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A PROBABILISITIC BASED FAILURE MODEL FOR 

COMPONENTS FABRACATED FROM ANISOTROPIC 

GRAPHITE 

CHENGFENG XIAO 

ABSTRACT 

The nuclear moderator for high temperature nuclear reactors are fabricated from 

graphite.  During reactor operations graphite components are subjected to complex 

stress states arising from structural loads, thermal gradients, neutron irradiation damage, 

and seismic events.  Graphite is a quasi-brittle material.  Two aspects of nuclear grade 

graphite, i.e., material anisotropy and different behavior in tension and compression, are 

explicitly accounted for in this effort.  Fracture mechanic methods are useful for metal 

alloys, but they are problematic for anisotropic materials with a microstructure that 

makes it difficult to identify a “critical” flaw.  In fact cracking in a graphite core 

component does not necessarily result in the loss of integrity of a nuclear graphite core 

assembly.  A phenomenological failure criterion that does not rely on flaw detection has 

been derived that accounts for the material behaviors mentioned.  The probability of 

failure of components fabricated from graphite is governed by the scatter in strength.  

The design protocols being proposed by international code agencies recognize that design 
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and analysis of reactor core components must be based upon probabilistic principles.  

The reliability models proposed herein for isotropic graphite and graphite that can be 

characterized as being transversely isotropic are another set of design tools for the next 

generation very high temperature reactors (VHTR) as well as molten salt reactors. 

The work begins with a review of phenomenologically based deterministic failure 

criteria.  A number of this genre of failure models are compared with recent multiaxial 

nuclear grade failure data.  Aspects in each are shown to be lacking.  The basic 

behavior of different failure strengths in tension and compression is exhibited by failure 

models derived for concrete, but attempts to extend these concrete models to anisotropy 

were unsuccessful.  The phenomenological models are directly dependent on stress 

invariants.  A set of invariants, known as an integrity basis, was developed for a 

non-linear elastic constitutive model.  This integrity basis allowed the non-linear 

constitutive model to exhibit different behavior in tension and compression and 

moreover, the integrity basis was amenable to being augmented and extended to 

anisotropic behavior.  This integrity basis served as the starting point in developing both 

an isotropic reliability model and a reliability model for transversely isotropic materials.   

At the heart of the reliability models is a failure function very similar in nature to 

the yield functions found in classic plasticity theory.  The failure function is derived and 

presented in the context of a multiaxial stress space.  States of stress inside the failure 
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envelope denote safe operating states.  States of stress on or outside the failure envelope 

denote failure.  The phenomenological strength parameters associated with the failure 

function are treated as random variables.  There is a wealth of failure data in the 

literature that supports this notion.  The mathematical integration of a joint probability 

density function that is dependent on the random strength variables over the safe 

operating domain defined by the failure function provides a way to compute the 

reliability of a state of stress in a graphite core component fabricated from graphite.  The 

evaluation of the integral providing the reliability associated with an operational stress 

state can only be carried out using a numerical method.  Monte Carlo simulation with 

importance sampling was selected to make these calculations.  

The derivation of the isotropic reliability model and the extension of the reliability 

model to anisotropy are provided in full detail.  Model parameters are cast in terms of 

strength parameters that can (and have been) characterized by multiaxial failure tests.  

Comparisons of model predictions with failure data is made and a brief comparison is 

made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code..  

Future work is identified that would provide further verification and augmentation of the 

numerical methods used to evaluate model predictions.  
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Î  transformed indicator function 

I1 first invariant of the Cauchy stress tensor 

I2 second invariant of the Cauchy stress tensor 

I3 third invariant of the Cauchy stress tensor 

J1 first invariant of the deviatoric stress tensor 

J2 second invariant of the deviatoric stress tensor 

J3 third invariant of the deviatoric stress tensor 



xiii 

Yk  importance sampling density function 

YK  cumulative importance sampling density function 

m Weibull modulus 

Pf probability of failure 

r deviatoric component of a stress state 

R reliability 

Rtc the ratio of the mean compressive strength to the mean tensile strength 

S deviatoric principal stress 

Sij deviatoric stress tensor 

y realization of a random strength parameter 

Y random strength parameters 

Z standard normal random strength variables 

ij Kronecker delta tensor 

 Lode angle in the deviatoric stress plane 


Y  standard deviation of a random strength parameter 




Yf
 standard deviation of the Weibull distribution 




Yk  standard deviation of the importance sampling function 


Y  mean of a random strength variable 




Yf
 the mean of the Weibull distribution 



xiv 




Yk  mean of the importance sampling function 

ij Cauchy stress tensor 

i principal stress 

 Weibull characteristic strength 

T tensile strength parameter 

C compressive strength parameter 

BC equal biaxial compressive strength parameter in the plane of isotropy 

TT tensile strength parameter in the plane of isotropy 

TC compressive strength parameter in the plane of isotropy 

YT tensile strength parameter in the preferred material direction 

YC compressive strength parameter in the preferred material direction 

MBC equal biaxial compressive strength parameter with one stress component in the 

plane of isotropy 

v equivalent stress as defined by ASME 

 hydrostatic component of a stress state 

 Poisson’s ratio 
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CHAPTER I  

GRAPHITE COMPONENTS IN NUCLEAR REACTORS 

As discussed by Saito (2010) nuclear energy plays an important role as a means to 

secure a consistent and reliable source of electricity that can easily help utilities meet 

system demand for the nation’s power grid and do so in a way that positively impacts 

global warming issues.  Proposed system designs for nuclear power plants, e.g., the 

Generation IV Very High Temperature Reactors (VHTR) (2002) among others, will 

generate sustainable, safe and reliable energy.  The nuclear moderator and major 

structural components for VHTRs are fabricated from graphite.  During operations the 

graphite components are subjected to complex stress states arising from structural loads, 

thermal gradients, neutron irradiation damage, and seismic events, any and/or all of which 

can lead to failure.  As discussed by Burchell et al. (2007) failure theories that predict 

reliability of graphite components for a given stress state are important. 

Graphite is often described as a brittle or quasi-brittle material.  An excellent 

overview of advanced technology applications involving the use of graphite material as 



2 

well as the unique behavior of this carbon based material can be found in Burchell (1999).  

Tabeddor (1979) and Vijayakumar, et al. (1987, 1990) emphasize the anisotropic effect the 

elongated grain graphite structure has on the stress-strain relationship for graphite.  These 

authors also discuss the aspect that the material behaves differently in tension and in 

compression.  These two properties, i.e., material anisotropy and different behavior in 

tension and compression, make formulating a failure model challenging. 

Classical brittle material failure criteria can include modeling failure by treating a 

material as a collection of anharmonic springs at an atomistic level, fracture mechanics 

based failure models at a constituent level, as well as phenomenological failure criteria 

posed at a continuum level.  For example Kaufman and Ferrante (1996) developed a 

statistical model for mechanical failure based on computing failure thresholds that are 

dependent on the energy of a pair of neighboring atoms.  The approach taken in linear 

elastic fracture mechanics involves estimating the amount of energy needed to grow a 

pre-existing crack.  The earliest fracture mechanics approach for unstable crack growth 

was proposed by Griffiths (1921).  Li (2001) points out that the strain energy release rate 

approach has proven to be quite useful for metal alloys.  Romanoski and Burchell (1999) 

tailored fracture mechanics to the typical microstructure encountered in graphite.  

However, linear elastic fracture mechanics is difficult to apply to anisotropic materials 

with a microstructure that makes it difficult to identify a “critical” flaw.  An alternative 

approach can be found in the numerous phenomenological failure criteria identified in the 

engineering literature. 
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Popular phenomenological failure criteria for brittle materials tend to build on the 

one parameter Tresca model (1864), and the two parameters Mohr-Coulomb failure 

criterion (1776) that has been utilized for cohesive-frictional solids.  Included with these 

fundamental model is the von Mises criterion (1913) (a one-parameter model) and the two 

parameter Drucker-Prager failure criterion (1952) for pressure-dependent solids.  Boresi 

and Schmidt (2003) provide a very lucid overview of these models.  In the past these 

models have been used to capture failure due to ductile yielding.  Paul (1968) developed a 

generalized pyramidal criterion model which he proposed for use with brittle material. In 

Paul’s (1968) work, an assumption that the yield criterion surface is piecewise linear is 

utilized which is similar to Tresca’s (1864) model.  The Willam and Warnke (1974) 

model is a three-parameter model that captures different behavior in tension and 

compression exhibited by concrete.  Willam and Warnke’s (1974) model is composed of 

piecewise continuous functions that maintain smooth transitions across the boundaries of 

the functions.  The proposed work here will focus extensively on models similar to 

Willam and Warnke’s (1974) efforts. 

With regards to phenomenological models that account for anisotropic behavior the 

classic Tsai and Wu (1971) failure criterion is a seminal effort.  Presented in the context 

of invariant based stress tensors for fiber-reinforced composites, the Tsai-Wu (1971) 

criterion is widely used in engineering for different types of anisotropic materials.  In 

addition, Boehler and Sawczuk (1977) as well as Boehler (1987, 1994) developed yield 

criterion utilizing the framework of anisotropic invariant theory.  Yield functions can 
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easily serve as the framework for failure models.  Subsequent work by Nova and 

Zaninetti (1990) developed an anisotropic failure criterion for materials with failure 

behavior different in tension and compression.  Theocaris (1991) proposed an elliptic 

paraboloid failure criterion that accounts for different behavior in tension and compression.  

An invariant formulation of a failure criterion for transversely isotropic solids was 

proposed by Cazacu et al. (1998, 1999).  Cazacu’s criterion reduces to the 

Mises-Schleicher criterion (1926), which captured different behavior in tension and 

compression for isotropic conditions.  Green and Mkrtichian (1977) also proposed 

functional forms account for different behavior in tension and compression.  Their work 

will be focused on later in this effort. 

In addition to anisotropy and different behavior in tension and compression, failure 

of components fabricated from graphite is also governed by the scatter in strength.  When 

material strength varies, it is desirable to be able to predict the probability of failure for a 

component given a stress state.  Weibull (1939) first introduced a method for quantifying 

variability in failure strength and the size effect in brittle material.  His approach was 

based on the weakest link theory.  The work by Batdorf and Crose (1974) represented the 

first attempt at extending fracture mechanics to reliability analysis in a consistent and 

rational manner.  Work by Gyekenyesi (1986), Cooper et al. (1986), Cooper (1988) and 

Lamon (1990) are representative of the reliability design philosophy used in analyzing 

structural components fabricated from monolithic ceramic.  Duffy et al. (1987, 1989, 

1990, 1991, 1993, 1994, 2012) presented an array of failure models to predict reliability of 
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ceramic components that have isotropic, transversely isotropic, or orthotropic material 

symmetries.  All of these models were based on developing an appropriate integrity basis 

for each type of anisotropy. 

 

1.1 Research Objectives 

Given the discussion above the primary objective of this research is establishing a 

single form invariant probabilistic based failure model for the analysis of components 

fabricated from graphite.  Achieving this objective begins with the adoption of an 

appropriate integrity basis that can reflect the failure characteristics of isotropic graphite.  

Through the application of invariant theory and the Cayley-Hamilton theorem as outlined 

in Spencer (1971, 1984), an integrity basis with a finite number of stress invariants can be 

formulated that reflects the failure behavior of graphite.  An integrity basis, when posed 

properly, spans the functional space for the failure model under construction.   

An isotropic model formulated as a linear combination of stress invariants that are 

components of an appropriate isotropic integrity basis was formulated first.  The intent 

was to create a failure criterion based on interpretations of the literature surveyed in the 

previous section.  Accordingly, this effort begins by proposing a deterministic failure 

criterion based on the work of Green and Mkrtichian (1977).  Their work includes an 

integrity basis that reflects material behavior relevant to isotropic graphite – primarily the 

different failure characteristics of graphite in tension and compression.  Moreover, their 
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integrity basis was amenable to being augmented and extended to anisotropic behaviors.  

Thus the Green and Mkrtichian (1977) integrity basis serves as the starting point in 

developing both an isotropic reliability model and a reliability model for materials that 

exhibit transversely isotropic failure behavior.  Developing a transversely isotropic 

reliability model is the primary goal of this research endeavor and represents a contribution 

to the body of knowledge made by this research project.  This was also one of the two 

primary objectives of the grant that supported this effort.   

It must be noted that this effort is a proof of concept endeavor.  An anisotropic 

reliability model is needed for design purposes for the grades of nuclear graphite that 

exhibit anisotropic failure behavior.  Currently a unified reliability model does not exist 

that captures anisotropy and that also captures different failure characteristics in tension 

and compression.  Developing an integrity basis for transversely isotropic failure 

behavior, formulating a deterministic failure criterion from that integrity basis, and finally 

transforming that anisotropic failure criterion into a reliability model that can predict the 

probability of failure given the state of stress at a point is the overarching goal of this 

work. 

This goal is obviously achieved in steps.  A failure criterion is developed first for 

isotropic graphite.  The deterministic isotropic failure criterion is then transformed into a 

reliability model using well accepted stochastic principles associated with interactive 

reliability models.  The isotropic failure criterion and the reliability model derived from 

this criterion is exercised to insure that both the criterion and the model bring forth 
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relevant behavior in a multiaxial stress setting.  Throughout the dissertation classical 

failure models and the failure criterion proposed here will be characterized and compared 

with the experiment results obtained from Burchell et al. (2007).  Exercising the classical 

failure criterion with this data systematically demonstrates the deficiencies associated with 

each one.  The final versions of the isotropic and anisotropic reliability models developed 

here are examined in a similar manner, i.e., the models derived here are examined for 

aberrant and/or inconsistent characteristics. 

Thus at the heart of an interactive reliability model is a failure function very similar 

in nature to the yield functions found in classic plasticity theory.  States of stress inside 

the failure envelope denote safe operating states.  States of stress on or outside the failure 

envelope denote failure.  When sufficient scatter is present in the phenomenological 

strength parameters associated with the failure function then these strength parameters 

must be treated as random variables.  There is a wealth of publications in the open 

literature that supports this notion.  The mathematical integration of a joint probability 

density function that is dependent on the random strength variables over the safe operating 

domain defined by the failure function provides a way to compute the reliability of a state 

of stress in a graphite core component.  The evaluation of the integral that provides the 

reliability associated with an operational stress state can only be carried out using a 

numerical method.  Monte Carlo simulation with importance sampling was selected to 

make these calculations.     
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The derivation of the isotropic reliability model and the extension of the reliability 

model to anisotropy are provided in full detail.  Model parameters are cast in terms of 

strength parameters that can be characterized with data from multiaxial failure tests.  

Conducting these strength tests are not a part of this effort.  Comparison of model 

predictions with failure data is made and a brief comparison to reliability predictions called 

for in the ASME Boiler and Pressure Vessel Code is outlined.  Future work is identified 

that would provide further verification and augmentation of the numerical methods used to 

evaluate model predictions. 
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CHAPTER II  

STRENGTH BASED FAILURE DATA 

A function associated with a phenomenological failure criterion based on 

multi-axial stress for isotropic materials will have the basic form 

  ijgg   (2.1) 

This function is dependent on the Cauchy stress tensor, ij, which is a second order 

tensor, and parameters associated with material strength.  Given a change in reference 

coordinates, e.g., a rotation of coordinate axes, the components of the stress tensor 

change.  The intent here is to formulate a scalar valued failure function such that it is not 

affected when components of the stress tensors change under a simple orthogonal 

transformation of coordinate axes.  A convenient way of formulating a failure function 

to accomplish this is utilizing the invariants of stress.  The development below follows 

the method outlined by Duffy (1987) and serves as a brief discussion on the invariants 

that comprise an integrity basis. 
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2.1 Integrity Basis 

Assume a scalar valued function exists that is dependent upon several second 

order tensors, i.e., 

  CBAgg ,,  (2.1.1) 

Here the uppercase letters A, B and C are matrices representing second order tensor 

quantities.  One way of constructing an invariant formulation for this function is to 

express g as a polynomial in all possible traces of the A, B and C, i.e.,  

 )(Atr , )( 2Atr , )( 3Atr , … (2.1.2) 

 )(ABtr , )(ACtr , )(BCtr , )( 2 BAtr  … (2.1.3) 

 )(ABCtr , )( 2 BCAtr , )( 3BCAtr , … (2.1.4) 

 )( 2CABtr , )( 3CABtr , … (2.1.5) 

 )( 2ABCtr , , … (2.1.6) 

 )( 22 CBAtr , , … (2.1.7) 

where using index notation allows 

 


iiAAtr )(
 (2.1.8) 

 


jiij BAABtr )(
 (2.1.9) 

 


kijkij CBAABCtr )(
 (2.1.10) 

)( 3ABCtr

)( 23 CBAtr
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These are all scalar invariants of the second order tensors represented by the matrices A, 

B and C.  Construction of a polynomial in terms of all possible traces of the three second 

order tensors is analogous to expanding the function in terms of an infinite Fourier series. 

However a polynomial with an infinite number of terms is clearly intractable.  

On the other hand if it is possible to express a number of the above traces in terms of any 

of the remaining traces, then the former can be eliminated.  Systematically culling the 

list of all possible traces to an irreducible set leaves a finite number of scalar quantities 

(invariants) that form what is known as an integrity basis.  This set is conceptually 

similar to the set of unit vectors that span Cartesian three spaces. 

 The approach to systematically eliminate members from the infinite list can best 

be illustrated with a simple example.  Consider 

 )(Agg   (2.1.11) 

By the Cayley-Hamilton theorem, the second order tensor A will satisfy its own 

characteristic polynomial, i.e., 

  0][32
2

1
3  IkAkAkA  (2.1.12) 

where 

 )(1 Atrk   (2.1.13) 

 
2

)())(( 22

2

AtrAtr
k


  (2.1.14) 

 
6

)()2()()()3())(( 323

3

AtrAtrAtrAtr
k


  (2.1.15) 
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 tensornull]0[  (2.1.16) 

and 

 tensoridentityI ][  (2.1.17) 

Multiplying the characteristic polynomial equation by A gives 

  03
2

2
3

1
4  AkAkAkA  (2.1.18) 

Taking the trace of this last expression yields 

  )()()()( 3
2

2
3

1
4 AtrkAtrkAtrkAtr   (2.1.19) 

and this shows that since k1, k2 and k3 are functions of tr(A), tr(A2), and tr(A3), then  

         AtrAtrAtrhAtr ,, 234   (2.1.20) 

Is a function of only these three invariants as well.  Indeed repeated applications of the 

preceding argument would demonstrate that tr(A5), tr(A6), … , can be written in terms of 

a linear combination of the first three traces of A.  Therefore, by induction 

       32 ,,*)( AtrAtrAtrhAtr p   (2.1.21) 

for any 

3p  

Furthermore, any scalar function that is dependent on A can be formulated as a linear 

combination of these three traces.  That is if 

  Agg   (2.1.22) 

then the following polynomial form is possible 

 )()()()()()( 3
2

2
3

1 AtrkAtrkAtrkg   (2.1.23) 
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and the expression for g is form invariant.  The invariants tr(A3), tr(A2), tr(A) constitute 

the integrity basis for the function g.  In general the results hold for the dependence on 

any number of tensors.  If the second order tensor represented by A is the Cauchy stress 

tensor, then this infers the first three invariants of the Cauchy stress tensor span the 

functional space for scalar functions dependent onij. 

2.2 Useful Invariants of the Cauchy and Deviatoric Stress Tensors  

If one accepts the premise from the previous section for a single second order 

tensor, and if this tensor is the Cauchy stress tensor ij, then  

  321 ,,)( IIIgg ij   (2.2.1) 

where 

 iiI 1  (2.2.2) 

   kjjkiiI  





 2

2 2

1
 (2.2.3) 

and 

             3
3 32

6

1
iikjjkiikijkijI  






  (2.2.4) 

are the first three invariants of the Cauchy stress.  Since the invariants are functions of 

principal stresses 

 3211  I  (2.2.5) 

 3132212  I  (2.2.6) 
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and 

 3213 I  (2.2.7) 

then  
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

g

IIIgg ij




 (2.2.8) 

Furthermore, the stress tensor ij can be decomposed into a hydrostatic stress component 

and a deviatoric component in the following manner.  Take  

 ijkkijijS  







3

1
 (2.2.9) 

If we look for the eigenvalues for the second order deviatoric stress tensor (Sij) using the 

following determinant 

 0 ijij SS   (2.2.10) 

then the resultant characteristic polynomial is  

 032
2

1
3  JSJSJS  (2.2.11) 

The coefficients J1, J2 and J3 are the invariants of Sij and are defined as 

 01  iiSJ  (2.2.12) 
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 (2.2.13) 

and  
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 (2.2.14) 

These deviatoric invariants will be utilized as needed in the discussions that follow. 

 

Figure 2.3.1 Decomposition of Stress in the Haigh-Westergaard (Principal) Stress Space 

2.3 Graphical Representation of Stress 

The reader is directed to Boresi and Schmidt (2003) for a comprehensive 

discussion on the graphical representation of models in various stress spaces. In the 

Haigh-Westergaard stress space a given stress state (1, 2, 3) can be graphically 

decomposed into hydrostatic and deviatoric components.  This decomposition is 

depicted graphically in Figure 2.3.1.  Line d in figure 2.3.1 represents the hydrostatic 

N
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axis where 1 = 2 = 3 such that the line makes equal angles to the coordinate axes.  

We define the planes normal to the hydrostatic stress line as deviatoric planes.  As a 

special case the deviatoric plane passing through the origin is called the plane, or the 

principal deviatoric plane.  Point P (1, 2 , 3) in this stress space represents an 

arbitrary state of stress.  The vector NP represents the deviatoric component of the 

arbitrary stress state, and the vector ON represents the hydrostatic component.  The unit 

vector e  in the direction of the hydrostatic stress line d is 

 ]111[
3

1
e  (2.2.15) 

The length of ON, which is identified as , is 
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 (2.2.16) 

The length of NP, which is identified as a radial distance (r) in a deviatoric plane, is 
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From this we obtain 
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such that 

 22Jr   (2.2.19) 

One more relationship between invariants is presented.  An angle, identified in 

the literature as Lode’s angle, can be defined on the deviatoric plane.  This angle is 

formed from the projection of the 1 – axis onto a deviatoric plane and the radius vector 

in the deviatoric plane, r .  The magnitude of the angle is computed from the 

expression 

 )600(
)(2

33
cos

3

1 00
23

2

31 
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








  

J

J
 (2.2.20) 

As the reader will see this relationship will be used to develop failure criterion.  It is also 

used here to plot failure data. 

We now have several graphical schemes to present functions that are defined by 

various failure criteria.  They are 

 a principal stress plane (e.g., the 1 - 2 plane);  

 the use of a deviatoric plane presented in the Haigh-Westergaard stress 

space; or   

 meridians along failure surfaces presented in the Haigh-Westergaard stress 

space that are projected onto a plane defined by the coordinate axes      

( r ). 
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Each presentation method will be utilized in turn to highlight aspects of the failure 

criteria discussed herein.  We begin with one parameter phenomenological models and 

then discuss progressively more complex models in later chapters. 

2.4 Graphite Failure Data 

In the following section a common failure criterion is introduced and the 

constants for the model are characterized using uniaxial and biaxial failure data generated 

by Burchell et al. (2007).  For the simpler models the data from Burchell et al. (2007) 

has more information than is necessary.  For some models all the constants cannot be 

approximated because there is not enough appropriate data for that particular model.  

These issues are identified for each of the failure model presented in this chapter and for 

the failure models presented in the later chapters.  The specimens from Burchell et al. 

(2007) were fabricated from grade H-451 graphite.  There were nine load cases 

presented, including two uniaxial tensile load paths along two different material 

directions (data suggests that the material is anisotropic), one uniaxial compression load 

path, and six biaxial stress load paths.  The test data is summarized in Table 2.1.  The 

mean values of the normal stress components for each load path in the data from Burchell 

et al. (2007) are presented in Table 2.2.  In addition, corresponding invariants are 

calculated and presented in Table 2.2 along with Lode’s angle.  All the load paths (#B-1 

through #B-9) are identified in Figure 2.4.1. 
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Table 2.1 Grade H-451 Graphite: Load Paths and Corresponding Failure Data

Data Set 
Ratio 

 

Failure Stresses (MPa）

 

# B-1 1 : 0 

10.97 0 

9.90 0 

9.08 0 

9.22 0 

12.19 0 

11.51 0 

# B-2 0 : 1 

0 15.87 

0 12.83 

0 18.06 

0 20.29 

0 14.32 

0 14.22 

# B-3 0 : - 1 

0 -47.55 

0 -50.63 

0 -59.72 

0 -56.22 

0 -48.19 

0 -51.54 

# B-4 1 : - 1 

9.01 -8.94 

7.68 -7.68 

14.34 -14.16 

8.93 -8.78 

13.23 -13.14 

9.21 -9.11 

Data Set 
Ratio 



Failure Stresses (MPa）

 

# B-5 2 : 1 

7.81 3.57 

8.54 3.89 

11.2 5.6 

13.00 6.42 

11.54 5.76 

12.12 6.03 

# B-6 1 : 2 

6.36 12.67 

6.42 12.86 

6.74 13.42 

7.69 15.36 

6.46 12.95 

7.17 14.36 

# B-7 1 : - 2 

7.98 -15.99 

5.50 -10.96 

6.69 -13.37 

10.49 -21.01 

9.18 -18.30 

11.31 -22.61 

 

 

 

 

Data Set 
Ratio 



Failure Stresses (MPa）

 

# B-8 1 : 1.5 

6.69 10.03 

6.51 9.78 

8.07 12.11 

9.13 13.74 

6.11 9.19 

9.24 13.91 

9.93 14.93 

8.93 13.41 

7.20 10.79 

# B-9 1 : - 5 

6.35 -31.61 

8.69 -43.44 

7.40 -36.86 

7.09 -35.30 

5.94 -29.50 

6.83 -32.83 

8.06 -40.21 

7.75 -38.58 
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Figure 2.4.1 Load Paths from Burchell et al. (2007) Plotted in a 1 – 2 Stress Space 

Table 2.2 Invariants of the Average Failure Strengths for All 9 Load Paths 

Data Set (1)ave (MPa) (2)ave (MPa) (MPa) r (MPa)  

# B-1 10.48 0 6.05 8.56 0.00o 

# B-2 0 15.93 9.20 13.01 0.00 o

# B-3 0 -52.93 -30.56 43.22 60.00 o

# B-4 10.4 -10.3 0.06 14.64 29.84 o

# B-5 10.7 5.21 9.19 7.57 29.13 o 

# B-6 6.81 13.6 11.78 9.62 30.05o 

# B-7 8.53 -17.04 -4.91 18.41 40.88 o 

# B-8 7.98 11.99 11.53 8.63 40.82 o

# B-9 7.26 -36.04 -16.62 32.79 50.99 o
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2.5 The von Mises Failure Criterion (One Parameter) 

The von Mises criterion (1913) is based on failure defined by the octahedral 

shearing stress reaching a critical value.  Failure occurs along octahedral planes and the 

basic formulation for the criterion is 

 

   

0

12

2






AJ

Jgg ij
 (2.5.1) 

To determine the constant A consider the following stress state at failure 

 

   


















0     0     0

0        0

0     0     0

Tij   (2.5.2) 

 

here  is the tensile strength of the material, and for this uniaxial load case 
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Substitution of the value of the invariant J2 into the failure function expressed in (2.5.1) 

yields 

 2

3

T

A


  (2.5.4) 

So the failure function for von Mises (1913) criterion takes the form 

   1
3
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As mentioned previously we have several means to graphically present the von 

Mises (1913) criterion.  The von Mises (1913) failure function is a right circular 

cylinder in the Haigh-Westergaard stress space shown as Figure 2.5.1.  The axis of the 

cylinder is coincident with the hydrostatic stress line.  The right circular cylinder is open 

along the hydrostatic stress line (i.e., no end caps) in either the tensile or compressive 

direction.  Thus a hydrostatic state of stress cannot lead to failure.   

 

 
Figure 2.5.1 Von Mises (1913) Failure in Haigh-Westergaard Stress Space 

 

Data set #B-2, which is tabulated in Table 2.3, represents a uniaxial tensile load 

case.  One can easily determine from this data that the mean strength is T = 15.93 MPa 

and that 
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For a uniaxial load path where the stress is equal to the mean strength value for T , the 

components of this stress state in the Haigh-Westergaard stress space are 

 
MPa

MPar

20.9

01.13




  (2.5.7) 

 

Table 2.3 Invariants of the Failure Stresses for Load Path #B-2 

11 22 (MPa) r (MPa) 

15.87 0 9.16 12.96 0o 

12.83 0 7.41 10.48 0o 

18.06 0 10.43 14.75 0o 

20.29 0 11.71 16.57 0o 

14.32 0 8.27 11.69 0o 

14.22 0 8.21 11.61 0o 

 

The von Mises (1913) failure criterion is projected onto a deviatoric plane in Figure 2.5.2 

utilizing these parameter values.  The result of this projection is a circle.  Figure 2.5.2 

also depicts the data from load path #B-2 projected onto the deviatoric plane.  
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Figure 2.5.2 The Von Mises (1913) Criterion Is Projected onto a Deviatoric Plane 
 MPa20.9  Parallel to the Deviatoric Plan with T = 15.93 MPa 

The von Mises (1913) failure criterion is also projected onto a 1 - 2 stress plane 

in Figure 2.5.3.  A right circular cylinder projected onto this plane presents as an ellipse.  

An aspect of the von Mises (1913) failure model is that tensile and compressive failure 

strengths are equal which is clearly evident in Figure 2.5.3.  Obviously the data from 

Burchell et al. (2007), which is also depicted in Figure 2.5.3, strongly suggests that 

tensile strength is not equal to the compressive strength for this graphite material.   
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Figure 2.5.3 The Von Mises (1913) Criterion Characterized with (T = 15.93 MPa) 

Projected onto the 1 -2 Principal Stress Plane Depicting Failure Stress Values for All 
Load Paths 

The third type of graphic presentation is a projection of the von Mises (1913) 

failure criterion onto the coordinate plane identified by the axes (- r).  As noted above 

the von Mises (1913) criterion is a right circular cylinder in the principal stress space.  

The function depicted in Figure 2.5.4 results from a cutting plane that contains the 

hydrostatic line coinciding with the axis of the right circular cylinder.  The axis of the 

cylinder is coincident with the  – axis and all meridians will be parallel to the  – axis.  

Thus all meridians along the surface of the right circular cylinder representing the von 
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Mises (1913) failure criterion are identical, i.e., the slope of all meridians is zero and the 

intercepts along the r-axis are the same value.  This is not the case for subsequent failure 

criterion presented below.   

 

 

Figure 2.5.4 The Von Mises (1913) Criterion Projected onto a Meridian Plane       

(T =15.93 MPa) 

Using the average normal strength values from the nine load paths in Burchell et 

al. (2007) one can generate nine r pairs, and these pairs appear in Table 2.2.  This 

information is depicted in Figure 2.5.4.  As can be seen in the figure the averaged data 

from Burchell et al (2007) does not match well with the von Mises (1913) criterion 

characterized with T = 15.93 MPa.  The depiction in Figure 2.5.4 strongly suggests that 
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, or I1, should be considered in developing the failure function, i.e., something more than 

the J2 should be used to construct the model.  Since nuclear graphite is not fully dense, 

we will assume that the hydrostatic component of the stress state contributes to failure.  

In addition, the von Mises (1913) criterion does not allow different strength in tension 

and compression.  When other formulations are considered in the next chapter their 

dependence will have a well-defined dependence on I1.  This invariant will permit 

different strengths in tension and compression, e.g., the classic the Drucker–Prager 

(1952) failure criterion outlined in the next section. 

As a final note on the one parameter models, the Tresca criterion (1864) could 

have been considered here.  Although based on the concept that failure occurs when a 

maximum shear strength of a material is attained, this model is a piecewise continuous 

failure criterion.  Although later criterion considered here are similarly piecewise 

continuous, the Tresca (1864) failure criterion does not mandate continuous slopes at the 

boundaries of various regions of the stress space.  This condition will be imposed on the 

failure criterion considered later.  
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CHAPTER III  

TWO AND THREE PARAMETER FAILURE CRITERIA 

 In the previous chapter failure data from Burchell et al. (2007) was presented in 

terms of a familiar one parameter failure criterion, i.e., the von Mises (1913) criterion.  

The von Mises (1913) failure criterion can be characterized through a single strength 

parameter – the shear strength on the octahedral stress plane.  In this chapter the view is 

expanded and details of two and three parameter failure criterion are presented in terms 

of how well the criterion perform relative to the mean strength of various load paths from 

Burchell et al. (2007). 

3.1 The Drucker-Prager Failure Criterion (Two Parameter)  

In this section we consider an extension of the Von Mises (1913) criterion, i.e., a 

failure model that includes the I1 invariant.  This extension is the Drucker – Prager 

(1952) criterion and is defined by the failure function 

 
 

0

1, 2121



 JBAIJIg
 (3.1.1) 
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To determine the constants A and B first consider the following stress state at failure, i.e., 

a uniaxial tensile load 
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here 
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Here the positive root is used to obtain a nontrivial solution for the constants A and B.  

Substitution of these invariants into the failure function (3.1.1) yields 
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Next, consider the following stress state at failure under a uniaxial compression 

load 
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where 

 CI 1  (3.1.8) 

and 
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where the negative root is used here to obtain a nontrivial solution for the constants A and 

B.  Substitution of these invariants into the failure function (3.1.1) yields 
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Simultaneous solution of equations (3.1.6) and (3.1.11) yields 
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Using the data from load path #B-2 in Burchell et al. (2007) the average tensile strength 

is  

 MPaT 93.15  (3.1.14) 

In a similar manner, using the load path #B-3, the average compressive strength is   

 MPaC 93.52  (3.1.15) 

With these values of T and C the parameters A and B are  
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and 
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The Drucker-Prager (1952) failure criterion is first projected onto the deviatoric 

plane defined by  

 MPa20.9  (3.1.18) 

in Figure 3.1.1.  There are an infinite number of deviatoric planes parallel to the - 

plane.  For the Drucker-Prager (1952) failure criterion each projection will represent a 

circle with a different diameter on a different deviatoric plane.  In addition, the graphical 

depiction of the Drucker-Prager (1952) failure criterion projected onto the deviatoric 

plane defined by 

 MPa2.30  (3.1.19) 
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is depicted in Figure 3.1.2.  This value of  is obtained from averaging the compressive 

strength data along load path #B-3.  The invariants associated with a strength averaged 

from all the load data along path #B-3 are listed in Table 2.2.  The invariants for 

individual failure strengths along load path #B-3 are presented in Table 3.1 and the 

failure data along load path #B-3 are also depicted in Figure 3.1.2.  The Drucker-Prager 

(1952) failure criterion can be thought of as a right circular cone with the tip of the cone 

located along the positive  – axis.  The cone opens up along the  – axis as  becomes 

more and more negative.  The negative value of  from equation 3.1.19 denotes a 

deviatoric plane beyond the  - plane where  = 0.  The failure criterion depicted in 

Figure 3.1.2 has a larger diameter than the failure criterion depicted in Figure 3.1.1. 
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Figure 3.1.1 The Drucker-Prager (1952) Criterion Projected onto a Deviatoric Plane 
 Mpa20.9  Parallel to the -plane with T = 15.93 MPa, C =-52.93 MPa 
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Figure 3.1.2 The Drucker-Prager (1952) Criterion Projected onto a Deviatoric Plane 
 Mpa2.30  Parallel to the -plane with T = 15.93 MPa, C = -52.93 MPa 

 

Table 3.1 Invariants of the Failure Stresses for Load Path #B-3 

11(MPa) 22(MPa)  (MPa) r (MPa) 

0 -47.55 -27.45 38.82 0o 

0 -50.63 -29.23 41.34 0o 

0 -59.72 -34.48 48.76 0o 

0 -56.22 -32.46 45.90 0o 

0 -48.19 -27.82 39.35 0o 

0 -51.54 -29.76 42.08 0o 
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In Figure 3.1.3 the failure criterion is projected onto the 1 -2 stress plane along 

and is compared with all the data from Burchell et al. (2007).  The right circular cone 

typically projects as an elongated ellipse in this stress space.  The Drucker-Prager 

(1952) failure criterion matches the mean failure stress along the 1 - tensile load path 

(load path #B-2) and the 1 – compressive load path (load path #B-3), as it should since 

the criterion was characterized with the data along these two load paths.  However the 

criterion does not match the data along the 2 tensile load path (load path #B-1).  The 

H-451 graphite that Burchell et al. (2007) tested is slightly anisotropic. Moreover, the 

failure data from the biaxial stress load paths, #B-4 through #B-8 do not match well with 

the criterion characterized using tensile and compressive strength data.  The exception 

to this is along load path #B-9.  This indicates a need for more flexibility from the 

failure model in order to phenomenologically capture the biaxial failure data. 












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Figure 3.1.3 The Drucker-Prager (1952) Criterion Projected onto the 1 -2 Principal 
Stress Plane (T = 15.93 MPa, C = -52.93 MPa) 

 The need for more flexibility is also evident when the Drucker-Prager (1952) 

failure criterion is projected onto the stress space defined by the - r coordinate axes.  

This projection is shown in Fig. 3.1.4 along with projections of the average strength 

values from all nine load paths.  As in the von Mises (1913) failure criterion, there is a 

single meridian.  The meridian for the Drucker-Prager (1952) failure criterion has a 

slope, where the meridian for the von Mises (1913) failure criterion was parallel to the  - 

axis.  As can be seen in Figure 3.1.4 three out of the nine average strength values align 

well with the failure meridian projected into this figure based on the parameter values T 
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= 15.93 MPa, and C = -52.93 MPa.  These two parameters define the slope of the 

meridian, and the meridian passes through the corresponding - r values, as it should.  

The other six average strength values do not map closely to this single meridian for the 

Drucker-Prager (1952) criterion.  Keep in mind that the projection in Figure 3.1.4 is a 

result of a cutting plane through the right circular cone and contains the hydrostatic stress 

line.  The data indicates that the failure function meridians should exhibit a dependence 

on  - defined by equation 2.2.20 and depicted in Figure 2.4.2.  This can be 

accomplished by including a dependence on the J3 invariant, and this is discussed in the 

next section. 

 
Figure 3.1.4 The Drucker-Prager Criterion Projected onto the Meridian Plane 

(T = 15.93 MPa, C =-52.93 MPa) 
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As noted above and depicted in Figure 3.1.3 the Drucker-Prager failure curve is 

open along the equal biaxial compression load path.  The following derivation will 

demonstrate the transition from a parabolic (open) curve to an elliptic (closed) curve is 

based on the strength ratio C T.  Consider the equal biaxial compression stress state 

with BC < 0 

 


















000

00

00

BC

BC




 ij
 (3.1.20) 

The corresponding deviatoric stress tensor is 
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The stress invariants of this state of stress are 

 BCI 21   (3.1.22) 

and 

 BCJ 







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3

1
2  (3.1.23) 

Substitution of these invariants into the failure function (3.1.1) yields 
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Since BC < 0, then 
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which infers 
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This leads to  
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or 

 
CT 

31
  (3.1.29) 

Thus 

 3
T

C




 (3.1.30) 

When the ratio of compressive strength and tensile strength (C T) < 3, the 

Drucker-Prager failure criterion projects an elliptical (closed) curve in the 1 -2 stress 

plane.   

 Consider the following biaxial state of stress  
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The corresponding deviatoric stress tensor is 

 


































3
00

0
3

2
0

00
3

2

yx

xy

yx

ijS







 (3.1.33) 

The stress invariants for this state of stress are 

 yxI  1  (3.1.32) 

and 
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Substitution of these invariants into equation (3.1.1) yields 
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Squaring both sides yields 
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The shape of the failure criterion defined by equation (3.1.37) is determined by the values 

of the two parameters A and B.  Using tensile data from Burchell et al. (2007) where T 

= 15.93 MPa and a ratio of compressive strength to tensile strength of (C T) = 2, then 

C = -31.86 MPa and the parameters A and B are  
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Equation (3.1.37) becomes 
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 (3.1.40 ) 

This expression is plotted in the 11 – 22 stress plane depicted in Figure 3.1.5 
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 Figure 3.1.5 The Drucker-Prager (1952) Criterion Projected onto the 1 -2 Principal 
Stress Plane (T = 15.93 MPa, C = -31.86 MPa) and Compared with the Data from 

Burchell et al. (2007) 

This combination of strength parameters leads to a biaxial strength of well over 60 MPa. 

If compressive strength of C = -52.93 MPa from Burchell et al. (2007) is utilized 

from along with a stress ratio (C T = 2), then the tensile strength is T =26.465 MPa.  

The parameters A and B are  
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and 
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Now  
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This expression is plotted in the 11 – 22 stress plane depicted in Figure 3.1.6 

 Figure 3.1.6 The Drucker-Prager (1952) Criterion Projected onto the 1 -2 Principal 
Stress Plane (T = 18.25 MPa, C = -52.93 MPa) and Compared with the Data from 

Burchell et al. (2007) 
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Here the biaxial compressive strength is somewhat less than 1,100 MPa.  In both 

figures, i.e., Figure 3.1.5 and 3.1.6, closed ellipses are obtained which are important since 

all load paths in this stress space eventually lead to failure.  In Figure 3.1.3 the equal 

biaxial compression load path was not bounded by the failure criterion given the strength 

parameters extracted from the data from Burchell et al. (2007).  For all failure criteria 

considered, only those with closed failure surfaces are relevant for consideration. 

 In order to see the full effect of the ratio of compression to tension strengths, this 

ratio is varied from a value of 1.0 to 2.75 in increments of 0.25 in Figure 3.1.7.  The 

ratio was computed by holding T fixed at the mean value of the data from Burchell et al. 

(2007) for load path B-2, i.e., 15.93 MPa, and increasing the strength parameter C from 

15.93 MPa to 2.75 times this value, i.e., 43.81 MPa. 
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 Figure 3.1.7 The Drucker-Prager (1952) Criterion Projected onto the 1 -2 Principal 
Stress Plane. Tensile Strength T Fixed at 15.93MPa, and Compressive Strength C 

Varies from 15.93 MPa to 43.18 MPa. 

3.2 Willam-Warnke Failure Criterion (Three Parameter) 

 Willam and Warnke (1974) proposed a three-parameter failure criterion that 

takes the shape of a pyramid with a triangular base in the Haigh-Westergaard (1 - 2 - 

3) stress space.  In a manner similar to the Drucker-Prager (1952) failure criterion, 

linear meridians are assumed.  However, the slopes of the meridians vary around the 

pyramidal failure surface.  The model is linear in stress through the use of I1 and 2J , 

which is evident in the following expression 
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 Given the formulation above, in the Haigh-Westergaard stress space the 

Willam-Warnke (1974) failure criterion is piecewise continuous with a threefold 

symmetry.  This symmetry is depicted in Figure 3.2.1 where the criterion is projected 

onto an arbitrary deviatoric plane.  The segment associated with oo 600    is 

presented.  The failure function is symmetric with respect to each tensile and 

compressive principal stress axis projected onto the plane. 

 
 

Figure 3.2.1 The Willam-Warnke (1974) Criterion Projected onto the Deviatoric Plane   
( oo 600   ) 

 As the deviatoric plane of the projection moves up the hydrostatic stress line in 

the positive direction, the projection of the failure criterion shrinks.  As the deviatoric 

plane of projection moves down the hydrostatic line in the negative direction, the 

projection of the failure criterion increases in size. 
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Willam and Warnke (1974) defined the parameter B from equation 3.2.1 in the 

following manner 

 
)(

1

r
B   (3.2.2) 

where r is a radial vector located in a plane parallel to the  -plane.  Willam and 

Warnke (1974) assumed that when the failure surface was projected onto a deviatoric 

plane that a segment of this projection could be defined as a segment of an elliptic curve 

with the following formulation 
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Here is Lode’s angle, where once again 
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When o0 , TBB  , Trr   and 
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Similarly, with o60 , CBB  , Crr   and 
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  (3.2.6) 

In order to determine the constants BT and BC consider the following stress state 
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The deviatoric stress tensor is 
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and Lode’s angle as wells as the three invariants obtained are expressed as 
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Substitution of the values of invariants into failure function given by equation (3.2.1) 

yields  
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Next consider a uniaxial compressive stress state characterized by the following 

stress tensor. 
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Substitution of these the values for the invariants into the Willam-Warnke (1974) failure 

function yields 
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At this point we have two equations (3.2.12 and 3.2.18) and three unknowns (A, 

BT, and BC). In order to obtain a third equation consider an equal biaxial compressive 

stress state characterized as 
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Now the deviatoric stress tensor becomes  
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Substitution of these invariants into failure function defined by equation (3.2.1) yields 
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We now have three equations, i.e., (3.2.12), (3.2.18) and (3.2.24), in three 

unknowns A, Bt and Bc.  Solution of this system of equations leads to the following three 

expressions for the unknown model parameters 
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In order to characterize to characterize the Willam and Warnke (1974) model in a 

straight forward manner one would need failure data from a uniaxial load path, a uniaxial 

compressive load path, and an equal biaxial compression load path.  Unfortunately, 

Burchell et al. (2007) did not conduct biaxial compression stress tests.  It must be 

pointed out that these tests are extremely difficult to perform.  Here we arbitrarily 

assume the magnitude of the biaxial compression stress at failure is 1.16 times the 

uniaxial compression stress at failure.  Thus the three sets of strength parameters 

obtained from the data found in Burchell et al. (2007) are 

 T  =  15.93 MPa (3.2.28) 
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for tension, 

 C  =  -52.93 MPa  (3.2.29) 

for compression and 

 BC  =  -61.40 MPa  (3.2.30) 

for the biaxial compression material strength.  The important thing is that with the three 

parameter Willam-Warnke (1974) criterion the biaxial compression strength is a direct 

model input.  Biaxial compression strength could be controlled indirectly in the 

Drucker-Prager model (1952).  The additional strength parameter in the Willam-Warnke 

(1974) model brings additional flexibility and the criterion represents an increased 

flexibility in modeling material behavior relative to the Drucker-Prager (1952) criterion 

in a manner similar to a comparison of the Drucker-Prager (1952) model to the von Mises 

(1913) model.  However, the additional flexibility is not enough to capture the 

anisotropic behavior exhibited by the graphite data from Burchell et al. (2007). 

This is evident in Figure 3.2.2 where the Willam-Warnke (1974) criterion and all 

of test data from Burchell et al. (2007) are projected onto the principal stress plane 

defined by the 1 - 2 coordinate axes.  The criterion seems to capture the biaxial failure 

data along load path #B-8.  However, there is an increasing loss of fidelity with load 

paths #B-7 and #B-6.  Load path #B-5 represents anisotropic strength behavior and the 

Willam and Warnke (1974) model was constructed based on the assumption of an 

isotropic material.  The same behavior can be seen in biaxial load paths #B-4, #B-3 and 
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#B-2.  As we move away from the load paths used to characterize the model parameters 

we encounter the loss in fidelity and here we attribute the loss to material anisotropy.  

This anisotropic phenomena will drive the research proposed for this effort. 

 

Figure 3.2.2 The Willam-Warnke (1974) Criterion Projected onto the 1 -2 Principal 
Stress Plane (T = 15.93 MPa, C = -52.93 MPa, BC = -61.40 MPa) 

 

Varying the biaxial compressive strength of the material does not help in 

matching the criterion with the data from biaxial load paths #B-2 through #B-4 and load 

paths #B-6 as well as #B-7.  This is evident in Figure 3.2.3 where the biaxial strength is 

varied from 0.96 of the uniaxial compression strength to 1.16 times the uniaxial 
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compressive strength.  The various projections based on differing values of BC did not 

improve the criterion’s ability to match the data from the load paths just mentioned. 

 
Figure 3.2.3 The Willam-Warnke (1974) Criterion Projected onto the 1 -2 Principal 
Stress Plane for Multiple T = 15.93 MPa, C = -52.93 MPa, and BC = -56.11MPa,   

-61.40 MPa, -66.69Mpa 

In Figures 3.2.4 and 3.2.5 the Willam-Warnke (1974) model is projected onto 

deviatoric planes.  In Figure 3.2.4 

 MPa20.9   (3.2.31) 

and in Figure 3.2.5  

 MPa2.30  (3.2.32) 
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In these figures the Willam-Warnke (1974) criterion presents as slices through a right 

triangular pyramid. 

 
 

Figure 3.2.4 The Willam-Warnke (1974) Criterion Projected onto a Deviatoric Plane 
 Mpa05.6  Parallel to the -plane with T = 15.93 MPa, C = -52.93 MPa,  

BC = -61.40 MPa 
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Figure 3.2.5 The Willam-Warnke (1974) Criterion Projected onto a Deviatoric Plane 
 MPa2.301   Parallel to the -plane with T = 15.93 MPa, C = -52.93 MPa, 

 BC =-61.40 MPa 
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Figure 3.2.6 The Willam-Warnke (1974) Criterion Projected onto the Meridian Plane for 

a Material Strength Parameter of T = 15.93 MPa, C = -52.93 MPa,  
BC = -61.40 MPa 

The meridian lines associated with the Willam-Warnke (1974) failure criterion for 

Lode angle values of o0 and o60  are depicted on Figure 3.2.6.  The meridians 

for each Lode angle are distinct from one another since one is a tensile meridian and 

passes through the tensile strength parameter along a principal stress axis.  The other is a 

compressive meridian and intercepts a principal stress axis at the value of the 

compressive strength parameter.  The o0 meridian line goes through point (r = 9.02 

MPa,  = 13.01 MPa) and the o60 meridian line goes through point (r = 30.56 MPa, 

 = 43.22 MPa) as they should since these data values were used to characterize the 
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model.  The point (r = 6.05 MPa,  = 8.56 MPa) represents the average strength for load 

path #B-5, a uniaxial load path that was not used to characterize the model.  The data 

from load path #B-5 represents anisotropic strength behavior and one should not expect 

this data to match well with the isotropic Willam-Warnke (1974) model. 

 Up to this point it has been noted several times that the data from Burchell et al. 

(2007) exhibits anisotropic behavior.  As part of this effort many attempts were made to 

extend the Willam-Warnke (1974) model in order to capture anisotropic behavior through 

the use of tensor based stress invariants.  The primary difficulty with extending the 

Willam-Warnke (1974) failure criterion to anisotropy is the fact that the function is linear 

in stress and based on a trial and error approach, the belief here is that at least a quadratic 

dependence is needed in order to capture anisotropic behavior through stress invariants.  

The next section presents a failure criterion analogous to the Willam-Warnke (1974) 

failure model that is quadratic in stress. 
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CHAPTER IV  

AN ISOTROPIC FAILURE CRITERION FOR GRAPHITE 

The next phenomenological failure criterion considered in this effort was 

constructed from the integrity basis proposed by Green and Mkrtichian (1977).  This 

isotropic failure criterion has the basic form 

  iij agg ,  (4.1) 

Green and Mkrtichian (1977) tracked the principal stress direction using the vector ai.  

Utilizing the eigenvectors of the principal stresses enables the identification of tensile and 

compressive principal stress directions.  The authors of this model consider different 

behavior in tension and compression as a type of material anisotropy in construction a 

nonlinear elasticity model.  Utilizing first order tensors (the eigenvectors) to construct 

second order directional tensors is an accepted approach in modeling anisotropy through 

the use of invariants.  Spencer (1984) pointed out the mathematics that underlies the 

concept.  This model produces results very similar to the Willam-Warnke (1974) failure 

criterion.  The utility of deriving an isotropic form based on the integrity basis from 
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Green and Mkrtichian (1977) work is that this failure criterion is quadratic in stress 

whereas the Willam-Warnke (1974) failure criterion was linear in stress.  Being 

quadratic in stress makes the isotropic model more amenable to including anisotropic 

behavior, which is discussed in the next chapter.  This chapter outlines fundamental 

aspects of the isotropic failure criterion in preparation for the extension to anisotropy.   

4.2 Integrity Basis and Functional Dependence 

The integrity basis for the a function with a dependence specified in equation 

(4.1) is 

  (4.2.1) 

 jiijI 2  (4.2.2) 

 kijkijI 3  (4.2.3) 

 ijji aaI 4  (4.2.4) 

and 

 kijkji aaI 5  (4.2.5) 

These invariants from the work of Green and Mkrtichian (1977) (with the exception of I3, 

which can be derived from I1 and I2) constitute an integrity basis and span the space of 

possible stress invariants that can be utilized to compose scalar valued functions that are 

dependent on stress.  Thus the dependence of the isotropic failure criterion can be 

characterized in general as  

iiI 1
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    5421 ,,, IIIIgg ij   (4.2.6) 

One possible polynomial formulation for g in terms of the integrity basis is 

     15412
2

1  IDIICIBIAg ij  (4.2.7) 

This functional form is quadratic in stress which, as is seen in the next section, is 

convenient when extending this formulation to include anisotropy.  The invariants I4 and 

I5 are associated with the directional tensor ai, and we note that Green and Mkrtichian 

(1977) utilized these invariants in their functional dependence very judiciously.  They 

partitioned the Haigh-Westergaard stress space and offered four forms for their functions.  

The same approach is adopted here.   

4.3 Functional Forms and Associated Gradients by Stress Region 

By definition the principal stresses are identified such that  

 321    (4.3.1) 

The four function approach proposed by Green and Mkrtichian (1977) spans the stress 

space which is partitioned as follows: 

Region #1: 0321    –  all principal stresses are tensile 

Region #2: 321 0    –  one principal stress is compressive, the 

others are tensile 

Region #3: 321 0    –  one principal stress is tensile, the others 

are compressive 
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Region #4: 3210    –  all principal stresses are compressive. 

Thus the isotropic criterion has a specific formulation for the case of all tensile principal 

stresses, and a different formulation for all compressive principal stresses (see derivation 

below).  For these two formulations there is no need to track principal stress orientations 

and thus for Regions #1 and #4 the isotropic failure criterion did not include the terms 

associated with I4 and I5, both of which contain information regarding the directional 

tensor.  A third and fourth formulation exists for Regions #3 and #4 where two principal 

stresses are tensile and when two principal stresses are compressive, respectively and the 

failure behavior depends on the direction of the principal tensile and compressive 

stresses.  For these regions of the stress space for the failure criterion includes the 

invariants I4 and I5. 

 The functional values of the four formulations g1, g2, g3 and g4 must match along 

their common boundaries.  In addition, the tangents associated with the failure surfaces 

along the common boundaries must be single valued.  This will provide a smooth 

transition from one region to the next.  To insure this, the gradients to the failure 

surfaces along each boundary are equated.  The specifics of equating the formulations 

and equating the gradients at common boundaries are presented below.  Relationships 

are developed for the constants associated with each term of the failure function for the 

four different regions.  
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Region #1:  0321    assume the failure function for this 

region of the stress space is 

 














 21

2
111 2

1
1 IBIAg  (4.3.2) 

From equation (4.3.10) it is evident that there will be a group of constants for each region 

of the stress space.  Hence the subscripts for the constants associated with each invariant 

as well as the failure function will run from one to four.  Also note the absence of 

invariants I4 and I5.  The corresponding normal to the failure surface is  

 
ijijij

I

I

gI

I

gg

 














 2

2

11

1

11  (4.3.3) 

where 

 11
1

1 IA
I

g





 (4.3.4) 

 1
2

1 B
I

g





 (4.3.5) 

 ij
ij

I 




 1  (4.3.6) 

and 

 ij
ij

I 


22 

  (4.3.7) 

Here ij is the Kronecker delta tensor.  Substitution of equations (4.3.4) through (4.3.7) 

into (4.3.3) leads to the following tensor expression 
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  ijij
ij

BIA
g


 111

1 2



 (4.3.8) 

or in a matrix format 

 

 

 1

3

2

1

1

321

321

321

1

200

020

002

00

00

00

B

A
g

ij

























































 (4.3.9) 

The matrix formulation allows easy identification of relationships between the various 

constants. 

Region #2:  321 0    The failure function for region #2 is 

 














 5241222

2
122 2

1
1 IDIICIBIAg   (4.3.10) 

Note the subscripts on the constants and the failure function.  The normal to the surface 

is  

 
ijijijijij

I

I

gI

I
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



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
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







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5

24

4
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2

21

1

22  (4.3.11) 

Here 

  4212
1

2 ICIA
I

g





 (4.3.12) 

 2
2

2 B
I

g





 (4.3.13) 

 12
4

2 IC
I

g





 (4.3.14) 
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 2
5

2 D
I

g





 (4.3.15) 

 ji
ij

aa
I






4  (4.3.16) 

and 

 kikjjkik
ij

aaaa
I






 5  (4.3.17) 

The principal stress direction of interest in this region of the stress space is the one 

associated with the third principal stress.  Assuming the Cartesian coordinate system is 

aligned with the principal stress directions then the eigenvector associated with the third 

principal stress is  

 )1,0,0(ia  (4.3.18) 

Thus for equation (4.3.16) and (4.3.17) 

 

 
















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
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










100

000

000
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1

0

0

jikjik aaaaaa

 (4.3.19) 

Given the principal stress direction of interest the fourth and fifth invariants are 

 34 I  (4.3.20) 

and 

 2
35 I  (4.3.21) 
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for this region of the stress space.  Substitution of equations (4.3.12) through (4.3.21) 

into (4.3.11) yields the following tensor expression for the normal to the failure surface 

 


)(

)(2

2

132212
2

kikjjkik

iiijijij
ij

aaaaD

aaICBIA
g


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


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


 (4.3.22) 

The matrix form of equation (4.3.22) is 

   
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  (4.3.23) 

Region #3:  321 0    The failure function for this region of the 

stress space is 

 
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The normal to the surface is  
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Here 

  4313
1

3 ICIA
I

g





 (4.3.26) 

 3
2

3 B
I

g





 (4.3.27) 
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g
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 (4.3.28) 

and 

 3
5

3 D
I

g





 (4.3.29) 

The principal stress direction of interest for this stress state is the one associated with the 

first principal stress, i.e.,  

 )0,0,1(ia  (4.3.30) 

Now 

 

 



































000

000

001

001

0

0

1

jikjik aaaaaa

 (4.3.31) 

The fourth and fifth invariants for this region of the stress space are 

 14 I  (4.3.32) 

and 

 2
15 I  (4.3.33) 

Substitution of the quantities specified above into (4.3.25) yields the following tensor 

expression 
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The matrix form of this equation is as follows 
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  (4.3.35) 

Region #4: 3210    The failure function for this region of 

the stress space is 
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The corresponding normal to the failure surface is  
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Here 
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1
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I

g





 (4.3.38) 

and 
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2
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g

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

 (4.3.39) 

Substitution of the equations above into (4.3.37) yields the following tensor expression 

  ijij
ij

BIA
g


 414

4 21 

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 (4.3.40) 

The matrix format of this expression is 
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4.4 Relationships Between Functional Constants 

With the failure functions and the normals to those functions defined for each 

region, attention is now turned to defining the constants.  Consider the region of the 

Haigh-Westergaard stress space where with andThe stress state in 

a matrix format is
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and this stress state lies along the boundary shared by region #1 and region #2.  At this 

boundary we impose 

 21 gg   (4.4.2) 

and 

 
ijij
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 



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 21  (4.4.3) 

For this stress state the invariants I1 and I2 are  

 211  I  (4.4.4) 

and 
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12  I  (4.4.5) 

for both g1 and g2.  The invariants I4 and I5 for g2 are 

 034  I  (4.4.6) 

and 
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Substitution of equations (4.4.4) through (4.4.7) into equation (4.4.2) yields the following 

matrix expression  
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 (4.4.8) 

with 

 03   (4.4.9) 

then 
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 (4.4.10) 

The following three expressions can be extracted from equation (4.4.10) 

     2122111121 2)(2)( BABA    (4.4.11) 

     2222112121 2)(2)( BABA    (4.4.12) 

 221221121 )()()( CAA    (4.4.13) 

The constant D2 does not appear due to its multiplication with the null matrix.  

However, C2 does appear in the third expression but in the first two immediately above.  

Focusing on equation (4.4.11) and equation (4.4.12) which represents two equations in 

two unknowns then  

 21 BB   (4.4.14) 

and 

 21 AA   (4.4.15) 

Substitution of equation (4.4.15) into equation (4.4.13) yields 

 02 C  (4.4.16) 

and at this point D2 is indeterminate 
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Now consider the region of the Haigh-Westergaard stress space where 

and  The stress state in a matrix format is 


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 (4.4.17) 

 

and this stress state lies at the boundary shared by region #2 and region #4.  At this 

boundary we impose 

 32 gg   (4.4.18) 

and 

 
ijij

gg

 




 32  (4.4.19) 

Under these conditions the invariants I1 and I2 are 

 311  I  (4.4.20) 

and 

 2
3

2
12  I  (4.4.21) 

Substitution of equation (4.4.20) and (4.4.21) into equation (4.4.19) yields 

1x

2x

3x
1

1

3
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 (4.4.22) 

with 

 02   (4.4.23) 

then 
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 (4.4.24) 

The following three expressions can be extracted from equation (4.4.24) 

 
   

      3133131331

2321231

222)(

2)(

DCBA

CBA







 (4.4.25) 
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     3133123231 )()( CACA    (4.4.26) 

and 

 
     

    3133331

2323123231

2)(

222)(
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


 (4.4.27) 

Earlier it was determined that C2 = 0, so from equation (4.4.26) we obtain 

 3
31

3
32 )(

CAA





  (4.4.28) 

From equation (4.4.74) and equation (4.4.75) we obtain 

 33
1

31
32 2

)(
DCBB 







 (4.4.29) 

In addition, from equation (4.4.27) and equation (4.4.26) we obtain 

 33
1

31
2 2

)(
DCD 







 (4.4.30) 

 Consider the Region of the Haigh-Westergaard stress space where 

and  The stress state in a matrix format is 
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 (4.4.31) 

and this stress state lies along the boundary shared by region #3 and region #4.  At this 

boundary we impose  

 43 gg   (4.4.32) 

and 
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 43  (4.4.33) 

Under these conditions the invariants I1 and I2 are  

 321  I  (4.4.34) 

and 

 2
3

2
22  I  (4.4.35) 

Substitution of equations (4.4.34) and (4.4.35) into equation (4.4.32) yields 
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 (4.4.36) 

with 

 01   (4.4.37) 

then 
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 (4.4.38) 

The following three expressions can be extracted from equation (4.4.38) 

   432332332 )()( ACA    (4.4.39) 

     4243232332 2)(2)( BABA    (4.4.40) 

and 

     4343233332 2)(2)( BABA    (4.4.41) 

From equation (4.4.39) we discern that 

 433 ACA   (4.4.42) 

From equation (4.4.40) and equation (4.4.41) we obtain 

     432332 2222 BB    (4.4.43)  

or that 

 43 BB   (4.4.44) 

Substitution of equations (4.4.34) and (4.4.35) into equation (4.4.41) leads to 

 43 AA   (4.4.45) 

and 
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 03 C  (4.4.46) 

Substitution of equation (4.4.46) into equations (4.4.28), (4.4.29) and (4.4.30) yields  

 32 AA   (4.4.47) 

 332 DBB   (4.4.48) 

and 

 32 DD   (4.4.49) 

So the relationships between the functional constants is as follows 

 4321 AAAA   (4.4.50) 

 242321 DBDBBB   (4.4.51) 

 032  CC  (4.4.52) 

and 

 032  DD  (4.4.53) 

These relationships insure that the four functional forms for the failure function are 

smooth and continuous along the boundaries of the four regions. 

4.5 Functional Constants in Terms of Strength Parameters 

Next we utilize specific load paths in order to define the constants defined above 

in terms of stress values obtained at failure.  Consider the following stress state at failure 

under a uniaxial tensile load 
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This stress state lies on the boundary of region #1.  The invariants for this stress state are 

 TI 1  (4.5.2) 

and 

 2
2 TI   (4.5.3) 

The failure function takes the form 
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 (4.5.4) 

from which the following relationship is obtained 
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Next a uniaxial compressive stress state is considered where 
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The principal stress direction for this stress state is  

 )1,0,0(ia  (4.5.7) 

thus 
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100

000

000

ji aa  (4.5.8) 

The invariants are as follows 

 CI 1  (4.5.9) 

 2
2 CI   (4.5.10) 

 CI 4  (4.5.11) 

and 

 2
5 CI   (4.5.12) 

Thus 
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 (4.5.13) 

which leads to 
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  (4.5.14) 

Next consider an equal biaxial compressive stress state where 
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 (4.5.15) 

 

 

This stress state lies within region #4 and the invariants are as follows 

 BCI 21   (4.5.16) 

and 

 2
2 BCI   (4.5.17) 

The failure function for this particular stress state is 
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2
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 BCBC BAf 
 (4.5.18) 

which leads to 
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DBA
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  (4.5.19) 

Solving equations (4.5.5), (4.5.4) and (4.5.19) using equations (4.3.50) through (4.3.53) 

leads to 
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22221

1
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11

CBCT

BB


  (4.5.21) 

 
2243

2

12

BCC

BB


  (4.5.22) 

and  

 
2232

11

TC

DD


  (4.5.23) 

In order to visualize the isotropic failure criterion relative to failure data from 

Burchell et al. (2007), values were computed for the strength parameters identified 

immediately above, i.e., T = 15.93 MPa for tension, C = -52.93 MPa for compression 

and BC = -61.40 MPa for the biaxial compression.  The values for T and C and were 

obtained directly from Burchell et al. (2007).  The value for BC was determined by a 

best fit approximation of the failure curve to the data in Figure 4.5.1.  Various 

projections of the isotropic failure criterion are presented in the next several figures along 

with the data from Burchell et al. (2007).  The first is a projection onto the 11 – 22 

stress space which is depicted in Figure 4.5.1.  As can be seen in this figure the isotropic 

failure model captures the different behavior in tension and compression exhibited by the 

data from Burchell et al. (2007) along the 22 axis.  However, the isotropic failure 

criterion does not capture material anisotropy which is clearly exhibited by the failure 

data from Burchell et al. (2007) along the tensile segments of the 11 axis relative to the 

22 axis.   
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Figure 4.5.1 The Isotropic Failure Criterion Projected onto the 1 -2 Principal Stress 

Plane (T= 15.93 MPa, C = -52.93 MPa, BC = -61.40 MPa) 

The isotropic failure criterion is projected onto the deviatoric planes in Figures 

4.5.2 and 4.5.3.  Note that a cross section through the failure function perpendicular to 

the hydrostatic axis transitions from a pyramidal shape (Figure 4.5.3) to a circular shape 

(Figure 4.5.2) with an increasing value of the stress invariant I1. This suggests that the 

apex of the failure function presented in a full Haigh-Westergaard stress space is blunt, 

i.e., quite rounded for the particular criterion.   
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Figure 4.5.2 The Isotropic Failure Criterion Projected onto a Deviatoric Plane 
 Mpa20.9  Parallel to the -plane with T = 15.93 MPa, C = -52.93 MPa, 

BC = -61.40 MPa 
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Figure 4.5.3 The Isotropic Failure Criterion Projected onto a Deviatoric Plane 
 MPa2.30  Parallel to the -plane with T = 15.93 MPa, C = -52.93MPa, 

BC = -61.40 MPa 

The meridian lines of the isotropic failure surface corresponding to 
o0 and

o60  are depicted on Figure 4.5.4.  Obviously the meridian lines are not linear.  

The 
o0 meridian line goes through point defined by 9.02 MPa and r = 13.01 

MPa.  The 
o60 meridian line goes through the point defined by  = 30.56 MPa and 

r = 43.22 MPa. 
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Figure 4.5.4 The Isotropic Failure Criterion Projected onto the Meridian Plane for a 

Material Strength Parameter of T = 15.93 MPa, C = -52.93 MPa, BC = -61.40 MPa 

As the value of the I1 stress invariant associated with the hydrostatic stress 

increases in the negative direction, failure surfaces perpendicular to the hydrostatic stress 

line become circular again.  The model suggests that as hydrostatic compression stress 

increases the difference between tensile strength and compressive strength diminishes 

and approach each other asymptotically.  This is a material behavior that should be 

verified experimentally in a manner similar to Bridgman’s (1953) bend bar experiments 

conducted in hyperbaric chambers on cast metal alloys.  Balzer (1998) provides an 

excellent overview of Bridgman’s (1953) experimental efforts, as well as others and their 

accomplishments in the field of high pressure testing. 



86 

However, as indicated in Figure 4.5.1, the isotropic formulation of the failure 

criterion does not capture the anisotropic behavior of the data from Burchell et al. (2007).  

The isotropic formulation is extended to transverse isotropy in the next chapter.  

Orthotropic behavior and other types of anisotropic behavior can be captured through 

similar use of tensorial invariants. 
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CHAPTER V  

ANISOTROPIC FAILURE CRITERION 

As discussed in earlier sections the multiaxial failure data from Burchell et al. 

(2007) strongly suggests that the graphite tested was anisotropic.  Thus there is a need to 

extend the isotropic failure model discussed in the previous section so that anisotropic 

failure behavior is captured.  This can be done again by utilizing stress based invariants 

where the material anisotropy is captured through the use of a direction vector associated 

with primary material directions.  The concept is identical to the extension of the 

isotropic inelastic constitutive model.  The extension of a phenomenological failure 

criterion will be made for a transversely isotropic material.  Other material symmetries, 

e.g., an orthotropic material symmetry, can be included as well.  Duffy and 

Manderscheid (1990b) as well as others have suggested an appropriate integrity basis for 

the orthotropic material symmetry.  Transversely isotropic materials have the same 

properties in one plane and different properties in a direction normal to this plane.  

Orthotropic materials have different properties in three mutually perpendicular directions. 
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5.1 Integrity Base for Anisotropy  

The preferred material direction is designated through a second direction vector, 

di.  The dependence of the failure function is extended such that 

   0,, jijiij aaddg    (5.1.1) 

The definition of the unit vector ai is the same as in earlier sections.  Rivlin and Smith 

(1969) as well as Spencer (1971) show that for a scalar valued function with dependence 

stipulated by equation (5.1.1) the integrity basis is 

 kkI 1   (5.1.2) 

 jiijI 2   (5.1.3) 

 kijkijI 3   (5.1.4) 

 ijji aaI 4   (5.1.5) 

 kijkji aaI 5   (5.1.6) 

 jiji ddI 6   (5.1.7) 

 kijkji ddI 7   (5.1.8) 

 kjkjji ddaaI 8   (5.1.9) 

and 

 mikmkjji ddaaI 9   (5.1.10) 

The invariant I3 is omitted again since this invariant is cubic in stress.  As before those 

invariants linear in stress enter the functional dependence as squared terms or as products 
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with another invariant linear in stress.  Therefore the anisotropic failure function has the 

following dependence 
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  (5.1.11) 

The form of the failure function was constructed as a polynomial in the invariants listed 

above.  The constants in this formulation (A, B, C, D, E, F, G, and H) are characterized 

by adopting simple strength tests.  The proposed failure function was incorporated into a 

reliability model through the use of Monte Carlo simulation and importance sampling 

techniques.  This feature is discussed in a subsequent section. 

5.2 Functional Forms and Associated Gradients by Stress Region 

Similar to the approach adopted for anisotropic constitutive models, the 

underlying concept is that the response of the material depends on the stress state, a 

preferred material direction and whether the principal stresses are tensile or compressive.  

The principal stress space is divided again into four regions. The regions and associated 

failure functions are listed below. In the first region all of the principal stresses are 

tensile, i.e., 

Region #1:  0321    
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In Region #1 a direction vector associated with the principal stresses is unnecessary since 

all principal stresses are tensile.  The corresponding normal to the failure surface is  
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where 
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Substitution of equations (5.2.3) through (5.2.10) into (5.2.2) leads to the following 

tensor expression 
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Region #2:   321 0    
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In Region #2 the direction vector ai is associated with the compressive principal stress σ3.  

Thus for this region 

  1,0,0ia   (5.2.14) 

.The corresponding normal to the failure surface is  
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where 
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Substitution of equations (5.2.7) through (5.2.10) and (5.2.16) through (5.2.27) into 

(5.2.15) leads to the following tensor expression 
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then 
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Region #3:  321 0    

The failure function for this region of the stress space is 
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In Region #3 the direction vector ai is associated with the tensile principal stress direction 

σ1.  For this region 

  0,0,1ia   (5.2.31)  

.The corresponding normal to the failure surface is  
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where 
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Substitution of equations (5.2.7) through (5.2.10), (5.2.24) through (5.2.27) and (5.2.33) 

through (5.2.40) into (5.2.32) leads to the following tensor expression 
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or 
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Region #4:  3210     

The failure function for this region of the stress space is 
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and since all principal stresses are compressive a direction vector associated with the 

principal stress direction is unnecessary.  The corresponding normal to the failure 

surface is  

 
ijijijijij

I

I

gI

I

gI

I

gI

I

gg

 




























 7

7

46

6

42

2

41

1

44  (5.2.44) 
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Substitution of equations (5.2.7) through (5.2.10) and (5.2.45) through (5.2.49) into 

(5.2.44) leads to the following tensor expression 
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or 
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5.3 Relationships Between Functional Constants 

With the failure functions and the normals to those functions defined in general 

terms for each region, attention is now turned to establishing functional relationships 

between the constants.  Consider the following stress state at failure under a tensile load 

in the preferred material direction with material direction di = (0, 1, 0), i.e., 
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The first stress subscript Y denotes a strength parameter associated with the strong 

direction, and second subscript T denotes this quantity is a tensile strength 

parameterThe principal stresses for this stress state are 

    0,0,,, 321 YT   (5.3.2) 

and this stress state lies along the boundary shared by region #1 and region #2, as well as 

the shared boundary along region #2 and region #3.  At both boundaries we impose the 

requirements that the gradients match, i.e., 
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providing a smooth transition from one principal stress region to another.  For this stress 

state the first, second, sixth and seventh invariants of stress are  

 YTI 1  (5.3.5) 

 2
2 YTI   (5.3.6) 

 YTI 6  (5.3.7) 

and 

 2
7 YTI   (5.3.8) 

These stress invariants are common for stress region #1, #2 and #3.  With these 

invariants 
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For the stress state in region #2 given above the unit principal stress vector is 

 )1,0,0(2 ia  (5.3.10) 

The left superscript “2” denotes a vector associated with principal stress region #2. Thus 
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The stress invariants associated with this vector and the stress state given above are 

 04
2 I  (5.3.12) 
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2 I  (5.3.13) 
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2 I  (5.3.14) 

and 
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2 I  (5.3.15) 

With these stress invariants and stress state the gradient along the boundary for stress 

region #2 is 
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 (5.3.16) 

Utilizing equations (5.3.9) and (5.3.16) in equation (5.3.3) then at the boundary between 

stress region #1 and stress region #2  
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 (5.3.17) 

The following three expressions can be extracted from equation (5.3.17), i.e., 

 2211 EAEA   (5.3.18) 

 22221111 222222 FEBAFEBA   (5.3.19) 

and 

 22211 ECAEA   (5.3.20) 

For the stress state in region #3 given above the unit principal stress vector is 

 )0,1,0(3 ia  (5.3.21) 
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The stress invariants associated with this unit vector and stress state are 
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3
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3  (5.3.25) 

and 
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9

3
YTI   (5.3.26) 

With these stress invariants and stress state the gradient along the boundary for stress 

region #3 is 
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 (5.3.27) 

Utilizing equations (5.3.16) and (5.3.27) in equation (5.3.4) then at the boundary between 

stress region #2 and stress region #3  
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(5.3.28) 

The following three expressions can be extracted from equation (5.3.28), i.e., 

 333322 GECAEA   (5.3.29) 
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 (5.3.30) 

and 

 3333222 GECAECA   (5.3.31) 

Next consider the following stress state at failure under a compression load with 

the same material direction di = (0, 1, 0) as above, i.e.,  
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The subscript C denotes a compressive failure strength compression stress and it is noted 

that this strength is algebraically less than zero.  The principal stresses are obviously 

    YC ,0,0,, 321   (5.3.33) 

At the boundary of region #2 and region #3 the second principal stress is zero, i.e., 

.  Similarly, at the boundary of region #3 and region #4 the first principal stress is 

zero, i.e.,  At both boundaries we impose the requirements that the gradients 

match, i.e., 

 
ijij

gg

 




 32  (5.3.34) 

 
ijij

gg
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
 43  (5.3.35) 

providing a smooth transition from one principal stress region to another.  Here the first, 

second, sixth and seventh invariants of stress are  

 YCI 1  (5.3.36) 

 2
2 YCI   (5.3.37) 

 YCI 6  (5.3.38) 

and 

 2
7 YCI   (5.3.39) 

These stress invariants are common for stress regions #2, #3, and #4 given this state of 

stress. 

 For the stress state in region # 2 the unit principal vector is 
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 )0,1,0(2 ia  (5.3.40)  

thus 
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The stress invariants associated with this unit vector and stress state are 

 YCI 4
2  (5.3.42) 
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2
YCI   (5.3.43) 

 YCI 8
2  (5.3.44) 

and 

 2
9

2
YCI   (5.3.45) 

With these stress invariants and stress state, the gradient along the boundary for stress 

region #2 is 
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 (5.3.46) 

As noted earlier the unit vector associated with region #3 is 
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 )0,0,1(3 ia  (5.3.47)  

thus 
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The stress invariants associated with this unit vector and stress state are 

 04
3 I  (5.3.49) 

 05
3 I  (5.3.50) 

 08
3 I  (5.3.51) 

and 

 09
3 I  (5.3.52) 

With these stress invariants and stress state, the gradient along the boundary for stress 

region #3 is 
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 (5.3.53) 

Utilizing equations (5.3.46) and (5.3.53) in equation (5.3.34) then at the boundary 

between stress region #2 and stress region #3 
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(5.3.54) 

The following three expressions can be extracted from equation (5.3.54), i.e., 

 3332222 ECAGECA   (5.3.55) 
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 (5.3.56) 

and 

 332222 EAGECA   (5.3.57) 

With the invariants established in equations (5.3.36) through (5.3.39), the 

following gradient for region #3 takes the following form 
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 (5.3.58) 

Utilizing equations (5.3.53) and (5.3.58) in equation (5.3.35) then at the boundary 

between principal stress region #3 and principal stress region #4  
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 (5.3.59) 

The following three expressions can be extracted from equation (5.3.59), i.e., 

 44333 EAECA   (5.3.60) 

 44443333 222222 FEBAFEBA   (5.3.61) 

and 

 4433 EAEA   (5.3.62) 

Next consider the following stress state at failure under a tensile load with the 

same preferred material direction di = (0, 1, 0), i.e., 
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The first subscript T denotes as stress in the direction transverse to the strong direction of 

the material and the second subscript T means tension (TT.  The principal stresses 

are 

    0,0,,, 321 TT   (5.3.64) 

In order to satisfy the definitions given earlier for the principal stress regions at the 

shared boundary of region #2 and region #3 the second principal stress must be zero, i.e.,  

At the shared boundary between region #1 and region #2 the third principal stress 

must be zero, i.e., .  The stress state given above satisfies these stress conditions, 

i.e., both  and At both boundaries we impose the requirements that the 

gradients match, i.e., 
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providing a smooth transition from one principal stress region to another.  Using the 

stress state given above the first, second, sixth and seventh invariants are  

 TTI 1  (5.3.67) 

1x
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3x

id

TT

TT
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 2
2 TTI   (5.3.68) 

 06 I  (5.3.69) 

and 

 07 I  (5.3.70) 

These four invariants are common to stress regions #1, #2 and #3 for the stress state 

given above.  With these stress invariants the following gradient can be formulated for 

this stress state 
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 (5.3.71) 

 For the stress state in region # 2 the unit principal vector is 

 )1,0,0(2 ia  (5.3.72)  

Thus 
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The invariants associated with this principal stress vector and stress state are 

 04
2 I  (5.3.74) 

 05
2 I  (5.3.75) 

 08
2 I  (5.3.76) 
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and 

 09
2 I  (5.3.77) 

With these invariants and stress state the gradient along the boundary for stress region #2 

is 
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 (5.3.78) 

Utilizing equations (5.71) and (5.3.78) in equation (5.3.65) then at the boundary between 

principal stress region #1 and principal stress region #2  
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 (5.3.79) 

The following three relationships between functional constants can be extracted from 

equation (5.3.79) 

 22211 222 CBABA   (5.3.80) 

 2211 EAEA   (5.3.81) 

and 
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 221 CAA   (5.3.82) 

 For the stress state stipulated above the unit principal vector in region # 3 is 

 )0,0,1(3 ia  (5.3.83)  

thus 

   

















000

000

001
33

ji aa  (5.3.84) 

And the stress invariants for this principal stress vector and stress state are 

 TTI 4
3  (5.3.85) 

 2
5

3
TTI   (5.3.86) 

 08
3 I  (5.3.87) 

and 

 09
3 I  (5.3.88) 

With these invariants and stress state the gradient along the boundary for stress region #3 

is 
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 (5.3.89) 

Utilizing equations (5.78) and (5.3.89) in equation (5.3.66) then at the boundary between 

principal stress region #2 and principal stress region #3 
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 (5.3.90) 

The following three expressions can be extracted from equation (5.3.90) 

 333322 2222 DCBABA   (5.3.91) 

 33322 ECAEA   (5.3.92) 

and 

 3322 CACA   (5.3.93) 

Next consider the following stress state at failure under a compressive load with 

the preferred material direction di = (0, 1, 0), i.e., 
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The first subscript T denotes a stress in the direction transverse to the strong direction of 

the material, and the second subscript C denotes compression (TC.  The principal 

stresses are 

    TC ,0,0,, 321   (5.3.95) 

In order to satisfy the definitions given earlier for the principal stress regions at the 

shared boundary of region #3 and region #4 the first principal stress must be zero, i.e.,  

At the shared boundary between region #2 and region #3 the second principal 

stress must be zero, i.e., .  The stress state given above satisfies these stress 

conditions, i.e., both  and   At both boundaries we impose the requirements 

that the gradients match, i.e., 
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providing a smooth transition from one principal stress region to another.  Using the 

stress state given above the first, second, sixth and seventh invariants are  

 TCI 1  (5.3.98) 

 2
2 TCI   (5.3.99) 

 06 I  (5.3.100) 

and 

 07 I  (5.3.101) 
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These four invariants are common to stress regions #2, #3 and #4 for the stress state 

given above.  With these stress invariants the following gradient can be formulated for 

this stress state 
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 (5.3.102) 

 For the stress state in region # 2 the unit principal vector is 

 )0,0,1(2 ia  (5.3.103)  

Thus 
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The stress invariants for this principal stress vector are 

 TCI 4
2  (5.3.105) 

 2
5

2
TCI   (5.3.106) 

 08
2 I  (5.3.107) 

and 

 09
2 I  (5.3.108) 

With these stress invariants the following gradient can be formulated for this stress state 
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 (5.3.109) 

 For the stress state in region #3 the unit principal vector is 

 )0,1,0(3 ia  (5.3.110)  

Thus 
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And the stress invariants for this principal stress vector are 

 04
3 I  (5.3.112) 

 05
3 I  (5.3.113) 

 08
3 I  (5.3.114) 

and 

 09
3 I  (5.3.115) 

With these stress invariants the following gradient can be formulated for this stress state 
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 (5.3.116) 
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Utilizing equations (5.116) and (5.3.109) in equation (5.3.96) then at the boundary 

between principal stress region #2 and principal stress region #3 
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(5.3.117) 

The following three expressions can be extracted from equation (5.3.117), i.e., 

 332222 2222 BADCBA   (5.3.118) 

 333222 ECAECA   (5.3.119) 

and 

 322 ACA   (5.3.120) 

Utilizing equations (5.102) and (5.3.116) in equation (5.3.97) then at the boundary 

between principal stress region #3 and principal stress region #4 
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 (5.3.121) 

The following three expressions can be extracted from equation (5.3.121) 

 4433 22 BABA   (5.3.122) 

 44333 EAECA   (5.3.123) 

and 

 43 AA   (5.3.124) 

Equations (5.3.18) through (5.3.20), (5.3.29) through (5.3.31), (5.3.55) through (5.3.57), 

(5.3.60) through (5.3.62), (5.3.80) through (5.3.82), (5.3.91) through (5.3.93), (5.3.118) 

through (5.3.120), as well as (5.3.122) through (5.3.124) represent twenty four equations 

in terms of twenty four unknowns, i.e., A1, A2, A3, A4, B1, B2, B3, B4, C2, C3, D2, D3, E1, E2, 

E3, E4, F1, F2, F3, F4, G2, G3, H2 and H3.     

Although in the current formulation there appears to be twenty-four constants, not 

all of the constants are independent.  From equations (5.3.18) and (5.3.20) it is apparent 

that 
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 02 C  (5.3.125) 

Substitution of equation (5.3.125) into equations (5.3.82) yields 

 21 AA   (5.3.126) 

Substitution of equation (5.3.125) into equation (5.3.120) yields 

 32 AA   (5.3.127) 

With equation (5.3.124) then 

 4321 AAAA   (5.3.128) 

Thus none of the “A” constants are independent. 

 Substitution of equation (5.3.125) and (5.3.127) into equation (5.3.93) leads to 

 03 C  (5.3.129) 

Using equation (5.3.129) along with equation (5.3.128) in equation (5.3.60) results in  

 43 EE   (5.3.130) 

Substitution of equation (5.3.126) into equation (5.3.18) yields 

 21 EE   (5.3.131) 

Substituting equations (5.3.125), (5.3.125) and (5.3.125) into equation (5.3.119) results in 

 32 EE   (5.3.132) 

With equations (5.3.130), (5.3.131) and (5.3.132) then 

 4321 EEEE   (5.3.133) 

Therefore none of the “E” constants are independent. 
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 Substitution of equations (5.3.125), (5.3.127) and (5.3.133) into equations (5.3.57) 

leads to  

 02 G  (5.3.134) 

Similarly substituting equations (5.3.127), (5.3.129) and (5.3.133) into equation (5.3.29) 

leads to 

 03 G  (5.3.135) 

and the “G” constants are both zero. 

 With equations (5.3.125) and (5.3.126) then from equation (5.3.80) takes the form 

 21 BB   (5.3.136) 

Utilizing equation (5.3.128) in equation (5.3.122) then 

 43 BB   (5.3.137) 

With equations (5.3.127) and (5.3.129) then equation (5.3.91) takes the form 

 332 DBB   (5.3.138) 

Similarly, with equations (5.3.125) and (5.3.127) then equation (5.3.118) takes the form 

 322 BDB   (5.3.139) 

Subtracting equation (5.3.138) from equation (5.3.139) leads to 

 32 DD   (5.3.140) 

and the “D” constants are not independent of one another. 

 With equations (5.3.126), (5.3.136) and (5.3.131) then equation (5.3.19) takes the 

form 
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 21 FF   (5.3.141) 

With equations (5.3.128), (5.3.137) and (5.3.130) then from equation (5.3.61) 

 43 FF   (5.3.142) 

In a like manner, with equations (5.3.127), (5.3.132), (5.3.129) and (5.3.135) then 

equation (5.3.30) takes the form 

 332 HFF   (5.3.143) 

With equations (5.3.127), (5.3.132), (5.3.125) and (5.3.134) then equation (5.3.56) takes 

the form 

 322 FHF   (5.3.144) 

Subtracting equation (5.3.143) from equation (5.3.144) leads to 

 32 HH   (5.3.145) 

 From equations (5.3.125) and (5.3.129) the identity 

 032  CC  (5.3.148) 

can be established.  From equations (5.3.134) and (5.3.155) it is easily shown that 

 032  GG  (5.3.152) 

In addition, the following relationships between the remaining coefficients are 

established from equations (5.3.125) through (5.3.145) 

 A 4321 AAAA  (5.3.146) 

 B 343321 DBDBBB  (5.3.147) 

 D 32 DD  (5.3.148) 
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 E 4321 EEEE  (5.3.149) 

 F 343321 HFHFFF  (5.3.150) 

and 

 H 32 HH  (5.3.151) 

These relationships represent requirements that insure the four functional forms for the 

failure function are smooth and continuous along the boundaries of the four stress 

regions.  Moreover, the last group of constants identified as A, B, D, E, F and H 

represent the independent constants for the failure function.  Since there are six 

independent constants, then one is required to conduct six mechanical tests to 

characterize the model.  These tests are outlined in the next section. 

5.4 Functional Constants in Terms of Strength Parameters 

Next specific load paths are utilized in order to define the constants defined above 

in terms of strength values obtained in mechanical failure tests.  Consider the following 

stress state at failure under a uniaxial tensile load in the preferred material direction di = 

(0, 1, 0) 
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The principal stresses for this state of stress are 

    0,0,,, 321 YT   (5.4.2) 

Note that one principal stress is tensile and the others are zero.  This state of stress lies 

along the border of region #1, region #2 and region #3.  For region #1 the first, second, 

sixth and seventh invariants are  

 YTI 1  (5.4.3) 

 2
2 YTI   (5.4.4) 

 YTI 6  (5.4.5) 

and 

 2
7 YTI   (5.4.6) 

With the failure function defined as 
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 IFIIEIBIAg  (5.4.7) 

in region #1 of the principal stress space, then substitution of equations (5.4.3) through 

(5.4.6) into the (5.4.7) yields 
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or 
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The unit principal stress vector associated with this state of stress in the region # 2 

is 
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 )1,0,0(2 ia  (5.4.10)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 04
2 I  (5.4.12) 

 05
2 I  (5.4.13) 

 08
2 I  (5.4.14) 

and 

 09
2 I  (5.4.15) 

The failure function for stress region #2 has the form 
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  (5.4.16) 

With equations (5.4.3) through (5.4.6) as well as equations (5.4.12) through (5.4.15) then  
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The unit principal stress vector associated with this state of stress in the region # 3 

is 

 )0,1,0(3 ia  (5.4.19) 

thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 YTI 4
3  (5.4.21) 
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3
YTI   (5.4.22) 

 YTI 8
3  (5.4.23) 

and 
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9

3
YTI   (5.4.24) 

The failure function for stress region #3 has the form 
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 (5.4.25) 

With equations (5.4.3) through (5.4.6) as well as equations (5.4.21) through (5.4.24) then  
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and 
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 2333333
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 (5.4.27) 

Next consider the following stress state at failure due to a compressive stress 

aligned with the material direction di = (0, 1, 0), i.e.,  
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The principal stresses are 

    YC ,0,0,, 321   (5.4.29) 

Note that one principal stress is compressive and the others are zero.  This state of stress 

lies along the border of region #2, region #3 and region #4.  For region #4 the first, 

second, sixth and seventh invariants for this stress state are  

 YCI 1  (5.4.30) 

 2
2 YCI   (5.4.31) 

 YCI 6  (5.4.32) 

and 

 2
7 YCI   (5.4.33) 

With the failure function defined as 
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 (5.4.34) 

in region #4 of the principal stress space, then substitution of equations (5.4.30) through 

(5.4.33) into the (5.4.34) yields 
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The unit principal stress vector associated with this state of stress in region #2 is 

 )0,1,0(2 ia  (5.4.37)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 YCI 4
2  (5.4.39) 

 2
5

2
YCI   (5.4.40) 

 YCI 8
2  (5.4.41) 

and 

 2
9

2
YCI   (5.4.42) 

Again, the failure function for stress region #2 has the form 
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 (5.4.43) 

With equations (5.4.30) through (5.4.33) as well as equations (5.4.39) through (5.4.42) 

then  
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or 
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The unit principal stress vector associated with this state of stress in region #3 is 

 )0,0,1(3 ia  (5.4.46)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 
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3 I  (5.4.48) 

 05
3 I  (5.4.49) 

 08
3 I  (5.4.50) 

and 

 09
3 I  (5.4.51) 
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Again, the failure function for stress region #3 has the form 
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 (5.4.52) 

With equations (5.4.30) through (5.4.33) as well as equations (5.4.48) through (5.4.51) 

then  
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Next consider the following stress state at failure due to a tensile stress 

perpendicular to the material direction di = (0, 1, 0), i.e.,  
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The principal stresses are 

    0,0,,, 321 TT   (5.4.56) 

Note that principal stress aligned transverse to the preferred direction of the material is 

tensile and the others are zero.  This state of stress lies along the border of region #1, 
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region #2 and region #3.  For region #1 the first, second, sixth and seventh invariants are 

obtained 

 TTI 1  (5.4.57) 

 2
2 TTI   (5.4.58) 

 06 I  (5.4.59) 

and 

 07 I  (5.4.60) 

Again, with the failure function defined as 
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in region #1 of the principal stress space, then substitution of equations (5.4.57) through 

(5.4.60) into the (5.4.61) leads to 
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The unit principal stress vector associated with this state of stress in region #2 is 

 )1,0,0(2 ia  (5.4.64)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 
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2 I  (5.4.66) 
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2 I  (5.4.67) 
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2 I  (5.4.68) 

and 
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2 I  (5.4.69) 

Again, the failure function for stress region #2 has the form 
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With equations (5.4.57) through (5.4.60) as well as equations (5.4.66) through (5.4.69) 

then  
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The unit principal stress vector associated with this state of stress in region #3 is 

 )0,0,1(3 ia  (5.4.73)  
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thus 
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The stress invariants associated with this principal stress vector and state of stress are 
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and 
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Again, the failure function for stress region #3 has the form 

 
0

2

1
1

938133613

75341323
2

133

















IHIIGFIIE

IIDIICIBIAg

 (5.4.79) 

With equations (5.4.57) through (5.4.60) as well as equations (5.4.75) through (5.4.78) 

then  
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Next consider the following stress state at failure due to a compressive stress 

perpendicular to the material direction di = (0, 1, 0), i.e.,  
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The principal stresses are 

    TC ,0,0,, 321   (5.4.83) 

Note that one principal stress is compressive and the others are zero.  This state of stress 

lies along the border of region #2, region #3 and region #4.  For region #4 the first, 

second, sixth and seventh invariants are 
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and 
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Again, with the failure function defined as 
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in region #4 of the principal stress space, then substitution of equations (5.4.84) through 

(5.4.87) into the (5.4.88) leads to 
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The unit principal stress vector associated with this state of stress in region #2 is 

 )0,0,1(2 ia  (5.4.91)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 
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Again, the failure function for stress region #2 has the form 
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With equations (5.4.84) through (5.4.87) as well as equations (5.4.93) through (5.4.96) 

then  
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The unit principal stress vector associated with this state of stress in region #3 is 

 )0,1,0(3 ia  (5.4.100)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 04
3 I  (5.4.102) 

 05
3 I  (5.4.103) 

 08
3 I  (5.4.104) 

and 

 09
3 I  (5.4.105) 

Again, the failure function for stress region #3 has the form 
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With equations (5.4.84) through (5.4.87) as well as equations (5.4.102) through (5.4.105) 

then  
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Next consider the following stress state at failure due to an equal biaxial 

compressive stress where one component of the applied stress is directed along the 

material direction di = (0, 1, 0), i.e.,  
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The subscript “MBC” denotes “mixed equal-biaxial-compression” and because the 

applied stress is compressive, then algebraically C .  The principal stresses are 

    MBCMBC  ,,0,, 321   (5.4.110) 
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Note that two principal stresses are compressive and the other is zero.  This state of 

stress lies along the border region #3 and region #4.  For stress region #4 the first, 

second, sixth and seventh invariants are 

 MBCI 21   (5.4.111) 

 2
2 2 MBCI   (5.4.112) 

 MBCI 6  (5.4.113) 

and 

 2
7 MBCI   (5.4.114) 

Again, with the failure function defined as 
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 (5.4.115) 

in region #4 of the principal stress space, then substitution of equations (5.4.111) through 

(5.4.114) into the (5.4.115) leads to 
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 (5.4.116) 

or 
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The unit principal stress vector associated with this state of stress in region #3 is 

 )1,0,0(3 ia  (5.4.118)  
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thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 04
3 I  (5.4.120) 

 05
3 I  (5.4.121) 

 08
3 I  (5.4.122) 

and 

 09
3 I  (5.4.123) 

The failure function for stress region #3 now has the form 
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 (5.4.124)  

With equations (5.4.111) through (5.4.114) as well as equations (5.4.120) through 

(5.4.123) then 
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Next consider the following stress state at failure under a biaxial equal 

compression load  
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 (5.4.127) 

 

The subscript “BC” denotes “biaxial-compression” and because the stress is compressive 

then algebraically C.  Also note that the stresses are applied in the plane of 

isotropy.  The principal stresses are 

    BCBC  ,,0,, 321   (5.4.128) 

This state of stress lies along the border between principal stress region #3 and region #4.  

For this state of stress the first, second , sixth and seventh invariants are  
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2 2 BCI   (5.4.130) 
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 07 I  (5.4.132) 

Again, with the failure function defined as 
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in region #4 of the principal stress space, then substitution of equations (5.4.129) through 

(5.4.132) into the (5.4.133) leads to 
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The unit principal stress vector associated with this state of stress in region #3 is 

 )0,1,0(3 ia  (5.4.136)  

thus 
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The stress invariants associated with this principal stress vector and state of stress are 

 04
3 I  (5.4.138) 

 05
3 I  (5.4.139) 

 08
3 I  (5.4.140) 

and 

 09
3 I  (5.4.141) 

The failure function for stress region #3 now has the form 
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With equations (5.4.129) through (5.4.132) as well as equations (5.4.138) through 

(5.4.141) then  
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With equations (5.4.9), (5.4.18), (5.4.27), (5.4.36), (5.4.45), (5.4.54), (5.4.63), (5.4.72), 

(5.4.81), (5.4.90), (5.4.99), (5.4.108), (5.4.117), (5.4.126), (5.4.135), and (5.4.144) there 

are sixteen equations in terms of six strength parameters, i.e., 

YT  –  tensile strength in the preferred material direction 

YC  –  compressive strength in the preferred material direction 

TT  –  tensile strength in the plane of isotropy 

TC  –  compressive strength in the plane of isotropy 

BC  –  equal biaxial compressive strength in the plane of isotropy 

MBC  –  equal biaxial compressive strength with only one stress component in 

the plane of isotropy 
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These equations can be used to extract relationships between the functional constants (A1 

through F4) and the mechanical strength parameters listed above.  For example, 

subtracting equation (5.4.63) from equation (5.4.90) yields 
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  (5.4.145) 

and utilizing equations (5.3.147) and (5.3.148) leads to 
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In addition, subtracting equation (5.4.9) from equation (5.4.36) yields 
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Furthermore, subtraction equation (5.4.145) from equation (5.4.147) results in  
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and utilizing equations (5.3.150) and (5.3.151) leads to 
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In addition, subtracting equation (5.4.99) from equation (5.4.135) yields 
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Utilizing equations (5.3.146) through (5.3.148) this expression simplifies to 
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Subtraction of equation (5.4.135) from (5.4.108) 
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and utilizing equations (5.3.146) and (5.3.137) leads to 
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Utilizing equation (5.3.146) and subtracting equation (5.4.151) from equation (5.4.63) 

yields 
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With equations (5.3.124), (5.3.130), (5.3.137), and (5.3.142), then subtracting equation 

(5.4.54) from equation (5.4.117) leads to 
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Substitution of equations (5.4.151) and (5.4.153) into (5.4.155) yields the following 

relationship 
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With equations (5.3.149) and (5.4.150), then subtraction equation (5.4.135) from 

equation (5.4.126) results in 
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Substitution of equation (5.4.156) into (5.4.157) yields 
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Substitution of equation (5.4.158) into (5.4.148) leads to the following 
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 In summary, 
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and 
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where 
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Equations (5.4.160) and (5.4.169) along with equations (5.2.1) and (5.2.43) is a complete 

statement of the anisotropic failure functions in a regions of the stress space. 

The anisotropic failure criterion is projection onto the 11 – 22 stress space in 

Figure 5.4.1.  The strength parameters were for the most part extracted from the data 

found in Burchell et al. (2007), i.e., TT =10.48 MPa, YT =15.93 MPa and YC =52.93 

MPa (see Table 2.2).  These are average or mean strength values.  The other three 

strength parameters YT, YC, BC and MBC were estimated.  Values for the strength 

parameters listed above are given in the figure caption.  Note the agreement with the 
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data along the two tensile axes, as well as along the failure curve for each load path.  

These average strength values for each load path are depicted as open red circles in 

Figure 5.4.1. 

 
Figure 5.4.1 Anisotropic Failure Criterion with Failure Data from Burchell et al. (2007) 

Projected onto the 11 - 22 Principal Stress Plane (TT = 10.48 MPa, TC = -35MPa, 
BC = -40 MPaYT = 15.93 MPa, YC = -52.93 MPa and MBC = -61.40 MPa) 

 

The anisotropic failure criterion is projected onto the deviatoric planes in Figures 

5.4.2, 5.4.3 and 5.4.4  Note that a cross section through the failure function 

perpendicular to the hydrostatic axis transitions from a pyramidal shape (Figure 5.4.1) to 
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a circular shape (Figure 5.4.2) with an increasing value of the stress invariant I1. This 

suggests that the apex of the failure function presented in a full Haigh-Westergaard stress 

space is blunt, i.e., quite rounded for this particular criterion.   

 
Figure 5.4.2 Anisotropic Failure Criterion with Failure Data from Burchell et al. (2007) 

Projected onto (= 6.05 MPa) Parallel to the -plane(TT = 10.48 MPa, TC = -35MPa, 
BC = -40 MPaYT = 15.93 MPa, YC = -52.93 MPa,  

MBC = -61.40 MPa) 
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Figure 5.4.3 Anisotropic Failure Criterion with Failure Data from Burchell et al. (2007) 

Projected onto (= 9.02 MPa) Parallel to the -plane(TT = 10.48 MPa, TC = -35MPa, 
BC = -40 MPaYT = 15.93 MPa, YC = -52.93 MPa, MBC = -61.40 MPa) 

 
 

Figure 5.4.4 Anisotropic Failure Criterion with Burchell’s (2007) Failure Data 
Projected onto (= -30.20) Parallel to the -plane(TT = 10.48 MPa, TC = -35MPa, 

BC = -40 MPaYT = 15.93 MPa, YC = -52.93 MPa, MBC = -61.40 MPa) 
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The meridian lines of the anisotropic failure surface corresponding to 
o0 

o120 and
o300  are depicted on Figure 5.4.5.  Obviously the meridian lines are 

not linear.  The 
o0 meridian line goes through point defined by 6.05MPa and  

r = 8.56 MPa.  
o120 meridian line goes through point defined by 9.02 MPa and 

r = 13.01 MPa.  The 
o300 meridian line goes through the point defined by  = 30.2 

MPa and r = 42.17MPa.     

 
Figure 5.4.5 Anisotropic Failure Criterion with Failure Data from Burchell et al. (2007) 

Projected onto Meridian-Plane (TT = 10.48 MPa, TC = -35MPa, BC = -40 MPa   
YT = 15.93 MPa, YC = -52.93 MPa, MBC = -61.40 MPa) 
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As the value of the I1 stress invariant associated with the hydrostatic stress 

increases in the negative direction, failure surfaces perpendicular to the hydrostatic stress 

line become circular again.  The model suggests that as hydrostatic compression stress 

increases the difference between tensile strength and compressive strength diminishes 

and approach each other asymptotically.  This is a material behavior that should be 

verified experimentally in a manner similar to Bridgman’s (1953) bend bar experiments 

conducted in hyperbaric chambers on cast metal alloys.  Balzer (1998) provides an 

excellent overview of Bridgman’s (1953) experimental efforts, as well as others and their 

accomplishments in the field of high pressure testing.   
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CHAPTER VI  

MATERIAL STRENGTH AS A RANDOM VARIABLE 

All parameters in an engineering design can be treated as random variables.  For 

example material strength, loads applied to the component, geometric dimensions, as well 

as the stiffness of the material utilized can all exhibit significant levels of variability.  

However, the assumption is made for graphite that the variability in material strength far 

exceeds the variability one would see in the other design parameters.  This seems 

reasonable since the strength of graphite material can vary by 50% or more.  Earthquake 

loads can be the exception to this exclusion of all other design parameters, although 

including load design parameters as well as resistance design parameters other than 

material strength as random variables is easily accomplished. 

A failure function characterizes a limit state through its formulation and the design 

parameters that the function is dependent on.  Although one can easily pose limit states 

for fracture (e.g., failure assessment diagrams), fatigue life or service issues relating to 

structural deformations in this effort all design parameters here are related to strength.  
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In the previous chapters a number of failure criteria, i.e., limit state functions, were 

highlighted and discussed.  The goal in examining the various failure criteria is the 

development of a phenomenological, stress based function that captures the fundamental 

strength behavior of nuclear graphite exhibited through the data from Burchell et al. 

(2007).  This behavior includes different failure behavior in tension and compression, as 

well as the anisotropy exhibited along different load paths.  In the last chapter the 

isotropic failure criterion was extended to transversely anisotropic behavior through the 

use of tensorial invariants that include material direction tensors.  Other types of 

anisotropies can be considered using this approach, e.g., orthotropic strength behavior.  

The phenomenological failure criteria outlined in the previous chapters were all posed as 

deterministic limit states.  The last aspect of material behavior that is explored in this 

chapter requires consideration is how to account for the variability in the strength 

parameters.  

The multiaxial graphite data from Burchell et al. (2007) has been cited throughout 

this work and one cannot help but see that the strength of graphite material is essentially 

stochastic along various load paths depicted in Figure 2.4.1.  With the amount of 

variation exhibited by the graphite data in that figure and based on graphite failure data 

available throughout the literature, it is not difficult to identify graphite strength as a 

random variable.  The strength parameters identified in the last chapter for the 

anisotropic failure criterion, i.e., YT (tensile strength in the preferred material direction), 
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YC (compressive strength in the preferred material direction), TT (tensile strength in the 

plane of isotropy), TC (compressive strength in the plane of isotropy), BC (equal biaxial 

compressive strength in the plane of isotropy), and MBC (equal biaxial compressive 

strength with only one stress component in the plane of isotropy) are all treated as 

random variables based on evidence found within the data from Burchell et al. (2007).  

The assumption is made that these strength parameters are statistically independent 

random variables.  The veracity of this assumption will be left for future efforts.  

Methods available to interrogate this issue will be outlined in the summary chapter.  

Another assumption is made relative to the particular probability density function used to 

represent the strength random variables.  Here the two parameter Weibull distribution is 

adopted for all random strength parameters.  Again there are methods to test the validity 

of that assumption.  But since this is a proof of concept effort, those sort of goodness of 

fit tests are left to others to pursue. 

In general, the strength parameters associated with the load paths from the data 

found in Burchell et al. (2007) can be assembled into an k-dimensional vector, i.e., 

  kYYYY ,,, 21   (6.1) 

and a limit state function can be defined in general terms as 

   0, ijyg   (6.2) 

Here y represents a vector of realizations of the random variables identified by the 

strength parameters in the previous chapter and ij is the applied Cauchy stress tensor.  
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This last expression defines a surface in an k-dimensional stress space.  The limit state 

function for the anisotropic failure criterion is adopted for graphite and this criterion 

would have the following multipart formulation in the principal (Haigh-Westergaard) 

stress space  

Region #1:  0321    
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Region #4:  3210     
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  (6.6)  

The various constants defined in the previous chapter (identified above as A through F 

with subscripts) are no longer constants since they are functions of strength parameters.  
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Hence these parameters are now considered composite random variables.  In essence 

they are functions of random variables 

The fundamental issue of no longer treating material strength as a deterministic, 

single valued parameter complicates the issue of how to interpret failure at a point 

through the state of stress at that point.  If strength is treated as a random variable, how 

does that affect the approach the design engineer takes in assessing whether a component 

performs its intended function properly or not?  A different design philosophy must be 

adopted in this situation where a simple fail/no fail interpretation is replaced with an 

equivalent stochastic decision process that predicts the probability of component failure. 

In general, the reliability (probability of failure) is computed based on the 

expression 

   0,  ijygyProbabilit R  (6.7) 

This calculation is made for a unit volume of a point of material with a homogenous state 

of stress.  To calculate the reliability of an element the joint density function must be 

integrated over the “safe” region of the design space which is defined by the limit state 

function.  This integration takes the form 
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R   (6.8)  

for the isotropic formulation of the limit state function for graphite.  Here the three 

random strength parameters YT, YC and YBC are associated with the deterministic strength 
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parameters T, C and BC.  Again, the lower case letters associated with the random 

strength parameters are realizations of the random strengths.  In addition  
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0,
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R  (6.9) 

serves as the generic integration for the anisotropic limit state function.  Here is the 

joint density function of material strength parameters.  Sun and Yamada (1978) as well 

as Wetherhold (1983) point out that the integration defined by either equations (6.8) and 

(6.9) yields the reliability of a unit volume based on the state of stress at a point.  

However, closed form solutions for these types of reliability expressions are not 

available.  Palko (1992) and Hu (1994) illustrate how the integration in these 

expressions can be executed using techniques based on Monte Carlo simulation.  These 

techniques are deployed here. 

Having identified graphite strength as a random variable the next step is selecting 

an appropriate probability density function to characterize each strength random variable.  

In general material strength should be characterized by an extreme value distribution.  In 

structural design one is always interested in the extreme minimum values in a random 

variable representing strength, i.e., a resistance random variable.  If load is similarly 

characterized as a random variable the design engineer would be cognizant of the 

extreme maximum values representing of this variable.  Weibull (1939) formulated a 

probability density function with two parameters to characterize a type III extreme value 
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distribution.  If a single strength parameter is considered then  is equal to one and the 

following notation can be adopted 
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The cumulative probability density function for a two parameter Weibull distribution is 

given by the expression  
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where y is the realization of the strength random variable (usually an applied uniaxial 

stress, ) m is the Weibull modulus and  is known as the scale parameter.  This 

equation can be linearized by taking the natural logarithm of both sides of the expression 

twice, i.e., 

    lnln
1

1
lnln mC

FY



















  (6.12)  

where 

  
m
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
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1

ln   (6.13)  

The format of equation (6.12) lends itself to an easy graphical format, an example of 

which is given in Figure 6.1.  Here values for the Weibull parameters were arbitrarily 

assumed (see the figure caption).  These linearized probability plots are used extensively 

in this chapter to explain the fundamentals of the numerical integration techniques used 
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to evaluate aspects of equation (6.9) and too compare the numerical approach to simple 

closed form solutions. 

 
Figure 6.1 Probability of Failure as a Function of Uniaxial Strength Using a Weibull 

Distribution with m = 7 and  = 20 MPa 

6.1 Integration by Monte Carlo Simulation  

In general the probability of failure at a point in a structural component can be 

expressed as 

   
f

kdyyfP Yf


 


,,1    (6.1.1)  
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As noted earlier Y represents a vector of random strength variables, fY is a vector of 

probability density functions associated with each component of the vector of random 

strength variables and δf is the failure domain that satisfies the expression 

   kyg ij ,,10,     (6.1.2)  

Here g(yij) is the functional representation of the failure criterion, e.g., equations (6.3) 

through (6.6).  Although the evaluation of the integral appears straight forward, closed 

form solutions are unavailable except for simple failure criterion.  Conventional Monte 

Carlo simulation can be used to numerically evaluate the probability of failure.  

However, conventional Monte Carlo simulation has its drawbacks that are discussed near 

the end of this section.   

Monte Carlo simulation is relatively easy to implement.  An indicator function I 

is defined such that 
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This indicator function can be included in the integral above if the integration range is 

expanded to include the entire design variable space.  Now 

   kdyyfIP
fs

f ,,1  





   (6.1.4)  

where δs is defined as the safe domain of the design variable space.  The integral on the 

right side of this expression defines the expectation of the indicator function, i.e., 

    
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
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dyyfIIE
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   (6.1.5)  
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The definition of the mean (μ) of a random variable is the expectation of the variable, i.e., 

  dxxfxx 



   (6.1.6)  

The mean associated with a random variable can be estimated from a sample taken from 

the population that is being characterized by the distribution function f(x).  The 

estimated value of the mean is given by the simple expression 
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where xj is the jth observation in a random sample taken from the population.  In a 

similar fashion the probability of failure (Pf) represents the mean (or expected value) of 

the indicator function.  Thus equation (6.1.4) can be expressed as 

 


















n

j
j

n

f

I
n

IEP

1

1
lim

)(

  (6.1.8)  

Here it is implied that a random sample of successes (I = 1) or failures (I = 0) has been 

generated.  Thus Ij is the jth evaluation of the limit state function where the random 

observations have been generated from the cumulative distribution function FX. 

 The next four figures (6.1.1 through 6.1.4) depict the utility of Monte Carlo 

simulation.  The probability of failure is estimated using Monte Carlo simulation at 

three uniaxial stress levels, i.e.,  = 13.1 MPa,  = 19.0 MPa, and  = 23.4 MPa.  

These three stress levels correspond to probabilities of failures equal to 5%, 50% and 
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95% for a uniaxial strength random variable characterized by a two parameter Weibull 

distribution with m = 7 and  = 20 MPa.  

 
Figure 6.1.1 Estimates from Monte Carlo Simulations (n=100) at Low (5%), Medium 
(50%) and High (95%) Levels of Probability of Failure Compared to the Underlying 

Weibull Population Distribution (m = 7 and  = 20 MPa) 
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Figure 6.1.2 Estimates from Monte Carlo simulations (n=1,000) at Low (5%), Medium 
(50%) and High (95%) Levels of Probability of Failure Compared to the Underlying 

Weibull Population Distribution (m = 7 and  = 20 MPa) 

 
Figure 6.1.3 Estimates from Monte Carlo simulations (n=10,000) at Low (5%), Medium 

(50%) and High (95%) Levels of Probability of Failure Compared to the Underlying 

Weibull Population Distribution (m = 7 and  = 20 MPa) 
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 The open circles in all four figures represent estimates of the probability of failure 

using conventional Monte Carlo simulation.  The straight line in each figure represents 

the parent populations the sample strengths are being extracted from.  Several 

observations can be made.  First the estimate of the probability of failure at the 5% level 

is not good until the number of samples is increased to 10,000 (see figure 6.1.3).  In 

addition, the estimate of the probability of failure is quite good for all sample sizes at the 

95% probability of failure level.  This second observation should not be considered 

meritorious for conventional Monte Carlo simulation since most engineering designs 

based on probabilistic methods will strive for the regions of low probability of failures.  

This loss of fidelity of the conventional Monte Carlo simulation approach in the low 

probability of failure regimes is a distinct disadvantage in using this numerical method to 

estimate the integral in equation 6.9.     
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Figure 6.1.4 Estimates from Monte Carlo simulations (n=100,000) at Low (5%), Medium 
(50%) and High (95%) Levels of Probability of Failure Compared to the Underlying 

Weibull Population Distribution (m = 7 and  = 20 MPa) 

 To a certain extent the loss of fidelity in the low probability of failure regimes can 

be rectified by increasing the number of simulations (see figure 6.1.4).  However, 

depending on how low the required design failure rate is, this issue can still be a problem 

as evidenced by the probability of failure estimates presented in figure 6.1.5.  Here 

values of probability of failure are estimated for uniaxial stress levels of 3.86 MPa,   

5.37 MPa and 7.46 MPa for the same population sampled in the previous four figures.  

These values of stress correspond to exact values of probability of failure in the parent 
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population (solid line) of 0.1%, 0.01% and 0.001%.  In this figure 100,000 simulations 

were conducted and as Palko (1992) and Hu (1994) point out these estimates do not 

improve much when the number of simulations are increased even by several orders of 

magnitude. 

 

Figure 6.1.5 Estimates from Monte Carlo simulations (n=100,000) at Very Low (0.1%,, 
0.01% and 0.001%), Levels of Probability of Failure Compared to the Underlying 

Weibull Population Distribution (m = 7 and  = 20 MPa) 

 Fortunately there are numerical methods available to improve the computational 

fidelity of conventional Monte Carlo simulation in regions of low probability of failure.  

One of the available methods is discussed in the next section. 
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6.2 The Concept of Importance Sampling Simulation 

 As noted above Monte Carlo simulation is computationally simple.  To increase 

the accuracy of this numerical integration method the number of samples is simply 

increased.  However, as Palko (1992) points out the method does not converge to correct 

answers in the low probability of failure regime even when utilizing a large number of 

simulations.  As engineers we wish to design components with very low probabilities of 

failure.  To work around the simulation difficulties at low probability of failure 

conventional Monte Carlo simulation can be modified using importance sampling.  

Using importance sampling techniques the design variable space is sampled only within 

the near vicinity of the most probable point (MPP – see Figure 6.2.1) point of failure.  

The location of the MPP is defined by the minimum distance from the origin of the 

design variable space (not the more familiar stress space) to the failure surface.  In 

essence the MPP represents the value of the design random variable(s) at which failure is 

most likely to occur.  This leads to the notion that more sampling of the parent 

population should take place in the most "important" region of the design variable space.  

The concept of the MPP is embedded in a technique known as fast probability integration 

(FPI).  See Haldar and Mahadevan (2000) for a thorough discussion. 
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Figure 6.2.1 The Principal of the Importance Sampling 

 Importance sampling requires a general knowledge of the location of the MPP in 

the transformed variable space.  This location is determined with FPI methods, so 

certain tools found in FPI methods are utilized here.  First the transformed design 

variable space is constructed from a vector of “standard normal” random strength 

variables (see the figure above).  A vector of standard normal random strength variables 

is defined as  
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  (6.2.1)  

The vector of standard normal random strength variable, Zα, is directly dependent on the 

vector of parent random strength variables, Yα.  Here 


Y is the mean of the parent 

distribution and 


 Y is the standard deviation of the parent population.  Assuming that 

each strength parameter is characterized by a two parameter Weibull distribution, and 
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with knowledge of the Weibull distribution parameters  and m for each strength 

parameter, then the expression 
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is used to compute the mean for each random strength variable (note that  is the gamma 

function).  Note that vectors of distribution parameters, i.e., m and ( are required, 

each pair corresponding to a particular strength random variable.  The next expression  
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  (6.2.3)  

is used to calculate the standard deviation for each random strength variable.  For 

completeness the following expression stipulates the probability density function for a 

vector of random strength variables characterized by a two parameter Weibull 

distribution  
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The subscript  is identified in various ways for each of the random strength variables 

adopted with a failure criterion, i.e., “T”, “C” and “BC” (k=3) for the isotropic version of 

the failure function.  For the anisotropic version  is identified with “YT”, “YC”, “TT”, 

“TC”, “BC” and “MBC” (k=6).  Assuming the strength random variables are 

statistically independent, then a joint probability density function can be formulated using 

the expression 
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This notation is used momentarily. 

 If the limit state function is linearized and the design random variables can be 

transformed to standard normal variables then the reliability index  is used to locate the 

MPP – see Hu (1994), Wetherhold and Ucci (1994) as well as Haldar and Mahadevan 

(2000).  However, determining the exact location of the MPP is not necessary to 

implement importance sampling – just a knowledge of the general vicinity of the MPP.  

An advantage of importance sampling relative to FPI methods is that importance 

sampling alleviates a potential non-conservative numerical error associated with FPI 

methods.  The limit state function in this work is by no means a linear function in terms 

of the design random variables and when using FPI techniques the limit state function is 

approximated by a hyper-plane at the MPP.  Wetherhold and Ucci (1994) point out that 

a planar approximation can yield non-conservative results depending on the curvature of 

the limit state function at the MPP.  Since importance sampling does not depend on this 

curvature, it effectively avoids this potential non-conservative numerical error. 

For importance sampling equation (6.1.4) is rearranged such that 
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A new joint probability density function, k(y), is introduced in the last expression.  This 

function serves as a weighting function that forces the simulation process to sample in the 



168 

near vicinity of the MPP.  This joint probability density function is formulated using the 

following expression 

     kykyk
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Although the procedure does not limit the type of probability distribution one can use for 

each individual random variable (the individual probability density function for each 

random variable is identified by ) a standard normal distribution is assumed here for 

simplicity, i.e., 
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  (6.2.8)  

An individual importance sampling function should have the following properties: 

1. > 0  whenever   0yf ; 

2. should be closely proportional to  yf , i.e., the importance sampling 

function should roughly have the same shape as the parent strength distribution; 

and 

3. the importance sampling function should be selected such that values can be 

easily simulated from the function and the cumulative density function can be 

readily computed from the simulated value. 

For demonstration purposes the standard normal distribution identified in equation (6.2.8) 

was selected.  This importance sampling function meets the three properties identified 
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above.  Results for multiaxial simulations indicate that while the form of the function is 

appropriate, there is future efforts needed to better define how the variance (standard 

deviation) is computed.  Note that 
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and 
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The mean associated with the standard normal probability density function is given by 

the following expression 
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  (6.2.11)  

The parameters  xf  and  xf  are the mean and standard deviation associated with the 

actual probability distribution function that characterizes the random strength variable, 

i.e., the parent distribution fX.  Earlier the parent distribution for all the strength random 

variables was assumed to be a two parameter Weibull distribution and the parameters 

 xf  and  xf  are identified by equations 6.2.2 and 6.2.3.  The standard deviation of 

the probability density function is chosen in such a way that the sampling region is 

weighted towards the near vicinity of the MPP.  Here an approach suggested by 

Melchers (1989) is adopted where 
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As will be seen in the multiaxial simulations this approach for computing the standard 

deviation needs further optimization.   

Given equation 6.2.5, the function serves as the parent probability density 

function for a transformed indicator function defined as 
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Equation (6.2.5) can be expressed as a Riemann sum, i.e.,  
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During a given simulation a separate random number is generated (the jth random 

number) for each random strength variable and a realization for each of the random 

strength variables (Y)j is computed using the inverse of which is the cumulative 

distribution function corresponding to .  These realizations are used to compute 

realizations of Zas well as individual values of , and the limit state function 

g(y).  The limit state function is dependent on the applied stress state, and the 

evaluation of g(y) given the realization of the random variables (Y)j will once again 

yield a value of zero or one for the indicator function I in equation 6.2.11.  Once the 

joint probability functions f(y) and k(y) are formulated  the transformed indicator 

function is then computed from the same equation.  This completes a simulation for the 

Yk


YK


Yk


Yk
 Yf 
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jth iteration and the process is repeated n times.  A mean is computed for the transformed 

indicator function after n iterations.  This mean is an approximation of the probability of 

failure given the applied stress state and the statistical information associated with each 

strength random variable. 

 For a low probability of failure the main contribution to Pf will come from regions 

near the MPP.  The reader is directed to Figure 3.7 in Hu (1994).  This region will also 

correspond to the tail of the joint probability distribution function of the design strength 

random variables.  Harbitz (1986) has shown that restricting the sampling domain in the 

design variable space to the tail of the joint probability distribution function produces a 

remarkable increase in efficiency in comparison to conventional Monte Carlo techniques.  

That efficiency is reproduced here.  

Harbitz (1986) demonstrated that the number of simulations necessary to achieve 

the same order of accuracy obtained from conventional Monte Carlo methods is reduced 

by a factor of  

 

  2
1

1

 

  (6.2.15)  

where Γα is the chi-square distribution with  degrees of freedom, and * is less than or 

equal to the actual the reliability index  for a given design problem.  The degrees of 

freedom correspond to the number of design variables included in the limit state function.  

In essence, Harbitz (1986) reasoned that random design variables are being sampled from 
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a truncated distribution function.  This corresponds to sampling from the actual 

probability distribution function, however the sampling domain is restricted to regions 

outside a sphere defined in the design variable space (see Figure 6.2.1).  The center of 

the sphere is located at the origin of the transformed design variable space, and the radius 

of the sphere is equal to *.  Proof of Harbitz (1986) argument follows from the 

interpretation of this geometrical concept.  Elements of the FPI method is utilized to 

obtain approximate Z values in order to establish a general location of the MPP.  For 

two random variables the location of the MPP is given by the expression 

      212
2

2
1 zz    (6.2.16)  

where  is the reliability index.  Three or more random variables would be a simple 

extension of this geometric concept.   

 The benefits of utilizing importance sampling can be seen in figure 6.2.2 and 

especially in figure 6.2.3.  Figure 6.2.2 depicts the result from simple Monte Carlo 

simulation with 100 iterations (the open box) at uniaxial stress levels that correspond to 

the 5%, 50% and 95% levels of failure probability.  Four points are depicted at the same 

levels of probability of failure.  These points represent importance sampling with 100, 

1,000, 10,000 and 100,000 iterations.  The improvement in the low region of probability 

of failure, the region engineers wish to design in, is obvious with only 100 iterations. 
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Figure 6.2.2 Reliability Estimates of Uniaxial Tensile Strengths Using Importance 

Sampling with 100 Simulations 

 Figure 6.2.3 depicts the results from simple Monte Carlo simulation with 100,000 

iterations (the open box).  The other four points at the 0.1%, 0.01% and 0.001% levels 

of probability of failure represent importance sampling with 100, 1,000, 10,000 and 

100,000 iterations.  The improvement in the low region of probability of failure is quite 

stark with only 100 iterations.  At 100,000 iterations simple Monte Carlo simulation is 

well off the line representing the parent population while at 100 iterations importance 

sampling is nearly on the line at 0.001% probability of failure and on the line at the other 
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two probability of failure.  In essence increasing the iterations above 100 the level does 

not greatly improve the prediction relative to the parent population.  Here is the 

advantage of conducting Monte Carlo simulation with importance sampling – a 

numerical savings by incurred by dramatically decreasing the number of simulations 

required to produce high quality results.   

 
Figure 6.2.3 Reliability Estimates of Uniaxial Tensile Strengths Using Importance 

Sampling with 1,000 Simulations 
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6.3 Isotropic Limit State Function – Importance Sampling 

 The concept of importance sampling is first applied to the isotropic form of the 

limit state function.  The tensile strength design variable (YT), compressive strength 

design variable (YC) and the biaxial compressive strength design variable (YBC) are 

characterized by the two-parameter Weibull distributions.  To begin the method the 

approximate location of the MPP must be determined.  Methods to locate the MPP can 

be found in Haldar and Mahadevan (2000) as well as Hu (1994).  The location of the 

MPP is determined through realizations of standard normal variables ZT, ZC and ZBC.  

With these realizations serving as the components of a vector, the MPP is located by this 

vector.  The information regarding the MPP establishes the means for the importance 

sampling density functions 
TYk ,

CYk and
BCYk . The importance sampling density functions 

facilitate obtaining samples in the near vicinity of the MPP through simulation.  Once 

the means 
TYk , 

CYk and 
BCYk for the importance sampling density functions are 

computed using equation (6.2.11) then the values  
TYTY fk   ,  

CYCY fk    and 

 
BCYBCY fk    are established using equation (6.2.12).  These are the variances of the 

importance sampling density functions and not the variances of the random strength 

density functions.  Use of equations (6.2.11) and (6.2.12) require the knowledge of the 

means from the parent Weibull strength distributions, i.e., 
TYf

 , 
CYf

 and 
BCYf

  as well 

as the standard deviations of the parent Weibull strength distributions, i.e., 
TYf

 , 
CYf

 and 

CYf
 .  These are assumed known. 
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 Once the means and standard deviations are obtained for each importance 

sampling density function the next step requires three separate and distinct random 

numbers between zero and one.  These random numbers serve as values for 
TYK in the 

expression 
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as well as
CYK in the expression 
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and
BCYK in the expression 
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Here “erf” is the error function.  The only unknowns in these expressions are the 

realizations of the random strength variables YT, YC and YBC.  The last three expressions 

are solved for these realizations. 

 Having realizations Ty , Cy  and BCy  along with means 
TYk , 

CYk and 
BCYk  

as well as variances 
TYk , 

CYk and 
CYk then values of the importance sampling 

probability density function  
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the importance sampling probability density function  
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and the Importance sampling probability density function 
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can be computed. The value of the joint importance sampling probability function for the 

jth simulation is then ascertained using   

           
jBCYjCYjTYBCCTj ykykykYYYk

BCCT
,,   (6.3.6)  

This joint importance probability sampling function is presumed centered over the MPP.   

 Realizations for the random strength variables YT, YC and YBC along with Weibull 

parameter (m, ) for each random strength variable are then used to evaluate the 

probability of density function  

         





























 TT

T

m

T

T

m

T

T

T

T
TY

yym
yf

 
exp

1

  (6.3.7)  

as well as  
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and 
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respectively.  A numerical value for the joint probability density  

           
jBCYjCYjTYBCCTj yfyfyfYYYf
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can be computed. 

Finally, a value for the limit state function is computed using equations (4.3.2), 

(4.3.10), (4.3.24) as well as (4.3.36) with the state of stress at the point in a component 

being evaluated and the realizations of the random strength variables.  This allows the 

computation of the indicator function using equation (6.1.3).  The quantities kj(yT, yC , 

yBC ), fj(yT, yC,, yBC) and I are inserted into equation (6.2.13) and the summation in 

equation (6.2.14) is performed for a sufficient number of iterations (i.e., large enough n) 

such that the method converges to Pf. 

The importance sampling process is put to use in the following manner.  

Projections of reliability surfaces are presented in a series of figures, i.e., Figures 6.3.1 

through 6.3.4, for the isotropic formulation of the limit state function outlined in a 

previous section.  The Weibull parameters (m and σθ) for each random strength design 

variable are  

 mT  =  6.58      mC  =  12.29    mBC  =  13.99 

 T  = 17.05 MPa   C  = 54.39 MPa  BC  = 63.29 MPa 

for isotropy.  These values were extracted from the data from Burchell et al. (2007) 

assuming isotropy.  Three surfaces depicted in the figures correspond to probabilities of 

failure of Pf = 5%, Pf = 50%, and Pf = 95%. These contours are determined numerically 

by probing the 11 – 22 stress space along rays emanating from the origin in an 

incremental fashion.   
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Figure 6.3.1 Level Surfaces of Probability of Failure Obtained Using 2,000 Monte Carlo 
Simulations Modified with Importance Sampling Techniques for the Isotropic Version of 

the Failure Criterion. The Failure Data from Burchell et al. (2007) is Also Shown. 
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Figure 6.3.2 Level Surfaces of Probability of Failure Obtained Using 5,000 Monte Carlo 
Simulations Modified with Importance Sampling Techniques for the Isotropic Version of 

the Failure Criterion. The Failure Data from Burchell et al. (2007) is Also Shown. 
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Figure 6.3.3 Level Surfaces of Probability of Failure Obtained Using 10,000 Monte 
Carlo Simulations Modified with Importance Sampling Techniques for the Isotropic 

Version of the Failure Criterion. The Failure Data from Burchell et al. (2007) is Also 
Shown. 
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Figure 6.3.4 Failure Probability Curves Obtained Using Monte Carlo Simulation 

Modified with Importance Sampling Techniques for the Isotropic Version of the Failure 
Criterion. The Failure Data from Burchell et al. (2007) is Also Shown. 

In the figures just presented the contours are symmetric with a line that bisects the 

first and third quadrant.  This is due to isotropy.  No such symmetry exists with respect 

to a line that bisects the second and third quadrant since the material strength behavior is 

different in tension and compression.  Material anisotropy, in particular transverse 

isotropy, is explored in the next section.  With each figure the number of simulations 

was increased from n = 2,000 in Figure 6.3.1 to n = 15,000 in Figure 6.3.4.  The “noise” 
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or irregularities around the level surfaces of probability of failure decreases with each 

increase in the number of simulations.  

 
Figure 6.3.5 Failure Probability Curves Obtained Using only Monte Carlo Simulation 
for the Isotropic Version of the Failure Criterion. The Failure Data from Burchell et al. 

(2007) is Also Shown. 

 In Figure 6.3.5 the same level surfaces of probability of failure are established 

without the use of importance sampling, i.e., the curves were found using only Monte 

Carlo simulation.  In this figure and Figure 6.3.4 note that 15,000 simulations were 

utilized to establish each point on the failure probability curves.  The irregularities were 

smoothed out by increasing the number of simulations.  Earlier it was indicated that 
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importance sampling is sensitive to the importance sampling function, i.e., 
Yk .  It is 

suspected that the irregularities in the probability of failure surfaces can also be smoothed 

out with a more optimal choice in the standard deviation used for 
Yk .  Time did not 

permit conducting an optimization study for this parameter, and this effort is left for 

others to conduct.  Methods suggested in Xue et al. (2013) would be an appropriate 

starting point.  Once an optimization procedure has been established to compute a 

standard deviation for the importance sampling function representing each random 

strength variable it is anticipated that smooth curves can be obtained with fewer 

simulations.  It is clearly evident that increasing the number of simulations improves the 

results obtained using importance sampling techniques.  This is true for common Monte 

Carlo simulation techniques as well – up to a point.  At very low probability failures it 

was clear (see Figure 6.2.3) that improving Monte Carlo simulation results was 

impractical by simply increasing the number of simulations.  This indicates that 

importance sampling is the preferred method of computing equation (6.1.1) for typical 

designs where the probability of failure is quite low for economic and/or safety reasons. 

6.4 Anisotropic Limit State Functions – Importance Sampling 

 Next the concept of importance sampling is applied to the anisotropic form of the 

limit state function.  The tensile strength design variable in the preferred material 

direction (YYT), the compressive strength design variable in the preferred material 
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direction (YYC), the equal biaxial compressive strength design variable in the plane of 

isotropy (YBC), the tensile strength design variable in plane of isotropy (YTT), the 

compressive strength design variable in plane of isotropy (YTC), as well as the equal 

biaxial compressive strength design random variable with one stress component in the 

plane of isotropy (YMBC) are characterized by the two-parameter Weibull distributions.  

 To begin the method the approximate location of the MPP must be determined.  

The location of the MPP is determined through the realizations TTz , TCz , BCz , YTz , 

YCz  and MBCz .  By equation (6.2.1) all six are realizations of standard normal 

variables.  With these realizations serving as the components of a vector in the design 

variable space, the MPP is located by this vector.  The information regarding the MPP 

establishes the means for the importance sampling density functions.  Again, the 

importance sampling density functions facilitate obtaining samples in the near vicinity of 

the MPP during simulation.  Once the means 
TTYk , 

TCYk , 
BCYk , 

YTYk , 
YCYk and 

MBCYk are computed using equation (6.2.11) then the values 
TTYk , 

TCYk , 
BCYk , 

YTYk , 

YCYk and 
MBCYk  are established using equation (6.2.12).  These last six parameters are 

the variances of the importance sampling density function.  Use of equations (6.2.11) 

and (6.2.12) requires the knowledge of the means from the parent Weibull strength 

distributions, i.e., 
TTYf

 , 
TCYf

 , 
BCYf

 , 
YTYf

 , 
YCYf

 and 
MBXCYf

 as well as the standard 

deviations of the parent Weibull strength distributions, i.e., 
TTYf

 , 
TCYf

 , 
BCYf

 , 
YTYf

 , 

YCYf
 and 

MBCYf
 .   
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 Once the means and standard deviations are obtained for each importance 

sampling density function the next step requires six separate and distinct random numbers 

between zero and one.  These will serve as values for 
TTYK in the expression 
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for 
TCYK in the expression 
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for 
BCYK in the expression 
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for 
YTYK in the expression 
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for 
YCYK in the expression 
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and for 
MBCYK  in the expression 
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The only unknowns in these expressions are the realizations of the random strength 

variables YTT, YTC, YBC, YYT, YYC and YMBC.  These realizations are obtained by inverting 

the last six expressions for these quantities.   
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 Having realizations TTy , TCy , BCy , YTy , YCy and MBCy along with means 

TTYk , 
TCYk , 

BCYk , 
YTYk , 

YCYk and 
MBXCYk as well as variances 

TTYk , 
TCYk , 

BCYk , 
YTYk

, 
YCYk and 

MBCYk then values of the sampling probability density functions  
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as well as  
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can be computed. The value of the joint probability sampling function for the jth 

simulation is then ascertained using   
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This joint probability sampling function is centered over the MPP 
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 Realizations for the random strength variables YTT, YTC, YBC, YYT, YYC and YMBC 

along with Weibull parameter (m, ) for each random strength variable are then used to 

evaluate the probability of density function  
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and 
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respectively.  A numerical value for the joint probability density  
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is computed. 
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Finally, a value for the limit state function is computed using equations (5.2.1), 

(5.2.13), (5.2.30) as well as (5.2.43) with the state of stress at the point in a component 

being evaluated and the realizations of the random strength variables.  This allows the 

computation of the indicator function using equation (6.1.3).  The quantities kj(yTT, yTC , 

yBC, yYT, yYC, yMBC ), fj(yTT, yTC , yBC, yYT, yYC, yMBC ) and I are inserted into equation 

(6.2.13) and the summation in equation (6.2.14) is performed for a sufficient number of 

iterations (i.e., large enough n) such that the method converges appropriately to Pf. 

 Figure 6.4.1 depicts the reliability surfaces for the anisotropic version of the 

limit state function.  Monte Carlo simulations with importance sampling were conducted 

in order to generate the surfaces in this figure.  For anisotropy the Weibull distribution 

parameters for each random strength variable are listed in Table 6.4.1.  Again three 

reliability surfaces are depicted in the figure that correspond to probabilities of failure of 

Pf = 5% , Pf = 50% , and Pf = 95%.  The preferred direction of the material coincides 

with the 11 axis.  Thus there is a strengthening of the material along the 11 – axis 

which is exhibited in the data from Burchell et al. (2007).  The three curves bracket the 

data from Burchell et al. (2007) along both the tensile and compressive 11 axes.  This 

reliability model captures this strengthening in compression as it did with the isotropic 

model.  The positions of the curve can be adjusted by information from the failure data 

along both the 11 and 22 axes – tensile information as well as compression information.  
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This gives an indication of the flexibility inherent in the model by the ability to 

accommodate for failure behavior in different material orientations.   

There is “noise” present once again.  It is quite evident in the third quadrant 

along the 95% failure probability curve.  Again, it is anticipated that the irregularities 

can be smoothed out with a “better” importance sampling density function – that is, with 

optimized variances for the sampling functions identified above.     

 

Table 6.4.1 Anisotropic Weibull Parameters 

Tensile strength, preferred direction mYT = 6.58 YT = 17.05 MPa 

Compression strength, preferred direction  mYC = 12.19 YC = 54.39 MPa 

Tensile strength, plane of isotropy mTT = 10.12 TT = 11.01 MPa 

Compression strength, plane of isotropy mTC = 10.33 TC = 35.90 MPa 

Equal biaxial compression both stress 
components in the plane of isotropy mBC = 11.85 BC = 45.95 MPa 

Equal biaxial compression, one stress 
component in the plane of isotropy  

mMBC = 13.99 MBC = 63.29 MPa 
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Figure 6.4.1 The Failure Data from Burchell et al. (2007) with Probability of Failure 
Curves Obtained Using Monte Carlo Simulation Modified with Importance Sampling 

Techniques for the Anisotropic Version of the Failure Criterion. 
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CHAPTER VII  

SUMMARY AND CONCLUSIONS 

This dissertation presents a multiaxial reliability model that captures the complex 

failure behavior of components fabricated from graphite.  Of specific interest are 

graphite components that are deployed throughout the core of nuclear reactors.  The 

failure behavior of graphite presents several unique challenges for the design engineer.  

First, bulk strength is different under tensile stress states in comparison to compressive 

stress states.  In addition, depending on the how the material is produced, graphite can 

exhibit isotropic or anisotropic failure behavior.  The reliability models derived under 

this effort can account for either and the isotropic reliability model discussed earlier is a 

special case of the anisotropic model.  At the present time anisotropic behavior is 

limited to stochastic failure that can be characterized as transversely isotropic.  Other 

types of material symmetry, e.g., orthotropic failure behavior, can be accommodated 

using the stress invariant/integrity basis techniques utilized herein.   
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7.1 Comparison With the ASME Simplified Assessment Method  

 As part of the summary a brief comparison of the reliability models developed 

here is made with the stochastic methods advocated for in the ASME Boiler and Pressure 

Vessel Code.  The design, integrity and functionality of graphite core components found 

in a nuclear reactor operating at elevated temperatures are controlled by a number of 

subsections of the “ASME Boiler and Pressure Vessel Code Section III - Rules for 

Construction of Nuclear Facility Components - Division 5 - High Temperature Reactors” 

(2010).  Hereafter this document is simply referred to as the ASME Code, or the code.  

The ASME Code Article HHA 3200 entitled “Design by Analysis – Graphite Core 

Components” delineates a number of engineering issues.  This particular section 

contains articles entitled “Requirements for Acceptability” (HHA 211), “Detailed 

Requirements for Derivation of the Material Data Sheet – As-Manufactured Properties” 

(HHA-II-3000), “Basis for Determining Stresses” (HHA 3213), “Stress Analysis” (HHA 

3215), “Calculation of Probability of Failure” (HHA 3217), and “Stress Limits for 

Graphite Core Component – Simplified Assessment” (HHA 3220).  All have specific 

relevance to this comparison made to work presented in this dissertation.  

 The acceptability of design under the ASME Code can be established by meeting 

the requirements of a simplified assessment.  The simplified assessment is conservative 

and is outlined in HHA-3220 which points to the other sections of the code just 

mentioned.  This particular code article outlines the fundamental elements of a static 
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load analysis.  Designs that focus on fatigue and deformation are addressed elsewhere in 

the ASME Code.  The static strength of graphite has been the research topic addressed 

throughout this dissertation and comparisons will be made based on this design issue.  

The simple assessment is a conservative design approach and as the code points out, not 

meeting this assessment does not disqualify a component design.  Other more in-depth 

methods of analysis can be brought to bear.  In addition, the comparison made here to 

the simplified assessment is with full knowledge that the ASME Code assumes isotropic 

material behavior.  The code does not address anisotropic behavior and that it does not 

is briefly discussed at the end of this comparison,  

 The simplified assessment begins by requiring a detailed three dimensional stress 

analysis preferably conducted using finite element analysis.  Regions of elevated 

stresses are identified, and an equivalent stress is computed in terms of the principal 

stresses in elevated stress regions.  The equivalent stress is based on maximum 

distortional energy principles and the code adopts the following expression 

                  2
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2

2
2

1 2  v (7.1.1)  

for the equivalent stress where 

 ii f    (7.1.2)  

and 

 1f   (7.1.3)  
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if the principal stress is tensile.  If the principal stress is compressive then 

 
tcR

f
1

   (7.1.4)  

Here Rtc is the ratio of the mean compressive strength to the mean tensile strength.  In 

addition,  is Poisson’s ratio and for graphite this material constant is taken equal to 0.15.  

The expression for the equivalent stress can be incorporated into a limit state function 

easily.  That limit state function would be expressed as  

 
T

g

 1   (7.1.5)  

where T represents the tensile strength of the material.  The tensile strength parameter 

is then treated as a random variable and reliability calculation proceed in a manner 

identical to the methods outlined in Chapter 6. 

 The code requires information regarding the mean strength of the compressive 

random variable in order to compute Rtc and subsequently the equivalent stress at any 

point.  In statistics the mean value of a random variable is considered a location 

parameter for any density function whether the density function is a normal (Gaussian) 

density function or not.  However, the code does not require, nor does it utilize any 

stochastic information relative to the scatter in compressive strength.  The code 

considers the stochastic properties of the tensile random strength variable by using the 

Weibull characteristic strength (a location parameter) and the Weibull modulus (a 
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measure of scatter or variance).  The ASME Code embraces the tensile strength as a 

random variable in a comprehensive manner but does not do the same with the 

compressive strength random variable.  The ASME Code effectively ignores stochastic 

information relative to the compressive strength of the material by discarding the scatter 

quantified by the associated Weibull modulus.  This is done with the thought that this 

simplifies design procedures. 

The ASME limit state function in equation (7.1.5) is an isotropic failure criterion.  

It has been noted throughout that data from Burchell et al. (2007) represents anisotropic 

failure behavior.  As will be seen momentarily, the data from Burchell et al. (2007) is 

convenient in facilitating a comparison between the reliability models derived here and 

the ASME based reliability models.  As a work around the tensile and compressive 

mean strengths from the data found in Burchell et al. (2007) in the preferred direction can 

be used to compute a value for Rtc..  With a value of the ratio of mean strengths and the 

Weibull parameters from tensile strength stress data one can map the probability of 

failure curve depicted in Figure 7.1.1 using equation (7.1.5).  In this figure the 50% 

probability of failure curve is projected into the 11 –22 stress space.  The curve bisects 

the data from Burchell et al. (2007) along the 11–axis as it should.  This stress axis 

coincides with the preferred (strong) direction of the material.  The 50% probability of 

failure curve should be in close proximity with the mean values of the tensile and 

compressive strength data, and from the figure it is evident this happens. 
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Figure 7.1.1 ASME Maximum Distortional Energy Probability of Failure Curve (50%) 

with the Failure Data from Burchell et al. (2007). 

 As a comparison, the isotropic reliability model derived here is also projected into 

a 11 –22 stress space in Figure 7.1.2 along with the maximum distortional energy 

reliability model just presented.  Both reliability curves are characterized using the data 

from Burchell et al. (2007) in the strong direction of the material.  The 50% probability 

of failure curve generated by simulation was presented in the previous chapter.  It is 

evident in this figure that the ASME maximum distortional energy reliability curve is 

more conservative than the isotropic reliability curve.  This is starkly apparent in the 
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biaxial compression regions of the stress space.  The isotropic reliability model is 

controlled by the biaxial strength parameter, BC, along this stress path.  Adjustment in 

the isotropic reliability model can be made along this stress path through this parameter 

indicating a degree of flexibility has been built into the model.  No such flexibility exists 

in the ASME models along this stress path.  Since failure data is unavailable for an 

equal biaxial stress load path because of the difficulty of attaining this state of stress in a 

test specimen, future efforts should include an optimization algorithm to determine the 

Weibull parameters for the biaxial compression strength random variable, BC.   
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Figure 7.1.2 Probability of Failure Curves (50%) from the Maximum Distortional 

Energy Reliability Model and the Isotropic Reliability Model.  The Failure Data from 
Burchell et al. (2007) is shown. 

 The ASME Code recognizes that the practice of assuming a fixed design margin, 

which is done for components fabricated from metal alloys, does not produce a uniform 

design reliability throughout a graphite reactor core.  As mentioned, earlier the ASME 

Code treats the tensile strength of graphite as a random variable.  The code assumes the 

tensile strength random variable is characterized by a two parameter Weibull distribution.  

This same assumption was made throughout this work for all random strength variables.  

In order to introduce a degree of conservatism in the ASME analysis the Weibull 
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parameters extracted from the tensile strength data are “knocked down.”   The code 

calls for the use of Weibull parameters that correspond to the lower limit of the 95% 

confidence bound on the estimated parameters.  At the time this dissertation was written 

the expression in the ASME code for the “knocked down” value of the Weibull 

characteristic strength at the lower bound of 95% confidence bound was incorrect.  The 

correct relationship for the 95% lower bound on the Weibull characteristic strength is 

used here.  The effects of the “knocked down” Weibull parameters called for in the 

ASME code are in evidence in Figure 7.1.3.  As a result of using the “knocked down” 

Weibull parameters the ASME maximum distortional energy probability of failure curve 

shrinks isotropically  The stress states that correspond to the 50% failure probability 

using the “knocked down” Weibull parameters are smaller in magnitude relative to those 

in the previous figure.  This imposes an unknown degree of conservatism on the design 

of graphite reactor core components.  The 95% lower bound on Weibull parameter 

estimates does not correspond to a 95% lower bound on component reliability.    
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Figure 7.1.3 Probability of Failure Curves (50%) Using the ASME Method with the 
Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 

from Burchell et al. (2007) is Included. 

In order to paint a comprehensive picture of the maximum distortional energy 

reliability model a nested set of reliability curves are presented in the next figure.  Keep 

in mind that data from Burchell et al. (2007) along the tensile and compressive 11-axis is 

used as proscribed in the ASME code, i.e., “knocked down” Weibull parameters are used 

in Figure 7.1.4.  The spacing between the curves is controlled by the Weibull modulus 

obtained from the tensile data.  This aspect of the ASME approach should be 

interrogated in future efforts.   
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Figure 7.1.4 Nested Reliability Surfaces Using ASME Code Methods to Determine 
Reliability. The Failure Data from Burchell et al. (2007) is Depicted. 

These curves correspond to failure probabilities of 5%, 50% and 95% and they 

should be compared to the reliability curves found in Figure 6.3.5.  Note that the 95% 

probability of failure curve in Figure 7.1.4 is beyond the last compressive failure data 

point along the 11-axis.  This seems to infer a bit of non-conservatism for compressive 

loads.  The 95% probability of failure curve for the isotropic reliability model developed 

here is in close proximity to the largest compressive failure stress in Figure 6.3.5.  This 

would indicate that the probability of failure curve in Figure 6.3.5 for the isotropic 
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reliability model developed here is more conservative, and this is born out in the next 

figure.  

 
Figure 7.1.5 Probability of Failure Curves (95%) Using the ASME Method with the 

Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

A similar comparison is made in the next figure at the 5% probability of failure.  

In Figure 7.1.6 the ASME reliability curve using the “knocked down” Weibull 

parameters is conservative at every stress state around the curve.  This level of failure 

probability is more in line with the levels engineers would more than likely design to. 
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Figure 7.1.6 Probability of Failure Curves (5%) Using the ASME Method with the 

Reduced Weibull Parameters and the Isotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

Finally in Figures 7.1.5 and 7.1.6 the ASME reliability models are compared to 

the predictions from the anisotropic reliability model derived in this work.  Again, all 

models are characterized using the data from Burchell et al. (2007).  The first 

comparison of the anisotropic curve developed here is made with the ASME maximum 

distortional energy curve.  Both curves appear in Figure 7.1.1 and both curves 

correspond to a failure probability of 50% 



205 

 
Figure 7.1.7 Probability of Failure Curves (50%) from the ASME Maximum Distortional 
Energy Reliability Model and the Anisotropic Reliability Model.  The Failure Data from 

Burchell et al. (2007) is Shown. 

In Figure 7.1.7 the anisotropic reliability model tracks the data from Burchell et 

al. (2007) better than the maximum distortional energy reliability model from the ASME 

code.  This is not a surprise since it is evident at first glance at the data from Burchell et 

al. (2007) that the failure behavior of the H-451 graphite tested is anisotropic.  In this 

figure the ASME code curve is no longer conservative for all stress states.  In equal 

biaxial compression regions of the stress space the ASME code curve remains 

aggressively more conservative.  However, stress states along the 22 – axis, i.e., stress 
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states that corresponds to tensile and compressive strengths in the plane of isotropy, the 

ASME curve is no longer conservative.  This reflects the fact that the anisotropic model 

allows for more information regarding the strengths of the material as well as by the fact 

that the ASME model is characterized with failure data oriented in the strong direction of 

the material, i.e., along the 11-axis.  The fact that the ASME model does not track the 

s22 failure stresses well should not surprise.  There is no provision in the ASME Code 

for anisotropic failure behavior.  A conservative approach would be the utilization of the 

weak axis failure data, i.e., failure data in the plane of isotropy.  At the present time that 

is not called for specifically in the ASME Code.  
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Figure 7.1.8 Probability of Failure Curves (50%) Using the ASME Method with the 

Reduced Weibull Parameters and the Anisotropic Reliability Model. The Failure Data 
from Burchell et al. (2007) is Included. 

When the anisotropic model is compared to the ASME model with “knocked 

down” Weibull parameters the conservatism of the anisotropic model in the plane of 

isotropy is greatly diminished.  When the comparison is made at the 5% probability of 

failure level the ASME model with the “knocked down” Weibull parameters is more 

conservative at any stress point on the reliability curve.  This can be seen in Figure 

7.1.9. 
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Figure 7.1.9 Probability of Failure Curves (5%) Using the ASME Method with the 

Reduced Weibull Parameters and the Anisotropic Reliability Model.  The Failure Data 
from Burchell et al. (2007) is Included. 

7.2  Theoretical Development - Summary  

As noted throughout this dissertation the data from Burchell et al. (2007) 

demonstrates that certain grades of nuclear graphite exhibit anisotropic failure behavior.  

In general, anisotropy can be accounted for by introducing the concept of a vector 

representing the preferred material direction(s) to the reliability analysis.  For the 

specific case of transverse anisotropy an integrity base was developed based on earlier 
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work of Green and Mkrtichian (1977).  They developed their integrity basis in order to 

derive an isotropic constitutive model for non-linear elastic behavior.  The non-linear 

stress-strain model accounted for different elastic deformation behavior in tension and 

compression by introducing a direction vector to the integrity basis that tracked the 

direction of the maximum principal stress.  Their integrity basis was modified to 

account for a preferred direction in a material – that is, to account for material anisotropy 

exhibited in the failure behavior of nuclear graphite.  This required a second vector in 

order to track material anisotropy.  The second vector coincides with the preferred 

direction of the material, i.e., the “strong” direction of the material.  Thus the integrity 

basis assembled here accounts for two directions – on associated with the stress state of 

the material and a second associated with material symmetry.   

This integrity basis was constructed following the framework advocated for in 

Rivlin and Smith (1969) as well as Spencer (1971, 1984).  This work focused on 

isotropic failure behavior first.  A linear combination of the invariants identified by 

Green and Mkrtichian (1977) were used to formulate for four separate isotropic failure 

functions for each region of the principal stress space defined by the relative magnitudes 

of the principal stresses.  The linear combination of invariants serves as the limit state 

function for materials with different failure behavior in tension and compression.  

Constants associated with the linear combination were identified for each stress region in 

terms of simple mechanical test data.  This identified the fundamental strength 
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parameters that were later treated as random variables in transitioning from deterministic 

models of limit state functions to reliability models.  When the isotropic integrity basis 

adopted from the work of Green and Mkrtichian (1977) was extended to account for 

material anisotropy additional material strength parameters were identified.  These 

additional strength parameters that were similarly treated as random strength variables for 

the anisotropic reliability model.  Developing an isotropic failure criterion for graphite, 

transforming that failure criterion into a reliability model, and extending both to 

transverse isotropy represent the primary contribution to the body of knowledge made 

during this research project.   

The transformation from a deterministic failure criterion to a reliability model was 

enabled numerically through the use of Monte Carlo simulations augmented with 

importance sampling.  This makes the reliability model amenable for use in engineering 

design.  States of stress in a graphite core component can be analyzed using finite 

element analysis and subsequently reliability evaluations can be conducted at each 

integration point of an element within the finite element mesh.  This approach is 

advocated for at select points in a reactor component in the ASME Code.  This is also 

the analytical structure utilized in the NASA CARES software algorithms (Gyekenyesi, 

1986), but in a more comprehensive fashion.   
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7.3 Conclusions and Future Efforts 

Research projects can raise more questions then are answered.  This project took 

on that quality near the end.  When the isotropic model was extended to capture 

transverse anisotropy failure behavior the model tracked failure behavior seen in the data 

from Burchell et al. (2007).  The transversely isotropic model was characterized using 

data from Burchell et al. (2007) so the model should mimic the data used in 

characterizing the model, or the model is seriously flawed.  Typically with analytical 

models one should characterize the model with data from one type of test specimen.  

The model should then be interrogated by asking the model to predict the behavior from a 

test specimen with a completely different specimen geometry and load configuration.  

The anisotropic reliability model can and should be characterized by the data from 

Burchell et al. (2007), which was done here.  The model should then be used to predict 

failure probabilities say for an L-shaped bracket that is representative of reactor core 

components.  The predictions from the model for the second test specimen geometry 

should be compared to the failure data from the L-shaped bracket geometry and 

conclusions regarding model performance can be drawn.  This assumes the L-shaped 

brackets, or other type of test specimen with a complex stress distribution, is fabricated 

from the same material used to characterize the model.   

This approach has been advocated in Department of Energy (DoE) research 

programs and internationally collaborative industry program with a focus on nuclear 
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grade graphite.  To date this strategy has not been completely implemented for a 

particular material.  Even if testing had taken place for the two types of test specimen 

the finite element analysis required to make this comparison is beyond the work scope 

here.  This is another task for others to assess in the future.   

Reliability calculations made using the models developed here required numerical 

methods for evaluation.  The simplest approach, i.e., Monte Carlo simulation, was 

shown to be ineffective at low probabilities of failure.  Too much error is present even at 

extremely large numbers of simulations.  Yet low probabilities of failure is where an 

engineer wishes to operate a system of components.  Importance sampling mitigated 

issues at low probability of failures, but the sense here is that the sampling density 

functions can and should be optimized somehow.  Others following up on this research 

effort should look seriously into this issue. 

With regards to failure analysis for material with material symmetries other than 

transversely isotropic, the extension of a phenomenological failure criterion was made 

here for transversely isotropic failure behavior.  In the future other material symmetries, 

e.g., materials with orthotropic failure behavior, can be accommodated as well.  Duffy 

and Manderscheid (1990b) as well as others have suggested an appropriate integrity basis 

for the orthotropic material symmetry.  These should be studied in conjunction with the 

integrity basis outlined in the work of Green and Mkrtichian (1977). 
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Finally, the ASME design code is in need of a comprehensive software algorithm 

to aid design engineers in qualifying components.  This algorithm must enable the 

design engineer to calculate the reliability of graphite core components as a system where 

the stress state at every point in the component contributes to a reduction of component 

reliability, not just a select number of locations of high stress.  This admits the 

possibility of failure occurring at any point in a reactor component.  Unfortunately, the 

size effect of graphite is somewhat enigmatic.  As Nemeth and Bratton (2012) as well as 

others point out certain size effects in graphite materials is hard to characterize.  With 

regard to system reliability materials can act as a weakest link system where failure at a 

point is catastrophic.  Other materials can act as a series system where failure must take 

place at every point in the system for failure to occur.  The suspicion here is that 

graphite acts like an “r out of n” system where failure of the system occurs after a finite 

number of failures have occurred throughout the component.  This concept should be 

pursued in future efforts.  
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