the transverse components. As a result, the 

longitudinal magnetization composes the net magnetization which is aligned by the 

external magnetic field (B0). 

Excitation 

 Once the magnetic field of the body is aligned by the external magnetic field (B0), 

a second external magnetic field (B1) is applied to make the body emit a signal. This 

signal is the result of increasing the number of transitions from lower to higher energy 

state of the protons. This is one of the four main principles of MRI which is called 

excitation. By applying the B1 field as a radiofrequency (RF) pulse, the net magnetization 

vector is flipped from z-axis to the xy plane. However, B1 is required to be perpendicular 

to B0 and the frequency of precession of the proton must be same as the applied 

radiofrequency to be able to achieve a successful excitation signal. The resulting 

transverse magnetization, which consists of the magnetization vectors flipped into xy 

plane, has a major importance in constructing the image. Since, MRI receiver can only 

detect the component of the magnetization vector which is in the xy plane. In addition to 

that, in a desire to localize in a specific part of the body, it is needed to detect signals only 

from the region of interest. In that case, the frequency of precession of the protons in that 

region happen to be different from the other parts of the body and this can be done by 

applying the magnetic gradient field when the RF pulse is applied. 

 Relaxation 

 After the excitation, relaxation of the protons occurs. Excited protons realign 

themselves from induced transverse magnetization to the longitudinal magnetization 
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(equilibrium state) by transmitting their gained energy. Excited protons transmit their 

energy by the RF pulses to the surrounding regions.  

Relaxation has two distinct modes called T1 and T2 relaxation. Both of them are 

distinct properties of the material according to its physical and chemical properties and 

the surrounding environment. T1 is called the longitudinal relaxation time. In other word, 

T1 is the time it takes for the spins to realign along the z-axis [11]. During T1, the spins 

give the energy back, which they obtained from the RF pulse, to the surrounding lattice to 

go back to equilibrium state. T2 is the decay of magnetization perpendicular to the main 

magnetic field. T2 time is related to the effect of spins on each other. T2 time 

characterizes the rate at which the xy vector component decays.  

 Localization and Data Acquisition 

To be able to distinguish the signals created by applying RF pulse in the whole 

body at the excitation, spatial encoding of the signal is performed. Spatial encoding is 

achieved through three steps which are slice selection, frequency encoding and phase 

encoding.  

Slice selection is performed simultaneously by applying a gradient on the 

magnetic field with the RF pulse before the spatial encoding. After selecting a slice, 

another gradient Gx called the frequency encoding gradient is applied in the x-direction. 

By application of Gx, a difference in the precessional frequencies is created at different x 

levels. One more gradient Gy called the phase encoding gradient is applied also in y-

direction. Gy is applied to perform phase encoding. Gy creates a different accumulated 
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phase at different y levels [12]. During the application of Gx and Gy, the signal is 

acquired or read out.  

The strength and duration of the magnetic gradient determines the magnitude of 

the phase difference between the protons. Created phase differences are the part of 

required data to fill the k-space which will lead to final image by the Fourier Transform. 

Created phase differences between the protons may lose their coherence and lead to 

signal loss during the data acquisition. To prevent that situation, a pulse sequence is used. 

There are two different pulse sequences which are called spin echo (Figure 4) and 

gradient echo (Figure 5). Spin echo is created by employing two RF pulses while gradient 

echo is created by employing one RF pulse and magnetic field gradient.  

 The application order of RF pulse, magnetic field gradient, spatial encoding and 

their timing is called as a pulse sequence. Repetition of pulse sequences will result in 

collecting the required data to fill the k-space to create image. Time between the two 

consecutive RF pulses is called the repetition time (TR) and the time between the RF 

pulse and resulting echo is called echo time (TE).  
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Figure 4. Schematic diagram of the spin echo pulse sequence where RF is radio 

frequency pulse, GS is slice selection, GP is phase encoding, and GF is frequency 

encoding. 

 

Figure 5. Schematic diagram of the gradient echo pulse sequence where RF is 

radio frequency pulse, GS is slice selection, GP is phase encoding, and GF is 

frequency encoding. 
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2.3 Quantification of Cardiac Function with MRI  

 As the heart is an electro-mechanical pump, assessment of its function plays an 

important role for the diagnosis and prognosis in patients. Cardiac activity has been 

studied by MRI since the middle of 1980’s. However, it is still an evolving area due to 

fundamental problems related to cardiac motion.  

 Cardiac MRI can be used to quantify function of the left and right ventricle aortic 

flow, vascular function as well as cardiac volume function. Most clinical cardiac MRI 

examinations are done by 1.5T MR scanners. The spin echo MR sequences are typically 

used to show anatomy. For the functional imaging of moving regions, the gradient echo 

sequences are used. The cardiac MRI technology has growth very rapidly and new faster 

sequences to acquire the images as well as post processing of these images with minimal 

user interaction are created [9]. 

Left ventricular function is a very important diagnostic and prognostic factor for 

patients with heart disease [13]. Cardiovascular MRI with its reproducibility is used in 

quantification of ventricular volumes, ejection fractions and mass [6]. As it has been 

discussed in section 2.1.1, together rotational and wall thickening motion causes the left 

ventricle to exhibit complex motion patterns and results in difficulty to analyze anon. In 

spite of all challenges, there has been development of new techniques to assess the 

motion of left ventricle noninvasively.  

With the stronger gradients and faster gradient switching capabilities of MR 

devices, new techniques for cine imaging enables to acquire a series of images through 
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the cardiac cycle. By cine imaging, a movie of a specific region or whole heart can be 

created and amount of data acquired can be customized by the user.  

Commonly, each cardiac cycle is divided into segments and images are acquired 

for each segment. By the use of the images of each segment, the movie of the heartbeat is 

created. The sample images of the segments are shown in Figure 6 [12]. This technique is 

commonly used to study ventricular contractility and vascular function. 

 

Figure 6. This figure represents the segments and their images between two 

heartbeats [12]. 

2.3.1 Tissue Tagging 

 Cine imaging makes possible to see the motion of the endocardium wall 

thickening. However, accurate measurement of the wall deformation within the walls is 

possible with using MRI tagging technique. Since 1988, line, radial and ring tagging 

which are created on myocardium have been used to calculate the strain, shape and 

function of ventricles [6].  
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Figure 7. Example of short-axis tagged images during cardiac cycle. A)Cine 

image of LV at end diastole, B) Tagged cine image of LV at end diastole, C) Cine 

image of LV at end systole, D) Tagged cine image of LV at end systole. 

 

Tagging of the tissues is achieved by applying excitation pulses prior to the 

applying the RF pulses required for imaging. Tissue’s signal is destroyed in excited plane 

right before the imaging so that no signal is received from the protons of tissue and they 

look like black lines or areas (Figure 7). Highly reproducible data can be obtained in the 

heart by tissue tagging to analyze more sophisticated mechanical metrics of the heart 

such as wall thickening, strain and torsion. During the cardiac cycle, the displacement of 

each tagged area according to rotation or wall thickening motion of the heart can be 

followed from the acquired images and becomes possible to quantify the myocardial 

deformation by tracking tag lines [14, 15]. The mechanical properties of the heart are an 

accurate evaluation of the normal and diseased heart. Therefore, the use of tagging 

A B 

C D 
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increasingly becomes valuable in clinical applications to predict the clinical risk 

assessment and evaluate the therapeutic efficacy. 

2.4 Dynamic Cardiac Phantoms 

An essential step in the development of new cardiac MRI techniques is validation 

of their performance in the presence of cardiac motion. Commonly, validation is 

accomplished by scanning patients or volunteers. MRI-compatible dynamic motion 

phantoms, which mimic the motion patterns of the LV, can be of substantial benefit in the 

development of cardiac MRI techniques. However, there are two distinct components of 

LV motion, wall thickening and rotation. To date, no single MRI-compatible motion 

phantom has succeeded in duplicating both of these LV motion patterns. Most existing 

cardiac phantoms are expensive, are not 100% MRI-compatible; and cannot be easily 

modified for different settings. There are two general types of phantoms used for 

cardiovascular applications: flow phantoms and motion phantoms, discussed separately 

below.  

 Flow Phantoms 

In healthy subjects, the flow profile in the cardiovascular system is often different 

than in subjects with cardiovascular disease, such as narrowing in a blood vessel or a 

malfunctioning heart valve. Flow phantoms can be scanned and the resulting images used 

to analyze flow patterns, either qualitatively using flow visualization or quantitatively 

using fluid mechanics principles [16]. Also, flow phantoms can be used for the 

assessment of new MRI techniques. Due to the existence of complex geometries such as 

in arteries, it is hard to achieve a completely noninvasive approach for the rapid 
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assessment of MRI new techniques with volunteers or patients [17]. Flow patterns are 

challenging to reproduce repeatedly in vivo for the validation of new techniques. Even 

with in vitro experiments, there can be obstacles such as the disruption of flow patterns 

by the presence of air bubbles in the phantoms [17].  

As an example, In 1999, Smith et al. designed and built a phantom to duplicate 

the geometry of the stenotic carotid bifurcation. This phantom features variable stenoic 

geometries within the internal carotid artery [17]. The phantom was made from MRI-

compatible materials. A durable, rigid geometry was attained by the use of plastic 

polyester. First, an aluminum mold was created to shape the stenosis model. Then, the 

plastic resin was poured into the container of aluminum mold. Once the plastic resin 

solidified, the mold was melted out. Finally, an agar gel was poured into the plastic 

housing of the model to achieve the tissue-like signal. A computer controlled flow pump 

was employed to have pulsatile or constant flow during the MRI examination. A water-

glycerol mixture was used as an blood mimicking fluid. The resulting images obtained 

from MRI concluded that the phantom data were similar to anatomical properties. It was 

concluded that this realistic anthropomorphic carotid bifurcation phantom can be used for 

verification of magnetic resonance angiography techniques which quantify the stenosis 

severity and blood flow [17]. 

Left Ventricle Motion Phantom 

 Several attempts have been made to design and build dynamic motion phantoms 

with sufficient sophistication to model the physiological motion of the heart. However, 

these phantoms have not replicated the true motion of the left ventricle. Previous dynamic 
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cardiac phantoms were limited in that they cannot duplicate both the wall thickening and 

rotation motions of the left ventricle and are not fully MRI-compatible. 

 A low-cost MRI compatible moving phantom was created to investigate the 

motion phenomena related to respiratory and cardiac contraction motion [18]. The motion 

was modeled with a K’NEX plastic construction toy set. The phantom included several 

small gelatin filled containers and one small tube filled with corn oil, all of which were 

located in the phantom head. A fiber optic connection set was used for synchronization of 

the data acquisition with the phantom motion. The periodic interruption of a transmitted 

laser beam resulted in creation of signal. This signal was converted to TTL pulse. The 

presented phantom enabled the investigation of motion related phenomena in MR images 

by only rotation of the tubes [18]. However, rotating tubes did not simulate LV wall 

motion or myocardium. 

 Khan et al. designed and constructed a dynamic cardiac phantom for MRI to 

perform standard performance tests in the presence of motion. In this phantom, the 

pseudorespiratory motion in both the anterior-posterior and cranio-caudal directions was 

duplicated [19]. Silicone and acrylic materials were used to achieve the motion of the 

moving heart structure and flowing blood motion. An MRI compatible flow pump was 

connected to mimic the blood flow through the chambers of heart. Successfully, there has 

not been any motion effects observed in images of this phantom when it was tested in 

three different MR Manufacturer systems: GE, Philips and Siemens [19]. However, 

phantom needed to have further modifications to achieve realistic cardiac motion. 
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 In another study [20], a cardiac phantom was created to test and validate the gated 

cardiac single-photon emission computed tomography (SPECT) and to test different 

acquisition parameters. The phantom was able to produce variable left ventricular 

volumes and ejection fraction. The inner and outer wall of the left ventricle was modeled 

by filling the space between 1 mm thick flexible silicone membranes with radioactive 

solution. The volume between the silicone membranes was changed by driving a motor 

controlled piston. The piston followed an outline of a curved cam which was the 

connection between the piston and motor. Therefore, because of the shape of the cam, a 

physiological stroke volume curve was achieved by the motion of silicone membranes. 

The motion of the phantom was synchronized with a simulated ECG signal when the 

membranes reached the maximum modeled left ventricular filling volume. The stroke 

volumes measured from the examinations were constant. This phantom was successfully 

produced to monitor the stability of the single-photon emission tomography performance 

and quantification measurements [20]. The main limitation of the phantom was the small 

range of the producible heart rate which was limited between 60 to 80 beats per minute.  

 Myocardial velocities were measured using a MRI-compatible model of the left 

ventricle phantom [21]. The left ventricle was modeled by two concentric cylinders and 

space between them filled with the polyvinyl alcohol cryogel to mimic the myocardial 

tissue. To be able to create three dimensional motion, two motors concurrently were 

operated. One of the motors provided movement linearly along the axis of the MR 

magnet bore, the other one rotated the phantom in the transverse plane. The motors were 

operated by a computer. The motion of the phantom was synchronized by a 5V pulse at 

the beginning of each motion as an ECG input to the MRI scanner. This phantom was 
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used to measure the myocardial velocities by navigator echo gated phase contrast MRI in 

vitro. However, phantom was able to rotate maximum 6 degrees which was so small 

compared to actual rotation in the heart. In addition, three dimensional tissue velocity 

measurements in the myocardium of the patients and volunteers were done by phase 

contrast MR sequence. Seventeen healthy volunteers and twenty eight patients were 

scanned for the phase contrast MR velocity image acquisition. Comparison of in vitro and 

in vivo results showed the feasibility of the combining phase contrast MR imaging with 

navigator echo respiratory gating to acquire the 3D velocity data in myocardial tissue 

without breath holding [21].  

 A biventricular phantom which mimics the deformation of tissue similar to the 

human left ventricular wall was built out of polyvinyl alcohol for use in imaging by 

ultrasound [22]. The polyurethane elastomer mold was used to construct the phantom. 

One of the ventricles modeled the right ventricle with uniform wall and the dividing 

uniform wall between the left and right ventricle. The other one modeled the wall 

thickening motion of the left ventricle. The deformation was achieved by a computer 

controlled motor driven piston pump. The piston pump was used to move water 

reciprocally to mimic the beating left ventricle. The trigger signal was acquired from the 

pump controller and sent to the ECG input of the scanner. This phantom was able to 

reproduce the cyclic deformation of the ventricles while mimicking the mechanical and 

acoustic properties of the tissue [22]. The system reproducibility was satisfactory. One of 

the limitations of this study was that the phantom did not have mechanical anisotropy 

which is having a different magnitude when measured in different directions. The other 

was that the phantom was lack of the rotational motion component of the left ventricle.  
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 Current Phantom Study 

In summary, there has not been a study which has succeeded in duplicating both 

motion patterns of the left ventricle rotation and wall thickening, in a cardiac phantom to 

enable standard performance tests of new MR imaging techniques. In addition, a phantom 

that is 100% MRI-compatible with low cost to build would be desirable to researchers. 

In this study, our aim was to design and build a dynamic cardiac motion phantom 

with the capability of accurately modeling both the wall thickening and rotation motions 

of the left ventricle with sufficient reproducibility for use in evaluating new pulse 

sequences. The mechanism is manually operated without need of any powered motor and 

is totally MRI-compatible, except for the attached triggering mechanism which generates 

a TTL pulse for triggering the MRI scanner. It is very easy to set up and use, and it can 

easily be reproduced with low cost even by user-specific modifications. Cardiac phantom 

is imaged in Philips 3T Achieve MRI Scanner and results are analyzed via dedicated 

Philips analysis tool and harmonic phase (HARP) diagnostic software. This is the first 

time that a 98% MRI-compatible phantom with significant ability of modeling the wall 

thickening and rotation motions of the left ventricle has been designed and built.  
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CHAPTER III 

LEFT VENTRICLE MOTION PHANTOM DESIGN 

3.1 Design Requirements 

As discussed previously, there are two distinct components of left ventricular 

motion, wall thickening and rotation, which occur concurrently as the heart contracts. 

The wall thickening motion is observed as a thickening of the myocardium, and the 

rotation motion is observed as the twisting of the left ventricle about its long axis.  

In practice, these two distinct motion patterns are quantified separately. Thus, we 

have developed two separate phantoms, within a common enclosure, to reproduce these 

motions independently. Our main scope is to create a cardiac phantom which does not 

need any motors in the experimental setup for motion generation. So, the basic elements 

of the left ventricular moving phantoms (wall thickening and rotation motion phantom) 

were the air pump, rotation motion actuator, trigger circuit, and an air pump. The air 

pump and rotation motion actuator were human operated.  

For the MR phantoms, there are two main restrictions: the size of the phantom, 

which will be located in the bore of the magnet, and the materials used in the phantom 
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and the experimental setup. The size of the phantom’s enclosure is limited to 13 inches in 

width and 13 inches in height for the Philips Achieva MRI Scanner. Each phantom needs 

to be similar to actual heart’s size as well as heart’s structural components.  

On the other hand, selection of the construction materials used for the phantoms is 

also an essential step. It is very important to be aware of that working around a 

superconducting magnet that the magnetic field is always on. Therefore, ferromagnetic 

and non-ferromagnetic metallic material cannot be used in the experimental setup or 

within the phantom itself. Otherwise, the equipment could be pulled to the magnet bore 

and could result in serious injuries for the individuals and potentially damage the MRI 

scanner as well. Therefore, the phantom and the experimental setup were constructed 

exclusively of non-ferromagnetic materials (polycarbonate, wood, latex, sponge, di-

electric gel) except for the triggering circuit. However, the triggering circuit was placed 

outside the scanner’s  Gauss line during the operation. 

Both wall thickening and rotation motion phantoms are required to have a ring of 

gel inside to mimic the left ventricle wall during operation of the phantom. This gel 

should be MRI visible and mimic both the elasticity and T1/T2 of myocardium. The 

thickening in the wall motion phantom and the rotational deformation in the rotation 

motion phantom should be adjustable for different amounts and physiologically realistic. 

Deformations within the gel for both phantoms should be periodic and reproducible. It is 

technically challenging but operation of wall and rotation motion phantoms are ideally 

expected to be concentric as it is in the heart.  
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3.2 Design Solution 

Considering these requirements, an experimental setup (Figure 8) housing two 

different phantoms were designed and built to duplicate the wall thickening and the 

rotation motion of the mammalian left ventricle separately. The cycle of the motion 

patterns was assumed to be purely periodic. The deformation patters were uniform 

through the circumference of the phantoms. 

 

  

 

  

 Figure 8. Photograph of the experimental setup.  
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 In the construction of the phantom, air pump, and rotation motion actuator, 

polycarbonate was used as the primary building material. The common enclosure of the 

phantoms was 13 inches both in height and width. All the structural materials, joint 

connectors, screws and rods were MRI compatible. 

 Each phantom was filled with a commercially available di-electric silicone gel 

(Dow Corning Sylgard 527), which was used to model the myocardium in both the wall 

thickening and rotation phantoms. The Sylgard 527 di-electric gel retains much of the 

stress relief and rapid self-healing, and is naturally tacky surface. Therefore, it was stable 

enough to deform and reform to its initial state over and over at each cycle with uniform 

shape.  Also, the tacky nature generated a great ability to re-heal the gel if damaged or 

was exposed to stress more than it could absorb. The gel was shipped as 2 separate parts; 

the part A and part B of the silicone gel product were in very low viscosity liquid form. 

At room temperature, the two parts were filled into the phantoms with mixing them 1:1 

ratio. During the mixing process, one key point was to avoid generating air bubbles 

within the gel. Therefore, pouring of the parts into container or directly into phantom 

should be done very slowly by preventing the agitation. Once the gel was poured into the 

phantom, it was left to cure at least for one day. Then, it was ready to be used in the 

experiments. The gel was able to mimic the T1 and elasticity of the myocardium. Both 

wall thickening and rotation motion phantoms each had hard plastic cylindrical shell in 

0.25 inches thickness and 0.9 inches thick ring of gel inside to mimic the left ventricle 

wall during operation of the phantom. 

 At each phantom’s motion mechanism, a trigger switch was mounted to generate 

transistor-transistor logic (TTL) pulse by the use of trigger circuit to synchronize the data 
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acquisition with movement of the phantom. The MRI scanner had input for the external 

TTL signal. The wall thickening motion was triggered when the minimum thickness of 

the gel was achieved and the rotation motion was triggered at the beginning of each 

rotation cycle. The trigger circuit consists of 555 timer chip, resistors, capacitors, battery 

and switch. The 555 timer chip was used in systems to create continuous series of pulses 

with the periodic motion of the phantom. Figure 9 shows the triggering circuit and Figure 

10 enclosed triggering circuit within the box with BNC output. This circuitry contains 

ferromagnetic materials but could be placed outside the scanner. However, no artifacts in 

the images were introduced by the trigger unit. Trigger pulse was transformed into 

transistor-transistor logic (TTL) pulse by transformer with 5V voltage output and 

connected to the external TTL signal input of the scanner. The transformer powered by 

9V battery.  
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Figure 9. The triggering circuit 

 

 

 

 

 

 

 

Figure 10. Enclosed triggering circuit within the box with BNC output. 
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 Both for wall and rotation motion phantoms, no motors were attached to system to 

operate the phantoms. The present solution for the wall motion phantom was a pneumatic 

mechanism, driven by a custom non-ferromagnetic pump which cyclically fills and 

empties a latex balloon within the phantom. The variability of the motion could easily be 

adjusted by three different volume settings of the air pump. Figure 11 shows the wall 

motion phantom experimental setup components. The wall motion phantom will be 

discussed in more detail in Chapter 4. 
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Figure 11. Elements of the wall thickening motion phantom  
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 The rotation phantom is manually driven by a wooden rod attached to the 

phantom outer wall which rotates the phantom through a specified angular rotation. The 

other end of the rod was attached to plastic actuator which was operated by the human to 

create continuous cyclic displacement of the rod. Gel deformation was achieved by 

displacing the attached rod and rotating the outer wall of the phantom while the 

concentric inner cylinder was fixed. The variability of the rotation motion could easily be 

adjusted by different rotation amount settings of the actuator. The Figure 12 shows the 

rotation motion phantom experimental setup components. The rotation motion phantom 

will be discussed in more detail in Chapter 5. 
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Figure 12. Elements of rotation motion phantom 
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CHAPTER IV 

LEFT VENTRICLE WALL THICKENING MOTION PHANTOM 

 

 4.1 Design and Construction of the Left Ventricle Wall Thickening Motion Phantom 

  

 The wall motion phantom was pneumatic, driven by a custom non-ferromagnetic 

pump which cyclically filled and emptied a latex balloon within the phantom. The latex 

balloon stretched out inside the stationary rigid polycarbonate cylinder and both were 

concentric. The space between the balloon and the cylinder contains a ring of gel which 

represents the LV myocardium. The outer diameter of the gel, which adhered to the outer 

cylinder was 2.5 inches. The shell thickness was 0.25 inches. The inner diameter of the 

gel was 0.7 inch and had the balloon inside. The thickness of the gel was 0.9 inches. The 

cylindrical balloon was filled with air cyclically to cause uniform deformation through 

the gel. The Figure 13 shows the wall thickening motion phantom with dimensions.  
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 Three iterations of the pump used to cyclically fill the balloon with air have been 

built. These pumps and corresponding results are presented in the remainder of this 

chapter.  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The wall thickening motion phantom with dimensions. 
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The gel was first poured into phantom while the phantom had a mold inside of it 

to ensure that gel would form in a perfect ring shape. Once the gel was formed into high 

viscous form, the mold was taken out of the phantom and the latex balloon was placed 

concentrically to the wall motion phantom. The latex balloon was attached to plastic 

tubing from the both end. One of the plastic tubing was connected to the pump while the 

other was mounted into the enclosure and had dead end.  

 

4.2 Wall Thickening Motion Phantom with Pump Version 1.0 

 Air pump version 1.0 was designed in a simplistic manner. A cylindrical plastic 

plate, which was connected to camshaft, was placed into the plastic tubing. The balloon 

was inflated by moving the camshaft into the piston to result in air pressure.  Expansion 

of the balloon with the air pressure created a thinning within the gel through the cylinder 

in radial form. Then, camshaft was pulled back to deflate the balloon which resulted in 

gel to recover to its primary shape itself. The pump 1.0 had scaling on it such as the 

typical syringes to see and operate how much camshaft was displaced. The three inches 

displacement resulted in the 77.5% thinning in the wall of the motion phantom. This 

deformation corresponded to maximum deformation that the phantom could have. The 

first version of the pump design is shown in the Figure 14. 
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Figure 14. Air pump 1.0 was operated by moving the camshaft in and out by 

holding the camshaft with one hand and holding the piston with the other hand. 

 

 

4.2.1 Image Acquisition and Results for Pump 1.0 

 MRI images were obtained with using a Philips Achieva 3.0 T MRI scanner 

(Philips Healthcare, Highland Heights, OH). Real time cine images of the wall motion 

phantom were obtained using Air Pump version 1.0 with two different runs. Acquisition 

parameters were as follows: 2.1 msec repetition time (TR), 0.8 msec echo time (TE), 110 

ms temporal resolution, 15
0
 flip angle, turbo factor 40, 130 mm field of view (FOV), 30 

heart phases, 64/80r matrix, echo planar imaging factor 1, rectangular FOV 100%, 300 

dynamics. The circular local receive coils were used.  
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 Sample images from the wall motion phantom when operated by the air pump 

version 1.0 are shown in Figure 15.  

           

Figure 15.  Wall motion phantom images with Air Pump 1.0 at a) 0 sec, b) 

minimum cross-sectional area, and c) maximum cross-sectional area. 

  

 The Figure 16 and 17 show the cross-sectional area change with respect to time 

for wall motion phantom when operated by the air pump version 1.0.  

a b c 
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Figure 16. Cross-sectional area change as a function of time for wall motion 

phantom operated by the air pump version 1.0 run # 1. 
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Figure 17. Cross-sectional area change with the time for wall motion phantom 

operated by the air pump version 1.0 run # 2. 

 The T1 value of the gel was determined using a Look-Locker pulse sequence to 

be  728 milliseconds. Acquisition parameters were as follows: 8 msec repetition time 

(TR), 3.2 msec echo time (TE), 8 ms temporal resolution, 7
0
 flip angle, turbo factor 9, 

150 mm field of view (FOV), 37 heart phases, 98/112r matrix, echo planar imaging factor 

3, rectangular FOV 100%, PrePulse T1 150 msec. Same circular local receive coils were 

used. 
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Figure 18.  Percent error due to variability between different runs of wall motion 

phantom operated by the air pump version 1.0. 

 

4.2.2 Discussion 

From the Figures 16 and 17, the change in the modeled endocardium area with 

respect to time is seen. Each maximum and minimum area of the inner wall of the gel in 

the graphs represents the myocardium wall motion of the left ventricle at diastole and 

systole. The variations in the upper and lower limits of the area change and inconstant 

frequency of area change shows that the reproducibility of the motion is insufficient with 

up to 150% variability as shown in Figure 18. Also, the triangle waveform shape of the 

area change in the graphs is non-physiologic. Therefore, design and build of a piston air 

pump, which ensures the constancy and physiological area change, was the next aim of 

the study.  
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In addition to mechanic operation deficiency, a trigger pulse related to the cyclic 

motion of the phantom and similar to heart beat was also another missing component of 

the motion phantom. The mechanism for the synchronization of the data acquisition with 

the phantom motion was developed for the next version of the air pump. 

 

4.3 Wall Thickening Motion Phantom with Pump 2.0 

Because of the problems encountered with the first pump design, a modified 

pump (version 2.0) was designed and built.  

 Firstly, for the ease of operation of the air pump, a T-handle was mounted onto 

the camshaft. The body of the pump was attached to a supportive structure to increase 

stability during operation. Then, the maximum wall thickening motion of the gel was 

attained by mounting a circular plate cap on the open end of piston to stop the camshaft 

shift every time at the same location (shown in Figure 19). This cap had a hole at the 

center of it for the camshaft of the piston. On this camshaft, three different holes were 

created to attach pin to enable three different settings of volumes. Different pin location 

resulted in different amount of thinning in the gel of the wall motion phantom. The 

amounts of thinning in the gel with respect to three different settings were 78%, 52% and 

26%.   
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Figure 19. Air pump 2.0 front view. 

 The top view of the air pump is shown in Figure 19. 
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Figure 20. Air pump 2.0 top view. 

Another important modification was the ability to attach the triggering switch into 

pump to create a triggering signal for the synchronization of movement with the MRI 

scanner (Figure 21). This switch was push on type and mounted into the rod of the 

cylinder. When the rod was pushed into the piston to pump the air, the switch was turned 

on by touching the cap of the piston. Thus, the trigger signal was created when the 

maximum thinning was achieved in the gel of the phantom. 

The trigger switch attached to the pump was not completely MR-compatible. 

However, it was very small and mounted into the body of the pump. It did not have 

enough metal to project through the scanner. The switch was calibrated to be pressed 

when the piston was at lowest point. Multiple levels were possible to trigger at different 

amounts of contraction. 
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Figure 21. Air Piston Pump 2.0 with attached trigger switch. 
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The elements of wall motion phantom experimental setup are shown in the Figure 

22. On the right side of the common enclosure is a wall thickening motion phantom  

which is driven by Air Piston Pump 2.0 and movement of the phantom is synchronized 

with the attached triggering circuit into the pump. 

 

 

 

 

Figure 22. The Air Piston Pump 2.0 is shown with the attached triggering box and 

phantom.  

 

4.3.1 Image Acquisition and Results for Pump 2.0 

 Triggered Cine images of the wall motion phantom were obtained by using Air 

Pump version 2.0. Acquisition parameters were as follows: 3.8 msec repetition time (TR), 
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1.6 msec echo time (TE), 50 ms temporal resolution, 15
0
 flip angle, turbo factor 19, 150 

mm field of view (FOV), 30 heart phases, 89/128r matrix, echo planar imaging factor 1, 

rectangular FOV 100%. The circular local receive coils were used. The cine image 

analysis of the wall motion is shown in Figure 23. 

 

Figure 23. Change of the cross-sectional area within the wall of the gel with 

respect to the time for wall motion phantom when operated by the air pump 

version 2.0. 

 Additional four different series of wall motion experiments by applying same 
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Philips dedicated cardiac analysis tool. Runs had variability up to 60% as shown in 

Figure 25. Also, results are shown in Figure 24 and 26. 

 

Figure 24. The change in the volume of the endocardium in four different 

experimental run of the wall motion phantom when operated by the air pump 

version 2.0. 
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Figure 25.  Percent error due to variability between different runs for wall motion 

phantom operated by the air pump version 2.0. 
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Figure 26. Set of images for  wall motion phantom from different runs operated by the  

air pump version 2.0 for different runs at maximum, minimum and maximum cross-
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sectional areas. 

 In the grid tagged cine images of the wall motion phantom, it was not possible to 

follow the deformation of the grid patterns from the images. The grid tagged cine images 

are shown in Figure 27. 

         

Figure 27. Set of grid tagged cine images from wall motion phantom run operated by the 

air pump version 2.0 at a) diastole, b) systole, and c) diastole. 

 

4.3.2 Discussion 

 From the cine images, it was observed that up to 77.5% contraction in the 

phantom walls has been achieved and different runs with the same deformation settings 

concluded the reproducibility. The Figure 24 also shows four different runs and their 

consistent deformation data with respect to each other. 

 However, change in direction at end points of pump linear motion resulted in 

inconsistent frequency with up to 50% variability between cycles and inconsistent 

velocity through the cycle. These defects resulted in untraceable tagging in the images as 

a b c 
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shown in the Figure 27. According to that problem, next step in the study to design a 

mechanism for the air pump 2.0 to operate it with the same frequency of motion. 

 

4.4 Wall Thickening Motion Phantom with Pump 3.0  

 Due to insufficient constant frequency of operation with the air pump 2.0, an 

integrated actuator was designed and installed into the air pump 2.0 and air pump 3.0 was 

created.   

Previously, air pump version 2.0 functioned in a non-continuous form. The pump 

was driven by pulling and pushing the piston rod. The transitions of the moving 

directions of the piston rod caused variations in the pumping frequency. It was hard for 

an individual to operate the pump in the same frequency within the existence of the non-

continuous act. By the integrated actuator, continuous move of the piston rod was 

achieved. The air pump 3.0 also had three different volume settings to create different 

level of wall thickening motion in the phantom. These volumes caused the same amount 

of wall thinning as before: 78%, 52%, and 26%. The picture of the air pump 3.0 is shown 

in Figure 28.  
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Figure 28. Air pump 3.0 
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4.4.1 Image Acquisition and Results for Pump 3.0 

With Air pump 3.0, triggered cine images of the wall thickening motion phantom 

were obtained by Philips MR Achieve 3.0 T scanner. Acquisition parameters were as 

follows: 2.5 msec repetition time (TR), 1.3 msec echo time (TE), 15
0
 flip angle, turbo 

factor 47, 225 mm field of view (FOV), 30 heart phases, 62/96r matrix, echo planar 

imaging factor 1, rectangular FOV 100%. The circular local receive coils were used. 

 To validate the reproducibility of the air pump 3.0, four different series of wall 

motion experiments performed with constant contraction. The variation in the area 

change with respect to time between the four different experimental runs was decreased 

to 6% (see Figure 30). Results are shown in Figure 29 and 31. 
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Figure 29. The change of the cross sectional area in four different experimental 

run of the wall motion phantom when operated by the air pump version 3.0. 
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Figure 30.  Percent error due to variability between different runs for wall motion 

phantom operated by the air pump version 2.0. 
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Figure 31. Set of images for one beat of wall motion phantom from different 4 

runs operated by the air pump version 3.0 at maximum and minimum cross-

sectional areas. 
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  Provided constant deformation frequency by operation of air pump 3.0 resulted in 

efficiently traceable grid patterns within the wall of the wall thickening motion phantom. 

The grid tagged images of wall motion phantom from one single heart beat are showed in 

Figure 32. 

     

 

Figure 32. Set of grid tagged cine images from wall motion phantom run operated 

by the air pump version 3.0 at a) 300 milliseconds, b) 600 milliseconds, c) 900 

milliseconds and d) 1200 milliseconds. 
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4.4.2 Discussion 

 With the integrated continuous actuator of the air pump 3.0, wall thickening 

motion phantom were able to be used as a dynamic cardiac phantom to acquire MR cine 

and tagged cine images successfully. The cine images of four different scanning results: 

with the same amount of contraction (78% thinning) experiments of wall motion phantom 

were analyzed by using Philips dedicated cardiac analysis tool. The Figure 29 shows four 

different runs and their area change profile with respect to time. The area change with 

respect to time was consistent between all runs and it did not require time normalization 

to match the profiles of the different runs. The variability between different runs was 

decreased 4% average value. Figure 30 represents the variability between different runs. 

The grid tagged cine images showed that wall thickening motion phantom was capable of 

producing accurate tagged images as well. In Figure 24, images from one heart beat in 

different phases are shown. The tags were significantly traceable within the wall with 

subjected deformation. LV wall motion phantom was concluded to be an essential tool to 

fulfill the needs of verification apparatus to test new pulse sequences and tagging 

techniques in MRI. 
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CHAPTER V 

LEFT VENTRICLE ROTATION MOTION PHANTOM 

 

5.1 Design and Construction of the Left Ventricle Rotation Motion Phantom 

 

The rotation phantom was manually driven by a wooden rod attached to the 

phantom outer wall which rotates the phantom through a specified angular rotation. The 

rotation phantom consisted of two concentric cylinders. The outer cylinder which was the 

shell of the gel had a 3 inch diameter and 0.25 inch thickness. The space between the 

cylinders was filled with the gel which represents the LV myocardium. The thickness of 

the gel was 0.9 inches. The inner cylinder which passed through the center of phantom 

was fixed into the enclosure box and it had 0.875 inch diameter. This ring gel was formed 

to model the apex of the left ventricle of the heart. Gel deformation was achieved by 

displacing the attached rod and rotating the outer wall of the phantom while the inner 

cylinder was fixed. The Figure 33 shows the rotation motion phantom with its 

dimensions.  
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Figure 33. The rotation motion phantom with its dimensions and experimental 

setup 
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Once the rotation motion phantom was setup into the phantom’s enclosure, the gel 

was poured into the rotation motion phantom. There had been two different versions of 

motion mechanisms to create the rotation motion of the phantom.  

The tagged cine images of the rotation motion phantom were obtained and 

analyzed using harmonic phase (HARP) analysis software (Diagnosoft, Inc.) which 

makes analysis of six different cross-sectional regions of the gel such as shown in Figure 

34. 

 

 

 

 

 

 

 

Figure 34. The distribution of the regions which are used for the analysis of the 

tagged images by HARP. 

Results for the rotation motion phantom are represented in the remainder of this 

chapter. 
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5.2 Wall Thickening Motion Phantom with an Attached Wooden Rod (Version 1.0) 

 In the first version of the rotation motion mechanism, a wooden rod was attached 

to the outer cylinder of the rotation motion cylinder as it is shown in Figure 35. By the 

displacement of the rod backward and forward, the outer diameter of the phantom was 

rotated and the rotation motion was created to deform the gel. 

 

Figure 35. The wall thickening motion phantom version 1.0 

 

5.2.1 Image Acquisition and Results for Rotation Motion 1.0 

 Tagged cine images of the rotation motion phantom were obtained by using 

rotation motion mechanism 1.0 for 20
0
 rotation. Acquisition parameters were as follows: 

8.9 msec repetition time (TR), 4.6 msec echo time (TE), 67 ms temporal resolution, 10
0
 

Wooden Rod 
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flip angle, turbo factor 9, 150 mm field of view (FOV), 16 heart phases, 97/128r matrix, 

echo planar imaging factor 3, rectangular FOV 100%. Two circular local receive coils 

were used.  Sets of tagged images were acquired to examine reproducibility.  

 The analysis result and sample tagged cine images are shown in Figure 36 and 37.  

 

Figure 36. The rotation angle obtained in each frame during the one beat cycle 

for rotation motion phantom when operated by the motion mechanism 1.0. The 

tagged image acquisition is shown separately. 
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Figure 37. Set of images from rotation motion phantom operated by the motion 

mechanism 1.0 from diastole to systole of the left ventricle apex in the order of frame 

number from 1 to 10. 
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5.2.2 Discussion 

 One of the problems of the first rotation phantom was the non-uniform motion of 

the rotation motion of the gel over the entire course of cycles due to bad transition of 

movement direction from forward to backward or vice versa. In addition to that the 

triggering was also manual and trigger switch was turned on and off by the operator 

during the experiment. It was very hard to reproduce the rotation motion over the entire 

course of cycles with the same speed and frequency. When the tagged cine images in 

Figure 37 were analyzed, the graph (see Figure 36) for angle of deformation with respect 

to time was observed, a non-uniform motion of the rotation was seen. Also, the lack of 

periodic triggering of motion was concluded by the blurred grid patterns in the resulting 

images. To be able to solve this problem, a new experimental setup for the rotation 

phantom was created and called rotation motion mechanism version 2.0. 

 

5.3 Wall Thickening Motion Phantom with a Plastic Actuator (Version 2.0) 

 According to problems that the rotation motion mechanism had, a new continuous 

motion mechanism (version 2.0) was developed. The plastic actuator in the rotation 

motion mechanism version 2.0 converted the radial continuous displacement into the 

linear displacement. This continuous movement of the rod decreased the user dependence 

motion artifacts such as operating the rotation phantom in different velocities and 

different rotation angles during the each cycle. In Figure 38 and 39, the design of the 

plastic actuator is shown. This mechanism was MR-compatible and was easy to operate 

even during a long period of time.  
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 Figure 38. The top view of the plastic actuator. 

                    

 Figure 39. The front view of the plastic actuator. 

 The amount of rotation was adjusted with the crank pin which was used to attach 

the wooden rod on the actuator (shown in Figure 40). The amount of linear displacement 

was increased by locating the crank pin far away from the center of the actuator rotation 

wheel. The version 2.0 of the motion mechanism with the automatic motion trigger was 

able to reproduce the left ventricular twisting motion in the left ventricular model 

phantom in different angles ranging from 15
0
 to 45

0
.  
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Figure 40. The front view of the plastic actuator with its components. 

 

 

Adjustable Crank Pin Trigger Switch 
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5.3.1 Image Acquisition and Results for Rotation Motion 2.0 

 Tagged cine images of the rotation motion phantom were obtained by using 

rotation motion mechanism 2.0, a plastic actuator, during series of three times repeated 

15
0
, 20

0
, 35

0 
rotations. Acquisition parameters were as follows: 8.9 msec repetition time 

(TR), 4.6 msec echo time (TE), 67 ms temporal resolution, 10
0
 flip angle, turbo factor 9, 

150 mm field of view (FOV), 16 heart phases, 97/128r matrix, echo planar imaging factor 

3, rectangular FOV 100%. The circular local receive coils were used. The tagged cine 

image analysis of the rotation motion was done to validate the rotation angle obtained in 

the experimental run. The analysis result and sample tagged cine images are shown in 

following graphs and images. 

 

 

 

 

 

 

 

 

 



69 
 

15
0
 Rotation Deformation Motion 

 Three different experimental runs which were named as 1, 2, and 3 were 

performed with adjusting the plastic actuator at 15 degree rotation settings. Images and 

rotation angle profiles for each frames are shown in following figures. 

 

 

Figure 41. The rotation angle obtained in each frame during the one beat cycle 

for 15 degree rotation run # 1. 
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 Analysis of the deformation uniformity through the gel is shown in Figure 42. 

There was up to 8% non-uniform deformation through the cross sectional area of the gel. 

 

 

Figure 42. The non-uniform deformation percentage through the cross section of 

the gel  for 15 degree rotation run 1. 
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Figure 43. Set of grid tagged cine images from rotation motion phantom 15 degree 

rotation run # 1. 
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Figure 44. The rotation angle obtained in each frame during the one beat cycle 

for 15 degree rotation run # 2. 
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Figure 45. The non-uniform deformation percentage through the cross section of 

the gel  for 15 degree rotation run 2. 

 

Up to 8% of non-uniformity which was observed in the gel for the run 2 showed 

similar behavior as run 1. 
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Figure 46. Set of grid tagged cine images from rotation motion phantom 15 degree 

rotation run # 2. 
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Figure 47. The rotation angle obtained in each frame during the one beat cycle 

for 15 degree run # 3. 
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Figure 48. The non-uniform deformation percentage through the cross section of 

the gel  for 15 degree rotation run 3. 
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Figure 49. Set of grid tagged cine images from rotation motion phantom 15 degree 

rotation run # 3. 
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 The graph below shows the average rotation degree values of each region of 15 

degree rotation run # 1, 2 and 3 in the same graph. 

 

Figure 50. The mean rotation angle obtained in three different runs # 1, 2, and 3 

with 15 degree rotation. 
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Figure 51. The percent error for the reproducibility of the rotation motion 

phantom 15 degree rotation for different runs 1, 2, and 3 are shown. 
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20
0
 Rotation Deformation Motion 

 Three different experimental runs which were named as 1, 2, and 3 were done 

with adjusting the plastic actuator at 20 degree rotation settings. 

 

Figure 52. The rotation angle obtained in each frame during the one beat cycle 

for 20 degree rotation run # 1. 
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Figure 53. The non-uniform deformation percentage through the cross section of 

the gel  for 20 degree rotation run 1. 
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Figure 54. Set of grid tagged cine images from rotation motion phantom 20 degree 

rotation run # 1. 
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Figure 55. The rotation angle obtained in each frame during the one beat cycle 

for 20 degree rotation run # 2. 
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Figure 56. The non-uniform deformation percentage through the cross section of 

the gel  for 20 degree rotation run 2. 
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Figure 57. Set of grid tagged cine images from rotation motion phantom 20 degree 

rotation run # 2. 
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Figure 58. The rotation angle obtained in each frame during the one beat cycle 

for 20 degree rotation run # 3. 
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Figure 59. The non-uniform deformation percentage through the cross section of 

the gel  for 20 degree rotation run 3. 
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Figure 60. Set of grid tagged cine images from rotation motion phantom 20 degree 

rotation run # 3. 
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 The graph below shows the average rotation degree values of 20 degree rotation 

run # 1, 2 and 3 in the same graph. 

 

Figure 61. The mean rotation angle obtained in three different 20 degree rotation 

runs # 1, 2, and 3. 
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Figure 62. The percent error for the reproducibility of the rotation motion 

phantom 20 degree rotation for different runs 1, 2, and 3 are shown. 
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35
0
 Rotation Deformation Motion 

 Three different experimental runs which were named as 1, 2, and 3 were done 

with adjusting the plastic actuator at 35 degree rotation settings. 

 

Figure 63. The rotation angle obtained in each frame during the one beat cycle 

for 35 degree rotation run # 1. 
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Figure  64. The non-uniform deformation percentage through the cross section of 

the gel  for 35 degree rotation run 1. 
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Figure 65. Set of grid tagged cine images from rotation motion phantom 35 degree 

rotation run # 1. 
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Figure 66. The rotation angle obtained in each frame during the one beat cycle 

for 35 degree rotation run # 2. 
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Figure 67. The non-uniform deformation percentage through the cross section of 

the gel  for 35 degree rotation run 2. 
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Figure 68. Set of grid tagged cine images from rotation motion phantom 35 degree 

rotation run # 2. 
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Figure 69. The rotation angle obtained in each frame during the one beat cycle 

for 35 degree rotation run # 3. 
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Figure 70. The non-uniform deformation percentage through the cross section of 

the gel  for 35 degree rotation run 3. 
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Figure 71. Set of grid tagged cine images from rotation motion phantom 35 degree 

rotation run # 3. 
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 The graph below shows the average rotation degree values of 35 degree rotation 

run # 1, 2 and 3 in the same graph. 

 

Figure 72. The mean rotation angle obtained in three different 35 degree rotation 

runs # 1, 2, and 3. 
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Figure 73. The percent error for the reproducibility of the rotation motion 

phantom 35 degree rotation for different runs 1, 2, and 3 are shown. 
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5.3.2 Discussion 

 According to results in section 5.3.1, the minimum reproducibility for the 15 and 

20 degrees were 90% and for 35 degree was 80%.  The different amount of angular 

deformations on the gel was achieved with 90% uniformity throughout the gel for 15 and 

20 degrees. However, due to lack of enough tactility of the gel for 35 degree, there was 

non uniform deformation in the gel up to 32%. This resulted in 20% deformation 

variation at 35 degree in different runs. The design and build of the plastic actuator led 

the transitions between moving directions became insensible and rotation frequency 

ideally created enough to reproduce a model of heart twist motion with phantom. The 

triggering of the phantom motion was done automatically by attaching roller switch on to 

right crank shaft of the actuator (please see Figure 37). Also, adjustable crank pin enabled 

precise setting of the different rotation angles (15, 20 and 35 degrees). Amount of twist 

created in the left ventricle by the each beat of actual heart is 16±2.4 degree which was in 

the range of phantom settings. The results obtained for 15 and 20 degrees shows that 

there was no fault in any components of the rotation motion experimental setup and 

result’s waveform shape in the graphs were physiologic. Rotation motion phantom was 

concluded to be an essential tool to fulfill the needs of verification apparatus to test new 

pulse sequences and tagging techniques in MRI. 
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CHAPTER VI 

CONCLUSION 

 

 

The overall goal of this study was to design and build a low-cost left ventricular 

motion phantom which is capable of accurately modeling both the wall thickening and 

rotation motions of the left ventricle, with sufficient accuracy and repeatability for use in 

the evaluation of new pulse sequences. This was accomplished by constructing two 

different phantoms to mimic the two distinct motions of the left ventricle independently. 

The phantoms have been operated by each different motion actuators as air pump and 

actuator but both phantoms were housed in the same enclosure. Successfully, 

deformation patterns occur in the wall of the left ventricle in the human heart have been 

reproduced within the phantom gel. 

 The reproducibility of the deformation patterns depends upon the control of the 

air pump and the actuator in the experimental setup. By the motion actuators in each 

phantoms, the user dependent variability has been reduced and an external trigger 

integrated into both phantoms. In the current experimental conditions, the reproducibility 
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of the deformations for the wall motion phantom was 96% and the rotation motion 

phantom was 90%. The T1 relaxation time of the gel was measured as 728.3 milliseconds 

while myocardium relaxation time of the human is 1115.6 milliseconds. 

 Tagged cine images of the three different scanning results for each three different 

amount of angle rotation deformation patterns in the phantom were analyzed by using 

harmonic phase (HARP) analysis software (Diagnosoft, Inc.). The measured rotation of 

the grid patterns showed that there was no fault of the motion mechanism of the rotation 

phantom because the results of the same amount of rotation reputations were same with 

each other for 15 and 20 degrees. However, due to lack of tactility of the gel, 35 degree 

rotation deformation had reproducibility up to 68%.  It is also important to mention that 

the amount of rotation occurs in the actual healthy left ventricle of the human heart is 

16±2.4 degrees. In case of illness, rotation amount shows decrease to 10±2.1 degrees. 

According to that, the results that obtained 15 and 20 degrees conclude that amount of the 

rotation reproduced in phantom corresponds to results observed in clinical practice.  

 The cine images of four different scanning results for the same amount of 

contraction experiments of wall motion phantom were analyzed by using Philips 

dedicated cardiac image analysis tool. From the cine images, it was observed that up to 

77.5% contraction in the phantom walls has been achieved and different runs with the 

same deformation settings concluded the 96% reproducibility. In the human heart, there 

is a contraction around 48.43%. Thus, it was concluded that phantom created the 

deformation similar to clinical practice. The fault of the wall motion phantom was the 

insufficient pumping frequency by air pump version 2.0. This has been observed when 

the grid tagging sequences applied and the solution has been created. The latest version 
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of the air pump, air pump 3.0, was designed and built to solve this problem. According to 

the latest imaging experiments for motion phantom with the air pump 3.0, wall 

thickening motion phantom was capable of providing accurate data of the tagged cine 

images. 

 Overall, the rotation motion phantom and the wall motion phantom were 

sufficient enough to recur over and over, and the period of time required for each 

recurrence remained the same. The experimental setup and components of the phantoms 

were low-cost, simple to setup and MR-compatible. This study gives a rise to dynamic 

cardiac phantoms with its interesting approach to validation of new MR sequences.  
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CHAPTER VII 

LIMITATIONS AND FUTURE WORK 

 

 

7.1 Limitations 

The model in this study is designed and built with rigid walls and symmetrical 

structures. In human heart, left ventricular wall consists of non symmetric cylindrical 

structure. Therefore, in vivo, left ventricle cannot be considered to have rigid walls and 

perfectly uniform the deformations in each cardiac cycle. 

This study aims to create a model which is 100 percent MRI compatible. Neither 

motor nor electronic driving mechanism is not attached to system. The phantoms are 

human operated and this may lead to non consistent cardiac cycles in the model if the 

user is not well trained. 
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7.2 Future Work 

Future studies are needed to develop a motion mechanism which will be able to 

operate both wall motion phantom and rotation motion phantom in the same time. One of 

the ideas of operating both phantoms in the same time can be improved by construction 

of new phantom in which wall motion and rotation motion phantoms are concentric. 

Since the phantoms are fully human operated, they can easily be attached to computer 

controlled motors to be operated automatically.  

 Another image analysis tool can be generated by using MATLAB to perform the 

analysis of the images obtained by the wall motion phantom with less user interaction. 
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