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A GENERALIZED INVERTER CONTROL METHOD FOR A
VARIABLE SPEED WIND POWER SYSTEM UNDER

UNBALANCED OPERATING CONDITIONS

SHUANG WU

ABSTRACT

This thesis presents a generalized control method for complete harmonic
elimination and adjustable power factor of a grid side inverter under unbalanced
operating conditions used in variable speed wind power systems. The theoretical
analysis of the proposed control method is described and verified by simulation in
Simulink ©. Two types of traditional control methods are also explained and applied in
the wind power system for comparison, which are the indirect current control in a-b-c
reference frame and the active and reactive power control in d-gq synchronous frame.

This method is verified for the gird fault right-through operation as well.
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CHAPTER |

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

Wind power energy is a free, renewable and clean energy source. The United
States has more than 8000 GW available in wind power resources. In 2008, the
Department of Energy’s report concluded that “the U.S. possesses sufficient and
affordable wind resources to obtain at least 20% of its electricity from the wind by
2030. [1]” The economic stimulus bill passed in February 2009 contains various
provisions to benefit the wind industry.

Significant wind power capacity is beginning to be connected to the grid so
that wind can be fully utilized as a power source. However, there are still technical
challenges in interfacing wind power to the electricity grid [2], [3], [4]. The power
grid is with constant frequency. If the wind turbine is directly connected to the grid,
the generator has to run with a constant rotating speed. Traditionally, variable pitch
constant speed turbines and gear boxes are coupled to the generator so that with the

changing of the wind speed, the generator can still run at a constant speed. But the



gear box brings a lot of noise, which does harm to the environment, and the physical
abrasion means the degradation of the turbine and generator. Another option is the
frequency conversion between the grid and the generator, and this is achieved by two
power electronics converters, which are also called the back-to-back PWM converters.
With the decreasing price of silicon and the increasing power rating ability, the power
converter using the insulated gate bipolar transistors (IGBT) is able to handle the
power in the range of 1 MVA with a switching frequency about 1KHz to 100 KHz [5],
which makes it a possible solution for the wind power application. Figure 1.1 shows
the variable-speed wind turbine with fully rated converter configuration and a

permanent-magnet generator.

PM Generator J_ | /Yyl\_1 ?U‘]
Vw L2
O —|_ " <,\5U3

Wind turbine  PWM machine side converter VSR PWM grid side converter VS| Utility Grid

Figure 1. 1: The variable-speed wind power system with fully rated converters and a permanent-magnet
generator

The machine side converter, which is a rectifier, sets the torque demand
according to the speed to achieve maximum turbine power and transfer the variable
frequency power to a DC link. The grid side converter, which is an inverter, transfers
the DC link power to the power grid with the grid frequency and voltage. At the same
time, the grid side converter is controlled to maintain the DC link voltage at a constant
value.

The features of the power converter are attractive, but it has its own drawbacks,

especially for the grid side converter. It is very sensitive to grid disturbance; when the



grid side voltage is unbalanced. Under unbalanced operating conditions there is a
deterioration of the inverter input DC voltage and output currents. It has been shown
in reference [6], [7] that wunbalanced voltages contain a significant
negative-phase-sequence component, causing the derived current reference to be time
variant, which will result in a huge second order harmonic in the DC link voltage.
This will in turn bring a third-order harmonic for the AC side currents. In wind power
industrial application, the harmonic caused by the unbalance grid side voltage has
been shown to not be easily absorbed by the limited DC-link capacitor, which is
normally located in the nacelle on the top of the turbine tower. And with the
unbalance which may occur frequently especially in weak system, the harmonic
should be eliminated by the control of the gird side inverter.

In this thesis, the wind power systems with the variable wind speed under the
unbalanced grid operation are proposed.

This research method is based on the harmonic elimination control, which was
originally proposed for a PWM rectifier [8]. The method proposed in [8] has been
modified and used for the wind power application.

In Chapter 2, the general solution for harmonic elimination of a grid side
inverter under unbalanced operating conditions is presented in detail. An analytical
solution for complete harmonic elimination with adjustable power factor is obtained.

In Chapter 3, the models of the systems using the permanent-magnet generator

and induction generator are presented in the Simulink® with SimPowerSystems™

tool box. The simulation results for the optimal wind power acquisition and the low
order harmonic elimination under unbalanced grid operation are given and compared
with the simulation results, which are obtained by using the typical methods for the

control of the grid side converter.



In Chapter 4, the conclusion is given and the future works are proposed.

1.2 Literature survey

This chapter presents a review of significant previous work related to this
research. The following five general areas provide information relevant to this study.

1. Variable-speed wind energy system and the characteristics of wind turbine.

2. Permanent-magnet generator in wind power application and the
corresponding machine side rectifier control.

3. Squirrel cage induction generator in wind power application and the
corresponding machine side rectifier control.

4. Traditional grid side inverter control.

5. The recent studies on unbalance harmonic elimination for the wind power

application.

1.2.1 Variable-speed wind-energy system and the characteristics of wind

turbine

Variable power generation enables the operation of the turbine at its optimal
power coefficient over a wide range of wind speeds. The output power of a wind
turbine is given by.

P. =%pAVW'°’Cp(ﬂ,/1) (1.1)

Where pis the density of air. A is the wind turbine swept area. V,, is the
wind speed. C, is the power coefficient and it is the function of the pitch angle g

and the tip speed ratio A.



J=R% (1.2)

R is the wind turbine radius, and @, is the wind turbine angular speed [9].

It can be seen in (1.1) that wind energy can be utilized most efficiently when

the power coefficient of the turbine is highest. The tip speed ratio 4,

meeting this
condition is determined by the inherent characteristic of the turbine. So the wind
turbine angular speed has to change in correspondence to the change of the wind
speed in order to collect the maximum power.

With the change of the wind speed and the rotor speed of the generator, in

mechanical aspect, the electromagnetic torque has to be controlled.

The optimum torque and optimum power corresponding to the wind speed are:

=K _ @ (1.3)

P

opt —

K. o (1.4)

opt “opt
where K, is optimum coefficient.

In electrical aspect, the electromagnetic torque of the generator can be
controlled by the current of the stator windings, and this is the main purpose of the

machine side converter, which is a PWM voltage source rectifier (VSR).

1.2.2 Permanent-magnet generator in wind power application and the machine

side rectifier control

The permanent-magnet synchronous generator has numerous advantages over
other machines. The stator currents of an induction generator contain not only the
torque-producing currents, but also the magnetizing components. With the use of the

permanent-magnet in the rotor, the stator currents need only be toque-producing. It



means the permanent-magnet synchronous generator will operate at higher power
factor because of the absence of magnetizing currents. So the permanent-magnet
synchronous generator will be more efficient than the induction generator. As the
wound-rotor synchronous generator, there must be a dc excitation for the rotor
supplied by brush and slip rings, which means rotor losses and brush maintenance
[10]. By using the permanent-magnet rotor, the other excitation parts can be gotten rid
of. Moreover, permanent-magnet synchronous generator can have a high number of
poles, so they do not need any gear box if used in the wind power application.
Because of the reduction of magnet price and magnetic characteristic improvement
[11], permanent-magnet synchronous generators have recently received an increase in
attention, especially for wind power energy.

Figure 1.1 has shown the permanent-magnet synchronous generator connected
to the grid by two PWM converters for the variable speed wind power system.

Figure 1.2 shows the per-phase equivalent circuit of a permanent-magnet

synchronous generator.

L, R, Lsa
— W, ot

+
6/ Ea=\|!0)e Usa

Figure 1. 2: The per-phase equivalent circuit of a permanent-magnet synchronous generator.

The mathematical model of a permanent-magnet synchronous generator is

derived in the following assumption:



e Saturation is neglected.

e Induced EMF is sinusoidal.

e Eddy currents and hysteresis losses are negligible.

Based on the assumption, according to the KVL, the circuit of the generator

can be defined as:

Usa =\Pa)e - ja)eLalsa _Ralsa
U, =Yo,-joLl,-Rl (1.5)
Usc =\Pwe - ja)eLclsc - Rclsc

Where U, is the phase A voltage, I, is phase A current, L, is phase A

sa a

inductance and R, is phase A resistance, ¥ is the magnet flux , @, The stator

voltage rotor speed. Since the parameters in three phases are the same and balance,
phase B and phase C are with the same denoting method.

The stator voltage electrical speed is related to the rotor mechanical speed as
follows:

1) (1.6)

e = PO,

where p is the pole pair number.

To control the permanent-magnet synchronous generator in a simply and
generously used method, the equations (1.5) of the generator in a, b, ¢, coordinate are
projected on a reference d-q coordinate system rotating synchronously with the
magnet flux [12]. The d, q variable are obtained from a, b, ¢ variable through the Park
transformation.

Voltage U, ,U,, ,U can be measured and transformed to U,and U, by

sa !

multiplying the matrix M

abc_apo "



, 11
2 2
2 J3 43
M =2l -2 X2 1.7
abc_apo 3 2 2 ( )
111
_2 2_

The corresponding rotating space vector U, and U, are calculated by

multiplying U, and U, with the matrixM , -

cosd, sing, O
M,y 4o =|—SING, cos6, 0 (1.8)
0 0 1

The angular position &, of the stator voltage is calculated by using the

equation:

0, = o,dt= tanlﬂ—a (1.9)
B

The three phase grid currentsig,, iy, i, are measured and transferred to i, and

I, using the same matrices above.

The dynamic model in the magnet flux reference system is as follow:

Ug, =—R.ig, — L, dc;—stu L,is, (1.10)
di
Usy = —Ryisy — L d—i‘u L,y + o, ¥ (1.11)

Whereu,, , ug, are the stator phase voltages in d-q frame, L, is the

sq S

generator inductance and R, is the generator resistance.
L=L =L =L (1.12)
R.=R, =R =R (1.13)

The electromagnetic toque in d-g frame is given by,



T, =g pWi, (1.14)

The purpose of the control of the permanent-magnet generator is to achieve
optimal performance. The optimum torque corresponding to the wind speed is given
in equation (1.3). With knowing the wind speed and the corresponding rotor speed,
the generator should be controlled to get the optimal torque.

Equation (1.14) shows the relationship between the g-axis current and
electromagnetic toque. Since the pole pairs and the magnetic flux linkage are constant,

the electromagnetic torque is directly proportional toi, .

T, = Kig, (1.15)
3
K=2p¥ (1.16)

So the desired T, is obtained by setting the desiredi,, . The direct-axis

current ii,” component can be set to zero to minimize current for a given toque and

therefore minimize resistive losses. [12] This control by using the vectors in d-g frame
is also called vector control.
Figure 1.3 shows the control loops of the machine side converter connected to

the permanent-magnet generator.



Machine side converter  Grid side converter

@ =

32

SVM e

Lswis,

Vi
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Figure 1. 3: The vector control of the machine side converter connected to the permanent-magnet
generator.

The required d-g components of the rectifier voltage vector are derived from
two proportional and integral current controllers. One is controlling the d-axis current
and the other is controlling the g-axis current.

According to the linear system theory, from the state equations (1.10) and

(1.11) of the circuit, the transfer functions between the currents and voltages can be

expressed as

i I
T(S)= IsdI= sq 1

Ug ' Uy  LsS+R

(1.17)

Where ug', ug' are the voltage components in the d-q axes that control the

corresponding current components, and s is the Laplace operator.
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1.2.3 Squirrel cage induction generator in wind power application and the

machine side rectifier control

Induction generators have their advantages over the synchronous generator:
they are brushless and are rugged constructions, which means low cost and minimum
maintenance required; self-protection against sever overloads and short-circuits, good
dynamic response, which means simple and reliable operation. However, with many
distinct advantages listed above, there are obstacles for the machine to be operated as
a generator. There are three prerequisites for the IG to generator AC current:

(1) The rotor speed @, of the induction machine must be higher than the

synchronous speed @, or the slip speed has to be negative value so the induction

ync
machine can run in generation mode.
The synchronous speed is defined as

_120f,

a)sync - (118)
P

The Slip speed s is defined as

WOgyne — O,
5= Lo T 1000 (1.19)

a)sync

(2) Residual magnetism in the iron of the magnetic circuits is needed to set
up a small alternating voltage in the stator.

(3) Besides the residual magnetism, the excitation currents are needed to
magnetize the core. An isolated induction generator without magnetizing currents
won’t generate any power. The excitation currents for grid connected induction
generator are supplied from the grid, which draws the reactive power from the grid.
For a stand-alone induction generator self excitation is possible with the capacitor

banks connected to the stator [13]. For an induction generator which is connected to

11



the grid by two back-to-back PWM converters, the reactive power can either be
provided by the machine side rectifier or by an external capacitor bank [14]. In this
thesis, the main purpose of the machine side rectifier is to achieve the optimal power
acquisition, so a fixed capacitor bank is chosen for the excitation. Figure 1.4 shows
the SEIG generator connected by two PWM converters to the grid for the variable

speed wind power application.

Induction generator  PWM Machine Side Converter VSI  PWM Grid Side Converter VS| Utility Grid
L1

111 .

Wind turbine | | I

Three-phase capacitor bank

Figure 1. 4: The variable-speed wind power system with fully rated converter and a squirrel cage
induction generator

There are different control techniques for induction machine, scalar control,
vector and field-oriented control. For the scalar control, it includes the open loop
\olts/Hz control and torque and flux control. In this thesis, the purpose of the control
is to get the desired torque value with different rotor speeds for the optimal power
acquiring. The direct torque and flux control is applied. Scalar control only controls
the magnitude of the variable. The voltage of the machine can be controlled to control
the flux, and frequency or slip can be controlled to control the torque [15].

The control scheme of the induction generator is shown in figure 1.5.

12
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Figure 1. 5: The scalar control of the induction generator.

Instead of controlling the input voltage of the machine side rectifier, the stator
current which is the input current of the rectifier can be controlled since the torque
and flux of the machine are related to the current. For the torque control loop, the
actual value of the torque is fed back to the Pl controller and compared with the
reference. The error signal is used to update the stator slip speed. The angular
frequency of the stator current is obtained by adding the slip speed and the rotor
electrical speed.

The relationship between the rotor electrical speed and mechanical speed is

defended as:

o, =)o, (1.20)

For the flux control loop, the actual value of the flux is fed back to the PI
controller and compared with the reference. The error signal is used to update the
stator current magnitude.

The hysteresis controller is used to make the machine stator currents track the
reference currents so the torque can be controlled to follow the optimal value when

the wind speed changes and the rotor flux is kept constant.
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1.3 Control of a grid-side PWM inverter

The configuration of the grid side inverter is basically the same as a rectifier,
Figure 1.6 shows the grid side inverter, while the power flows in an opposite direction,

from the DC side to the AC side.

O

Pgrid
} SW1 } Sw2 } Sw3
L1 U1
Vdc L vz
—C
L1 U3

% SWeé } SW5 } Sw4

Figure 1. 6: Grid side converter transfers the power from DC link to grid.

o

According to KVVL and KCL, the circuit can be defined with the equation:

ua usa ia d ia

U, |=|uy |—R| 1, |[-L—]|1, (1.21)
. dt|.

uC uSC IC IC

Where L and R are the grid inductance and resistance. u_, u,, u.are the
three phase line-neutral voltages. u,u, ,u.are the three phase output voltages of

the bridge. 1i,,1,, i are three phase grid currents.

Figure 1.7 shows the per-phase equivalent circuit. Figure 1.8 shows the phase

diagrams.

14
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Figure 1. 7: The per-phase equivalent circuit
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X
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Figure 1. 8: The phase diagrams

Power flow in the PWM converter is controlled by adjusting the phase shift
angle & between the source voltage U; and the respective converter reflected input
voltage Vs [8]. In Figure 1.8 (a), when U; leads Vg the real power flows from AC
source to DC, the converter operates as a rectifier. In Figure 1.8 (b), when U; lags Vs,

power flows from DC side to AC, the converter operates as an inverter.

The real power transferred is given as

P:%sin5 (1.22)

1

The ac power factor is adjusted by controlling the amplitude of V¢, shown as

Figure 1.8 (c).
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The purpose of the grid-side inverter control is to balance the power between
the AC grid and the DC link. The power transferred via the DC link should be fed to
the grid immediately. And the dc-link voltage needs to be controlled to assure a
constant value within the dc-link. The active and reactive power control for the
inverter has been shown in references [12], [16], and [17].

The dynamic model of the grid side inverter, when selecting a reference frame

rotating synchronously with the grid voltage is given by,

u, =u,, —Ri, - LC;—|;‘+a)eLiq (1.23)

di
Uy = Uy, =Ry~ L~ oL, (1.24)

Since the three-phase grid voltages are with constant amplitude and with

constant frequency, u,andu, are constant. In a balanced three-phase system, active

and reactive powers in the d-g reference frame can be expressed as:

3, . .
P=§(ud|d +U,i,) (1.25)

Q =§(udiq +U,iy) (1.26)

Since the rotating reference frame is aligned with the d-axis, u,is zero,

equation (1.25) and (1.26) can be expressed as,

P =§udid (1.27)

Q- % Ui, (1.28)

The active power transmitted by the DC link can be expressed as

Pdc =Vdc Idc (129)

16



The power transferred via the DC link should be equal to the power fed into

the grid:

P, =P

c ac’

3 .
Eudld :Vdcldc'

(1.30)

(1.31)

From Equation (1.27) and (1.31), it can be seen that the active power control

can be achieved by controlling direct axis current i, .

An outer DC voltage control loop is used to keep the DC link voltage constant.

The error V, *-V,. and a PI controller can be used to update the active power so the

direct axis current reference i, * is obtained.

The reactive power is also implemented in the control, i, * is set according to

the reactive power Q andu, . Because the reactive power can not be determined from

the dc grid, the amount of reactive power will be given as an external nominal value

according to the need of the grid. Figure 1.9 shows the grid side inverter control

scheme.

M
dq0_apo

gating 1-6]

: "
i+ ' uig* U
I(3us) i ® PI ‘
-

+ ug

Voltage
Angle
Calculation

Uq,Up

PWM

DC link

—

«3

Ua,Upb,Uc

3.

M
iq id - apo-dgo

apo-dgo

io,ip

ia,ib,ic

Figure 1. 9: Active and reactive power control for the grid-side inverter.
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According to the state equation (1.23) and (1.24), Let

Ri, + L(;—Is:ud' (1.32)

i di, ,
Ri, + LE:Uq (1.33)

The transfer function between voltage and current is given by

1

T(S):%:%:LS+R (1.34)
And equation (1.23) and (1.24) can be expressed as

Uy*=U, '+ (-a@,Li, +Uy) (1.35)

U, *=u, "+ (a,Li; +u,) (1.36)

Where ug, *,u,,* are the reference output voltages for the grid-side inverter.
Uy *,ug, ™ are then transformed to u,*,u,* by multiplying it with the inverse

matrix given by (1.8).

Finally,u, *,u,*, u * are calculated by multiplying the inverse matrix of

matrix (1.7) and are used as the input signal for the PWM generator.

The PWM generator uses the three sinusoidal voltage reference signals and
compares them with a saw wave signal separately to generate six gating signals to
control 6 switches.

Besides the reactive and active power control using the space vector in d-q
frame, the indirect current control for the boost rectifier in a-b-c frame [18] can also
be applied in the control for the inverter. Figure 1.10 shows the indirect current

control scheme.
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Figure 1. 10: Indirect current control of the grid inverter.

The line current reference is derived through the multiplication of a term

proportional to the bus voltage error by a template sinusoidal waveform. The

sinusoidal template is directly proportional to the grid voltage (phase to ground) with

a phase shift. By varying the phase shift degree between the sinusoidal template and

grid voltage, variable power factor can be achieved. The line current is then controlled

to track this current reference. Current regulation is accomplished by using the

hysteresis controller.

1.4 The recent study on unbalanced grid operation in wind power application

The studies [2], [7], [8], [19] have detailed explanations about the causes and

effects of the unbalanced grid operations. In a weak power system network, an
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unbalanced load at the distribution lines can cause unbalanced voltage condition. This
is particularly true for rural electricity power systems where the wind turbines are
normally connected. An unbalanced condition can also be caused by unsymmetrical
transformer windings or unbalanced transmission-line impedances, open wye, and
open delta.

Muljadi et al [19] summarized the problems caused by unbalanced voltage
in a wind power system connected directly to an induction generator. The unbalanced
grid will cause the stator currents of the induction generator to be unbalanced. The
unbalanced currents create unequal heating on the stator winding which will degrade
the insulation of the winding and short the life expectancy of the winding. Unbalanced
stator currents also create torque pulsation on the shaft, resulting in audible noise and
extra mechanical stress.

For the variable-speed wind power system with two back-to-back PWM
converters, the impacts to the generator might decrease because the converter
decouples the generator from the grid. But due to the inherent drawbacks of the PWM
VS|, the unbalanced grid brings other problems to the system. There is a deterioration
of the inverter input DC voltage and output currents. It has been shown in references
[7], [8] that unbalanced voltage contains a significant negative-phase-sequence
component, causing the derived current reference to vary in time, which will lead the
DC voltage of the inverter with significant second-order harmonics. This will in turn
bring third-order harmonics to the AC side. The DC link voltage pulsation will
increase. The damaging risk of the DC-link capacitor and the AC current pulsation
will seriously pollute the grid.

Hansen et al. [20] proposed the control method for the wind power system

which is connected with the PM generator via the frequency converter during the grid
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fault. However, the fault ride-through control is based on the control of the generator
rectifier. A damping controller, which is to use the DC capacitor as short-term energy
storage is implemented to counteract the torque and speed oscillations and ensure a
stable operation of the wind turbine under the grid fault.

Abedini et al. [21] proposed a control method by adding a limiter to limit the
grid currents at inverter and decrease the power generated from the machine during
the grid fault.

Y. Zhang et al. [22] proposed the inverter control strategy for the wind
power system with a permanent-magnet generator under unbalanced three-phase
voltage. The negative sequence current is decomposed and added to the current
template which is calculated based on the phase lock loop (PLL). The control method
guaranteed the sinusoidal and three-phase balance grid side current. However, no
information is provided for the DC link voltage.

Lazarov et al. [23] applied the control method for the grid inverter based on
[24], to control the positive and negative sequence current control in d-q rotating
frame. The input and output harmonics is eliminated by eliminating the second order

reactive and active power. The input power of the inverter is defined as

R, P E¢ Ey Ei Ej(1d
g Qo _ Qo _ Eqp -Edp E; E(T qu (1.37)
3|P,| | 0| |E" -E] -EF EJ|I

P,] Lo |E} EY E EP|IP

The references for positive and negative dq components of the currents in

synchronous frames are determined in

-1
[1a |=[Ew] [S] (1.38)
Chong et al. [7] applied the control method based on [23], [24] and the

control scheme is shown in Figure 1.11
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Figure 1. 11: Grid-side inverter control scheme in ref. [7]

However, the model proposed in [7] and [24] ignores the power exchange
with the inductors. So under extremely unbalanced case or for a system with large
inductance value, the method is not effective.

Yazdami et al. [25] proposed a control strategy with two modes to control
the positive and negative sequence separately. One mode is to balance the grid side
currents. The other mode is to mitigate the DC link voltage ripples under unbalanced
grid conditions. For the second mode to mitigate the DC link voltage ripple, the
instantaneous active power at the ac terminals of the VSC is directly regulated based
on [26], [27] so the harmonics are eliminated more effectively even for extremely
unbalance case.

Hu et al. [28] proposed the control scheme based on [25], [26], [27]. The

four input current references can be calculated as

I;+ Dl D2

Iy, _ 2| Db, -b Py (1.39)
I:; 3D| -D;, D, qzi)n*

Ig -D, D,

Where D;, Dy, D3 Dy are all nonlinear expression, withE, V and E*,V?
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expressed in positive and negative sequence rotating frame. Figure 1.12 shows the

control scheme.

Ea+ Var
. dq+ . *
o H "o, o + V'
-

(39)
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TR Ll
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Figure 1. 12: Grid-side inverter control scheme [28]

The reference current is obtained under rotating frame and then is
transformed back to a § frame to eliminate the filter which is required for dual current
control. The controller is employed in the stationary frame and it is proved that the
method is effective under generalized unbalanced operation conditions.

Rodriguez et al. [29] [30] separately presented and compared five reactive
and active power control strategies developed for the inverter operating under
unbalance grid conditions. However, the active power and reactive power are

controlled without considering each other.

1.5 Comparison of this thesis and recent studies

In this thesis, a generalized method of input-output harmonic elimination for
a grid side VSI is proposed based on [14]; the proposed method is general and can be
used for all levels of unbalanced grid operation.

In contrast to the studies in [20], [21], the proposed method controls the

inverter to eliminate input and output harmonic under unbalanced grid operation so to
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eliminate the power pulsation. The wind power system can still work and the
generator does not need to be disconnected from the grid even under extremely
unbalanced cases. Moreover, the generator can still work under the optimal power
tracking and transfer the power to the grid under the extremely unbalanced case.

In contrast to the studies about the control of the voltage source inverter
under unbalanced grid operation or during the grid fault [7],[22]-[25], [29]-[30], the
method is proposed in a-b-c frame without any frame or sequence transformation and
decomposition. In the analysis and calculations, all variable are using phasor
representation. Furthermore, only three hysteresis controllers are needed to make the
actual currents track the reference currents. No filter or complicated controller design
are needed. This saves a lot of time for the online calculation and minimizes the errors
which may accumulate during transformation. These make the physical
implementation easier and require less hardware.

However, the hysteresis current controller has a variable switching frequency,
and this frequency may become very high under some particular circumstances, while
the voltage space vector PWM controller has a constant switching frequency.

More importantly, the proposed control method is general because it applies for
all levels of unbalance in grid voltages and line impedances with adjustable power
factor, while such information is not provided in the previous studies.

Table 1.1 provides a summary of the features of the proposed method in this

thesis and control schemes in [7], [22], [23], [25], [28].
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Table 1. 1: Comparison between the proposed method and control schemes in
[71, [22], [23], [25], [28].

Method in Method in [22] | Methods in Methods in

this thesis [23],[7] [25],[28]
Frame and a-b-c frame; No d-q transformation | d-q d-q

transformation and sequence transformation transformation
sequence

transformation

required

decompositions

and sequence

decompositions

and sequence
decompositions.

o B is required in

(28]
Current Current reference | Reference currents | Reference Reference
_ calculated in are obtained by currents are currents are
Regulation a-b-c frame; adding negative positive and positive and
actual currents sequence negative dq negative dq
directly track the | component to the components components
references output current from
three-phase PLL
PWM Hysteresis Hysteresis current Space Vector Space Vector
current controller | controller PWM PWM
controller
Unbalance Extremely Slightly unbalance | Slightly Extremely
unbalanced unbalance unbalanced
degree
No No Notch and low Notch and low

Filter required

pass filter

pass filter in [25],
No in [28], but a
MF PR resonant
current regulator
is proposed

25




CHAPTER I

THEORETICAL ANALYSIS

2.1 The wind power system connected to an unbalanced grid

The variable speed wind power system consists of a wind turbine, a
generator and two back to back PWM converters. The machine side converter rectifies
the variable-magnitude and variable-frequency voltage to a DC voltage. The grid side
converter inverts the DC voltage to the AC voltage with the same magnitude and
frequency as the grid. The grid side PWM converter has many advantages with typical
controls such as the indirect current control and direct active and reactive control
under balanced operation. However, under unbalanced grid voltage operation, the grid
side current will contain the negative-sequence components and cause the low order
harmonics to flow. This low order harmonics in grid currents will cause the DC link

voltage and the electromagnetic torque pulsations at the twice the grid frequency.
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2.2 Harmonic elimination methods

In this chapter, the method for input-output harmonic elimination of the
PWM VSI under severe fault conditions in the wind power system is proposed.

Dr. Ana V. Stankovic [8] proposed a generalized method of input-output
harmonic elimination for PWM boost type rectifiers under severe fault conditions in
the power systems. Ke Chen [8], [31] implemented the method on a 250W a prototype
and validated the method in extremely unbalanced case. This thesis derives the
solutions for the current references of the grid side inverter for the harmonic
elimination under the unbalanced grid operation.

Figure 2.1 shows the circuit of the grid side inverter and Figure 2.2 shows the

equivalent circuits.

+c‘

)

|

|

3
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Figure 2. 1: The circuit of grid side inverter connoted to the grid with line impedances
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Figure 2. 2: The equivalent circuits of phase A, phase B and phase C

Harmonic elimination is achieved by generating unbalanced reference
commands for the three grid side currents under unbalanced input voltages.

According to the Kirchhoff’s voltage law (KVL),

28



U, =—zl,+V, (2.1)
U,=-2,l1,+V, (2.2)
U, =—2z,1,+V,, (2.3)

Where U, ,U,,U,are grid side voltages, z,,z,,z, are line side impedance,
I,,1,,1, are grid side currents. V,,V,,,V,, are synthesized voltages at the input of
the rectifier.

V,,V,,,V,; can also be expressed as:

sl S

Y
V., = SW, e
242 (2.4)
Y
V., = SW, e 25
2 2502 (2.5)
Y
V., = SW, e 2.6
3 4542 (2.6)

Where V,, is the DC link voltage and SW,,SW,,SW,, are the switching

functions. By substituting equation (2.4), (2.5), (2.6) in to (2.1), (2.2), (2.3) the

following equations are obtained.

V.
U, =-z,1, +SW, —% 2.7)
1 171 12\/5
U, = 2,1, + SW, e (2.8)
22
V.
U, =—2,l, + SW, —2 (2.9)
3 3'3 32\/5

By multiplying equation (2.7), (2.8), (2.9) by l,,1,,1, respectively and adding

them together, the following equation is obtained:

Vv
U, L +U, 1, +U =217 —7,1,7 = 7,12 + =2V (SW, I, + SW, I, + SW,1,)  (2.10)

242
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Equation (2.11) represents the condition for the second harmonic elimination [8]
SW,I, +SW, 1, +SW,I, =0 (2.11)
By substituting equation (2.11) into (2.10), the following equation is obtained:
U L +U, 1L +U, 1, =—z1% - 7,12 -7, (2.12)
The conjugate of the complex power for a Y connection three-phase voltage
source is:
S =-U]1,-U;1,-U;l, (2.13)
According to Kirchhoff’s current law (KCL),

(2.14)

L =—1,-1,
By substituting equation (2.14) into (2.13) and (2.12) the following equations

are obtained.

ST =-U/(-1,-1;)-U;l,-U.l, (2.15)

L(-U, +U,)+1,(U, -U,) =—(z, + )1, = (2, + 2,)1,° = 27,1, 1, (2.16)

Equation (2.15) can be rearranged as:

1, =220l (217)
(Ul _Uz)

By substituting equation (2.17) into (2.16), the following equation can be
obtained:

S"+ (U -U)I
U, -U;)

* * * 2 * * *
—(z1+z2>(S +(Lfs“fl)'3j —(z1+z3)|;—2zll{S +(‘fs“fl)'3j
(Ul _Uz) (Ul _Uz)

(U, +U,)+ U, -U)I, =
(2.18)

Equation (2.18) can be rearranged as:
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. .
—(z,+12,) - 22)(93 UL*J)l) —(z,+ Zz)—EBi 31*;2 J |32
17 Y2 1 7Y
U Uy - BT ZU) o ) B TUDS oS i)
U;-U2) VR I VRTE

S'U,-U) (z+ zz)s*zj
U, -Uy) (U, -Uy)

Current 1, can be obtained from the above quadratic equation by using the

quadratic formula:

_ —b++/b?—4ac

| 2.20
: 2a (2.20)
Where
*_ * *_ *\2
a=—(21+23)—M—(21+22)M (2.21)
(Ul _Uz) (Ul _Uz)
b:_(Ug‘_ul)_(ue,—Ul)(Uz—Ul)_Z(Zlﬂz)(us—ul)s 5 *s e

= =~ — = z
(U1 _Uz) (U1 _U2)2 1U1 _Uz

* *2
C=—S (lfz_lfl)_(zlj_zz)*s (223)
(Ul _Uz) (Ul _U2)2

Chen [31] provided the constraints of the solutions. The three-phase switching
functions SW,,SW,,SW,, must be less than or equal to one to ensure that the
analytical solution is valid for the PWM bridge.

Equations (2.14), (2.17), (2.19) represent the steady-state solution for input and

output harmonic elimination under unbalanced grid voltages.
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CHAPTER 11

SIMULATION RESULTS

A harmonic elimination method used for the grid side inverter under
unbalanced operations is derived in the previous chapter. A closed-loop control
method for keeping the constant DC link voltage is proposed based on the open loop
configuration analysis.

The controls of the voltage-fed rectifier of the wind power system with a
permanent magnet generator and the system with a squirrel cage induction generator
for optimal power acquisition are explained separately in the first chapter. For a
specific wind speed, there is only one rotating speed and torque corresponding to the
optimal wind power acquisition. The reference torques with different wind speeds
operations are derived according to the wind turbine characteristics. In this thesis,
vector control with the torque control is applied for the permanent magnet generator.
Scalar control with the torque and flux control is applied for the squirrel cage
induction generator.

In this chapter, the wind power system is simulated in MATLAB Simulink

using the SimPowerSystem tool box. The control for harmonic elimination under
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unbalanced grid operation and the control for optimal wind power acquisition are
examined. Five different cases, from balance to extremely unbalanced grid operation
are selected for the simulation. The simulation results of traditional indirect current
control in a-b-c frame and the traditional vector control in d-q rotating frame for the

for the grid side inverter are also included in this chapter for comparison.

3.1 Control Strategy for the wind power system connected with a

permanent-magnet generator.

The operation of the proposed wind power system with the permanent-magnet
generator with the schemes of optimal wind power acquisition and harmonic
elimination control is simulated using the MATLAB Simulink SimPowerSystem tool
box.

The overall systems circuit diagram is shown in figure 3.1. It can be seen that
the grid is composed of three single-phase sources. The machine side rectifier is
shown in Figure 3.2 and the grid side inverter is shown in Figure 3.3. Each of them is
a three-phase bridge which consists of six IGBTs and six anti-parallel diodes. The six
IGBTs are controlled by six gating signals. The grid side inverter is connected to the

grid with three coupling inductors
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Figure 3. 1: Diagram of a permanent-magnet synchronous generator connected by back-to-back PWM
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- ——
B3 |E4 | B4

A

@

gLk
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3.1.1 Control of the machine side rectifier for the permanent-magnet generator

The purpose of the control of the permanent magnet generator is to achieve the
optimal performance. The optimal torque is stored in a lookup table with the wind

speed and generator rotor speed as the indexes. The desired i *current is set to be

zero and the desired i, * current is calculated by using the equation:
T, = 3 Vi 3.1
e E p Isq ( . )

The desired i, * and i, > currents and the measured i, and iy, currents
are transformed toiy, *,i,* andig, i,in the a B stationary coordinate. The
errors of the currents are used to form the required u, and u, voltage components

of the rectifier vector by two separate PI current controllers. Space vector is used to
generate six switching signals for six IGBTs. The diagram of the control system for

the machine side is shown in figure 3.4.
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Figure 3. 4: Diagram of the machine side rectifier control system

3.1.2 Control of the grid side voltage-fed inverter for the wind power system

connected with a permanent-magnet generator

Closed-loop operation of the voltage-fed boost type inverter keeps the DC link
voltage constant. The output of the DC link voltage controller sets a reference for the
three phase currents. The control loop is shown in the figure 3.5.

The DC link voltage is fed back to the controller and compared with the reference DC
voltage. The error signal is used to update the setting of the active power P, added by
the reactive power Q, obtained the complex power S, which is for the calculations of
the reference currents. Three-phase reference currents are generated in real time. A
hysteresis controller is used to make the line side currents track the reference currents
so the DC link voltage is controlled and the low order harmonics are eliminated in
grid side and the DC link under unbalanced grid operation. By controlling the DC link

voltage, the instant power transmission from the machine to the grid is achieved.
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Figure 3. 5: Diagram of the grid side inverter control system

3.2 Simulation results of the wind power system with the permanent magnet

generator

Five different simulation cases are selected to verify the optimal power
acquisition in the machine side and the harmonic elimination of the gird side inverter
under unbalanced grid voltage operation. Comparison cases are provided with
standard indirect current control in a-b-c frame and traditional vector control in d-q
rotating frame. Table 3.1 lists the parameters of the permanent-magnet generator used
in the simulation; Table 3.2 lists the parameters of the DC link and the converters.

Table 3.3 lists the simulation cases.
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Table 3. 1: Parameters used for the permanent-magnet generator used in the
simulation

Stator phase resistance Rs

2.8750 ohm

Inductances in d,q axis

Ld(H)=51 mL; Lq(H)=51mL

Poles

16

Torgue Constant

6 N.m/A_peak

Voltage constant

725.5197 V_peak L-L/krpm

Power Rating

3 kw

Rated Voltage

480 V (wye three-phase stator winding)

Speed

800 rpm

NdFeB magnets provide proper flux density in
the air gap

Table 3. 2: Parameters of the DC link and converters for the wind power system with
permanent-magnet generator

Parameter Value Parameter Value
T grid 60 Hz Hysteresis band 0.02A
Cclink 300uF Switch on resistance | 0.5Q
IGBT forward voltage | 1V Diode forward voltage | 1.5V
Sampling time 0.02ms

Table 3. 3: Simulation cases for the wind power system with permanent-magnet

generator
Case Grid side voltage Line impedance Power factor
1 U,=220 20, U, =220 £-120, U, =220 £120. Li=L,=Lz= 5mL 1
2 U,=110 20, U, =160 £ -120, U, =220.£120. Li=L,=Ls= 5mL 1
3 U,=0£0, U, =110 .£-120, U, =220 £120. L;=L,=Lz= 5mL 1
4 U,=0£0, U, =110 .£-120, U, =220 £120. L;=Ls=5mL;L,=0mL | 1
5 U,=00, U, =110.£-120, U, =220 £ 120. Li=Ls=5mL;L,=0mL | 0.7 lagging

In the simulation, a look-up table is used with the wind speed as the index and

the rotor speed as the output. Figure 3.6 shows the simulation results of the wind

turbine characteristics. The wind speeds are 8 m/s, 9 m/s, 10 m/s, 11 m/s, 12 m/s. The

X axis indicates the rotor speed, and the y axis indicates the mechanical torque.
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Figure 3. 6: The simulation result of the wind turbine characteristics.

In figure 3.6, Point 1 and Point 2 indicate the optimal power acquired from the

wind turbine with the wind speed of 10m/s and 11m/s.

Between 0s-1.0s, the wind speed is 10m/s, the rotor mechanical speed @, , =70
rad/s, n,,=668.45 r/min.

Between 1.9s-2.0, the wind speed is 11lm/s, the rotor mechanical speed
o,, =78 radls, n_,=744.85r/min.

According to the equation

n_P
f =10 3.2
¢ =120 3.2)

Where P is poles number, which is 16 in this case.
In the steady state, the corresponding electrical frequency is

_ 668.45 r/minx 16

f
et 120

= 89 Hz (3.3)
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P 744.85 r/minx 16 _

99 Hz (3.4)
120

The simulation results of stator currents with different rotor speeds are shown in
figure 3.7 (a), (b).
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In the steady state, the electromagnetic torque is equal to the mechanical torque:

The electrical power the generator transformed from the mechanical power is
R =T, (3.5).
Between 0-1.0 s, the optimal power is
P,, = —20(N.m)x 70(rad / s) = —1400(W) (3.6)
Between 1.0-2.0 s, the optimal power is
Ps, =—25(N.m)x 78(rad / s) = —1950(W) (3.7)
At 1.0s the wind speed changes and the rotor speed changes. The corresponding
optimal torque needed to be changed, which is achieved by the change of the three

phase stator currents. It can be seen in figure 3.8, the magnitude of the stator currents

change at 1.0 second.

Three phase stator currents

8 T
—— las
===e-= |bs
o S e B L AP i, ., .., e e Ics H

AR ; K
3 iyt I

z LN ALERD A

ol n

S O E Tt

5 gy e

& TPy by Y
i i !

-, o R I
R oA R -.;:.;".
WATAVAVERA AV AY:
tﬁf"‘f‘ VY‘ '\(tf‘
-4

-6

-8

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

Time (sec)

Figure 3. 8: The three phase stator currents of the PM generator.
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In case 1, the operation of the three-phase grid side converter is simulated under
the balanced grid voltages. Under unbalanced voltage operation, from case 2 to case 3,
and under unbalanced line impedance case 4 and case 5, with indirect current
control and vector control, three-phase output currents are distorted with three time
harmonics and the DC link voltage is with second order ripples due to the unbalance
grid voltage. Furthermore, under the unbalanced grid operation, it can be seen from
the simulation result that with the indirect current control, variable power factor
control can not be achieved at the grid side inverter. .

The simulation results of the grid side voltage, the grid side currents, average
active and reactive power at grid, the DC link voltage, the DC link current, the
electromagnetic torque of the generator, and the spectrum of the grid side currents are
shown below with three difference methods for 6 cases. The stator currents and the
generator output voltages are provided for Case 6 to show the effect of unbalanced
grid operation on the generator and for the comparison among the different methods
for the grid side inverter.

Generator rotating speed and Electromagnetic Torque
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Figure 3. 9: Torque and rotor speed of PM generator connected to the grid for
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Figure 3. 10: Three-phase grid voltage (phase to ground) for Case 1

DC Link Voltage Vdc
900

800

700
.

600 =

500

300

200

100

-1000 02 04 06 08 1 12 14 16 18 2

Time (sec)

Figure 3. 11: DC link voltage for Case 1
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Figure 3. 12: Active and reactive power of the grid for Case 1
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Figure 3. 18: Electromagnetic torque of PM generator of Case 2:
(a) Proposed control; (b) Standard d-q method; (c) Standard indirect current method
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Figure 3. 26: Electromagnetic torque of PM generator of Case 3
(a) with proposed control ; (b) with standard d-q method; (c) with standard indirect current method.
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(a) with proposed control; (b) with standard d-q method; (c) with standard indirect current method.
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Figure 3. 32: Three-phase grid currents of Case 4

(a)Proposed control; (b) Standard d-q method; (c) Standard indirect current method
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Figure 3. 33: DC link current and voltage of Case 4
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Figure 3. 34: Electromagnetic torque of PM generator of Case 4
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Figure 3. 35: DC link power of Case 4
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Figure 3. 41: DC link current and voltage of Case 5
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Figure 3. 42: Electromagnetic torque of PM generator of Case 5
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3.3 Control Strategy for the wind power system connected with a self-excited

squirrel cage induction generator

The operation of the proposed wind power system with a self-excited squirrel
cage induction generator with the schemes of wind power optimal acquisition and
harmonic elimination control is simulated using the MATLAB Simulink
SimPowerSystem tool box.

The overall systems circuit diagram is show in figure 3.65
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Figure 3. 53: Diagram of a squirrel cage induction generator connected by two PWM converters to the
grid for variable wind speed application

3.3.1 Control of the machine side rectifier for a squirrel-cage induction generator

Similar to the purpose of the control of a permanent magnet generator, the
control of the squirrel-cage induction generator is to achieve the optimal performance.
The optimal desired torque is stored in a look-up table with the wind speed and

generator rotor speed as the indexes. A control system with a close loop torque and a
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close loop of flux is shown in Figure 3.66.
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Figure 3. 54: The control system of the machine side rectifier for the squirrel cage induction generator

Instead of controlling the rectifier input voltage, three phase stator currents are
controlled, since the torque and flux of the machine are directly proportional to the
currents. In figure 3.66, the flux control loop generates the stator current magnitude
and the torque control loop generates the stator current frequency. A hysteresis
controller is used to make the machine stator currents track the reference currents so
the torque can be controlled to follow the optimal value when the wind speed changes
and the rotor flux is kept constant.

Since the induction machine can work as an induction generator only in a
certain slip range, the generator rotor is coupled with the turbine via a gearbox. In the
simulation, the rotor speed of the generator is 200 rad/s and is changed to 190 rad/s at
1.3 second.

In the simulation, the torque is controlled to be -10N.m and changed to -8N.m
at 1.3 sec corresponding to the rotor speed. The rotor flux is always controlled at

0.46H.
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In the circuit, three capacitors with a capacitance value of 60 pF are connected

at the three-phase stator to excite the induction generator with the magnetizing

current.

3.3.2 Control of the grid side voltage-fed inverter for the wind power system

connected with an induction generator

The control of the grid side inverter for the wind power system connected with

an induction generator is similar to the one with permanent-magnet generator. But

during the time when the voltage is building up, the DC link is connected to a pure

resistive load rather than the grid. Once the DC link voltage reaches 600 V, it is

connected to the grid via the grid side inverter and the resistive load is disconnected.

Two controllable switches are used in the simulation shown in figure 3.67. The DC

link voltage is controlled constantly at 625 V.
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Five different simulation cases are selected to verify the optimal power
acquisition in the machine side and the harmonic elimination in the gird side under
unbalanced grid voltage operation. Comparison cases are provided with standard
indirect current control in a-b-c frame and power control in d-g rotating frame. Table
3.4 lists the parameters of the squirrel cage induction generator used in the simulation;
Table 3.5 lists the parameters of the DC link and the converters. Table 3.6 lists the

simulation cases.

Table 3. 4: Parameters used for the squirrel cage induction generator used in the

simulation
Stator phase resistance Rs 1.115 ohm
Stator inductance 0.005974 H
Rotor resitance Rr 1.083 ohm
Rotor inductance 0.005974 H

Poles 4

Mutual inductanc Lm 0.2037H
Power Rating 3730 W
Rated Voltage 460 V
Rated Speed 1750 rpm
Self excited capacitance C3 60 L FX3

Table 3. 5: Parameters of the DC link and converters for the wind power system with squirrel
cage induction generator

Parameter Value Parameter Value
f 60Hz Hysteresis band 0.02A
C 300uF Switch on resistance 050Q
Ls 1mL Sampling time 0.02ms
IGBT forward voltage | 1V Diode forward voltage | 1.5V

Table 3. 6: Simulation cases for the wind power system with squirrel cage induction

generator
Case Grid side voltage Line impedance Power factor
6 U.=220 20, Uy =220 £ -120, U, =220 £ 120. Li=L,=Lg= 5mL 1
7 U,=110.20, U, =160 .~-120, U, =220~ 120. L;=L,=Lz= 5mL 1
8 U,=0.£0, U, =110.£-120, U, =220/ 120. L;=L,=Lz= 5mL 1
9 U.=0.£0, U, =110 £-120, U, =220 £120. L;=Ls=5mL;L,=2mL |1
10 U,=0.£0, U, =110.£-120, U, =220/ 120. Li=Ls=5mL; L,=2mL | 0.7 lagging
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3.4 Simulation results of the wind power system with the squirrel cage induction

generator

At about 0.34s, the voltage from the induction generator is built up and the
rectifier output voltage reaches 600V. The DC link is connected to the grid and begins
to transfer the power from the generator to the grid. At 1.3s, the wind speed changes
and the power from the generator decreases; so does the power absorbed by the grid.
Figure 3.68 shows generator rotor speed and electromagnetic torque. Figure 3.69
shows the generator rotor flux. Figure 3.70 shows the grid side phase A current.

Figure 3.71 shows the DC link voltage. Figure 3.72 shows the average power of the

grid.
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Figure 3. 56: The rotor speed and electromagnetic torque of Case 6 from 0.0s-2.5s
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The simulation results of the grid side voltage, the grid side currents, the DC
link voltage, the transfer active and reactive power, the torque and rotor speed of the
generator, the rotor flux of the 1G and the spectrum of the grid side currents using the
three methods are shown below.
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Figure 3. 61: Three-phase balanced grid voltage (phase to ground) of Case 6
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Figure 3. 62: Three-phase balanced grid currents of Case 6 with proposed method
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Figure 3. 64: Electromagnetic torque of induction generator of Case 6 with proposed method.
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Figure 3. 65: DC link power of Case 6 with proposed method.
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Figure 3. 66: Average grid side power of Case 6 with proposed method.
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Figure 3. 67: Phase currents with voltages of Case 6 with proposed method.
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Figure 3. 68: Spectrums of Phase currents of Case 6 with proposed method.
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Figure 3. 69: Three-phase grid voltage (phase to ground) for Case 7
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Figure 3. 71: DC link current and voltage of Case 7
(a) with proposed control; (b) with standard d-q method; (c) with standard indirect current method.
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Figure 3. 72: Electromagnetic torque of induction generator of Case 7
(a) with proposed control ; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 73: DC link power of Case 7
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Figure 3. 75: Phase-currents with voltages for Case 7 with proposed method
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Figure 3. 77: Three-phase grid voltage (phase to ground) for Case 8
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Figure 3. 78: Three-phase grid currents Case 8
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method
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Figure 3. 79: DC link current and voltage of Case 8
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 80: Electromagnetic torque of induction generator of Case 8
(a) with proposed control ; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 81: DC link power of Case 8
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 82: Average output active and reactive power of Case 8:
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 85: Three-phase grid voltage (phase to ground) for Case 9

Figure 3. 86: Three-phase grid currents Case 9
(a) with proposed control; (b) with standard d-q method; (c) with standard indirect current method
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Figure 3. 87: DC link current and voltage of Case 9
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
Torque Torque Torque
-4 -4 -4
-6 -6 -6
8 I NP NIPN PPN NN T N SN SN NN NS
Z Z
@ Py
=} =}
o o
-10 5 -10 5 -10
-12. -12 -12
42 2.42 2.44 2.46 2.48 25 42 2.42 2.44 2.46 2.48 25 42 2.42 2.44 2.46 2.48 25
Time (sec) Time (sec) Time (sec)
(a) (b) (©)

Figure 3. 88: Electromagnetic torque of induction generator of Case 9
(a) with proposed control ; (b) with standard d-q method; (c) with standard indirect current method.
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Figure 3. 89: DC link power of Case 9:
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Figure 3. 90: Average output active and reactive power of Case 9:
(a) with proposed control; (b) with standard d-q method; (c) with standard indirect current method.
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Figure 3. 91: Phase-currents with voltages for Case 9 with proposed method
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Figure 3. 93: Three-phase grid voltage (phase to ground) for Case 10

Figure 3. 94: Three-phase grid currents Case 10
(a) with proposed control; (b) with standard d-gq method; (c) with standard indirect current method
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Figure 3. 95: DC link current and voltage of Case 10
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
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Figure 3. 96: Electromagnetic torque of induction generator of Case 10
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Figure 3. 97: DC link power of Case 10
(a) with proposed control; (b) with standard d-g method; (c) with standard indirect current method.
Power Gridside Power Gridside Power Gridside
2000 2000 2000
— Active power Active power || — Active power
1500 - Reactive power 1500 l - Reactive power 1500 - Reactive power
1000 1000 1000
5 500 5 500 5 500
2 2 2
o [=] [=]
= 0 e 0 = 0
-500 -500 -500
-1000 -1000 -1000
_1508. 242 2.44 2.46 2.48 25 —1508.4 242 244 2.46 2.48 25 —1508.4 242 244 2.46 2.48 25
Time(Sec) Time(Sec) Time(Sec)
(@) (b) (©

Figure 3. 98: Average output active and reactive power of Case 10:
(a) with proposed control; (b) with standard d-q method; (c) with standard indirect current method.
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Figure 3. 100: Spectrums of grid currents for Case 10 with proposed method
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Figure 3. 101: Spectrums of grid currents for Case 10 with standard d-q method
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3.5 Simulation results of the grid-fault ride-through

The proposed method is also tested under the grid-fault ride-through scenario.
Table lists the simulation case 11 and case 12.

In case 11, the wind system with a permanent-magnet generator is simulated. At
1.0 s, phase A and phase B voltage decrease to 80% of the rated valued and phase C
voltage decrease to 50% of the rated value. At 1.2 s, the voltages recover to the
original rated values. At the same time, the line impedance is unbalanced. The
simulation results with proposed method and the traditional indirect current control
without the harmonic elimination control are provided.

In case 12, the wind system with a squirrel-case induction generator is
simulated. At 1.2 s, phase A and phase B voltage decrease to 80% of the rated valued
and phase C voltage decrease to 50% of the rated value. At 1.2 s, the voltages recover
to the rated values. At the same time, the line impedance is unbalanced.

Optimal power tracking of the turbine is used to increase the power conversion
efficiency.

However, during grid-fault ride-through, the unbalanced can cause current stress in
the inverter.

So the power tracking should include the power limit when the grid-fault occurs so to
limit the currents.

Table 3. 7: The grid-fault case

Case Grid side voltage Line impedance Power factor

11 U,=176 £0, U, =176 £-120, U, =110 £ 120. L,=Ls=5mL; L,=2mL 1
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Figure 3. 103: Three-phase grid voltage of Case 11



Current(A)

80T

=
o

Grid side Current labcg

N B

! J!:-
L Y
-t
"m--m:.:

— g
e
* “;—u‘ -
Ty
=

"
e
w
Tapene
§ it
pen R
[~ ad .
ﬁv—
e
4
o
e

s DR LY
T e
T ety
-
at e
[ T
T ee:
]
~n
o

e T

]
D
4
<
-
L2
L~
-
* S
T =
o
LT
i et T =
L .‘;-‘-.
pun -
== 5
vl
T et

o
P T i
o=
o e
[,
o
et LT

Current(A)

\
KB b S AN o v & o o

-8
_18
.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
Time(Sec)
Grid side Current labcg Grid side Current labcg Grid side Current labcg
10 10
—lag —lag —lag
Ibg Tl 8 Ibg | 8 Ibg |
............ Icg . e o 6 e o
. o, ” oy ~ 4f P P 415, o, - .y oy . s
NYNNNYNY .Y AYaYaVAVaY NN AVAVAVATAVAYA
AALAANAANAAA T A AAANAAANAAA : o ANAANAAAA
VIVVIVVV VY VAV AVA'IRAVAY SN VIVVIVVVVYVY
. VAVAWAN NASASAVAYAYA VASIAN AVAVAWAVAVA VAV VAN
-6 6
-8 -8
95 0.96 0.97 0.98 0.99 1 P 1.16 1.17 1.18 1.19 1.2 5 1.26 1.27 1.28 1.29 13
Time(Sec) Time(Sec) Time(Sec)

Figure 3. 104: Three-phase grid currents of Case 11 with proposed method
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3.6 Analysis of simulation results

From the simulation results of Case 6, it can be seen that in the wind power
system, the unbalanced grid operation will cause the torque pulsation of the generator,
if the grid side inverter is without the harmonic elimination control, figure 3.60 (c).
This is because the unbalanced voltage operation will cause the third-order harmonics
in the grid side current, and this will cause the second order harmonic in the DC link,
figure 3.59 (c), and this finally causes the second order pulsation of the
electromagnetic torque of the generator. Moreover, the torque pulsation leads to the
three-phase unbalanced currents in the generator stator winding, figure 3.61(c). The
unbalanced currents in the stators can result in the uneven heating of the winding and
this may short the lifetime of the machine.

The grid side inverter achieves input-output harmonic elimination by using the
proposed control method. It can be seen from figure 3.59 (a) that there is no low order
DC voltage ripples and no second order torque pulsation figure 3.60 (a). The Fourier
analysis, figure 3.64, also shows that, by using the proposed method, there is no
low-order harmonics in the grid side currents under the unbalanced grid voltage
operation. At the same time, with the close-loop operation, DC link voltage is
controlled at constant value for 600 V and this will ensure that the power is
transferred from the DC link to the grid.

It is also shown in the figure 3.62 and figure 3.63 that, with the proposed
method, the grid side inverter can change the power factor even under the unbalanced
case while the tradition method in d-q frame and the traditional indirect current
control can not.

At last, the proposed control of the grid side inverter is tested for its application
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for its grid fault ride-through ability in Case 11. In figure 3.118, at 1.0s, the phase A
and phase B voltages drop to 80% and the phase C voltage dropped to half of its rated
value. After 0.2s, the voltage goes back to the rated value. The line impedances are
unbalanced for Li=L3=5mL L,=2mL. It shows in figure 3.86 (b) and figure 3.87 (b)
that with the traditional indirect current control, there is a large amount of ripple
content for the DC voltage. Compared to the traditional method, it can be seen from
figure 3.86 (a) and figure 3.87 (a) that the currents are without obvious low-order
harmonics and the amount of DC ripple content is decreasing by applying the
proposed method. By observing the simulation results, it can be concluded that the

inverter can ride through the grid fault by applying the proposed method.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This thesis applied the generalized harmonic elimination control method for the
grid side inverter in a wind power system under unbalanced grid operation. The
analytical method is presented for harmonic elimination in grid currents and DC link
voltage with variable power factor under unbalanced voltage and line impedance.
Based on the analytical solution, the closed loop control method is proposed and
verified on a wind power systems model in SIMULINK ©. The system can either be
connected to a variable-speed permanent-magnet synchronous generator or a
variable-speed squirrel cage induction generator by two back-to-back PWM
converters. The simulation results obtained by applying the generalized control
method of harmonic elimination are compared with the simulation results obtained by
using the traditional grid inverter control methods. The results show that under
extreme unbalanced operating conditions, high quality line currents and DC link
voltage are obtained by using the proposed control technique. While the results

obtained by using the same wind power system with the traditional methods show that
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huge low order harmonics exist in line currents and DC link voltage causing torque
pulsations.
In addition, from the simulation results it can be seen that the proposed method

can be used for the grid fault ride-through control of wind turbine inverters.

4.2 Suggestions for Future Work

(1) The system under balanced and unbalanced cases is simulated. The
experiment is expected to be conducted in the future to verify the method.

(2) The good steady state results are obtained and compared to the traditional
methods. Furthermore, the grid faults ride-though ability of the inverter by using the
proposed method is tested. In the future, the dynamic performance can be studied
further.

(3) The permanent-magnet synchronous generator and squirrel cage induction
generator are used for low or medium wind power system. For the large-scale wind
power system, the doubly-fed induction generator with the two back-to-back PWM
converters should be used. But it is also known that the DFIG experiences inherent
difficulties to ride through a grid fault [32], [33]. The proposed control of the grid side
inverter could coordinate with the control of the machine side rectifier to limit the
power pulsation and to eliminate the harmonics in line currents under unbalanced grid

voltage.
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APPENDICES

Simulink model of online calculation of the reference currents
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