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IDENTIFICATION OF UNMODELED DYNAMICS IN  

ROTOR SYSTEMS USING MU-SYNTHESIS APPROACH 

 

RYAN J. MADDEN 

 

ABSTRACT 

 

It is well recognized that analytical models only approximate the true dynamics of 

analyzed rotating machines, due to the presence of components that are inherently 

difficult to model.  Such models of rotating machines are driven by the best engineering 

knowledge and experience, and very often are updated based on experimental results.  

The problem of unmodeled or missing dynamics can be exacerbated in the presence of 

rotor structural damage such as a transverse crack on a shaft.  This thesis will present an 

effective approach for model updating using advanced tools developed in robust control 

theory, specifically mu-synthesis.  The methodology will be introduced based on a simple 

three-mass system and then applied to identification of the minute changes in the 

dynamics of the rotor test rig due to the presence of a transverse crack.  Experimental 

data collected from the cracked rotor rig will be utilized to validate the developed 

approach.      
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Introduction  

Uncertainty is a persistent problem in the creation of engineering models.  This 

uncertainty may come from parameters which are difficult to quantify, assumptions made 

in the modeling process, wear of the system components over time, or inaccuracies in 

experimental testing.  These uncertainties are present in even the most rigorously 

developed engineering models, even those tuned to experimental results.  These 

uncertainties may lead to a model which does not accurately predict the true experimental 

response of the system.  Model updating has been developed to fix this problem by 

utilizing various schemes to drive the analytical model to match the experimental results.  

One such strategy, model-based identification, utilizes the assumption that part of the true 
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system’s dynamics have been left out because either they are difficult to model or that a 

model simply does not exist.  These missing dynamics become known as the unmodeled 

dynamics.  This work aims to apply a model updating method, specifically model-based 

identification, to two systems with a known difference in an attempt to model this 

difference in dynamics.  The two systems that will be studied are a healthy rotor and a 

rotor with a transverse crack at its mid-span.  The result of this study will be a new model 

for the change in dynamics induced by the presence of a transverse crack.       

This first chapter presents some examples of modeling and the appearance of 

unmodeled dynamics, a review of works which have led to this point and the objectives 

of the thesis. 

 

1.2 Analytical Models in Real Engineering 

In general, analytical models in engineering are developed to predict the behavior of 

the system under consideration.  One of the most widely used techniques in engineering 

modeling is finite element modeling.  These finite element models are usually tuned to 

experimental responses of the system.  This technique can be seen in models of bridges 

(Farrar and James III 1997), airplanes (Ruotolo and Surace 1998) and nuclear power 

plants (Sinha and Friswell 2003), to name a few.  Rotor systems are also modeled using 

finite elements, as is done in this work.  For example, the finite element method was used 

to model an airplane wing in (Ruotolo and Surace 1998) and the resulting model was 

used to develop on-line health monitoring, similarly for a rotor system (Sawicki and 

Friswell 2010). 
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The field of system identification takes a different approach to modeling.  System 

identification uses various curve-fitting techniques to create a model from a system 

response to a specific input.  Farrar and James III (1997) present the system identification 

of a bridge using the cross-coupling of ambient vibration measurements.  

Analytical models have even been created for faults in mechanical systems.  Gasch 

(1976), (1993), Mayes and Davies (1980), (1984) were pioneers in the field of crack 

modeling in rotating machinery.  Fault models are used for fault detection and isolation, 

so having an accurate model is important because it allows for the earliest possible 

detection.  “It is necessary to have the earliest fault-warning system to avoid having a 

fault develop into a catastrophic event, a failure” (Esteban 2004).  

Modeling difficulties and unmodeled dynamics appear in each modeling approach.  

Modeling difficulties are inherent, they appear in the finite element modeling of every 

system, and in the case of rotors in “large, abrupt changes in rotor diameter; fits between 

rotor and disks; seals” (Vazquez, et al. 2003).  Unmodeled dynamics in system 

identification is contained in the model uncertainty.  This uncertainty may be evaluated at 

the end of the process or during the identification algorithm.  Hsu et al. (2006) present a 

new adaptation in system identification which places model uncertainty into the 

identification process. 
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1.3 Literature Review 

1.3.1 Model Updating 

In this section, a brief introduction to the field of model updating is presented.  Model 

updating developed as a specific application of system identification which “Seek[s] to 

correct the inaccurate parameters in the model so that the agreement between predictions 

and test results are improved” (Mottershead and Friswell 1993).  The Mottershead and 

Friswell survey paper (1993) offers a more comprehensive look at the development of the 

field. 

The first methods for model updating became known as the direct methods, named for 

the direct manner in which the mass and stiffness matrices were updated to achieve the 

desired performance.  The first method for direct model updating is introduced by Baruch 

and Bar Itzhack (1978).  This method assumes that the analytical mass matrix is known.  

This assumption is used along with the measured eigenvalues to derive a new optimal 

stiffness matrix.  The method becomes known as the first method of reference basis, in 

which the mass matrix is the reference basis.  Berman (1979) adds to Baruch’s work by 

developing the second method of reference basis.  Berman uses the measured modes as 

the reference basis to correct the mass matrix.  Baruch (1984) completes this method by 

introducing the third method of reference bias which uses the stiffness matrix as the 

reference basis in order to correct the mass matrix. 

Srinathkumar (1978) and Andry et al. (1983) develop the method of eigenstructure 

assignment for model correction.  This technique drives a system to a set of desired 

eigenvalues and eigenvectors by using a controller in a feedback loop.  Minas and Inman 

(1990) improve on this method by applying the controller to the stiffness and damping 
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matrices in a finite element model.  The work is successful in making the model match 

the experimental modal data but Minas and Inman explain a weakness in that, the method 

“…does not, however, guarantee that the resulting modified stiffness and damping matrix 

have the same physical significance they had from the original modeling.” 

Model updating was later enhanced by the method of inverse eigenvalue techniques, 

first developed by Gladwell (1986).  Bucher and Braun (1993) presented an application 

of the method of inverse eigenvalues.  In this paper, structural modifications were 

successfully found for beam structures which would drive them to achieve a desired 

mode shape. 

The second set of model updating methods became known as the penalty methods.  

The first set of these penalty methods were used on modal data.  These methods use a 

sensitivity function which is based on how changes in the parameters affect the measured 

output.  Friswell (1989) gives an example of such a penalty method.  This paper presents 

an algorithm for updating selected stiffness or mass parameters using a minimum 

variance estimator.  A few pitfalls in this approach are that it is iterative, so may stop on 

local minima or maxima and that once the parameters are updated they may lose their 

physical meaning. 

Friswell and Penny (1990) improve upon the penalty methods by updating analytical 

models with comparison to the test frequency response functions directly.  This 

application is most useful in situations where the derivation of the test data’s modal 

model is very difficult.  An advantage in this approach is that the data has endured one 

less processing step, which may remove a source of error in the final result.  Friswell and 
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Penny (1992) go on to apply this method to models with close or even repeated 

eigenvalues, showing that the algorithm works for systems that are not ideal. 

Xiong et al. (2008) offer a more recent examination of various penalty methods which 

include those that are parameter-based and directly use the experimental frequency 

response function.  The work looks at the effectiveness of both the parametric 

deterministic calibration approach and the non-parametric bias correction methods.  The 

Bayesian bias-correction model, that is evaluated is credited to Chen et al. (2006), uses a 

bias function that directly uses the difference between the experimental and analytical 

model.  The deterministic calibration approach separates the analytical model between 

controllable inputs and uncontrollable parameters.  These parameters are then tuned in a 

nonlinear regression analysis to minimize the error between the model and the 

experimental data. 

The third method was first developed by Maslen et al. (2002) and has come to be 

known as “model reconciliation.”  Model reconciliation uses the basic approach of model 

identification i.e., controlling the nominal model in order to minimize the error between 

its response and that of the experimentally identified model.  The assumption in model 

reconciliation is that the basic model structure is correct, but there is missing dynamics 

that is left out because of modeling errors or unknown model phenomena of specific parts 

of the system.  This missing dynamics become known as the “unmodeled dynamics” 

which is absent in the nominal engineering model.  This method is innovative in that it 

distinguishes between the parts of the system which are not certain in modeling and the 

easily modeled portions.  Accordingly, an H∞ controller is applied only at the uncertain 

locations and the systems are driven to minimize the modeling error.  When the two 
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responses match, the controller, or its dynamics, represents the unmodeled dynamics 

which was missing in the nominal model. 

Vazquez et al. (2003) applied the model reconciliation method to identify the 

dynamics of magnetic bearing journals.  In order to identify the magnetic journal 

bearings, they are recognized as the portion of the system which would be difficult to 

model.  This realization leads to the bearings being left out of the nominal model.  

Conversely, the experimental model is derived from the frequency response of the entire 

system with the magnetic rotors in action.  Finally, the model reconciliation process is 

used.  The unmodeled dynamics is discovered, which is known to be the behavior of the 

magnetic bearing journals.  The paper concludes with this model for the dynamics of the 

magnetic bearing journals which reconciled the nominal and experimental models. 

Wang and Maslen (2006) continue the work on model reconciliation by making two 

important contributions to the method.  First is the direct use of the frequency response 

functions (FRF) for the nominal and engineering systems.  Use of the FRFs removes the 

first step of creating models for each of the systems.  This takes away one modeling step, 

removing an error source which should lead to a more accurate final model.  The second 

advancement is the use of a μ-controller to drive the model correction.  An application of 

a μ-controller opens up μ-analysis machinery, which contributes uncertainty bounds for 

the model and unmodeled dynamics.  This is the first estimate of the quality of the 

presented unmodeled dynamics and allows for the examination of modeling and 

experimental uncertainty effects on the unmodeled dynamics.  Wang’s dissertation 

(2008) presents a more exhaustive look at the concept covered in the Wang and Maslen 

paper (2006). 
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The book written by Zhou et al. (1995)  is a valuable resource for a background on μ 

theory; also the work of Maslen and Sawicki (2007) explains advantages inherent in the 

use μ-synthesis for control applications.  Maslen and Sawicki note that while μ-synthesis 

may not always produce significantly better results than simpler methods, it provides the 

creator with more physical insight into the system behavior.  In comparing the method to 

traditional PID controllers the authors note, “In contrast to hand synthesis, the parameters 

of the μ-synthesis design process are precisely the specifications themselves.”  The 

transparency of the design parameters provides a simple physical interpretation of how 

the controller is working, which is the primary strength of μ-synthesis as a control 

method. 

The next work from Wang et al. (Identification in Rotordynamics: Model-Based vs. 

Direct Measurements 2009a) provides a new derivation of the model reconciliation 

method, now referring to it as “model-based identification.”  This derivation solves the 

error minimization using the transfer functions of the nominal engineering model and the 

true, experimentally identified model.  These transfer functions are then measured 

experimentally and the results are compared to those found from using the engineering 

model.  Similar to the previous work of Wang and Maslen (2006), this new method 

removes one modeling step from the process, which would remove one instance of 

modeling error. 

The most recent paper authored by Wang et al. (Identification in Rotordynamics: 

Uncertainty Analysis and Quality Estimation 2009b) on the subject on model 

reconciliation or model-based identification gives a detailed analysis on the quality 

estimation in the unmodeled dynamics.  The paper utilizes μ-analysis and the linear 
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fractional transformation to derive the upper and lower μ bounds for the unmodeled 

dynamics.  This provides an illustrative quality estimation of the unmodeled dynamics, 

showing where the modeling process has been the most or least accurate. 

An application of model identification methods that is related to this work is in the 

area of fault detection.  A concise background on fault detection is given in (Esteban 

2004).  Fritzen et al. (1998) use an inverse sensitivity approach, a specific penalty 

method, on both modal and frequency response function data for damage localization.  

Sinha and Friswell (2003) used a gradient based sensitivity approach in the detection of 

cracks in nuclear power plant components.  Jaishi and Ren (2006) use a similar 

sensitivity model updating method to identify the damage in a reinforced concrete beam, 

both in simulation and an experiment. 

 

1.3.2 Crack Modeling in Rotors 

Crack modeling in rotors can be divided into two subsets:  breathing and non-

breathing cracks.  The modeling of breathing cracks is of particular interest to this thesis 

because the data to be used later is of a spinning rotor which under the assumption of 

weight dominance, should be breathing.  Penny et al. (2006) explain weight dominance as 

the condition of the crack opening and closing depending only on the rotor angle because 

the static deflection is significantly larger than the amplitude of vibration.  The first 

breathing crack model was presented by Gasch (1976), (1993).  This hinge model has the 

crack abruptly change between the open and closed state as a function of the rotation 

angle.  Mayes and Davies (1980), (1984) added to the work of Gasch by deriving a crack 

model which opened and closed based on a cosine function.  This innovation allowed for 
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a smooth transition between the open and closed crack states.  Finally, Jun et al. (1992) 

created a crack model which was derived from the theory of fracture mechanics.  Penny 

and Friswell (2002) offer a theoretical comparison of the three crack models and simulate 

the quality of each in representing a crack in a Jeffcott rotor. 

Penny et al. (2006) go on to apply a Mayes model for a breathing crack in a rotor to 

simulate the response of a cracked rotor under excitation of an active magnetic bearing.  

The aim of this study was to predict these behaviors in order to establish a crack detection 

strategy.  Pesch (2008), Wroblewski (2008) and Storozhev (2009) experimentally prove 

this technique. 

 

1.4 Objectives of Thesis 

The primary objective of this thesis is to detect the changes in system dynamics 

induced by the presence of a transverse crack in a rotor.  The crack dynamics will be 

found by an application of model-based identification, in which the crack is a known 

difference between the “nominal” healthy rotor and the “true” cracked rotor.  The process 

of model-based identification will find the unmodeled dynamics, or the necessary 

changes to the nominal model that drives its response to match the true system.  This 

unmodeled dynamics will become the change in dynamics induced by the transverse 

crack.  The purpose for developing a new approach for estimating the transverse crack 

dynamics is to create a more reliable strategy of detecting this fault in the future.  To that 

end, the scope of the thesis is as follows. 

Chapter 2 provides a theoretical background on the powerful controls tools which are 

used in the method of model-based identification.  First, a brief introduction and literature 
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review of robust control will be given.  Next, the basic concepts that are involved in H∞ 

and μ-synthesis controls, and the linear fractional transformation are developed.  Finally, 

an illustrative example of H∞ and μ-synthesis is given. 

Chapter 3 develops the method of finding a known difference in dynamics by utilizing 

model-based identification.  First, the application of the method for finding missing 

dynamics is developed.  Next, a simple three-mass example is given to prove the method.  

This involves presentations of the analytical results, the three-mass experimental test rig 

and the experimental results.  Finally, conclusions are made about the three-mass 

example of unmodeled dynamics and how it may be applied to more interesting 

applications. 

Chapter 4 presents the application to structural damage detection in rotating 

machinery.  First, the crack detection test rig will be overviewed.  Next, the formulation 

of the approach will be developed.  Finally, the example of detecting the crack dynamics 

will be presented. 

Chapter 5 concludes the paper with a discussion of the impact of the results and future 

work which may be needed. 
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CHAPTER II 

ROBUST CONTROL TOOLS FOR MODEL UPDATING 

 

 

2.1 Introduction 

This chapter presents an introduction to the robust control tools that are utilized in this 

thesis for model-based identification.  First, a brief history of H∞ and μ-synthesis controls 

will be presented.  Next, the control methods will be derived along with a description of 

how to use these controllers in a MATLAB
®

 environment.  Finally, a two-mass example 

of H∞ and μ-synthesis controls will be presented.  The goal of this chapter is to provide a 

sufficient background on the tools which will be used in model-based identification along 

with demonstrating their utility in an example.  

Zames (1981) is credited for authoring the first work on the H∞ control problem.  In 

this paper he uses state feedback control which is optimized using an analysis of the H∞ 
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norm.  Next, the two papers authored by Glover and Doyle (1988) and (1989) generalize 

the H∞ control problem.  First, Glover and Doyle (1988) lay out the state-space 

partitioning of the system plant which provides the methods ease of use in MATLAB.  

Next, Glover and Doyle (1989) place the controller in a linear fractional transformation 

with the plant.  Doyle et al. (1989) go on to create a more complete tutorial for H∞ 

controller synthesis.  Alternatively, Sampei et al. (1990) derive a purely algebraic method 

for synthesizing the controller.  Meanwhile, Ran and Vreugdenhil (1988) explicitly 

proved the math behind solving the two Riccati equations which leads to the development 

of the H∞ controller.  Boyd et al. (1989) added to the state of the art by creating a 

bisection algorithm which allows for faster location of the frequency containing the H∞ 

norm.  Nagpal and Khargonekar (1991) present methods for improving the controller by 

utilizing filtering and smoothing. 

Doyle (1982) developed the method of μ-synthesis by applying the addition of 

structured uncertainty to an H∞ control problem.  At the time, H∞ controllers were able to 

handle the problem of uncertainty, but were not able to analyze structured uncertainty in 

the form of linear fractional transformations.  Once Doyle applied the structured singular 

value, μ, to measuring the performance of an H∞ controller with structured uncertainty, 

the D-K iteration was born.  Later, Balas (1990) presented experimental examples to 

prove that the D-K iteration works.  
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2.2 Concepts 

2.2.1 H∞ Control 

An H∞ controller is an optimal linear time invariant state-space controller.  This 

controller seeks to minimize the infinity norm of the closed-loop system, clp, resulting in 

the cost function: 

 clp


  (2.1) 

The infinity norm of the closed-loop system is the maximum gain achieved across all 

frequencies.  The infinity norm is closely related to the 2-norm, which is a measure of the 

size of a signal.  It follows that the gain of the closed-loop system is the ratio of the 2-

norm of the output over the 2-norm of the input.  Thus the infinity norm identifies the 

largest value of this ratio for all frequencies (Doyle, Francis and Tannenbaum 1990).  The 

closed-loop system is shown (Balas, Chiang, et al. 2009): 

 

Figure II.1 H∞ Control Schematic 

 

where: 

P is the system plant 

1 2

1 11 12

2 21 22

P

 
 


 
  

A B B

C D D

C D D

 

K 

u1 y1 

u2 y2 

clp  
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K is the controller 

u1 is the external input 

u2 is the control input 

y1 is the closed-loop output 

y2 is the output to the controller 

A is the system dynamics 

B1 is the selector matrix for the external input 

B2 is the selector matrix for the control input 

C1 is the selector matrix for the closed-loop output 

C2 is the selector matrix for the output to the controller  

The goal of H∞ control is to design a controller, K, which minimizes the infinity-norm of 

the transfer function from u1 to y1.  Control of the plant is achieved by utilizing the 

application of a control force, u2, based on a measured y2 signal. 

MATLAB’s default method for solving the H∞ control problem is shown in the Robust 

Toolbox Guide (Balas, Chiang, et al. 2009) and uses a Riccati method.  This method 

utilizes Hamiltonian matrices, with the values from the plant, P (Zhou and Doyle 1998): 

 

2 * *

1 1 2 2

* *

1 1

H
  

  
  

A B B B B

C C A
 (2.2) 

 

* 2 * *

1 1 2 2

*

1 1

J
  

  
  

A C C C C

B B A
 (2.3) 

where “  ” denotes a complex conjugate transpose.  An H∞ controller, K, which meets the 

condition, clp 

 exists when all three of the following conditions are met (Balas, 

Chiang, et al. 2009): 
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i. “H and J Hamiltonian matrices must have no imaginary-axis eigenvalues.” 

ii. “The stabilizing Riccati solutions X∞ and Y∞ associated with the Hamiltonian 

matrices must exist and be positive, semi-definite.” 

iii. “Spectral radius of (X∞, Y∞) must be less than or equal to γ
2
.” 

The spectral radius is the magnitude of the maximum eigenvalue.  This utilizes the 

solutions to the algebraic Riccati equations: 

  * 2 * * *

1 1 2 2 1 1 0X X X X 

       A A B B B B C C  (2.4) 

  * 2 * * *

1 1 2 2 1 1 0Y Y Y Y 

       A A C C C C B B  (2.5) 

The algorithm works by first assuming a value for γ.  Next, X∞ and Y∞ are solved for 

using Equations 2.4 and 2.5, and the three controller conditions are checked.  Finally, the 

method employs a bisection search to find new γ values, and the process is repeated, 

eventually locating the minimum γ value. 

Conveniently, the MATLAB function hinfsyn has been created to solve equations 2.1-

2.5 and develop the H∞ controller.  With an automated solution to solving the math, the 

primary difficulty in developing the H∞ controller becomes reconciling the system to be 

controlled to the closed-loop control schematic in Figure 2.1.  The plant, P, is created 

from a state-space system divided with A as the system dynamics, B1 as the disturbance 

inputs, or external excitation, B2 is the control inputs, C1 are the outputs to be minimized, 

and C2 are the outputs to the controller (Balas, Chiang, et al. 2009).   

Another important design consideration is weighting.  Both the closed-loop inputs, B1, 

and outputs, C1, need to be weighted in order to keep the input and output signal 

magnitudes less than one.  These weights are utilized to meet performance specifications 
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of the system.  Consequently, the goal of the H∞ controller becomes keeping the cost 

function 1   while meeting the performance specifications.  Both weighting and the 

resulting cost function value will be further discussed in the illustrative example of a two-

mass system at the end of this chapter. 

    

2.2.2 Mu-Synthesis 

Mu-synthesis is a controller design process which expands on the methods of H∞ 

control design.  While a linear time invariant state-space controller is also created in the 

μ-synthesis approach, the advancement made in the method is that the μ-controllers are 

designed to handle structured uncertainty in the system plant.  The μ-synthesis control 

schematic is shown in Figure 2.2: 

 

 

  The plant P is created with the same partitioning as the H∞ plant.  Following Figure 

2.1, A is the system dynamics, B1 is the disturbance inputs, etc.  In the μ-synthesis 

diagram, the plant P has been divided between the weighting functions Wz
-1

 and Ww, and 

the rest of the state-space plant G for increased clarity.  These weights, Wz
-1

 and Ww, are 

used to keep the magnitudes of the dimensionless output and input signals, ẑ and ŵ , less 

K 

G 
Wz

-1 
Ww 

z 
^ 

z w w 
^ 

y u 

P 

clp 

Figure II.2 μ-Synthesis Schematic 
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than or equal to one.  Ww is used to scale the system’s input to the magnitude of the 

excitation, which will later be referred to as the reasonable operating conditions.  Wz
-1

 is 

used to place a range of permissible values on the system’s output, which will be later 

referred to as a performance specification (Maslen and Sawicki 2007).  The use of these 

weighting functions is the same for both H∞ and μ-synthesis control.    

The properties of the μ-synthesis approach are derived from the structured singular 

value, μ.  The necessary and sufficient condition for a successful controller is that the 

maximum singular value of clp is less than 1 (Maslen and Sawicki 2007): 

 max ( ( )) 1.0clp j      (2.6) 

This condition requires that the closed-loop input and output are weighted such that: 

 ˆˆ 1.0 : 1.0i iz w   (2.7) 

Equation 2.6 is equivalent to (Maslen and Sawicki 2007): 

 maxsup ( ( )) 1.0clp j


 


  (2.8) 

Equation 2.8 is equivalent to the H∞ norm of the closed-loop transfer function.  The 

important distinction is that the infinity norm “…ignores the known block diagonal 

structure of the uncertainties” (Zhou and Doyle 1998).  Meanwhile, the structured 

singular value takes the uncertainty structure into account. 

Similar to designing an H∞ controller, MATLAB has a built-in function, dksyn, which 

completes the derivation of the μ-controller (Balas, Chiang, et al. 2009).  Like the hinfsyn 

command, dksyn only requires the input of a properly defined plant.  The algorithm used 

in dksyn is the D-K iteration.  First, a controller, K, is created for the open loop system 

using H∞ synthesis, as described in the previous section.  Then a frequency-dependent 
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scaling matrix D(ω) is produced by solving the following optimization problem (Smith 

and Packard 1997):  

 
1

maxinf ( ) ( , ) ( )
D

F P K   


  D
D D  (2.9) 

where inf denotes the infimum of the set and Fl is a lower linear fractional 

transformation.  This scaling matrix D(ω) is found such that Equation 2.9 is an accurate 

upper bound to the μ-value of P.  Initially, D(ω)  is a point-wise frequency function.  

Therefore, D(ω)  is rationalized to a transfer function ˆ ( )sD .  This scaling matrix ˆ ( )sD is 

then placed into the open-loop system as shown in Figure 2.3 and a new H∞ controller is 

created. 

 

 

Finally, the closed-loop μ-bound is calculated.  If a value of 1   is returned, the 

controller successfully meets the design specifications and the algorithm is complete.  If 

this condition is not met, the procedure is repeated starting at solving for a new D(ω). 

 

  

K 

P 
1ˆ ( )s 

D  

y u 

ˆ ( )sD  

Figure II.3 Scaled μ -Synthesis Plant 
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2.2.3 LFT Formulation 

The linear fractional transformation is an important tool in robust controls.  LFTs are 

seen in both H∞ and μ-synthesis control, along with structured uncertainties.  First, 

assume a plant, P, which can be partitioned into: 

 
11 12

21 22

P P
P

P P

 
  
 

 

It follows that the upper and lower LFTs, u and , respectively, are defined by the 

following equations (Zhou and Doyle 1998): 

 

 1

22 21 11 12( , ) ( )u u u uP P P I P P       (2.10) 

 1

11 12 22 12( , ) ( )P P P I P P       (2.11) 

A diagram representation for the linear fractional transformations is shown in Figure 

2.4: 

 

 

The figure shows how a plant, P, would interact with a structured uncertainty matrix, 

Δ.  It can be seen that an LFT also describes the manner in which the controller interacts 

Δl 

P 
Δu 

P 

Upper LFT Framework Lower LFT Framework 

Figure II.4 Linear Fractional Transformation Framework 
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with the plant in both the H∞ and μ-synthesis control schemes as shown in Figures 2.1 

and 2.2, respectively.   

 

2.3 A Two-Mass Example of H∞ Control and μ-Synthesis 

To illustrate the use of H∞ and μ-synthesis control, a simple two-mass example is 

presented.  The intent of this example is to illustrate how easily performance criteria and 

reasonable operating conditions can be applied to a physical plant using both H∞ and μ-

synthesis control methods.  In other words, this example is used to show how intuitive 

these control techniques are once the system is properly modeled.  

The system to be controlled is made up of two masses, the upper mass, m1, and the 

lower mass, m2.  Both masses are connected by a spring, k1, while an additional spring, 

k2, connects m2 
to ground.  The objective of the controller is to manage the response of 

m1 in the presence of an external disturbance force, fe, through a control force, u, acting 

on m2.  The control sensor measures the displacement of m2 and is polluted by the noise 

signal, ηe.  A diagram of the system is shown in Figure 2.5.  
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Parameter values of the system are: 

 1 1m   kg (2.12) 

 2 2m   kg (2.13) 

 1 450k   N/m (2.14) 

 2 175k   N/m (2.15) 

 

Equations of motion are: 

 
1 1 1 1 1

2 2 1 1 2 2

0 1 0

0 0 1
e

m x k k x
f u

m x k k k x

           
            

            
 (2.16) 

   1

2

0 1 e

x
y

x


 
  

 
 (2.17) 

 

fe 

m1 

m2 

k1 

k2 
u 

Figure II.5 Two-Mass System 
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It is important to note that while the control problem can be classified as single-input 

single-output, the system still retains its multi-input multi-output behavior because the 

behavior of the system is dependent on four input/output pairs. 

 

2.3.1 H∞ Control Solution 

Before the process of synthesizing an H∞ controller may begin, the control objective 

needs to be explicitly defined.  This objective is to keep x1 less than 0.035 m for 

disturbance forces less than 10 N and noise
 
less than 0.1 mm while not exceeding 50 N of 

control force.  These conditions lead to a performance output of: 

 
1

2

28.6 0 0

0 0 0.02

x
z u

x

    
     
    

  (2.18) 

Values in Equation 2.18 are derived from the control objectives.  The weighting on x1 

and u come from 1

maxx and 1

maxu , respectively.  Under “reasonable circumstances” the goal 

is: 

 
2

1z   (2.19) 

The “reasonable circumstances” are defined in the objective to mean that 10ef  N 

and 0.0001e  m or, more simply interpreted: 

 
10 0

0 0.0001

e

e

f



   
   
  

f  (2.20) 

with the requirement that: 

 
2

1f   (2.21) 

Thus, the complete problem definition is to find a controller ( ) ( ) ( )u s K s y s for: 
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1 1 1 1 1

2 2 1 1 2 2

0 10 0 0

0 0 0 1

m x k k x
u

m x k k k x

           
             

            
f  (2.22) 

 
1

2

28.6 0 0

0 0 0.02

x
z u

x

    
     
    

 (2.23) 

    1

2

0 1 0 0.0001
x

y f
x

 
  

 
 (2.24) 

subject to: 

 
2

1z   

when: 

 
2

1f   

This is the standard definition for an H∞ control problem. 

The resulting γ is a measure of the H∞ norm of the closed-loop system, or more 

explicitly, the gain from normalized sensor noise and exogenous force to normalized 

displacement and control effort.  When the output returns a value of 1  , then a 

controller was synthesized which is able to meet all of the performance objectives.  

Alternatively, an output of 1  implies that the problem is ill-posed.  The condition of 

being ill-posed may have two consequences.  An example of an ill-posed problem would 

be setting the maximum displacement of m1 to a value that is lower than the static 

displacement.  This first option leads to tuning the control objectives and reasonable 

operating conditions in order to make a working controller.  Alternatively, if these 

objectives are based on a real, physical model, then the output of 1  proves that the 
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controller is not physically possible.  MATLAB returns 0.9671  , meaning that the 

controller was successful. 

The following figures give a more detailed analysis of the results.  Figure 2.6 shows 

the frequency responses of the transfer functions of the closed-loop system.  The inputs 

are the excitation force acting on m1 and the sensor noise, respectively.  The outputs are 

the displacement of m1 and the control effort, respectively.  The magnitude plot from the 

sensor noise input to the control effort output attenuates at two frequencies, 7.5 and 26.6 

rad/s, corresponding to two natural frequencies in the open loop plant.  Figure 2.7 shows 

the frequency response of the designed controller.  Interestingly, the controller is 

unstable, with two of its four eigenvalues in the right half plane.  However, this instability 

is allowed because the controller drives all of the closed-loop system’s eigenvalues to 

stability.  Next, Figure 2.8 shows the maximum singular value of the closed-loop system 

plotted against the frequency.  An important observation is that the highest value shown 

in the maximum singular value plot is 0.9671, which matches the reported value for γ.   
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Figure II.6 H∞ Closed-loop Transfer Functions  

Input 1:  fe   Input 2: ηe  Output 1: Displacement of m1  Output 2: u 

 

Figure II.7 H∞ Controller Frequency Response 
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Figure II.8 H∞ Closed-Loop Maximum Singular Value 

 

2.3.2 Mu-Synthesis Solution 

In order for this problem to be extended to μ-synthesis, uncertainty needs to be added 

to the system parameters.  A nominal uncertainty value of two percent was chosen for all 

of the parameters: 

 1 1 0.02m   kg (2.25) 

 2 2 0.04m   kg (2.26) 

 1 450 9k   N/m (2.27) 

 2 175 3.5k   N/m (2.28) 

The weighting functions Ww and Wz
-1 

are derived from the performance criteria.  Both 

of these weighting functions are required to normalize the input and output of the closed-
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loop system to absolute values 1 .  Recall that the maximum external disturbance force 

is 10 N and the displacement of m1 needs to be kept under 0.035 m.  This performance 

criteria leads to the weighting functions: 

 10wW  N (2.29) 

 1/ 0.035 28.6zW   m
-1

 (2.30) 

MATLAB returns 1.11  , showing that the controller is no longer able to meet the 

performance specifications once a two percent uncertainty is introduced in the system.  

Clearly, the addition of uncertainty to the system leads to a more difficult system to 

control.  The graphical output shows a similar behavior to that of the H∞ controlled 

system.  Figure 2.9 shows the bode plot of the transfer functions of the closed-loop 

system.  Similar to Figure 2.6, the inputs are the excitation force acting on m1 and the 

sensor noise, respectively.  The outputs are again the displacement of m1 and the control 

effort, respectively.  Figure 2.10 presents the frequency response of the μ-controller. 
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Figure II.9 μ-Synthesis 1 Closed-Loop Transfer Functions 

Input 1:  fe   Input 2: ηe  Output 1: Displacement of m1  Output 2: u 

 

Figure II.10 μ-Synthesis 1 Controller Frequency Response 
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In order to obtain the proper 1  , the performance criteria are relaxed.  Specifically, 

the maximum displacement allowed on m1 is raised to 0.041 m.  The new performance 

criteria led to MATLAB outputting μ=0.9890.  Figures 2.11 and 2.12 show the frequency 

responses of the closed-loop transfer function and the μ-controller, respectively.  Similar 

to the H∞ controller, the μ-controller has multiple unstable eigenvalues.  Two of the 

controller’s eighteen eigenvalues are unstable.  This instability is acceptable because it 

leads to a stable closed-loop system.  

 

Figure II.11 μ-Synthesis 2 Closed-Loop Transfer Functions 

Input 1:  fe   Input 2: ηe  Output 1: Displacement of m1  Output 2: u 
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Figure II.12 μ-Synthesis 2 Controller Frequency Response  
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CHAPTER III 

METHOD FOR EXTRACTING UNMODELED DYNAMICS 

 

 

3.1 Introduction 

This chapter will cover the development of the concepts which will be used in the 

application of model-based identification to find a system’s unmodeled dynamics.  First, 

the method of model-based identification will be derived for use with a μ-synthesis 

controller.  Next, the three-mass model to be studied will be introduced.  This includes a 

description of the test rig that will be used, a system identification experiment to define 

the parameters for the true three-mass system, and experimental verification of the true 

system.  Finally, an example of unmodeled dynamics will be presented to utilize the 

three-mass model.   
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3.2 Application of Model-Based Identification for Missing Dynamics 

This section presents the manner in which a μ-controller is applied to model-based 

identification in order to extract a system’s unmodeled dynamics.  To begin, a quick 

review of model-based identification is presented.  The first control schematic, initially 

known as model reconciliation is shown below (Maslen, Vazquez and Sortore 2002): 

 

 

where: 

truesys is the true system found from experimental data 

engsys is the nominal engineering model derived from analytical techniques 

ue is the external input on the system 

uk is the control force 

yt is the measured output of the true system 

ye is the output of the engineering system under the control of K 

yk is the output to the controller 

K 

engsys 

truesys 

Σ 

uk yk 

ye 

yt 

_ 

ey 

ue 

Figure III.1 Model Reconciliation Control Schematic 
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ey is the error, or difference between the true and engineering system responses 

K is the controller which drives the error to zero 

Model-based identification reconciles the engineering model to the experimental true 

system by creating a controller, K, which minimizes the difference between the system 

responses.  Model-based identification is unique in that it assumes that the structure of 

the engineering model is correct, while inherent inaccuracy is caused by unmodeled 

dynamics.  This unmodeled dynamics results from portions of the system which do not 

have an accurate model, such as bearing seals, shrink fits, etc.  Model-based 

identification seeks to correct the model by discovering this dynamics.  First, the 

unmodeled dynamics is separated from the rest of the model.  Next, the unmodeled 

dynamics is identified using the control schematic (Wang, Pettinato and Maslen 2009a): 

 

 

 

engsys 

G0 

Σ 

ye 

yt 

_ 

ey 

um 

Du 

Dt 

truesys 

uu 

yut 

yue 

Figure III.2 Model-based Identification Control Schematic 
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With the addition of: 

Du is the unmodeled dynamics and the controller 

Dt is the true unmodeled dynamics 

uu is the unmeasured input 

um is the measured input 

yut is the unmeasured output of the true system 

yue is the unmeasured output of the engineering system 

G0 is the portion of the true system which is easy to model 

Similar to the model reconciliation method, a controller is found which minimizes the 

error function ey.  The developed controller, Du, becomes the unmodeled dynamics.  The 

assumptions that the structure of the true system is known and 0G truesys , guarantee 

that Du = Dt.  Now, the controlled engineering system may use its unmeasured output yue 

to predict the true unmeasured output yut (Wang, Pettinato and Maslen 2009a). 

This thesis utilizes a μ-controller and MATLAB’s dksyn command in model-based 

identification.  The reason for this choice is that once the control scheme is developed, it 

may be easily changed to reflect any changes in the performance criteria or other system 

requirements.  In order to use the dksyn command, the control scheme in Figure 3.2 needs 

to be reconciled to the μ-control schematic shown in Figure 2.2.  The following figure 

successfully blends the two diagrams into the control schematic for a method which will 

be known as μ-controlled model-based identification: 
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The controller plant P is partitioned in the following way: 

1 2

1 2

1

1 2 1 2

tt

w z t e e

e ee

W W 
    

                
     

B 0A 0
A B B C C C C 0 C

B B0 A
 

where: 

 At is the dynamic matrix of the true system 

 Ae is the dynamic matrix of the engineering system 

 Bt is the state-space input matrix of the true system 

1e
B is the segment of the state-space input matrix of the engineering system 

corresponding to the disturbance input 

2eB is the segment of the state-space matrix of the engineering system 

corresponding to the controller input 

 Ct is the state-space output matrix of the true system 

K 

engsys 

truesys Σ Ww Wz
-1

 
z z ^ w w ^ 

u y 

_ 

P 

clp 

Figure III.3 Mu-Controlled Model-Based Identification Control Schematic 
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1e
C is the segment of the state-space output matrix of the engineering system 

corresponding to the disturbance output 

2eC is the segment of the state-space output matrix of the engineering system 

corresponding to the controller output 

Analogous to the previous control schematics of Figures 3.1 and 3.2, the primary 

objective of the μ-controlled model-based identification control schematic is to minimize 

the error between the true system and engineering system responses, z.  This value is the 

difference between the responses of the true and engineering systems to the disturbance 

input, w.  The response of the engineering system is driven by the controller, K, to 

minimize z.  As a result, the combination of the controller and the engineering system 

should generate a response that matches that of the true system.  To generate this 

behavior, the controller must match the unmodeled dynamics, or the difference between 

the dynamics of the two systems. 

An important parameter in the control scheme is the output weight, Wz
-1

.  Explicitly, 

the weighting term Wz
-1

 is the inverse of the maximum allowable value of the error z.  In 

the normal μ-synthesis control problem, the weighting is taken from a required 

performance of the system output.  Conversely, model-based identification does not have 

a required performance.  As a consequence, Wz
-1

 can be assigned any value; therefore it is 

utilized to drive the results.  But first, this weighting needs to be started at some nominal 

value.  The first application of the code leads to three cases of μ values: 

1.0 , 1.0 , or 1.0     but close to 1.0 within an acceptable error. 
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The first condition, 1.0  , implies that Wz
-1 

is not stringent enough.  This will result 

in a controlled engineering system whose response may not match that of the true system 

within an acceptable limit, left to be determined by the user.  Naturally, μ-synthesis 

accepts this difference in the responses, because the controller meets all of its design 

requirements, performing within the weighting functions while keeping 1.0  .  A value 

of 1.0  also implies that the control effort can be significantly increased before 

violating the laws of H∞ control.  In order to increase the control effort, the output to be 

minimized, C1 can be made smaller by decreasing Wz.  The value of Wz is decreased until 

the results become acceptably close, but it is more accurate to say that Wz is decreased 

until the μ-value closes in on one.  This condition will be further illustrated in the 

example which follows at the end of chapter. 

The second condition, 1.0  , reveals that Wz
-1

 is too large.  This μ-value tells the user 

that the control scheme is unable to keep the error, z, under the defined limit Wz.  The 

code needs to be run again after increasing Wz.  It is possible that no weighting value 

gives an acceptable error while keeping 1.0  , meaning the systems may be ill-defined.  

This can occur when at least one of the engineering or true system models is inaccurate. 

The third condition, 1.0  but close to 1.0 within an acceptable error, shows that the 

μ-controlled model-based identification scheme has been completed correctly and the 

controller represents the unmodeled dynamics, Du. 
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3.3 The Three-Mass Model Study 

3.3.1 Experimental Test Rig 

The three-mass study in this chapter utilizes the Educational Control Products Model 

210a Rectilinear Control System.  Figure 3.4 shows the system in the test configuration 

and Figure 3.5 (Parks 1999) shows a labeled schematic of the system.  The plant is a 

three-mass and spring setup, with the addition of an excitation motor, encoders, and a 

damper.  The three masses are adjustable from 0 kg to 2 kg, nominally.  Each mass rides 

on a carriage which slides on ball bearings.  This carriage adds some weight and damping 

to the masses, the exact values of which will be determined in the system identification 

experiment in the following section.  The maximum displacement of each mass is 

regulated by travel limit stops in each direction which contain electronic circuit breakers 

that shut down the system when triggered.  Mass position data is read by the three optical 

encoders connected to the carriages.  Two springs connect the masses, while a third 

connects the first mass (left-most in Figure 3.4) to ground.  A dashpot is attached to the 

third mass (right-most in Figure 3.4).  This dashpot is an air damper whose damping 

value may be changed by adjusting the damper’s air flow valve. 

The rectilinear system is excited by a brushless DC servo motor, which drives a rack 

and pinion.  This pinion has a rigid connection to the first mass.  A digital signal 

processor based real-time controller manages the operation of the motor.  The signal 

processor also serves as a data acquisition.  The controller board is installed into a 

personal computer which runs the executive program.  This program gives the user access 

to real-time system data as well as various controllers and excitation.  The experiment in 

this chapter utilizes both the step and sine sweep input trajectories. 
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Figure III.4 Educational Control Products Model 210a Rectilinear Control System 

 

 

Figure III.5 Labeled ECP Model 210a Rectilinear Control System 
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3.3.2 System Identification Experiment 

A system identification experiment is carried out in order to identify all of the system 

parameters required to fully define the three-mass system shown in Figure 3.6. 

 

 

First, m1 is isolated from the rest of the system by using the travel limit stops to inhibit 

the motion of m2 and m3.  The controller is set to input an open loop step function with a 

magnitude of 0 and duration of 3 seconds.  This trajectory forces the data acquisition 

software to record 3 seconds of data without applying an input force.  A displacement of 

roughly 2.5 cm is manually imparted on m1, and the data acquisition records the response 

when the mass is released.  This process is completed twice, first with the cart alone and 

next with four 500 g masses on the cart.  The results of these two trials are shown below:  

m1 
fe 

m2 m3 

k1 

c1 

k2 k3 

c2 c3 

x1 

Figure III.6 Three-Mass System 
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Figure III.7 Mass 1 Cart Response 

 

Figure III.8 Mass 1 Weighted Response 
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The natural frequencies of the two m1 configurations are calculated using the peak data 

from the plots and the following equation: 

 
2 1

2n

N

t t
 


 (3.1) 

Where N is the number of cycles between the two selected peaks and t1 and t2 are the 

times of the first and second peaks, respectively.  Next, the damping ratio is calculated 

from the cart response with the following equation: 
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where y1 and y2 are the amplitudes of the first and second peaks, respectively.  Then the 

mass of the cart is found with the following formula: 
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 (3.3) 

Where mw is the amount of weight added to the cart, ωnc and ωnw are the natural 

frequencies of the cart trial and the weighted trial, respectively.  Next, equivalent 

stiffnesses on each mass are found using: 

 
2

1eq nc ck m  (3.4) 

Finally, the decoupled damping values may be found using the standard equivalence 

 2 c ncc m   (3.5) 

This process is repeated for the second mass, third mass, and damper.  Identification of 

the damper requires an additional set of data with the damper attached to the weighted 
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third cart.  Solving for the air damper’s damping ratio requires a modified decoupled 

damping equation: 

 
3 32( )d c w d nd mc m m c     (3.6) 

Once all of the trials have been completed, off-diagonal stiffness values are found by 

comparing the equivalent stiffnesses.  Results of the system identification experiment are 

summarized below in Table 3.1. 

Table I. System Identification Results 

System Parameters Equivalence Identified Values Parameter Value 

m1 1 1c wm m m   
2.0wm  kg 

1 0.8113cm  kg 
1 2.8113m  kg 

m2 2 2c wm m m   2 0.6396cm  kg 2 2.6396m  kg 

m3 3 3c wm m m   1 0.6074cm  kg 3 2.6074m  kg 

k1 1 1eqk k  
1 842.3eqk  N/m 

1 842.3k  N/m 

k2 2 2 1eqk k k   
2 1648.8eqk  N/m 

2 806.5k  N/m 

k3 3 3 2eqk k k   
3 1192.5eqk  N/m 

3 386k  N/m 

c1 1 1mc c  1 5.2992mc  Ns/m 1 5.2992c  Ns/m 

c2 2 2mc c  2 1.9467mc  Ns/m 2 1.9467c  Ns/m 

c3 3 3m dc c c   
3 1.9297mc  Ns/m 

8.8078dc  Ns/m 
3 10.7375c  Ns/m 

 

 

3.3.3 Model Validation 

In order to confirm the parameter values found in the system identification experiment, 

two sine sweeps of the system are completed for comparison.  The first sweep is of the 

simulated model.  This model is created by inserting the values from the system 

identification experiment of the previous section into a state-space representation of 

Figure 3.6.  The second sine sweep is found from direct measurement of the Rectilinear 
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Control System utilizing the included Executive Software.  An open-loop, logarithmic 

sine sweep is used as the trajectory input with a frequency range of 0.1-10 Hz, an input 

force amplitude of 0.3 V, and a running time of 29.5 s.  Next, the two sine sweeps are 

plotted together, as shown in Figure 3.9.  The agreement of the experimental and 

simulated sine sweeps confirms the accuracy of the state-space three-mass model.  

Consequently, this state-space model will be used as the experimental true system during 

the three-mass example of unmodeled dynamics in the following section. 

 

Figure III.9 Three-Mass Sine Sweeps 
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3.4 Three-Mass Example of Unmodeled Dynamics 

A three-mass example is now presented to illustrate the method of using model-based 

identification to discover unmodeled dynamics.  The purpose of this example is to show 

how the method may be applied to a physical system to discover dynamics which have 

been left out of the engineering model.  In all of the trials in this section, the unmodeled 

dynamics will be known, so the accuracy of the method may be confirmed.  An 

additional goal of this section is to refine the model-based algorithm first laid out by 

Vazquez et al. (2003) in order to make the method easier to apply to systems in which the 

unmodeled dynamics is not already known. 

 

3.4.1 Problem Description 

In this problem, the third mass will be associated with various forms of unknown 

dynamics.  Either mass, stiffness, damping, or some combination of the three parameters 

of the third mass will be unknown.  The true system will be the known from experimental 

results and the engineering system will be associated with a “guessed” nominal model.  

Therefore, the new variables mt, kt, ct, mg, kg, and cg are introduced to describe the mass, 

stiffness, and damping of the third mass in the true and engineering systems, respectively.  

All shared parameters and true values are found in Table 3.1.  True parameters are also 

given an initial uncertainty of one percent which represents possible inaccuracy in test 

measurements.  For example, the true system and engineering system models for the first 

trial are shown below: 
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In the first trial, the stiffness of the third spring is the only unknown value.  As shown 

in the figures, each system has an external input and output acting on m1.  The unmodeled 

dynamics appears on the third mass of the engineering system, so this is where the 

controller K is placed.  As a result, the control objective becomes:  minimize the error 

between the m1 responses of the true and engineering systems by modifying the behavior 

of m3 in the engineering system.  The resulting control schematic for the three-mass 

model-based identification is shown below: 
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Figure III.10 Trial 1 True System 

Figure III.11 Trial 1 Engineering System 
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The resulting controller plant is: 

1
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where: 

 At is the dynamic matrix of the true system 

 Ae is the dynamic matrix of the engineering system 

 
1mB is the m1 input selector matrix 

 
2mB is the m2 input selector matrix 

 
1mC is the m1 output selector matrix 

 
3mC is the m3 output selector matrix 

K 

engsys 

truesys Σ Ww Wz
-1

 
z z ^ w w ^ 

u y 

_ 

P 

clp 

m1 m1 

m3 m3 

Figure III.12 Three-Mass Example Mu-Controlled Model-Based Identification Schematic 
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It is important to note that all of the selector matrices are weighted by their associated 

mass. 

 

3.4.2 Results 

Trial 1a 

The first trial models are shown above in Figures 3.10 and 3.11.  The only difference 

between the two systems is the stiffness of the spring attached to the third mass.  The 

engineering system contains the guessed spring stiffness, 200gk  N/m, while the true 

system has the known spring stiffness, 386tk  N/m with an uncertainty of one percent.  

Once the code is run, the controller should resemble a spring with a stiffness of 186 N/m, 

the difference between the engineering and true systems.   

The code is run and the final results are that when Wz=0.0004, 0.9337  .  Results of 

the first trial are shown below in Figures 3.13-3.15.  Figure 3.13 shows the responses of 

the truesys, engsys, and the controlled engineering system, controlled engsys, in which 

engsys is connected to K by a lower LFT.  Figure 3.14 shows the frequency responses of 

the controller K and the known unmodeled dynamics, Du.  The known unmodeled 

dynamics is a transfer function found from the difference in the dynamics of the third 

mass: 

 u t eD D D   (3.7) 

With: 

 2

t n n nD m s c s k    (3.8) 
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2

e g g gD m s c s k    (3.9) 

Where Dt and De are the dynamics of the true and engineering systems, respectively, 

and the subscript “n” represents the true parameter values with no uncertainty, or the 

nominal true values.  For Trial 1a, Equation 3.7 simplifies to: 

 186u n gD k k   N/m (3.10) 

Finally, Figure 3.15 shows the closed-loop response of the control schematic shown in 

Figure 3.12.  This figure offers visual proof that the controller is working, and has met 

the control objective of keeping the weighted output ˆ 1.0z  for all frequencies.  An 

important feature to note is the appearance of multiple plots for the value of ẑ .  The cause 

of this behavior is uncertainty in the true system.  Multiple plots will also appear in 

system frequency response plots in later trials for the same reason. 

 

Figure III.13 Trial 1a System Frequency Responses 
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Figure III.14 Trial 1a Controller Response 

 

Figure III.15 Trial 1a Closed-Loop Response 
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The preceding three figures show that μ-controlled model-based identification was 

successful in determining the unmodeled spring dynamics.  First, Figure 3.13 shows that 

the controlled engsys response matches the truesys response.  Next, Figure 3.14 shows 

that K matches Du across the entire frequency range, with the controller acting as a spring 

with a stiffness of 186 N/m, matching the nominal difference.  Finally, Figure 3.15 shows 

that ˆ 1.0z  for all frequencies.  

 

Trial 1b 

Similar to Trial 1a, Trial 1b also seeks to identify a difference in stiffness between the 

true and engineering systems.  The difference is that this trial models a decrease in 

stiffness between the engineering and true system.  Parameter values of 386gk  N/m 

and 200nk  N/m are used in Figures 3.10 and 3.11, leading to the simplification of 

Equation 3.7: 

 186u n gD k k    N/m (3.11) 

   The algorithm returns a value of 0.8930  when Wz=0.0004.  Resulting system 

responses are shown in Figure 3.16.  Interestingly, the controller frequency response 

matches that in Figure 3.14.  In order to discover a difference between these controllers, 

the phase responses are included in the Bode plots shown in Figures 3.17 and 3.18.  

These Bode plots show that the only difference between an increase in stiffness and a 

reduction is a 180 degree phase shift. 
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Figure III.16 Trial 1b System Frequency Responses 

 

Figure III.17 Trial 1a Controller Bode Plot 
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Figure III.18 Trial 1b Controller Bode Plot 

 

Trial 2 

The second trial seeks to identify a difference in mass between the true and 

engineering systems.  The guessed mass, mg, has a value of 1.6074 kg, while the true 

mass, mt, has a nominal value of 2.6074 kg with an uncertainty of one percent.  The 

system models are shown in Figures 3.19 and 3.20.  For this trial, Equation 3.7 simplifies 

to: 

 
2 2( )u n gD m m s s   N/m (3.12) 

A result of 0.9492  is obtained when Wz=0.000091.  The controller acts as 

predicted, giving a transfer function that is equal to the mass difference times the 
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frequency squared.  Results generated by this version of the code are of similar quality to 

Trial 1 and are shown in Figures 3.21-3.23. 

 

 

 

Figure III.21 Trial 2 System Frequency Responses 
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Figure III.20 Trial 2 Engineering System 

Figure III.19 Trial 2 True System 
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Figure III.22 Trial 2 Controller Response 

 

Figure III.23 Trial 2 Closed-Loop Response 
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Trial 3 

The third trial seeks to identify a difference in damping between the true and 

engineering systems.  The guessed and true damping values are cg=5.7375 N*s/m and 

ct=10.7375 N*s/m, respectively, with the true damping having a one percent uncertainty.  

For this trial, Equation 3.7 simplifies to: 

 ( ) 5u n gD c c s s   N/m (3.13) 

The final iteration gives 0.9816  with the maximum error, Wz=0.00006.  Once 

again, the results indicate that the method is successful.  Figures 3.24 and 3.25 show the 

system models and the graphical output is shown in Figures 3.26-3.28. 
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Figure III.24 Trial 3 True System 

Figure III.25 Trial 3 Engineering System 
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Figure III.26 Trial 3 System Frequency Responses 

 

Figure III.27 Trial 3 Controller Response 
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Figure III.28 Trial 3 Closed-Loop Response 

 

Trial 4 

Trials 1 through 3 proved that the method was able to handle a single-parameter 

difference in dynamics.  Now, the method is tested with a system with an unmodeled 

mass, stiffness, and damping.  Similar to the first three trials, the guessed parameters have 

values of mg=1.6074 kg, kg=200 N/m, and cg=5.7375 N*s/m, while the true parameters 

have values of mt=2.6074 kg, kt=386 N/m, and ct=10.7375 N*s/m with each parameter 

having a one percent uncertainty.  Using these values, Equation 3.7 simplifies to: 

 
2 2( ) ( ) 5 186u n g n g n gD m m s c c s k k s s          (3.14) 

The final iteration gives 0.9881  with the maximum error, Wz=0.0005.  The system 

model and results are shown in the following figures: 
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Figure III.31 Trial 4 System Frequency Responses 
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Figure III.29 Trial 4 True System 

Figure III.30 Trial 4 Engineering System 
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Figure III.32 Trial 4 Controller Response 

 

Figure III.33 Trial 4 Closed-Loop Response 
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Trial 5 

Finally, the robustness of μ-controlled model-based identification is evaluated.  This is 

accomplished by running the same experiment as in Trial 4 except with the uncertainty 

on each true parameter increased from one percent to ten percent.  The method is able to 

handle this increased uncertainty, with the final iteration giving 0.9846  with an error 

weighting Wz=0.0026.  Graphical results are shown below: 

 

Figure III.34 Trial 5 System Frequency Responses 



63 

 

 

 

Figure III.35 Trial 5 Controller Response 

 

Figure III.36 Trial 5 Closed-Loop Response 
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3.5 Conclusions 

Comparing the results of the five three-mass μ-controlled model-based identification 

trials leads to some interesting conclusions.  First, and most importantly, the method 

works in creating a controlled engineering system which matches the response of the true 

system for various system configurations.  Consequently, a controller is synthesized 

which accurately depicts the unmodeled dynamics.  The next conclusion is that 

uncertainty has a noticeable effect on the accuracy of the method.  Figures 3.32 and 3.35 

may imply that this effect is negligible for this system, but closer analysis of the results 

provides more insight.  A major discrepancy in the weighting values can be seen between 

Trials 4 and 5, with
4

0.0005zW  and
5

0.0026zW  .  These weights indicate that the 

controller in Trial 5 can only hold the systems to within 2.6 mm, while Trial 4’s 

controller is able to keep the systems within 0.5 mm.  This difference may not alter the 

three-mass results significantly, but it does lead to the final conclusion.   

The final conclusion from the three-mass trials is that the weighting function and μ-

value of the final iteration together can be used as a performance measure of model-based 

identification.  As explained earlier, the value of Wz is decreased to drive the μ-value to 

one.  This weighting value indicates the largest possible discrepancy between the 

controlled engineering system and the true system.  The final value of Wz indicates very 

clearly how well the model-based identification algorithm has performed.  This 

correlation is shown in the final error values of the fourth and fifth trials along with the 

accuracies of the controllers shown in Figures 3.29 and 3.32.   
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This new performance measure leads to an update to the model-based identification 

algorithm presented in the work by Vazquez et al. (2003), with the addition of the 

seventh step: 

 1. Measure the frequency response of the actual system. 

2. Identify a state-space representation (truesys) from the experimental frequency 

response. 

3. Create a nominal engineering model (engsys). 

4. Identify uncertain portions of the model. 

5. Assemble the control schematic shown in Figure 3.3. 

6. Run the μ-synthesis, resulting in K. 

7. Evaluate the μ-value: 

A. If 1.0  , decrease Wz and repeat the μ-synthesis. 

B. If 1.0  , increase Wz and repeat the μ-synthesis. 

C. If 1.0  within a user-defined acceptable error, then K represents the 

unmodeled dynamics. 

The addition of step 7 to the algorithm allows for an easier transition to a system with 

unknown unmodeled dynamics.  Once there is no defined Du to evaluate K against, it is 

advantageous to have a measure of exactly how close the system responses are to each 

other.  Now that the method has been proven and refined, it is ready to be applied to a 

system with unknown unmodeled dynamics, which will be presented in Chapter 4.   
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CHAPTER IV 

APPLICATION TO STRUCTURAL DAMAGE DETECTION IN 

ROTATING MACHINERY 

 

 

4.1 Introduction 

In this chapter, the method of utilizing model-based identification for quantifying 

unmodeled dynamics will be applied to create a new model for the effects of a transverse 

crack on a rotor.  This example will utilize the experimental responses of a healthy and a 

cracked rotor as measured and reported by Pesch (2008).  First, the crack detection rig 

will be introduced.  Next, an explanation of the technique used to derive the true and 

engineering system models from the experimental data.  After the models are derived, the 

model-based identification approach is developed for discovering the dynamics brought 
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on by a crack in a rotor.  Finally, the experiment is carried out and the results are 

presented. 

 

4.2 Crack Detection Test Rig 

The test rig utilized in this experiment was manufactured by SKF Magnetic Bearings, 

which is a unit of SKF Canada Limited.  Figure 4.1 shows the experimental setup and 

Figure 4.2 shows the dimensions of points of interest on the rotor (Pesch 2008).  This test 

rig consists of a carbon steel disk and three magnetic bearing rotors mounted on a 26 in 

long, 0.625 in diameter, 416 stainless steel shaft.  The rotor is driven by a 48 volt DC 

brush-type motor, connected by a flexible coupling which allows axial and radial 

displacement.  All of these components are mounted on an aluminum base plate which 

sits on a Technical Manufacturing Corporation 780 Series Vibration Isolation Optical 

Table. 

Excitation force for the experimental sine sweeps is input through the middle magnetic 

force actuator.  Both the motor and the exciter are controlled by SKF model MB340g4-

ERX digital controllers.  The motor is controlled by a PI controller, while the exciter has 

no active feedback control.  The controllers are programmed using the MBScope2000 

version 4.07 software package which is installed on a PC.  This software package 

programmed the experimental sine sweeps and collected the data. 
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Figure IV.1 Crack Detection Test Rig in Experimental Configuration 

 

Figure IV.2 Crack Detection Rotor Configuration with Dimensions (inches) 

 

To simulate a crack, a cut was put in the damaged rotor.  This cut was made using a 

wire electrical discharge machine (EDM).  The “crack” is approximately 115 μm wide, 

with a depth of 40% of the shaft diameter and is located at the bearing mid-span.  A 

close-up of the crack is shown in Figure 4.3 (Pesch 2008). 
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Figure IV.3 Bottom of Wire EDM Cut in Rotor 

 

The trials from Pesch (2008) that are used in this model-based identification 

experiment do not use the two magnetic bearings near each end of the rotor.  Instead, 

these trials have the rotor supported on deep-groove Conrad type ball bearings which sit 

in place of the magnetic bearings’ touchdown bearings.  Normally, the touchdown 

bearings are oversized and protect the magnetic bearing stators in the event of a levitation 

failure.  In this case, the ball bearings are snug and used to support the rotor.  The ball 

bearing trials were selected for analysis over the magnetic bearing trials because they 

contain sine sweeps conducted during rotation, where the magnetic bearing trials do not.  

This rotation during sine sweeps is important because it allows the crack to open and 

close, or breathes, giving a more accurate representation of the crack’s behavior during 

normal operation.  Additional information on the test rig may be found in Pesch’s thesis 

(2008). 
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4.3 Modeling of the Rotor Systems 

In order to utilize μ-controlled model-based identification to identify the changes in 

dynamics brought on by a transverse crack, state-space models of the healthy and cracked 

rotors need to be developed.  The modeling is completed with a MATLAB program 

which generates the state-space representation of a rotor from a finite element model 

input file using Timoshenko beam elements.  The parameters used to describe each 

element are:  added weight, length, outer diameter, inner diameter, added polar moment 

of inertia, added transverse moment of inertia, Young’s modulus, and mass density.  

Additionally, each node includes four binary values to identify if the location is a 

translational input, translational output, rotational input, and rotational output.  The input 

files for the healthy and cracked rotors are shown in the Appendix.   

For this experiment, additional elements needed to be added to the finite element shaft, 

including magnetic bearing rotors and a heavy disc.  In modeling, lumped masses and 

shaft sections are used.  The lumped mass uses added weight, polar moment of inertia, 

and transverse moment of inertia at the node of the standard element.  In this experiment, 

beam elements will be used to model the magnetic bearing rotors and a lumped mass will 

be used to model the disc.  Separate input files are generated for the healthy and cracked 

rotors. 

The finite element input files are created to match experimental sine sweeps.  These 

linear sine sweep trials have a frequency range of 20 to 1000 Hz, a step size of 0.5 Hz, a 

magnitude of 0.1 A, 40 revolutions per convolution, a settling time of 700 ms, and was 

done at 10 Hz rotation speed.  The difference between the two sine sweep trials is the 

presence of a 40% transverse crack in the rotor, which differentiates the healthy and 
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cracked systems.  Additionally, the results of these sweeps are truncated to a frequency 

range of 20 to 225 Hz because the output becomes dominated by noise at higher 

frequency values. 

Both the healthy and cracked files begin from the same point- an input file created 

from the best known engineering parameters.  The finite element program creates a state-

space model of a free-free rotor using the input file.  This generated state-space model 

has two differences from the sine sweep data which need to be reconciled.  First, the 

finite element model is of a free-free rotor, where the sine sweep is of a rotor on ball 

bearings.  Second, the sine sweep input is current while the free-free rotor input is force.  

These two discrepancies are corrected by placing the rotor on ball bearings as shown in 

Figure 4.4.  In this figure, ki and kb represent the current stiffness of the exciter and the 

bearing stiffness, respectively.  Interestingly, the crack input and crack output are 

included in the healthy system, but left out of the cracked system.  This difference is a 

result of the controller being placed on the crack input and output of the healthy system 

for the model-based identification, a factor that will be explained further in the 

Formulation of Approach section. 

 

 

rotor  

state-space 

kb 

bearing sensors bearing inputs 

ki 

input @ exciter 

location (N) 
exciter sensor /  

sine sweep output (m) sine sweep input (A) 

crack input (N) crack output (m) 

Figure IV.4 Rotor Model on Ball Bearings 
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Finally, the rotor models on ball bearings are tuned to match the experimental sine 

sweeps.  The primary goal of this tuning was to match the first and second resonant 

peaks.  Parameters that were tuned include:  mass added by disc, exciter sensor location, 

density, and current stiffness.  These were tuned manually through trial and error.  

Eventually, the peaks were matched very accurately.  A deficiency in the modeling is 

shown in the anti-resonance.  This was moved during tuning to be at the correct 

frequency but tuning was not able to bring the magnitude of the anti-resonance to the 

correct value.  Once the tuning was complete, healthy and cracked systems of similar 

quality were generated.  These final healthy and cracked systems are shown plotted 

against the experimental sine sweeps in Figures 4.6 and 4.7, respectively. 

A graphical representation of the final input files is shown in Figure 4.5.  This finite 

element model contains 30 nodes, with an overall length of 26 in.  Points of interest 

include the ball bearing supports on stations 2 and 28, the exciter input on station 12, the 

exciter output on station 13, the disk on station 16, and the crack location at station 15.  

Note that the separation between the 12
th

 and 13
th

 node is only 0.05 in, so they appear as 

one heavy line on the plot.  The only difference between the plot and the finite element 

input files is that the disk is modeled as a lumped mass in the input files. 
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Figure IV.5 Model Configuration 

 

Figure IV.6 Healthy Rotor Model and Experimental Sine Sweep 
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Figure IV.7 Cracked Rotor Model and Experimental Sine Sweep 

 

 

4.4 Formulation of Approach 

Before an approach is developed, it is important to identify the objective of the 

experiment.  This objective is to identify the change in dynamics brought on by the 

presence of a transverse crack in a rotor system.  Mu-controlled model-based 

identification is utilized to complete this goal.  Accordingly, the algorithm laid out in 

Section 3.5 becomes the starting point for this experimental approach, which will be an 

adaptation of model-based identification for discovering the difference in dynamics 

between two systems. 
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First, measure the frequency response of the actual system.  In this experiment, both 

systems are an “actual” physical model, which means that both the frequency responses 

of the cracked and healthy rotors are needed.  This step was completed in the previous 

section. 

Second, identify a state-space representation from the experimental frequency 

response which represents the true system, truesys.  Next, create a nominal engineering 

model, engsys.  These two steps show where using model-based identification for finding 

an unmodeled difference in dynamics differs from the standard procedure.  

Differentiating between the true and engineering systems is not as trivial as it normally 

would be because both systems are created from experimental frequency responses, so 

there is no “nominal” engineering model.  In fact, the two systems can be described as 

“true” because of their derivation from experimental results.  Consequently, there needs 

to be some other distinguishing factor.  The two systems in this experiment are a healthy 

and cracked rotor.  The objective is to identify the effects of adding a crack to the healthy 

rotor.  This means that the crack will be modeled by the synthesized controller.  The 

controller will replicate the dynamics induced by the presence of a crack, such that the 

extracted crack dynamics will force the healthy system response to match the cracked 

system response.  Knowing that the controller works to drive the engineering system to 

the true system, it follows that the healthy and cracked systems will become the engsys 

and truesys, respectively.   The modeling of the engineering and true systems was 

completed in the modeling section using the finite element program. 

The fourth step is to identify difficult to model system components.  For this 

experiment, the step is changed to:  identify the dissimilar points between the two 
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models.  Therefore the fifteenth node of the finite element model is chosen, or the node at 

the crack location.  The chosen node becomes the location for the controller input, y, and 

output, u.  This application of the controller to a particular point illustrates one of the 

major strengths in model-based identification.  A controller applied to the cracked 

element allows for a local crack model which should be easier to interpret than one 

applied to the experimental system identification exciter input and output.   

Next, assemble the μ-controlled model-based identification control schematic shown 

in Figure 3.3.  Construction of the plant to be controlled begins with the identification of 

the parameters:  w, z, y, and u.  The excitation signal, w, and the closed-loop output, z, 

originate from the input and output of the sine sweep, leading to a current input at the 

exciter bearing coils and a position output at the exciter bearing sensor of each system.  

The controller input, y, and output, u, were already identified in the fourth step of the 

algorithm to be at the crack location of the healthy rotor.  Additionally, the input 

weighting factor, Ww, needs to be assigned.  The weighting factor is required to normalize 

the closed-loop input to a magnitude 1.0w  .  Therefore, this equals the magnitude of 

the sine sweep trial inputs which were both 0.1 Amperes.  The complete crack model 

identification schematic is shown in Figure 4.8.  Figure 4.9 provides an alternative view 

of the control schematic.  This is a more visual representation of the control scheme and 

blends the finite model of Figure 4.7 with the control schematic in Figure 4.8. 
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The resulting controller plant is: 

 
, 1

1 2 1 , , 2

,

ex tt

w z ex t ex e cr

ex ee cr

W W 
    

            
    

BA 0 0
A B B C C C C 0 C

B0 A B

 

Where: 

 At is the dynamic matrix of the true system. 

 Ae is the dynamic matrix of the engineering system. 

 
,ex tB is the exciter input matrix of the true system. 

 
,ex eB is the exciter input matrix of the engineering system. 

 crB is the crack input matrix. 

 
,ex tC is the exciter output matrix of the true system. 

 
,ex eC is the exciter output matrix of the engineering system. 

 crC is the crack output matrix. 

With all of the state matrices created by the finite element program and then placed on 

ball bearings as shown in Figure 4.4. 

The final two steps of the μ-controlled model-based identification are to run the μ-

synthesis and evaluate the μ-value to see if the controller synthesis step needs to be 

repeated.  These steps are presented in the next section, which completes the experiment 

and presents the resulting crack model.  
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4.5 Application Utilizing Experimental Data 

After the healthy and cracked rotor responses have been transformed into the truesys 

and engsys, and the control schematic has been developed, the μ-synthesis is run.  The 

final iteration of the μ-synthesis returned 0.9576  when Wz=1.1×10
-6

.  Therefore, the 

controller is able to keep the unweighted closed-loop output, z, of the controlled 

engineering and true systems within 1.1 μm.  Graphical outputs of the results are shown 

in Figures 4.10-4.13. 

Figure 4.10 shows the frequency responses of the true system, engineering system, and 

controlled engineering system.  The Bode magnitude plot shows the initial difference 

between the true and engineering systems, truesys and engsys, respectively.  This initial 

difference illustrates the effect of adding a 40% transverse crack to the rotor model.  The 

controller is then applied to drive engineering system to match the true system.   As a 

result, the controlled engineering system or controlled engsys overlaps the response of 

the true system.  Along with the output weighting, this confirms that the code has worked 

correctly and the controller gives an accurate model of the crack. 

Next, Figure 4.11 shows the frequency response of the controller, which represents the 

crack model, or the dynamics brought on by introducing a 40% transverse crack to a 

rotor.  Additional information is provided by the complete Bode plot shown in Figure 

4.12 that includes the controller frequency response.  For physical interpretation of the 

crack model, the response is compared to those from the three-mass trials. The crack 

response does not closely-resemble a change in stiffness as shown in Figure 3.17, a 

change in mass as in Figure 3.22, or a change in damping as in Figure 3.27.  Clearly, the 

crack presents a more complicated change in dynamics than those three-mass trials.  
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Therefore, comparing the results to a trial with more changes in dynamics may lead to a 

match.  Trial 4 included changes in mass, stiffness, and damping.  Again, the crack model 

is more complicated than the controller from the three-mass trial.  The primary difference 

is in the resonance peaks that occur 162 and 205 Hz.  Additionally, these frequencies 

appear to have no physical meaning in the true or engineering systems.   

An accepted interpretation of a crack is that it would bring a localized reduction in 

stiffness.  As previously discussed, the magnitude response of the developed crack 

dynamics does not resemble the controller developed in Trial 1b.  Interestingly, there is a 

similarity in the phase response of both of the models.  Figure 3.18 shows that the phases 

of the nominal unmodeled dynamics, Du, and the developed controller, K, are 0° and

360  , respectively.  The phase of the crack model begins at 720°, where it remains until 

it moves through the first resonant peak.  Phase describes rotation around a circle so that 

the values of 0°, -360°, and 720° are at equivalent points about the circle. 

Finally, Figure 4.13 provides further confirmation that the μ-synthesis worked 

correctly.  The frequency response of ẑ is plotted in order to confirm that the magnitude 

of the closed-loop output is kept under 1.  Additionally, the plot is useful in illustrating 

the frequencies at which the controller has the most trouble meeting the performance 

criteria.  The frequencies of the peaks in the ẑ response closely relate to the resonant 

peaks of the engineering system shown in Figure 4.10.  The implication associated with 

this result is that once the dynamics that drives the resonant peaks is corrected, the rest of 

the response will fall into matching the true system.  Interestingly, the controller does not 

appear to struggle at the frequency of the anti-resonance in the engineering system.  
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Figure IV.10 Crack Model Identification Frequency Responses 

 

Figure IV.11 Identified Crack Model 
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Figure IV.12 Identified Crack Model with Phase 

 

Figure IV.13 Crack Model Identification Closed-Loop Response 
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CHAPTER V  

CONCLUSIONS 

 

 

5.1 Summary 

The primary objective of this thesis is to identify the changes in system dynamics 

induced by the presence of a transverse crack in a rotor; to this end the thesis was 

successful.  Model-based identification was able to create an accurate model for the crack 

because it was derived from the experimental frequency responses of a healthy and a 

cracked rotor system.  State-space system models were created from the frequency 

responses.  A μ-synthesis control schematic is utilized to create a controller which 

minimizes the difference between the healthy and cracked system responses.  Because the 
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difference is minimized by this controller, which is applied at the crack location, the 

controller is a new representation for the local crack dynamics. 

Significant background work was required before the model for the change in 

dynamics brought on by the presence of transverse crack could be developed.  First, the 

robust control tools used in model updating were introduced.  Specifically, this included 

an introduction to the concepts of H∞ control, μ-synthesis, and the linear fractional 

transformation.  Most important was the background theory and explanation of how to 

use μ-synthesis, because this is the controller that is utilized by the model-based 

identification.  Next, the combination of a μ-controller and model-based identification 

was developed for the application of missing dynamics.  This is followed by a three-mass 

model study.  The purpose of this study was to show how a difference in dynamics could 

be extracted with the application of μ-controlled model-based identification to a simple 

system, where the difference in dynamics is known, well understood in terms of 

modeling, and able to be measured directly.  These trials led to several conclusions.  

First, the method is successful and intuitive.  Next, the output weighting function Wz can 

be used as a performance measure of μ-controlled model-based identification.  Finally, an 

update on the model-based identification algorithm was developed for extracting 

unmodeled dynamics using μ-synthesis and is shown in the Major Conclusions section. 

 

5.2 Major Conclusions 

The primary conclusion of this thesis is the new model of the change in dynamics 

induced by the presence of a transverse crack in a rotor.  This model is shown in Figure 
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4.11.  An equally important result of this paper is the development of an updated 

algorithm for model-based identification, which was first presented by Vazquez et al. 

(2003).  This algorithm is modified for the identification of a known difference in 

dynamics using μ-synthesis, is a summary of the Formulation of Approach section of 

Chapter 4, and is presented below: 

1. Measure the frequency response of the systems. 

2. Identify a state-space representation (truesys) from the experimental frequency 

response of the system with the difference (the crack in this case). 

3. Create an engineering model (engsys) from the experimental frequency response of 

the system without the difference. 

4. Identify where the difference in dynamics occurs in the model. 

5. Assemble the control schematic shown in Figure 3.3. 

6. Run the μ-synthesis, resulting in controller, K. 

7. Evaluate the μ-value: 

A. If 1.0  , decrease Wz and repeat the μ-synthesis. 

B. If 1.0  , increase Wz and repeat the μ-synthesis. 

C. If 1.0  within a user-defined acceptable error, then K represents the 

difference in the dynamics. 

 

5.3 Future Work 

The first addition to this study would be further examination of the identified crack 

model.  This model could be used in simulation to see if it effectively predicts the 
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behavior of the cracked rotor at normal operating conditions, leading possibly to 

applications in damage detection.  Also, further study to be done in the modeling of the 

dynamics brought on by the addition of a transverse crack in a rotor to see if a unified 

model could be developed.  Such a study could include a more exhaustive look at the 

effects of crack depth, loading, and rotational speed on the dynamics brought on by the 

crack.  
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FINTE ELEMENT INPUT FILES 

Parameters from left to right:  added weight, length, outer diameter, inner diameter, 

added polar moment of inertia, added transverse moment of inertia, Young’s modulus, 

mass density, and four binary values to indicate if the location is a translational input, 

translational output, rotational input, and rotational output. 
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Healthy Model 

0 0.875 0.63 0 0 0 30 0.3 0 0 0 0

0 0.5 0.63 0 0 0 30 0.3 1 1 0 0

0 0.53 1.59 0 0 0 30 0.3 0 0 0 0

0 0.47 1.78 0 0 0 30 0.3 0 0 0 0

0 0.875 1.88 0 0 0 30 0.3 0 0 0 0

0 0.5 1.88 0 0 0 30 0.3 0 1 0 0

0 1.313 0.63 0 0 0 30 0.3 0 0 0 0

0 1.313 0.63 0 0 0 30 0.3 0 0 0 0

0 1.313 0.63 0 0 0 30 0.3 0 0 0 0

0 1.313 0.63 0 0 0 30 0.3 0 0 0 0

0 0.875 1.88 0 0 0 30 0.3 0 0 0 0

0 0.05 1.88 0 0 0 30 0.3 1 0 0 0

0 1.45 1.88 0 0 0 30 0.3 0 1 0 0

0 1 0.63 0 0 0 30 0.3 0 0 0 0

0 1 0.63 0 0 0 30 0.3 1 1 0 0

4.81 1.2 0.63 0 21.1 12.01 30 0.3 0 0 0 0

0 0.45 0.63 0 0 0 30 0.3 0 0 0 0

0 0.8 0.63 0 0 0 30 0.3 0 0 0 0

0 0.206 0.63 0 0 0 30 0.3 0 0 0 0

0 1.656 0.63 0 0 0 30 0.3 0 0 0 0

0 1.656 0.63 0 0 0 30 0.3 0 0 0 0

0 1.656 0.63 0 0 0 30 0.3 0 0 0 0

0 0.5 1.88 0 0 0 30 0.3 0 0 0 0

0 0.875 1.88 0 0 0 30 0.3 0 1 0 0

0 0.47 1.78 0 0 0 30 0.3 0 0 0 0

0 0.53 1.59 0 0 0 30 0.3 0 0 0 0

0 0.5 0.63 0 0 0 30 0.3 0 0 0 0

0 1.75 0.63 0 0 0 30 0.3 0 0 0 0

0 0.375 0.38 0 0 0 30 0.3 1 1 0 0

0 0 0.38 0 0 0 30 0.3 0 0 0 0  
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Cracked Model 

0 0.875 0.63 0 0 0 30 0.29 0 0 0 0

0 0.5 0.63 0 0 0 30 0.29 1 1 0 0

0 0.53 1.59 0 0 0 30 0.29 0 0 0 0

0 0.47 1.78 0 0 0 30 0.29 0 0 0 0

0 0.875 1.88 0 0 0 30 0.29 0 0 0 0

0 0.5 1.88 0 0 0 30 0.29 0 1 0 0

0 1.313 0.63 0 0 0 30 0.29 0 0 0 0

0 1.313 0.63 0 0 0 30 0.29 0 0 0 0

0 1.313 0.63 0 0 0 30 0.29 0 0 0 0

0 1.313 0.63 0 0 0 30 0.29 0 0 0 0

0 0.875 1.88 0 0 0 30 0.29 0 0 0 0

0 0.05 1.88 0 0 0 30 0.29 1 0 0 0

0 1.45 1.88 0 0 0 30 0.29 0 1 0 0

0 1 0.63 0 0 0 30 0.29 0 0 0 0

0 1 0.63 0 0 0 30 0.29 1 1 0 0

5.21 1.2 0.63 0 21.1 12.01 30 0.29 0 0 0 0

0 0.45 0.63 0 0 0 30 0.29 0 0 0 0

0 0.8 0.63 0 0 0 30 0.29 0 0 0 0

0 0.206 0.63 0 0 0 30 0.29 0 0 0 0

0 1.656 0.63 0 0 0 30 0.29 0 0 0 0

0 1.656 0.63 0 0 0 30 0.29 0 0 0 0

0 1.656 0.63 0 0 0 30 0.29 0 0 0 0

0 0.5 1.88 0 0 0 30 0.29 0 0 0 0

0 0.875 1.88 0 0 0 30 0.29 0 1 0 0

0 0.47 1.78 0 0 0 30 0.29 0 0 0 0

0 0.53 1.59 0 0 0 30 0.29 0 0 0 0

0 0.5 0.63 0 0 0 30 0.29 0 0 0 0

0 1.75 0.63 0 0 0 30 0.29 0 0 0 0

0 0.375 0.38 0 0 0 30 0.29 1 1 0 0

0 0 0.38 0 0 0 30 0.29 0 0 0 0  
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