
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2010

Targets of Hsa-miR-488* in Human Prostate
Carcinoma Cells
Jinani E. Slaibi
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Biology Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Slaibi, Jinani E., "Targets of Hsa-miR-488* in Human Prostate Carcinoma Cells" (2010). ETD Archive. 677.
https://engagedscholarship.csuohio.edu/etdarchive/677

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/677?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


 
 

TARGETS OF HSA-MIR-488* IN HUMAN PROSTATE CARCINOMA CELLS 

 

 

 

JINANI E. SLAIBI 

 

 

 

 

Bachelor of Science in Biology 

Cleveland State University 

May, 2008 

 

 

Submitted in partial fulfillment of requirements for the degree 

MASTER OF SCIENCE IN BIOLOGY 

at the 

CLEVELAND STATE UNIVERSITY 

May, 2010 

 



 

 

 

 

 
 
 

This thesis has been approved for 

The Department of Biological, Geological, 

And Environmental Sciences and the  

College of Graduate Studies By 

 

_______________________Date:_______ 

Girish C. Shukla 

Committee Chairperson, Department of BGES,  

Cleveland State University  

 

 

_______________________Date:_______ 

Crystal M. Weyman 

Department of BGES,  

Cleveland State University  

 

 

_______________________Date:_______ 

Barsanjit Mazumder 

Department of BGES,  

Cleveland State University 



 

 

 
 
 
 
 
 
 

ACKNOWLEDGEMENTS 
 

Many people contributed their time, effort and ideas into completing this 

Master thesis; I would like to thank everyone who has helped me along the way. 

 First and foremost, I offer my sincerest gratitude to my advisor Dr. Girish 

Shukla for providing me an opportunity to conduct my research under his 

supervision.  I was extraordinarily fortunate in having him as my undergraduate 

research professor. I could never have embarked and started all of this without 

his prior teaching. His sage advice, insightful criticisms and patient 

encouragement strongly contributed to the completion of this thesis.  

Furthermore, I would like to record my gratitude to Dr. Crystal Weyman 

and Dr. Barsanjit Mazumder for their valuable advice and guidance from the early 

stage of my graduate career. Their teaching opened up unknown horizons to me. 

Also, I am thankful that in the midst of their tight schedule, they accepted to be 

members of my advisory committee. 

  I convey special acknowledgement to Dr. Bette Bonder for her 

indispensable help and support through the Graduate Assistantship. I am proud 

to record that I had several opportunities to work under Dr. Bonder’s supervision 

in helping high school students throughout NEOSEF as well as CONSEF in 

designing and conducting experiment for their science fair activity.  



 

 

 

I gratefully acknowledge Dr. Kavleen Sikand for her valuable advice in 

science discussion as well as giving me extraordinary experience throughout the 

work. Kavleen, your bright thoughts have been fruitful for shaping my ideas and 

knowledge.  

I also would like to make a special reference to my colleague and friend 

Sanaa Jehi who patiently proofread this entire thesis. I have enjoyed our 

scientific discussions over the early morning coffee break.   

I have worked with great number of people whom to I send a collective 

and individual acknowledgment, Neha, Tupa, Kevin, Megan, Jagjit and Chaucola. 

My lab colleagues whose presence perpetually was refreshing, helpful and 

memorable: Many thanks for giving me such a pleasant time.  

This thesis is dedicated to my father Elias Slaibi and my mother Ghada 

Daura, their unswerving devotion to me is exemplified in many ways. You have 

raised me with caring and gentle love. You have implemented the fundament of 

my learning character, showing me the joy of intellectual pursuit ever since I was 

a child.  

Mathilda, Natali and Slaibi, thanks for being supportive and caring siblings. 

This thesis will not be complete without the three of you. 

Lastly, I offer my regards and blessings to all of those who supported me in any 

respect during the completion of the project. 



 

V 
 

 
 
 
 

TARGETS OF HSA-MIR-488* IN HUMAN PROSTATE CARCINOMA CELLS 

JINANI ELIAS SLAIBI 

ABSTRACT 

 

Prostate cancer (PCa) is one of the most prevalent forms of cancer among 

men in America and is second only to lung cancer as a cause of cancer-related 

deaths in men. Recent epidemiological study shows that one in every six men 

over the age of forty five is at risk of PCa. Androgen receptor (AR) plays a 

causative role in the development of PCa. Hormonal blockade therapy which 

inhibits the expression of AR eventually fails and disease progresses to fatal 

androgen-refractory stage from androgen-dependent stage. Therefore, novel 

molecular approaches which can target and block the expression of AR are 

required. We propose that microRNAs (miRNA) that function as negative gene 

regulators have potential as PCa therapeutics. Using bioinformatics methods, we 

have identified that human miRNA hsa-miR-488* has potential to modulate AR 

expression. In the present study, we have validated the target site in AR 3’UTR 

and established that AR is a target of Hsa-miR-488*. Our data show that the 

ectopically expressed hsa-miR-488* as well as the synthetic miRNA mimic can 

suppress the expression of luciferase activity in chimeric plasmid harboring 

AR3’UTR with dose dependent effects. In addition, miR-488* negatively 

regulated the expression of endogenous androgen receptor in PCa cells LNCaP. 
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Thus hsa-miR-488* that function as negative gene regulators has potential as 

PCa therapeutics. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Cancer: 

 

Human body is made up of about 100 trillion of living cells (Campbell, N.A. et 

al. 2006). Normal cells carry a complete organismic genome which is far more 

information that any cell may require (Sinden, R.R. 1994).  Regulation of the cell 

cycle is critical for the development of multicellular organisms. Part of this 

information in normal cells controls essential function for the normal survivor of 

cells such as growth, dividing, and dying in an orderly way. However, cancer 

cells have lost the ability to control growth and division leading to uncontrolled 

proliferation and the inappropriate survival of damaged cells. This new fate of the 

uncontrolled cells is responsible for the formation of tumors.    
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Cells have developed several safeguards to ensure that cell division, 

differentiation and death occur correctly and in a coordinated fashion, both during 

development and in the adult body (Esquela-Kerscher A. et al., 2006). Mutations 

into this genomic information divert cells into acquiring novel of abnormal 

phenotypes and incompatible features with normal cell cycle. These mutations 

may cause inability of cells to make a functional signal, or cause it to code for a 

protein that sends an incorrect signal to the cell (Kinzler K.W. et al. 2002). Most 

mutations are repaired by the cell, but in rare cases mutations do not get 

repaired. If a mutation is not repaired before a cell copies its DNA and divides 

into two cells, then the mutation is passed on to the two new daughter cells and 

becomes permanent. Some genetic disorders may cause cells deprivation of 

their ability to repair DNA, and may therefore experience buildup of mutations. 

Not all the mutations within the cell's DNA have effect on whether the cell will 

become cancerous or not (Sawyer S.A. et al. 2007). However, protein signals 

coded by a very small proportion of the total genes in each cell regulate cell 

growth and division. These regulatory genes include the two groups of genes 

called Proto-oncogenes and tumor-suppressor (Chial, H.  2008). A series of 

mutations in the DNA of either and/or both groups of these growth controlling 

genes is selected in cancerous cells. Thus cancer is considered to be a genetic 

disease and the cancer-forming process is called Tumorigenesis or 

Oncogenesis, where most cancers may arise through a combination of avoidable 

or unavoidable carcinogens (Lutz W.K. et al, 1988). 
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Many factors contribute to the transformation of normal cells into malignant 

cancerous cells such as exposure to carcinogens, genetic defects, life style or 

even viruses (Couch D.B. 1996). Cancer cells have gained the ability to grow and 

multiply out of control forming a large mass of tissue called a tumor. Some 

tumors are limited to one location and can be surgically removed. These tumors 

do not grow in an unlimited, aggressive manner, do not invade surrounding 

tissues and do not metastasize. This type of tumors is termed benign tumor 

(Ramzi C.et al. 1999). But in other cases of cancer, cells have gained the ability 

to spread and metastasize to surrounding tissue or other organs of the body. 

Such aggressive tumors are termed malignant. The term cancer is used to 

describe malignant, non benign tumors.  

 
1.2 Prostate cancer remains a significant public health problem in the U.S. 

 

Prostate cancer is the most common solid tumor form of cancer among men 

in America and is second only to lung cancer as a cause of cancer-related 

mortality (Jemal A. et al. 2008, 2005 ; Parker S.L et al. 1997). Despite earlier 

diagnosis and improvement in treatment modalities, the cancer’s projection for 

2009 estimated that 192,280 new cases of prostate cancer will occur in the US 

during 2009 and 27,360 men will die from the disease (ACS, 2009). 
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Figure 1: Statistical figures were adopted from the 2009 American cancer Society 
statistical study and rearranged in order to show the comparison between occurrence of 
cancer cases and the mortality rate of each site.  Prostate cancer is the most diagnosed 
cancer within men and the second cause of cancer death in American men.  

Numerous studies have shown that approximately 85% of newly diagnosed 

prostate cancer cases are localized in the prostate, and the remaining 15 % of 

the cases represents invasive or metastatic disease (Cooperberg MR et al. 

2004). Those studies have provided insight into molecular mechanisms that 

contribute to the beginning and progression of prostate cancer. Most of these 

studies have suggested that androgens play an important role in the 

development, regulation and progression of prostate cancer. Hence, the first line 

for treatment is the Androgen deprivation therapy either surgical or chemical 

castration through a complete hormonal blockage of androgen by using anti-
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androgens and in most cases combined with radiation in specific settings 

(Harries W. et al, 2009; Taneja S.S, 2003).  While most patients with prostate 

cancer initially respond to androgen-ablation therapy, however 20% are 

refractory to such treatments. Furthermore, majority of the patients who respond 

to androgen ablation therapy eventually relapse with androgen-independent 

prostate cancer (AIPC) within three years (Calabro F. et al, 2007). 

 

1.3 Two stages of Prostate cancer: 

 

The ligand-activated transcription factor, androgen receptor (AR), plays a 

central role in the development and progression of prostate cancer in humans. 

AR is heterogeneously expressed in primary tumors and throughout the 

progression of androgen dependent and androgen independent ‘hormone-

refractory prostate cancers.  Prostate cancer initiates as an androgen-dependent 

disease, and further accumulation of multiple sequential genetic and epigenetic 

alterations transforms it into an aggressive, therapy resistant, androgen-

independent prostate cancer (AIPC) (Maitland J.N. et al, 2008).  

The molecular basis of the transition from androgen dependent to AIPC is still 

unclear however; recent studies suggest that hypersensitivity of AR to trace level 

androgens combined with androgen ablation therapy could provide a selective 

pressure on the cellular pathways which are regulated by androgen signaling 

(Taplin, N.E et al, 1999; Craft N. et al, 1999). Consequently, androgen dependent 

cancer cells adapt to the androgen-deprived conditions and furthermore select 
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mutated AR that is able to utilize an anti-androgen antagonist as an agonist for 

their aggressive growth and proliferation (Marques, R.B et al, 2005). 

Despite all the evidences, it is far from clear as to how AIPC arises and the 

definitive roles played by the AR.  

 

1.4 Mechanism of action of Androgen receptor: 

 

Prostate cancer is dependent on androgen stimulation mediated by the 

androgen receptor (AR). AR, a steroid hormone receptor member of the large 

nuclear receptor superfamily, is a ligand activated transcription factor that 

regulates the growth and the development of the normal prostate and plays a key 

role in the pathogenesis of prostate cancer (Balk S.P et al., 2002; Quigley C.A et 

al.1995).  

Androgens stimulate proliferation and inhibit apoptosis, thus maintain the 

ratio of proliferating cells to those dying. The maintenance of this ratio is very 

critical for the normal growth of prostate cells (Feldman B.J and Feldman D., 

2001). Testosterone and diyhdrotestosterone (DHT) are the major androgens in 

men. Testes produce over 90% of the hormone testosterone and the remaining 

small fraction 5-10 % is synthesized in the adrenal glands. The largest 

concentration of testosterone is circulating in the body, while most of the DHT’s 

concentration is present in the prostatic tissues (Labrie FMD, 2004). About 75 % 

of DHT is produced by the prostate and the skin while the remaining 25 % 

circulating DHT is produced by the testes (Imamoto T. et al. 2008). 
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Figure 2: Mechanism of action of Androgen receptor: Testosterone enters cell 
membrane to the cytoplasm, were it is converted to DHT by 5 alpha-reductase enzyme 
(5αR). In the presence of DHT, AR will dissociate from the HSP and bind to DHT, 
leading to conformational changes in the AR. Upon the phosphorylation of AR 
homodimer it enters the nucleus and binds to the genes containing the androgen 
response element, resulting in biological responses. Bartel et al 2004. 

After being secreted by the testes, the testosterone hormone circulates in the 

blood flow. When it reaches the prostatic tissues, the testosterone enters the 

prostate cell membrane to the cytoplasm. In the cytoplasm, almost 90% of the 

testosterone is converted by 5 alpha-reductase enzyme (5αR) to DHT. 

Diyhdrotestosterone has much stimulatory effect on prostate cells growth 
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compared to testosterone and it has 5 fold higher affinities for AR than 

testosterone (Feldman and Feldman, 2001; Montgomery et al 2009).  

Androgen receptor contains an N-terminal domain which is known as the 

regulatory domain and contains also two other domains: the first is a DNA 

binding domain (DBD) and the second is the ligand binding domain (LBD). In 

addition, AR has a hinge region that connects the Ligand binding domain to the 

DNA binding domain, followed by C-terminal domain (Brinkmann A.O., et al 

1989). 

In basal state, AR binds to the heat shock protein complex (HSP). This 

binding has the role of a chaperone to maintain the AR in a ligand-binding 

conformation (Balk S.P, 2002). In the presence of DHT, AR dissociates from the 

HSP and bind to DHT. This interaction leads to conformational changes in the 

AR and results in the formation of a homodimer which is phosphorylated by 

protein Kinase A (Feldman & Feldman, 2001; Balk S.P, 2002; Lynne V. et al, 

1996). 

 Upon the dimerization and phosphorylation of androgen receptor, the 

newly formed complex enters the nucleus where it binds to the androgen 

response element in the promoter regions of the target gene (Chen C.Z et al, 

2004). This binding will lead to the recruitment of co-activators and co-repressors 

which results in biological responses by triggering the translation process leading 

to up or down regulation of specific gene transcription (Feldman & Feldman, 

2001; Balk S.P, 2002). 
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 Up-regulation or activation of transcription results in increased synthesis of 

mRNA which in turn is transcribed by ribosomes to produce specific proteins. 

Thus a change in the levels of specific proteins in cells is one way by which 

androgen receptors control cell behavior.  

 

1.5 Regulatory noncoding microRNAs (miRNAs): 

 

MicroRNAs are a large family of phylogenetically conserved short, 

endogenous, single-stranded, 20-25 nucleotide long, noncoding RNAs molecules 

that can regulate gene expression in many different organisms ranging from 

viruses to plant to worm and humans (Lee R.C et al, 1993; Chen C.Z et al., 2004; 

Pasquinelli A.E. et al, 2000) ( Appendix: Table I and Figure I) . The best known 

founding members of this family are lin-4 and let-7 of Caenorhabditis elegans 

(Lee R.C et al, 1993; Pasquinelli A.E. et al, 2000). To date, more than 10,884 

miRNAs have been annotated and 721 of these are human miRNAs. (miRbase, 

Release 14, Sep 2009). These numbers are likely to change when many more 

tissue specific miRNAs would be discovered by small RNA cloning and 

sequencing strategies. miRNAs regulate the expression of thousands of target 

mRNAs; each target mRNA has been predicted to be regulated by multiple 

miRNAs.  

Computational analysis suggests that over 30% of human genes are 

regulated by miRNAs. Genes that are potentially targeted by these miRNAs 

include cell growth and maintenance, signal transduction, cell proliferation, 
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phosphorylation, cell cycle, transcription factors, cell organization and biogenesis 

(Nilsen T., 2007). In animals, miRNA mediates gene expression through 

translational repression of its target mRNA by binding at the 3’ untranslated 

region (UTR) in imperfect complementarity (Wightman B. et al, 1991).   

Many examples of documented miRNA functions were discovered in 

animals and include regulation of signaling pathways, apoptosis, metabolism, 

cardiogenesis and brain development (He L. and Hannon J., 2004).  

miRNAs may play a critical role in the process of tumorigenesis since a 

deregulation of these biological processes are frequently occurred in human 

cancer (Wenyong Z., et al., 2007). Evidence suggests that miRNAs can 

contribute to carcinogenesis by acting as tumor suppressors or oncogenes since 

they usually suppress the expression of oncogenes or proliferation related genes 

(Xu-Bao S., et al., 2008).  For instance, miR-15a and miR-16-1 are deleted or 

down-regulated in the majority of Chronic Lymphocytic Leukemia (CLL) and 

negatively regulate the antiapoptotic B cell lymphoma 2 (Bcl2) protein resulting in 

induced apoptosis in a leukemic cell line model. (Cimmino A., et al. 2005). 

Although many miRNAs are found to be significantly differentially expressed in 

different cancer types, to date, only a few have been well characterized for their 

functional significance.   
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1.6 Relative genomic location of miRNA: 

 

Scientists identified three groups of miRNA genes based on genomic location 

relative to protein coding gene locus: 

1. Intronic miRNA in protein coding transcription units (61%) e.g: miR-10 in 

HOX4B gene (Lagos-Quintana et al., 2003; Lim L.P et al., 2003). 

2. Intronic miRNA in noncoding transcription units (18%) e.g: miR-15a-16-1 

cluster found in the fourth intron of a previously defined noncoding RNA 

gene, DLEU2. (Narry K. and Jin-Wu N., 2006) 

3. Exonic miRNA in noncoding transcription units (20%), such as miR-155. 

(Cai X. et al, 2004; Lee et al., 2004). 

MicroRNA genes are found in regions of the genome as separate transcriptional 

units as well as in clusters of polycistronic units coding for several miRNAs. It 

was found that approximately half of known miRNA exist in non-protein coding 

RNAs (intron and exon) or within the intron of protein coding genes (Erdmann, 

V.A., et al. 2004). 

MicroRNAs that reside in introns share the same promoters and regulatory 

elements of their host gene (Sikand K. et al., 2009) as for the other miRNA genes 

transcribed from their own promoters, few primary transcripts have been entirely 

identified (Lagos-Quintana M., et al., 2001; Lau N.C. et al.,  2001). 
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Computational analysis suggested that 60% of protein encoding genes may be 

regulated by miRNAs. This fact suggests some important, yet undiscovered 

regulatory mechanisms linked to miRNAs. A significant number of miR genes 

(52.5%) are in cancer-associated genomic regions or fragile sites (FGA) (Calin 

G.A. et al., 2004). 

1.7 microRNAs Processing: 

 

Little is known about transcriptional processes for miRNAs. It has been 

shown that miRNAs control gene expression by binding to the complementary 

sites in the 3’ untranslated regions (3’UTRs) of target mRNAs and triggering 

therefore either translational inhibition or mRNA degradation by a molecular 

mechanism that is actively investigated (Wightman B. et al, 1991; Zamore D., 

2005; Hutvagner & Zamore, 2002). 

The majority of microRNAs are transcribed by RNA polymerase II from 

different genomic locations as long primary transcript of about 125 nucleotides in 

length, with a stem-loop structure known as (pri-miRNA) (Figure 3) (Lee et al, 

2002; Cai X. et a.l, 2004; Kim V.N et al., 2005). Initially it was thought that 

miRNAs are transcribed by RNA polymerase III (PolIII) (Cai X. et al, 2003), 

however some of the pri-miRNAs are several kilobases long hosting some 

stretches of more than 4 uracile nucleotides, which is unfavored by Pol III and will 

ultimately lead to the termination of transcription by Pol III (Lee Y. et al., 2004). 

Recently it is believed that Pol II is responsible for transcribing the majority of 

miRNAs (Cai X. et al, 2004; Kim V.N et al., 2005).  
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Subsequent to transcription in the nucleus, the pri-miRNAs are further 

processed by Drosha, RNase-III endonuclease. This enzyme belongs to the 

family of double stranded RNA specific ribonucleases (Cai X. et al, 2003). 

Drosha functions as a large protein complex called Microprocessor complex. This 

large nuclear protein complex (about 550 kDa) plays the role of pri-miRNAs 

metabolizing machinery.  The Microprocessor is composed of the enzyme 

Drosha bound to a dsRNA-binding protein known as DGCR8 as well as many 

other splicing factors (Gregory R.I et al, 2004). Upon the processing of pri-miRNA 

by the Microprocessor complex, a shorter stem-loop shaped RNAs called 

precursor miRNA (Pre-miRNA) is formed, that is about 70 nt RNAs with 2-3 

nucleotides 3’ overhangs, 25-30 base pair stem containing multiple bulges and 

mismatches  with relatively small loops (Lee Y. et al, 2003). Pre-miRNAs bearing 

a base-paired 5’ end and 3’ overhang of about 3 nucleotides are then transported 

to the cytoplasm by Exportin 5/RAN-GTP complex (Yi et al, 2003; Bohnsack et al 

2004; Gwizdek et al, 2003). 
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Figure 3: microRNA 
processing model:  

microRNA (miRNA) genes are 
transcribed by RNA Polymerase 
II (Pol II) to form large pri-
miRNA transcripts, which are 
capped and polyadenylated. 
These pri-miRNA transcripts are 
processed by the RNase III 
enzyme Drosha and its co-
factor, to release the ~70-
nucleotide pre-miRNA precursor 
product. RAN–GTP and 
exportin 5 transport the pre-
miRNA into the cytoplasm. 
Subsequently, another RNase 
III enzyme, Dicer, processes the 
pre-miRNA to generate a 
transient ~22-nucleotide 
miRNA:miRNA* which will 
eventually result in mature 
single stranded miRNA (Lee Y. 
et al, 2003). 
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In the cytoplasm, pre-miRNAs are cleaved by Dicer, cytoplasmic RNase 

III-type enzyme. Dicer contains two RNase III domains, each domain cuts 

independently one RNA strand of the pre-miRNA complex yielding a product of 

about  22 nucleotides in length with 2-3 nucleotides overhang, during this 

process the duplex is unwound by unknown helicase-like enzyme (Kolb F.A. et 

al, 2005). Subsequently one strand dicer cleaved pre-miRNAs called the mature 

miRNA is incorporated into effecter complexes that are known as ‘miRISC’ 

(miRNA-containing RNA-induced silencing complex) (Hutvagner and Zamore , 

2002). miRISC complex delivers mature miRNA to its target mRNA through base 

pairing with the 3’ untranslated regions (UTR) (Bartel D.P et al., 2004).  

miRNAs control gene expression by binding to the complementary sites in 

the 3′ untranslated regions (3′ UTRs) of target mRNAs (Figure 4), however, the 

target sequence inserted into the 5’UTR or the coding sequences are also 

functional (Kloosterman W. et al, 2004). If the miRNA has perfect or near-perfect 

complementarity to the 3’UTR of target mRNA, it will result in mRNA 

degradations (Figure 4 A) (Hutvagner & Zamore 2002; Bartel D.P et al., 2004). 

On the other hand, the presence of multiple mismatches between miRNA 

sequence and mRNA of target site, leads to translational inhibition without 

affecting mRNA levels of target site (Figure 4 B) (Bartel D.P et al., 2004). 

Molecular mechanism underlying either miRNAs mRNA mediated degradation or 

miRNAs mediated translation repression are not fully understood, thus both 

mechanisms are subject of intense investigation. 
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Figure 4: miRNAs control gene expression: MiRNAs that bind to their mRNA targets 
with perfect complementarity induce target-mRNA cleavage Panel A. The mature miRNA 
binds to complementary sites in the mRNA target to regulate gene expression in one of 
two ways, miRNAs that bind to mRNA targets with imperfect complementarity block 
target gene expression at the level of protein translation Panel B.  

 

1.8 Hsa-mir-488* and Hypothesis: 

 

Recent studies reported that some miRNAs might play an important role in 

prostate cancer by targeting the expression of some growth regulatory genes. 

These miRNAs include miR-15 (Bonci D. et al, 2008), miR-101 (Varambally S. et 

al, 2008), miR-125b (Lee C.Y. et al, 2005), miR-221 (Folini M. et al., 2009). 

Unexpectedly, no miRNA yet to date has been reported to regulate androgen 

receptor in prostate cancer, despite the fact that androgen receptor ablation has 

been found to inhibit cell proliferation, thus demonstrating the essential functional 

role of AR in the growth of prostate cancer cells. We hypothesized that miRNAs 

may be involved in the regulation of androgen receptor signaling and these 

miRNA could be used for targeting androgen receptor in prostate cancer. Using 
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computational analyses, we identified a potential target site for hsa-miR-488* in 

the 3’ untranslated region of androgen receptor mRNA.  

Hsa-miR-488* encoded in intron 5 of Astrotactin 1 (ASTN1) gene (Figure 5). 

Astrotactin is a neuronal adhesion molecule required for glial-guided migration of 

young postmitotic neuroblasts in cortical regions of developing brain, including 

cerebrum, hippocampus, cerebellum, and olfactory bulb (Flink et al, 1995). 

Figure 5: Astrotactin gene host the intronic region that code for Hsa-mir-488*. Hsa-mir-
488* encoded in intron 5 of the ASTN 1 gene.  

This work investigated the methods to validate miR-488* target site in the 

proposed gene (AR). What are some of the effect of miR-488* on its targets in 

prostate cancer cells, and could this technique be used on different target sites? 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Cell Lines and Cell Culture: 

 LNCaP: 

The androgen-dependent human prostate carcinoma cell line LNCaP, was 

obtained from American Type Culture Collection ATCC (Manassas, VA). LNCaP 

cells were cultured in appropriate cell culture grade plates with 1X RPMI 1640 

medium supplemented with 10% Fetal bovine serum (FBS) Atlanta Biologicals, 

Inc. (Lawrenceville, GA) 2mM L-glutamine and antibiotics (100 units/ml of 

penicillin G sodium, 100µg/ml streptomycin sulphate). LNCaP cell lines were 

maintained in a humidified 5% CO2 at 37°C.  
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CHO: 

Chinese Hamster Ovary cell line CHO, was obtained from American Type 

Culture Collection (Manassas, VA). CHO cells were cultured either in 6 well or 24 

well plates with 2 ml or 500µl of Dulbecco’s Modified Eagle’s Medium (DMEM) 

respectively, supplemented with 2 mM L-glutamine, 4.5 g/l Glucose, 5% Fetal 

bovine serum (FBS) Atlanta Biologicals, Inc. (Lawrenceville, GA), 1 mM L-

proline, 10mM HEPES and antibiotics (100 units/ml of penicillin G sodium; 

100µg/ml streptomycin sulphate). Trypsin 1X was added up to 2 ml of cells and 

incubated at room temperature for 3 minutes. Trypsin 1X was quenched with 3 

ml of DMEM 1X supplemented with 5% FBS, 1mM L-proline, 10 mM HEPES and 

antibiotics. Cells were finally seeded at an approximate density of 3.0 x 104 

cells/well for 24 well plates and 1.0 x 105 cells/well for 6 well plates. All cell lines 

were maintained in a humidified 5% CO2 at 37°C.  

2.2 miRNA target validation: 

 

miRNA is an emerging field of since and the knowledge about miRNAs 

target still limited. Researcher in the field of miRNA combined computer 

algorithms with biological information after the establishment of the human 

genome to identify and predict target site for miRNAs. This new field of science is 

called bioinformatic in our lab we have used bioinformatic methods, to identify 

miRNAs which can potentially bind to the 3’ UTR of the AR. Several miRNAs 

target prediction tools such as TargeSCAn, MirSCAN, Find TAR and RNAhybrid  

have identified that hsa-mir-488* could  potentially base-pair with the 3’ UTR of 
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the androgen receptor. Hsa-mir-488* has extended base-pair matching sequence 

to the seed region of the predicted site 10 nucleotide and minimal none 

Watsoncrick base paring (1 G: U). Overall hsa-mir-488* has 80% 

complementarities to the predicted target site suggesting that AR 3’UTR could be 

targeted by hsa-mir-488* (Figure 6). 

 

RNAhybrid – Results (QueryID: bibiserv_1269872147_3730) 

 

 
Figure 6: base pair alignment of AR3’UTR wild type and miR-488*:  seed region 
consist of 10 base pair with perfect complementarity, straight line (I) represent 
Watsoncrick base paring, and (:) represent G:U non watsoncrick interaction. 

 

2.3 Cloning of  3’ UTR AR in pMIR reporter Vector: 

Full length wild type AR 3’UTR: 

Primer name  Primer sequence  

AR 3’ UTR 

forward 

5′-GCGCACTAGTACGTTTACTTATCTTATGCCACGGG-3′ 

                SpeI site 

AR 3’UTR 

reverse 

5′-GCGCAAGCTTGTTTGCTTGTTTTTGTTTTGATTTC-3′ 

                HindIII site 
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For the construction of AR 3′ UTR reporter plasmid, two primers (table 1) AR 3’ 

UTR forward and AR 3’UTR reverse were designed to  introduce SpeI and 

HindIII sites (underlined) at the end of PCR  product of 637 bases fragment of AR 

3′UTR spanning the predicted target site for hsa-miR 488* ( Appendix, Fig 2) . 

Thermodynamic analysis of the primers was conducted using computer 

program: Primer Express (Applied Biosystems, Foster City, CA). The resulting 

primer sets were compared against the entire human genome using NCBI to 

confirm specificity and ensure that the primers flanked hsa-mir-488* target site on 

the androgen receptor 3’UTR. 

 AR 3’UTR with both restriction sites was amplified through PCR 

technique using the following PCR conditions. 

PCR conditions: 

Reagent  Volume  Stock 
5X Buffer  10µl 5x 
Mgcl2 5µl 25 mM 
dNTP 1µl 10 mM 
PCR water 30.5µl  
AR 3’UTR forward Primer 0.5µl 10 µM 
AR 3’UTR reverse Primer 0.5µl 10 µM 
Taq polymerase enzyme  0.5µl 5 units/µl 
human gDNA 2 µl 50ng/µl 
  

Optimized Thermocycler Parameters: 

1. 95 oC   2 minutes 
2. 95 oC  1minute 
3. 55 oC  1minute 
4. 72 oC  30 sec (go to 2 x 30 times)  
5. 72 oC  10minutes 
6. 4 oC  4hours 
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 The resulted PCR product purified and concentrated using ZYMO research DNA 

clean & concentratorTM-25 kit (ZYMO, Orange, CA) following the manufactory 

protocol. After restriction digestion with SpeI and HindIII enzyme, the amplified 

DNA was cloned into the corresponding sites of pMIR-REPORT vector (Ambion, 

Austin, TX) downstream of firefly luciferase gene. The resulting plasmid construct 

WT-3′UTR contains a strong CMV promoter driving a luciferase expression 

cassette (Appendix, Fig 3). 

2.4 Full length Mutated  AR 3’UTR: 

 

Site-directed mutagenesis of the putative target site for hsa-miR-488* in 

WT-3′UTR construct was carried out in order to generate the MUT-3′UTR 

constructs using the Change-IT Multiple Mutation Site Directed Mutagenesis kit 

(USB Corporation, Cleveland, OH). In the first MUT-3′UTR construct, 10 

nucleotides in the seed matching region of the target site were mutated to their 

complementary nucleotides using primer  

5’Phosphate group 

CTTATGCCACGGGAAGAACTCTCACGGAAGATTATCTGGGGAAAT   

The newly generated construct was named AR 3’UTR seed MUT (Figure 7) 
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Figure 7: base pair alignment of AR3’UTR seed MUT and miR-488*:  mutations 
introduce to the first 10 nt of the predicted target site (X) represent no interaction (I) 
represent Watsoncrick base paring, and (:) represent G:U non watsoncrick interaction. 

The second primer was designed to mutate the 5’ half of the putative miR-488* 

site of the AR 3’UTR (Figure 8). 

5’Phosphate group 
CTTATGCCACGGGAAGAACTCTCACGGAAGTAATAGACCCGAAAT 

 

 

Figure 8: base pair alignment of AR3’UTR 5’ MUT and miR-488*:  mutations 
introduce to the 5’ half of the predicted target site (X) represent no interaction (I) 
represent Watsoncrick base paring. 

 

Both of the mutated constructs AR3’UTR seed MUT and AR3’UTR 5’MUT, as 

well as a new construct combining both mutations on the same backbone were  

generated following Change-IT Multiple Mutation Site Directed Mutagenesis kit 

manufacturer protocol. Nucleotide sequences of the constructs were confirmed 

by DNA sequencing. 
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2.5 Construction of vector expressed miR 488* “Pre-miR-488*”: 

 

Segment of 383bp from intron 5 of ASTN 1 gene harboring the precursore 

sequence of miR 488* along with a flanking region was amplified from human 

genomic DNA using the following primers carrying XhoI and BamHI sites (Table 

3). 

 

Primer name  Primer sequence  

Pre-488*  

forward 

5′- GCACCTCGAGTGGGAGTGAGGGAGGCGGGGGAAG-3′ 

                 XhoI 

Pre-488*  

reverse 

5′- GCACGGATCCCCCCCAATCCTTGCCTAGCTCAAAC-3′ 

                 BamHI                 

 

The XhoI-BamHI digested amplified DNA was cloned into the corresponding sites 

in pcDNA 3.1 (-) vector (Invitrogen, Carlsbad, CA). This construct was named 

Pre-miR 488*. The primer validation and cloning method were performed as for 

previous construct (Appendix, Fig 6).  

2.6 Transient Transfection: 

 

 Equal cell numbers (3.0 x 104  cells/well for 24 well plate and 1.0 x 105 

cells/well for 6 well plates)  were seeded twenty four hours prior to transfection  in 

DMEM 1x Supplemented with 2mM L-glutamine, 4.5 g/l Glucose, 5% Fetal 
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bovine serum (FBS) Atlanta Biologicals, Inc. (Lawrenceville, GA ), 1mM L-

proline, 10mM HEPES, but no antibiotics. Two Transfection procedures have 

been used: 

Transfection via lipofictamein 2000:  

This method was used with all transfections with miRNA mimic in 24 well 

plates. Two separate solutions were prepared as following: 

- Solution I: In an Eppendorf tube, 0.75 µl of lipofectamin 2000/well was 

added to 50 µl of free serum free P/S CHO media. After gentle mixing 

through pipetting, the solution was incubated at room temperature for 5 

min. 

- Solution II: In an Eppendorf tube, 100 ng of AR 3’UTR firefly luciferase 

reporter construct was added to 50µl of free serum free P/S CHO 

media and then mixed with 0.5 ng of Renilla luciferase reporter 

plasmid. Finally, 10 nM of miR-488* mimic was added to the mixture. A 

Negative Control for the microRNA (NC mimic) was also prepared by 

adding 10nM of NC mimic to the mixture instead of miR-488* mimic.  

Solution I and Solution II were mixed gently three to four times by pipetting and 

then incubated at Room temperature for 20 minutes.  

The total volume of 100 µl of Transfection mixture (Solution I + Solution II) was 

added drop by drop to the corresponding labeled wells which already contain 

500µl of DMEM 1X supplemented with 2 mM L-glutamine, 4.5 g/l Glucose, 5% 

Fetal bovine serum (FBS) Atlanta Biologicals, Inc. (Lawrenceville, GA ), 1mM L-
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proline, 10mM HEPES, but no antibiotics . The 24 well transfected plate was 

incubated in a humidified 5% CO2 incubator at 37°C for 48 hours.  

Transfection via polyBrene:  

This method was used to transfect CHO cells with Pre-miR-488* construct 

in 24 well plates. In an Eppendorf tube, 1.5 µl of PolyBrene10µg/µl was added to 

500µl of free P/S CHO media.  After mixing the required amount of PolyBrene 

and free P/s media, the required concentrations of Pre-miR-488* was added. 100 

ng of AR 3’UTR firefly luciferase reporter construct was added to the previous 

solution and then mixed with 0.5ng of Renilla luciferase reporter plasmid. Finally 

the mixture was incubated at room temperature for 5 min. Meanwhile the CHO 

medium was aspirated from the wells and the previously prepared transfection 

mixture was added to the designated wells. For the followed eight hours, the 

transfected plates were maintained in a humidified 5% CO2 atmosphere at 37°C 

incubator with gentle swirling every one hour.  Eight hours later, the Transfection 

media was aspirated out of the wells and the DMSO (Dimethyl Sulfoxide) shock 

was performed by adding 500 µl of 30% DMSO/ CHO media. The cells were 

incubated in the Shock medium at room temperature for 5 minutes. A washing 

step using 500 µl of CHO complete media was done, and then another 500µl of 

freshly prepared CHO media was added to each well.  Finally, the transfected 

plates were maintained in a humidified 5% CO2 atmosphere at 37°C incubator for 

fourty eight hours from DMSO shock point. 
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2.7 RNA  Extraction: 

 

Total RNA from experimental and control wells were isolated from 80% 

confluent cells directly in the 6 well culture plate. Cells were homogenized in the 

culture dish and lysed directly by adding 1 ml of TRIZOL® Reagent (Invitrogen, 

Carlsbad, CA) following manufactor’s protocol. The cell lyzate was collected in 

1.5 ml Eppendorf tube. Samples were treated with chloroform, incubated at room 

temperature for 2 to 3 minutes and centrifuged (12,000 x rpm) for 15 minutes at 4 

°C. The upper aqueous phase (approximately 450µl) was transferred to a fresh 

tube and precipitated by adding 1 volume of isopropanol to extract RNA. After 10 

minutes of incubation at room temperature, RNA pellet was collected by 

centrifugation (12,000 rpm) for 10 minutes at 4° C. After discarding the 

supernatant, RNA pellets were washed with 1 ml 75% ethanol/ DEPC water and 

precipitated by centrifugation (12,000 rpm) for 5 minutes at 4°C. Pellets were 

resuspended in 50 µl of Rnase-free water. RNA yield and purity were determined 

spectrophotometrically at 260-280nm and the reliability of RNA was verified by 

electrophoresis through 1 % denaturing agarose gels stained with ethidium 

bromide. 

2.8 Protein Extraction: 

 

 Additional wells containing experimental and control CHO cells were 

seeded for protein extraction. Cells were washed once with 500 µl cold PBS in 24 

well plates. 100 µl of 1X passive lysis Buffer (PLB) was added and the culture 
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dish was gently rocked for 45 minutes at RT, then homogenized materials were 

collected in microcentrifuge tubes. Slow centrifugation at 4000 rpm for 15 

minutes at 4° C was performed to pellet down any unlysed cells. The Protein 

quantification was determined by spectrophotometry at 595 nm and using 1X 

Bradford reagent (Bio-Rad Hercules, CA). The total protein concentration was 

calculated. Total protein lysates were stored at -80° C for further experimentation 

procedures.  

2.9 Dual Luciferase assay: 

 

For Dual luciferase assays, CHO cells (30,000 cells/ well) were plated in 

24-well plates one day prior to transfection. Cells were co-transfected using 

lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA), with 100 ng of WT-3′UTR 

or MUT-3′UTR firefly luciferase reporter construct, 0.5 ng of renilla luciferase 

reporter plasmid and either miR 488* mimic (10 nM) or NC mimic (10 nM).  Cells 

were harvested and total protein concentrations were determined by Bradford 

method 48 hours after transfection. 10 µg of total cell protein lysates were 

assayed for firefly and Renilla luciferase activities using the Dual-Luciferase 

Reporter Assay System (Promega, Madison, WI) and Victor 3 Multilabel Counter 

1420 (PerkinElmer). Aliquots of 10 µg of total cell protein lysates were transferred 

into oblique 96 well plates and 100 µl of LAR II reagent (Promega, Madison, WI) 

was dispensed into each well followed by orbital shaking for 2 seconds and 

incubation time of another 2 seconds, then 10 seconds of measurement of the 

emission light produced from the fire fly luciferase. Reading was recorded 
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electronically. In order to quinch the emitted light from the firefly luciferase and to 

activate the emission of light from Renilla luciferase, 100 µl of Stop & Glo® 

reagent (Promega, Madison, WI) was added to the previous wells, followed as 

before by 2 second of orbital shaking and 2 second of incubation time, then 10 

second of measurement of emission of light produced by Renilla luciferase. 

Readings were recorded electronically. The whole procedure was carried out at 

room temperature.  

2.10 Quantitative Real-Time (qRT) PCR Analysis of Mature miRNA 

Expression: 

 

From 10 ng of total RNA the first strand cDNA was synthesized using 

primers specific for miR-488* and snoRNA 202. Both primers were obtained from 

TaqMan MicroRNA Assays (Applied Biosystems Foster City, CA). Reagents for 

cDNA synthesis were obtained from TaqMan MicroRNA Reverse Transcription 

kit (Applied Biosystems). For each sample, a 15µl reverse transcription (RT) 

reaction was set up containing 10ng of total RNA, 1X RT buffer, 1mM of dNTP 

mix, 50 units of MultiScribe reverse trancriptase, 3.8 units of RNase inhibitor and 

3µl of miRNA-specific RT primer. The reactions were incubated in a thermal 

cycler (BIORAD PTC-100) at 16°C for 30 minutes, 42° C for 30 minutes, 85° C 

for 5 minutes and then held at 4°C. The ‘reverse transcriptase minus’ controls 

were also synthesized under the same conditions. In order to quantify the mature 

miRNAs and snoRNA 202 in each sample, the cDNAs were amplified using 

TaqMan MicroRNA Assays together with the TaqMan 2X Universal PCR Master 
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Mix (Applied Biosystems Foster City, CA). For this step, a 20µl reaction was set 

up containing 1.33 µl product from RT reaction, 1µl of 20X TaqMan microRNA 

assay mix (mixture of miRNA-specific forward and reverse primers, and miRNA-

specific TaqMan MGB probe labeled with FAM fluorescent dye) and 10 µl of 

TaqMan 2X Universal PCR Master Mix. These reactions were dispensed into a 

96 well optical plate (Applied Biosystems Foster City, Ca). The plate was 

centrifuged at 2000 rpm for 5 minutes to remove any air bubbles that might be 

formed. After insuring the absence of air bubbles, the plate was positioned in 

7500 Real-time PCR System (Applied Biosystems) under the following 

conditions: 95°C for 10 minutes followed by 50 cycles of 95°C for 15 seconds 

and 60°C for 1 minute. Three replicates were performed per RT reaction together 

with the ‘reverse transcriptase minus’ and ‘no template’ controls. Duplicate PCRs 

were performed for all miRNAs in each RNA sample. The mean Ct was 

determined from the replicates. The snoRNA 202 expression was used as an 

invariant control. The relative expression of each miRNA was calculated as 2-ΔCt 

where ΔCt = Ct value of each miRNA in a sample – Ct value of snoRNA 202 in 

that sample. All experiments were repeated at least twice with three replicates 

and two independent RNA samples (Appendix, Fig 7).  

2.11 Statistical analysis: 

 

To interpret our results, significance tests and statistical analysis are critical. 

The traditional α-value, i.e., p = 0.05, was used to evaluate the statistical 

significance of this study. The data of the dual luciferase and q-RT-PCR assays 
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results  will be expressed as the mean ± SEM and compared using student's t-

test for normally distributed samples.  The results were analyzed using the 

MYSTAT 12 version 12.02.00 statistical program (Systat Software, Inc.Chicago, 

IL) and Microsoft Excel (Microsoft, Seattle, WA). The index of expression of each 

miRNA was 2-ΔCt after normalization to snoRNA 202 expression levels. Hence, 

results were considered statistically significant if p values were < 0.05.  
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CHAPTER III 

RESULTS and DISCUSSION 

 

3.1 Identifying potential target site for miR-488* in AR 3’UTR: 
 

 
Androgen receptor (AR) plays a central role in the development and 

progression of prostate cancer in humans. AR is heterogeneously expressed in 

primary tumors and throughout the progression of androgen dependent and 

androgen independent “hormone-refractory prostate cancers”.  Prostate cancer 

initiates as an androgen-dependent disease, and further accumulation of multiple 

sequential genetic and epigenetic alterations transform it into an aggressive, 

therapy resistant, androgen-independent prostate cancer (AIPC).  

The molecular basis of the transition from androgen dependent to AIPC is still 

unclear however; recent studies suggest that hypersensitivity of AR to trace level 

androgens combined with androgen ablation therapy could provide a selective 

pressure on the cellular pathways which are regulated by androgen signaling 
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(Taplin, N.E et al, 1999; Craft N. et al, 1999). Consequently, androgen dependent 

cancer cells adapt to the androgen-deprived conditions and furthermore select 

mutated AR that is able to utilize an anti-androgen antagonist as an agonist for 

their aggressive growth and proliferation (Marques, R.B et al, 2005). 

 

MicroRNAs molecules can regulate gene expression in many different 

organisms by functioning as negative gene regulators (lee et al, 1993; lee and 

Ambrose, 2001; Bartel, 2004; Pasquinelli et al, 2000). In order to study the effect 

of  miRNAs on AR, we 

had to identify one 

miRNA that has the 

potential to bind to the 3’ 

untranslated region of 

androgen receptor. 

Bioinformatic programs 

such as TargeSCAN, 

MirSCAN, Find TAR and 

RNAhybrid aided in 

accomplishing this task 

by predicting one target site in the AR 3’UTR. 

 Our bioinformatics results indicated that hsa-mir-488* has target site in the 3’ 

UTR of AR. Base pair interaction between the predicted target site and hsa-mir-

488* is shown in (Figure 9). 

Figure 9: Schematic representation of AR 3’UTR with
the location of miR-488* predicted target site: Hsa-
miR-488*  has extended seed region complementarity to
the predicted target site ( 10 bases ), followed by three 
bulges, resulting in 80% complementarity to the target 
site, according to Bartel et. al this such interaction should
result in translation repression but not mRNA
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Furthermore, bioinformatics approaches showed that the predicted target site 

is evolutionary conserved across different species (Figure 10).  Those similarities 

in sequence alignment serve as evidence for structural and functional 

conservation, thus this predicted site might have an important function within the 

development of these species.   

In addition, precursor sequence for hsa-miR-488* encoded in intron 5 of 

Astrotactin 1(ASTN1) gene in human is also highly conserved in five species 

(Figure 11). This is a further evidence that miR-488* has an evolutionary 

conserved role within the lineage of evolution. This extensive conservation 

strongly indicates a more general role for hsa-miR-488* in developmental 

regulation, as well as the predicted target site to be an authentic target site. 

Figure 10: Cluster alignment of AR 3’UTR of different species: Sequence alignment 
of the miR-488* putative predicted target site in the AR 3’UTR of five different species: 
Target site boxed in green and stars indicate the conservation across all five species. 
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3.2 Effect of miR-488* on AR expression: 
 

In order to experimentally test the potential of miR-488* to regulate the 

expression of AR, my lab 

colleague Dr. Sikand 

transfected PCa 

Hormone dependent cell 

line (LNCaP) with miR-

488* mimic or negative 

control (NC), negative 

control being a miRNA 

from C. elegance that 

has no target site in 

human genome. After 48 

hours of transfection, 

cells were collected and 

total protein amount was estimated, then a western blot was performed in order 

to determine the AR protein expression. β-Actin was used as an internal control. 

Figure 12: Effects of miR-488* mimic on AR protein 
expression: LNCaP cells were transfected with either 
miR-488* or NC mimic with the appropriate controls, cells
were collected after 48 hours, total protein estimation was
performed followed by western blot analysis. Results
indicate high reduction of AR protein levels when
transfected with miR-488* mimic compared to cells
transfected with either NC mimic or mock transfected. 

Figure 11: Cluster alignment of precursor sequence of miR-488* in five different 
species: Sequence alignment of pre-miR-488* in five different species, miR-488* mature 
sequence in red box. Stars indicate the conserved nucleotides. 
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Results are shown in (Figure 12): when cells were transfected with different 

concentration of miR-488* mimic, a high reduction of AR protein levels was 

observed comparing to the cells transfected with the same concentrations of 

negative control miR mimic. In addition,  negative control mimic had no effect on 

the AR levels compared to no transfection or mock transfection, which clearly 

indicates that the change in AR protein levels is due to the effect of miR-488* on 

the expression levels of Androgen receptor protein. Transient transfection of miR 

488* mimic resulted in robust suppression of AR protein expression in LNCaP 

cells. 

3.3 Target Validation: Construction of Luciferase Reporter Plasmids 
expressing AR 3’UTR. 

 

In order to validate the previously observed 

data, we have to demonstrate that the repression 

of AR protein is due to the interaction between the 

predicted AR mRNA target site and miR-488*. To 

address this question, we cloned the AR 3’UTR 

containing the putative wild type miR-488* target 

site into the 3' multiple-cloning-site (MCS) of 

pMIR-REPORT vector (Ambion, Austin, TX) 

downstream of firefly luciferase gene as described 

in the “materials and method” section. The 

resulting plasmid construct WT-3′UTR contains a 

strong CMV promoter driving a luciferase 

Figure 13: Restriction
digestion clone confirmation:
AR 3’UTR clone was confirmed
by double digestion with SpeI
and HindIII enzyme and
analyzed on 1 % agarose gel. 
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expression cassette (Appendix, Fig 3). The resulted clones first were confirmed 

by double digestion with SpeI and HindIII enzyme and analyzed on 1 % agarose 

1X TAE gel and compared to 1 Kb ladder (Figure 13). As expected, a fragment of 

637 base pair product was observed in two clones (clone #2 and clone # 8) 

indicating that AR 3’UTR was cloned successfully into the MCS of pMIR-

REPORT. For further confirmation, the resulted clones were sequenced in the 

Cleveland clinic foundation genomic core facility, and once again the sequence 

result proved that indeed the cloned fragment is the AR 3’UTR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 
 

3.4 Target Validation: Effect of miR-488* mimic on the chimeric  AR 3’UTR  
WT luciferase reporter plasmid: 
 

To address if miR-488* could target the AR 3’UTR, we have transfected 

the resulted chimeric sensor plasmid along with Renilla luciferase plasmid 

and the appropriate controls as described in the materials and method section 

into 80 % overnight grown CHO cells in the absence of antibiotics using 

lipofectamine 2000 as transfection reagent of choice. After 48 hours post 

transfection, cells were 

collected, washed once with 

1X PBS and lysed in 1X PLB. 

Total protein was estimated 

using Bradford reagent and 10 

µg of total protein was loaded 

into the designated wells of 

the 96 well plates. Protein 

lysates were assayed for 

firefly and Renilla luciferase 

activities using the Dual-

Luciferase Reporter Assay 

System (Promega, Madison, 

WI) and Victor 3 Multilabel 

Counter 1420 (PerkinElmer).  

Figure 14: Quantitative analysis of the chimeric
AR 3’UTR wild type luciferase plasmid repression
by miR-488* mimic: CHO cells were cotransfected
with chimeric AR 3’UTR luciferase reporter plasmid
along with Renilla luciferase plasmid and miR-488*
mimic (10nM) or NC mimic (10nM) are indicated.
Down regulation of 51% of the firefly luciferase when
transfectecd with miR-488* mimic was observed
compared to transfection with NC. 
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 Results showed that the transfection of miR-488* along with chimeric 

sensor plasmid (AR 3’UTR) resulted in down regulation of about 51% comparing 

to transfection with negative control of the same concentrations. This result 

indicates that miR-488* might be interacting and negatively down regulating the 

AR 3’UTR chimeric plasmid. However we are certain that this result is due to the 

interaction of miR-488* with the predicted target site and not with the body of 

pmiR REPORT, since no down regulation was observed when pmiR REPORT 

empty vector was transfected with the same concentration of miR-488* mimic 

and NC mimic. Furthermore none of the microRNAs target prediction tools have 

shown any target site for miR-488* in the empty pMIR report vector. 
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3.5 Base pair interaction between miR-488* and predicted  target site: 
 

MicroRNAs mediate gene expression through translational repression of its 

target mRNA by binding to the 3’ untranslated region (UTR) in imperfect 

complementarity (Wightman B. et al, 1991; Bartel, 2004). MiR-488* has 80% 

complementarity to the predicted site, thus it is believed to bind to the predicted 

target site and through an ambiguous and not fully understood mechanism, drive 

an expression repression of its target gene (Nilsen T, 2007). To validate if miR-

488* is directly 

interacting with the 

predicted target site, 

a new construct 

harboring the AR 

3’UTR with mutated 

seed region (first 10 

nucleotides from 3’ 

end of the predicted 

target site) to its 

complementary 

nucleotides was generated as described in “Materials and Method” chapter II. 

Furthermore, a construct with the 5’ half of the predicted target site (bulge region) 

was mutated to its complementary nucleotides. In addition, another construct 

harboring both of the previously mentioned mutations within the same target 

(Figure 15) was designed and generated. The first construct with seed mutations 

Figure 15: Base pairing interaction between miR-488* and
predicted target site: Three constructs were generated, first
one harboring mutated seed region, second with mutated bulge
region and third with mutated seed region as well as mutated
bulge region. 
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was named AR 3’UTR seed MUT; the second construct with bulge mutations 

was named AR 3’UTR 5’ MUT and the final construct harboring seed mutations 

as well as bulge mutations was named AR 3’UTR 3’/5’ MUT.  

The three mutations were transiently co-transfected into CHO cells with miR-

488* mimic and NC mimic as well as renilla luciferase construct as a transfection 

control with all the appropriate controls. Results are shown in (Figure 16). When 

cells were transfected with the wild type AR3’UTR chimeric plasmid along with 

miR-488* mimic, results were similar to previously obtained with repression of 

luciferase expression of about 55% compared to transfection with NC mimic 

(Figure 16A).   

On the other hand, the co-transfection of the AR 3’UTR seed MUT chimeric 

plasmid along with miR-488* mimic resulted in down regulation of about 33% 

compared to NC mimic transfection (Figure 16B). A down regulation of about 

58% of luciferase expression was observed when cells were co-transfected with 

AR 3’UTR 5’MUT along with miR-488* compared to NC mimic (Figure 16C). 

Unexpectedly, 45 % reduction of luciferase activity was observed when cells 

were co-transfected with AR 3’ UTR 3’/5’ MUT with miR-488* mimic compared to 

NC mimic (Figure 16D).  
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Figure 16: Effect of AR 3’UTR mutations on the levels of luciferase expression in
the chimeric plasmid: CHO cells were co-transfected with either wild type AR 3’UTR
chimeric plasmid or mutated: Panel A, 55% reduction of luciferase expression was
observed when transfected with WT AR 3’UTR and miR-488* mimic. Panel B 33%
reduction of luciferase expression was observed when transfected with AR 3’UTR seed
MUT and miR-488* mimic. Panel C, 57% reduction of luciferase expression was
observed when transfected with AR 3’UTR5’ MUT and miR-488* mimic. Panel D, 45 %
reduction of luciferase expression was observed when transfected with WT AR 3’UTR



 

43 
 

 

Results from panel B and C compared to Panel A, suggest the seed region 

seems to play a major role in the interaction between the miR-488* and the 

predicted site in the AR 3’UTR. Nevertheless, results from Panel A and Panel D 

suggest that there might be other putative sites within the AR 3’UTR mRNA 

which can interact with miR mimic by Base-pairing. Presumably, these sites are 

providing miR-488* mimic with substitutionally binding segments, when the first 

original site (nucleotides 4266-4289) of the AR 3’UTR is mutated. Hence, the 

down regulation of luciferase expression was still observed even with mutations 

designed to interrupt interaction between miR-488* and the predicted target site. 

3.6 Cloning Shorter AR 3’ UTR: 
 

Next question we asked is: Are there any sites that miR-488* is binding to 

other than the putative site (nucleotides 4266 – 4289)?  To address this question, 

careful observation of the Wild type AR 3’UTR sequence revealed the identity of 

three sites which might serve as substitution binding sites (Appendix; Fig 4A). 

Site one (nucleotides 158-168 from 5’ end of AR 3’UTR) is consisting of 10 

nucleotides with 7 perfect matches to the seed region. Site two (nucleotides 293-

299 from 5’ end of AR 3’UTR) has 6 nucleotides with 4 perfect matches to the 

seed region and site three (nucleotides 348-358 from 5’ end of AR 3’UTR) is 10 

nucleotides with 8 perfect matches to the seed region (Appendix; Fig 4B). 

Mutation Site Directed Mutagenesis kit (USB Corporation, Cleveland, OH) was 

used as described in Chapter II, Section 2.4 to individually mutate each newly 
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revealed sites. Resulted constructs with either mutations in Site I, II or III were 

co-transfected individually with miR-488* mimic and the appropriate controls. 

Data showed similar repression levels of fire fly luciferase ( 54 %, 53% and 52% ) 

for mutated site one, mutated site two and mutated site three, respectively as 

compared to WT AR 3’UTR with 51% fire fly luciferase repression( Appendix; Fig 

5). 

These results did not explain neither proves if site one, two and three could 

serve as substitution binding site for miR-488*. Since we did not have one 

construct harboring all 

mutated sites as well as 

the mutated seed region 

in the putative target site, 

we decided to clone a 

shorter segment of AR 

3’UTR (nucleotides 561-

637 from 5’ end of AR 

3’UTR (Appendix: Fig 4A & 4B). This segment (77 nucleotides) of AR 3� UTR 

contained the wild type (Short AR WT) or seed mutated miR-488* target site 

(Short AR seed MUT) in a luciferase reporter vector. For the following set of 

experiments a new negative control (miR-488* mut mimic). This new control 

harboring 4 mutated nucleotides to its complementary bases in the seed region 

(Figure 17). miR-488* mut mimic was used along with the old negative control 

from C. elegans.  

Figure 17: miR-488* mutated mimic alignment
with AR 3’UTR:  miR-488* mutated mimic; this new
negative control have the same nucleotides as miR-488*
but with 4 nucleotides to be mutated to its complementary
bases in the seed region. Mutated nucleotides are
indicated in blue color in seed region. 
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Each of these constructs was co-transfected with either miR-488* mimic or 

negative control mimic in CHO cells and luciferase activity was measured after 

48 hours.  

miR-488* reduced luciferase activity of the Short AR WT construct by 30%     

as compared to that with the NC mimic and miR-488* mut mimic. However, in 

CHO cells transfected with Short AR seed mut chimeric luciferase reporter 

plasmid, miR-488* was unable to suppress luciferase activity. Luciferase 

expression in these cells was similar to that seen in cells co-transfected with 

Short AR seed mut construct and either NC mimic or miR-488* mut mimic 

(Figure 18). 

 

Figure 18:  Chimeric plasmid with Shorter AR 3’UTR can be targeted by miR-
488*: Mir-488* reduced luciferase activity of the Short AR WT construct by 30% as
compared to that with the NC mimic and miR-488* mut mimic. In CHO cells
transfected with Short AR seed mut, chimeric luciferase reporter plasmid, miR-488*
was unable to suppress luciferase activity. Luciferase expression in these cells was
similar to that seen in cells co-transfected with Short AR seed mut construct and
either NC mimic or miR-488* 



 

46 
 

 

These data suggest that miR-488* putative target site within the shorter AR 

3’UTR seems to be an authentic site. Also the reversal of luciferase expression 

by miR-488* mut mimic suggests that only four nucleotides mutations in the seed 

region are sufficient enough to disrupt the interaction between miR-488* mimic 

and predicted target site which is consistent with the common line of thoughts for 

microRNA mediated gene regulation (Nilsen T, 2007). 

 

3.7 Dose dependent expression of mature miR-488* from Pre-miR-488* 
expression plasmid: 

To study the 

effects of hsa-miR-488* 

expressed from its 

genomic context, an 

expression reporter 

system which could 

experimentally enable us 

to express the mature 

form of miR-488* and 

study its effects was required. To achieve this aim, a segment of intron five in 

ASTN1 gene was PCR amplified from human genomic DNA and cloned between 

XhoI and BamHI sites of pcDNA 3.1(-) under the expression of CMV promoter. 

The cloned segment of intron 5 from ASTN 1 gene, codes for hsa-miR-488* 

Figure 19:  Quantitative Real-Time (qRT) PCR
analysis of mature miR-488* expression: An increased
dose dependent expression of mature miR-488* was
observed respectively to increased concentration of
transfected pre-miR-488* chimeric expression vector. 
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precursor, along with both downstream and upstream flanking regions (Appendix; 

Fig 6). This construct was named Pre-miR-488*. Overnight grown, 80 % 

confluent Chinese Hamster Ovary cells were transfected with different 

concentrations of Pre-miR-488* construct, using polybrene as transfection 

reagent as described in materials and method. Cells were collected and total 

RNA was extracted by mean of TRIZOL® Reagent. Quantitative real time PCR 

technique was used to assess in detecting the mature miR-488* in total RNA 

aliquots of 10 ng from each transfected concentration samples. 

As expected no endogenous expression of miR-488* was detected in 

untransfected samples. However, samples transfected with increased 

concentration of pre-miR-488* (1.5, 2.0 and 2.5 µg) showed an increased 

expression profiles respectively to amount of transfected plasmid expressing 

genomic miR-488* gene (Figure 19). Cells transfected with 2.5 µg pre-miR-488* 

expressed mature miR-488* by about 2 fold higher than those transfected with 

1.5 µg. These results suggests a dose dependent expression of miR-488* gene 

in transiently transfected mammalian cells. 
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3.8 Dose dependent repression of Firefly luciferase expression by Pre-miR-
488* : 
 

We have shown that synthetic miR-488* could down regulate the expression 

of the chimeric luciferase reporter plasmid. Next we investigated whether miR-

488* gene can also repress the luciferase activity from the chimeric AR 3’UTR 

plasmid. 

To address this question, we transfected CHO cells with Short AR 3’UTR wild 

type plasmid and short AR seed MUT plasmid along with increased 

concentration of the pre-miR-488* expression plasmid. As for controls we 

transfected a pool of the cells with empty expression plasmid (pcDNA 3.1 ) and 

Renilla luciferase plasmid served as internal control for transfection. As shown in 

Figure 19, Dual luciferase assay’s results of samples transfected with increased 

concentrations of pre-miR-488* (1.5µg, 2.0µg and 2.5µg) have indicated a 

reduction of luciferase activity of about (10 %, 20 % and 27 %) respectively, to 

transfected concentration. However the sample of cells transfected with Short AR 

seed MUT show reversal of luciferase expression similar to results obtained from 

sample transfected with the empty expression vector. Results were normalized to 

Renilla expression and represented in (Figure 20). 
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Figure 20: Quantitative analysis of repression of luciferase sensor by Pre-miR-488* 
expression vector: Luciferase and Renilla expression was measured with increased 
concentration of transfected pre-miR-488* and with the highest concentration of pcDNA 3.1 
empty vector along with the appropriate controls. All expression values and ratio of Firefly to 
Renilla luciferase were plotted as a measurement of the translational repression of firefly 
luciferase by ectopically expressed mature miR-488*.   

These results were consistent with, observation from induction with 

synthetic miR-488*. Thus, miR-488* gene expressed from its genomic context 

have the same ability to target AR 3’UTR and repress the luciferase activity in the 

chimeric plasmid. miR-488* gene expression profile (Section 3.7) show increased 

levels of mature miR-488* expression respectively, to increased concentration of 

transfected pre-miR-488*. Current data (Figure 20) once again enhance the 

previous observation. The higher the concentration of transfected pre-miR-488*, 

the higher is the concentration of the expressed mature miR-488*. These results 

suggest a negative correlation between the amount of transfected pre-miR-488* 

and the luciferase expression profiles. 
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3.9 Mutations within miR-488* precursor in different cell lines: 
 

Recent studies indicated that miR-488* predominantly  expressed in adrenal 

gland, adrenal cortex and mainly in brain tissues (Wang E, et al. 2009; Landgraf 

P et al. 2007).However, we are not aware of any report linking miR-488* to 

prostate cancer, thus we wanted to explorer wither miR-488* is expressed in 

prostate cells.  Unpublished data by our lab have shown that miR-488* is 

expressed at significantly low levels in androgen dependent cell line (LNCaP) 

and similar results for the androgen independent cell line (C4-2B). However, no 

signal for miR-488* was detected from androgen independent cell line DU145. 

To further investigate these findings, both Forward and Reverse Pre-488* 

primers shown in (Table 3; Chapter II) are great tools to perform PCR on 

genomic DNA collected from several androgen dependent prostate cancer cell 

line (LNCaP), androgen independent prostate cancer cell lines (DU145, PC3, 

and CWR 22RV1), Brain tumor cell lines (U-87 and U251) and Human breast 

adenocarcinoma cell line (MDA). Amplified segments were sequenced and 

analyized by clustral alignement  in (Figure 21), along with the precursore 

sequence for Hsa-miR-488*. 
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Interestingly, all cell lines show high conservation in stem loop region of hsa-

miR-488*, with only one 

point mutation in DU145 

cells. This androgen 

independent cell line 

incorporated a C to G 

substitution in nucleiotids 

60. Interistingly, when both 

wild type miR-488* stem 

loop and the corresponded 

stem loop from DU145 cells 

(CG mutation at base 60) 

folded using RNA-Fold 

program, it revealed different 

structure (Figure 22).  

It has been proposed that RNA:RNA interactions or RNA:protein interaction 

are involved in  structure recognition and processing precursor miRNA to mature 

Figure 21: Cluster alignement of miR-488* stem-loop region in different cell lines: sequence 
alignment of the stem loop region of miR-488* from androgen dependent prostate cancer cell line 
(LNCaP), androgen independent prostate cancer cell lines (DU145, PC3, and CWR 22RV1), Brain 
tumor cell lines (U-87 and U251) and Human breast adenocarcinoma cell line (MDA). 

Figure 22: Folding state of miR-488* stem loop: this 
figure illustrate both folding state of wild type miR-488* stem 
loop and the corspondend stem loop from DU145 cells (CG 
mutation at base 60) 
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sequence (Kim et al , 2007). These results along with the mature miR-488* 

expression profile might suggest that the CG mutaion at base 60 in DU145 

contrbute to reduced expression of mature miR-488* in DU145 cell line. 

Nevertheless, further study is required for better understanding for the role of the 

CG substitution in the preocessing of miR-488*. 

3.10 Stable cell line (LNCaP and C4-2B) expressing miR-488*: 
 

Androgens stimulate proliferation and inhibit apoptosis, thus maintain the ratio 

of proliferating cells to those dying. The maintenance of this ratio is very critical 

for the normal growth of prostate cells (Feldman and Feldman, 2001). In prostate 

cancer cells this ratio favoring the proliferation. Additionally, AR is required for 

the proliferation of prostate cells (Feldman & Feldman, 2001; Balk, 2002). 

However, we have shown in this study that AR is a direct target of miR-488*.  

Thus, by stably transfecting miR-488* into prostate cancer cells can we once 

again balance the ratio between proliferation and apoptosis?  

To address this question, plasmid DNA Pre-miR-488* was linearized with 

restriction enzyme, Bgl II and stably transfected into either androgen dependent 

cell line (LNCaP) or androgen independent cell line (C4-2B). Stably transfected 

cells were maintained in RPMI 1640 medium supplemented with 10% Fetal 

bovine serum (FBS), with antibiotics and 100 µg/ml G-148.  
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This selection media allows for only cells expressing the resisting gene 

which is incorporated in Pr-miR-488* plasmid to survive.  All cell lines were 

maintained in a humidified 5% CO2 at 37°C. An interesting observation, that 

LNCaP cells (androgen dependent) did not grow well and number of cells were 

low. While C4-2B cells continued to grow and higher number of cells was 

observed. These results may suggest that more cells are dying to these 

proliferating in the stably transfect LNCaP cells. On the other hand, it seems that 

more cells are proliferating to these dying in the C4-2B (androgen independent 

cell line).  We cannot draw a conclusion whether this phenotype is due to the 

Figure 23: Stable cell line (LNCaP and C4-2B) expressing miR-488*: Panel A, Untransfected
LNCaP cells, Panel B, stably transfected LNCaP cells with Pre-miR-488*. Panel C, untransfected
C4-2B cells. Panel D, stably transfected C4-2B cells with Pre-miR-488*. 
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effect of miR-488* on androgen receptor or not. Further more study is required to 

enhance our understanding of these two phenotypes. 
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CHAPTER IV 

FUTURE DIRECTIONS AND CONCLUSION 

 

4.1 Implication of the CG substitution in mature miR-488* processing: 
 

It has been proposed that RNA:RNA interactions or RNA:protein 

interaction are involved in  structure recognition and processing precursor miRNA 

to mature sequence (Kim et al , 2007). MiRNA processing is a 

compartmentalized process; precursor miRNA at first is made in the nucleus, 

then it is processed into the mature miRNA in the cytoplasm. In order to study 

whether the observed CG mutant in DU145 cells is affecting the nuclear process 

of miRNA precursor or the cytoplasmic process of miRNA maturation; an in vitro 

system could be used where the precursor sequence for miR-488* is cloned 

downstream of T7 promoter in one construct. Second construct harboring the 

precursor sequence for miR-488* along with the observed CG mutation at the 

indicated position (nucleotide 60) will be cloned downstream of T7 promoter.  
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After radiolabeling both constructs, they could be used for in vitro miRNA 

processing system with total cellular extract from DU145 cells or LNCaP cells.  

Unpublished data by our lab have shown that miR-488* is expressed at 

significantly low levels in androgen dependent cell line (LNCaP). However, no 

signal for miR-488* was detected from androgen independent cell line DU145. 

These results indicate that the miRNA processing machinery is functional to 

some degree in LNCaP cells but not in DU145. Thus results from the proposed 

experiment ( see above) with the total cellular  extract from LNCaP or  DU145 

cell lines, could give us some insight whether what is observed from mature miR-

488* expression profiles is due to the inactivation of the miRNA processing 

machinery in DU145 cells or is just simply due to the CG substitution.   These 

experiments may provide an opportunity to identify RNA binding proteins unique 

to miR-488* stem loop processing. 

4.2 Identifying miR-488* precursor promoter: 
 

Hsa-miR-488* is encoded in intron 5 of Astrotactin 1(ASTN1). Intron 5 is a 

relatively large intron (4.9 kb) gene (Figure 24). 

 

Figure 24: Schematic presentation of the genomic location of miR-488*: MiR-488* is hosted 
by intron 5 of ASTN 1 gene and preceded by Exon 5, Intron 4 and Exon 4.  

Intronic microRNAs studies suggested that microRNAs that reside in 

introns, share the same promoters and regulatory elements of their host gene  
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(Sikand et al., 2009). 

Nevertheless, other 

miRNA genes are 

believed to be 

transcribed from their 

own promoters. Few 

primary transcripts 

have been entirely 

identified (Lagos-

Quintana et al., 2001; Bartel D P., 2001). Thus to truly understand whether miR-

488* has its own promoter or shares the same promoter of its host gene, we 

could clone the mini gene system harboring Exon4, intron 4, Exon 5 and the 

segment of intron 5 up to the start of the precursor sequence of miR-488* in the 

promoterless pGL 4.20 luciferase vector plasmid (Figure 25). Consequently, after 

transfection of the resulted plasmid into one of the cell lines which previously has 

shown some levels of endogenous  mature miR-488* profiles,  we could assay 

for luciferase activity. The detection of a luciferase activity could mean that the 

mini gene system is harboring a promoter region. Then, we could identify that 

specific promoter sequence together along any transcription factors docking sites 

nearby. 

The promoter sequence, if present, could be identified through truncation 

process of the promoter region. Transcription factor’s docking sites, also if 

present, could be first identified by prediction software’s followed by experimental 

Figure 25: mini gene construct to check for independent 
promoter activity of miR-488*:  including what we think to harbor 
coding sequence for promoter of miR-488* in ASTN 1 gene. The 
mini gene construct (Exon 4, intron 4, exon 5 and a segment of 
intron 5 preceding precursor sequence of miR-488*) is to be 
cloned into pGL4.20 promoterless luciferase plasmid. 
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validation. Thus these transcription factors and promoter sequence could be 

used in future experiments for better understanding of the processing of miR-

488* in different cell lines as well as  aiming in future for drug therapy in prostate 

cancer by controlling the expression of miR-488*.  

4.3 Library of miR-488* Target site: 
 

The role of hsa-miR-488* in biological processes is not fully understood. 

TARGETSCAN bioinformatic program has predicted many target sites for miR-

488* in the human genome. Some of these targets are encoded in genes 

involved in Alternative splicing (LILRA2 gene). Some are involved in mRNA 

splicing regulation spliceosome-associated protein (KIAA 1429 gene). Other play 

a role in tumor suppression (ARMCX2 gene), and other may play a regulatory 

role in RNA editing (ADARB2 gene) (Figure 26). These results implicate further 

Figure 26: Examples of miR-488* targets sites in 3’UTR of their perspective genes:
Base pair interaction between miR-488* and target sites were predicted by TARGETSCAN
microRNA target prediction program and validated through RNAhybrid Algorithm. 
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importance of miR-488* in regulating biological processes. One of the future aims 

is to build a genome wide library of miR-488* target sites in 3’UTR that allows us 

to further study the implication of miR-488*. 
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4.4 Conclusion: 
 

A number of studies have provided insight into molecular mechanisms that 

contribute to the onset and progression of prostate cancer. Androgens play an 

important role in the development, regulation, and maintenance of the male 

phenotype as well as the reproductive physiology and have been implicated in 

the development and progression of prostate cancer. Androgens are required 

mitogens for the survival and proliferation of prostate cells and most prostate 

cancers are treated by complete blockade of androgen. AR is heterogeneously 

expressed in primary tumors, and throughout the progression of hormone-

sensitive and hormone-refractory prostate cancers. AR is a prominent target for 

the treatment of non-organ confined prostate cancer by hormonal blockade 

therapy that uses anti-androgens to competitively inhibit the binding of androgen 

to the ligand binding domain of the receptor. In prostate carcinogenesis, changes 

in AR signaling pathways activate the growth of malignant cells. The hormone-

refractory stage of the disease is commonly associated with the constitutive 

activation of AR expression by unknown mechanisms.  

Noncoding RNAs play diverse functions including structural, enzymatic 

and regulatory in metazoan gene expression. Genes that are potentially targeted 

by these miRNAs include cell growth and maintenance, signal transduction, cell 

proliferation, phosphorylation, cell cycle, transcription factors, cell organization 

and biogenesis etc. MiRNA mediates gene expression through translational 

repression of its target by binding at the 3’ untranslated region. In this work, our 

computational analysis has identified a target site of Hsa-miR-488* in the 
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androgen receptor 3’ untranslated region.  The chimeric AR3’UTR luciferase 

plasmid sensor experiment suggested that the predicted target site is an 

authentic target site. Seed region within target is essential for the binding with 

miR-488*. Four base pairs mutations to the seed region is enough to disrupt the 

base paring interaction between that target site and the miR-488*. Furthermore, 

western blot data shows repression in the expression of endogenous Human 

androgen receptor in LNCaP cells by miR-488* mimic. Ectopically expressed 

mature miR-488* has a dose dependent repression of Firefly luciferase reporter 

plasmid. Stably expressed miR-488* in androgen dependent prostate cancer cell 

line (LNCaP) showed slower growth comparing to the miR-488* stably 

transfected androgen independent cell line (C4-2B). 

In conclusion, miR-488* is down regulated in numerous prostate cancer 

cell lines, suggesting a tumor-inhibitory function of Hsa-miR-488*. That being 

said, further investigations are required to fully understand the molecular 

mechanisms underlying the regulation of AR expression by miR-488*. Thus 

further knowledge of the functions and the mechanisms of miR-488* expression 

could significantly improve our understanding regarding the use of microRNAs as 

a therapeutic interventions of prostate cancer. 
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Appendices 

 

Table 1: Host genes, chromosomes and miRNA distribution: The table illustrates 
examples of conserved miRNAs with their host genes and gene IDs.  

 

 

Figure 1:  Alignments of the  stem loop of miRNAs 483 of human, mouse and rat : 
The figure illustrates a representative dataset showing conserved sequence elements 
found  in stem loop sequences of the miRNA of human, mouse and rat. An 81.5% of 
total conservation is observed. 

 

 

 

 

1 7610 20 30 40 50 60(1)
GAGGGGGAAGACGGGAGGAAAGAAGGGAGUGGUUCCAUCACGCCUCCUCACUCCUCUCCUCCCGUCUUCUCCUCUCHsa-mir-483 (1)
GAGGGGGAAGACGGGAGAAGAGAAGGGAGUGGUU---UUUGGGUGCCUCACUCCUCCCCUCCCGUCUUGUUCUCUCMmu-mir-483 (1)
GAGGGGGAAGACGGGAGAAGAGAAGGGAGUGGUU---UUUGGGUGCCUCACUCCUCCCCUCCCGUCUUGUUCUCUCRno-mir-483 (1)
GAGGGGGAAGACGGGAGAAGAGAAGGGAGUGGUU  UUUGGGUGCCUCACUCCUCCCCUCCCGUCUUGUUCUCUCConsensus (1)
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1 CCTCCTTGTC AACCCTGTTT TTCTCCCTCT TATTGTTCCC TACAGATTGC GAGAGAGCTG 

61 CATCAGTTCA CTTTTGACCT GCTAATCAAG TCACACATGG TGAGCGTGGA CTTTCCGGAA 

121 ATGATGGCAG AGATCATCTC TGTGCAAGTG CCCAAGATCC TTTCTGGGAA AGTCAAGCCC 

181 ATCTATTTCC ACACCCAGTG AAGCATTGGA AACCCTATTT CCCCACCCCA GCTCATGCCC 

241 CCTTTCAGAT GTCTTCTGCC TGTTATAACT CTGCACTACT CCTCTGCAGT GCCTTGGGGA 

301 ATTTCCTCTA TTGATGTACA GTCTGTCATG AACATGTTCC TGAATTCTAT TTGCTGGGCT 

361 TTTTTTTTCT CTTTCTCTCC TTTCTTTTTC TTCTTCCCTC CCTATCTAAC CCTCCCATGG 

421 CACCTTCAGA CTTTGCTTCC CATTGTGGCT CCTATCTGTG TTTTGAATGG TGTTGTATGC  

481 CTTTAAATCT GTGATGATCC TCATATGGCC CAGTGTCAAG TTGTGCTTGT TTACAGCACT 

541 ACTCTGTGCC AGCCACACAA ACGTTTACTT ATCTTATGCC ACGGGAAGTT TAGAGAGCTA 

601 AGTAATAGAC CCGAAATCAA AACAAAAACA AGCAAAC  

 

Figure2: Androgen Receptor 3’ untranslated region. The figure illustrates the AR 
3’UTR sequence (637 bases) with the predicted target site of miR-488* underlined and 
highlighted in red color. Target site consists of 24 nucleotides between base 589 and 
base 612. 
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Figure 3: pMIR-Report and an assay for mRNA specific miR function. The figure 
represents pMIR-Report Luciferase vector with the tow restriction sites (SpeI and HindII) 
at the far ends of the MCS. Figure 3A and 3B are an illustration of the assay for AR 
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3’UTR specific microRNA function. Figure 3A is a representation of luciferase gene 
cloned downstream of CMV promoter. Figure 3B is the chimeric luciferase sensor 
plasmid with AR3’UTR downstream of the luciferase gene. 

 

 

A 

 

Figure 4A: AR 3’ UTR with three substitution binding sites for miR-488*. miR-488* 
substitution sites are indicated as site 1, site 2 and site 3. Bases are highlighted in red. 
These three sites might serve as substitution targets for miR-488*. 

 

B 

 

Figure 4B: Schematic representation of segments of AR3’UTR cloned in pMIR 
report vector. Full length AR3’UTR (637 bases) with the miR-488* predicted site is 
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shown in green box. Site 1 (nucleotides 158-168 from 5’ end of AR 3’UTR) consists of 
10 nucleotides with 7 perfect matches to the seed region. Site 2 (nucleotides 293-299 
from 5’ end of AR 3’UTR) has 6 nucleotides with 4 perfect matches to the seed region 
and Site 3 (nucleotides 348-358 from 5’ end of AR 3’UTR) is composed of 10 
nucleotides with 8 perfect matches to the seed region. Short AR 3’UTR (77 bases) 
spanning between nucleotide 561 and nucleotide 637. 

 

 

 

 

 

Figure 5: Quantitative analysis of the repression of Luciferase sensor harboring 
individual mutations to site 1 , site 2 and site 3 by miR-488* mimic. Repression 
levels of firefly luciferase ( 54%, 53% and 52% ) for mutated site 1, mutated site 2 and 
mutated site 3 respectively as compared to seed MUT AR 3’UTR with 51% firefly 
luciferase repression. 
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Figure 6: Pre-miR-488* expression vector. The 383bp segment of intron five of 
ASTN1 containing precursor sequence for miR 488* and flanking region was PCR 
amplified and cloned downstream of CMV promoter into the MCS of pcDNA 3.1 (-) 
vector. 
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Figure 7: TaqMan MicroRNA Assay. The step one shows the extraction of total RNA. 
Step 2 illustrates the Reverse Transcription of RNA. The step 3 demonstrates the set up 
of Singleplex taqMan microRNA Assay reaction. Finally, the step 4 shows the Real-time 
PCR amplification followed by analysis of the data in step 5. 

 

 

 

 

 


	Cleveland State University
	EngagedScholarship@CSU
	2010

	Targets of Hsa-miR-488* in Human Prostate Carcinoma Cells
	Jinani E. Slaibi
	Recommended Citation


	Microsoft Word - Jinani Master thesis.docx

