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CORTICAL BONE TISSUE ENGINEERING:  

SCAFFOLD DESIGN AND CELL SELECTION 

DEMIN WEN 

ABSTRACT 

    Cortical bone tissue engineering provides a promising approach to generate graft 

materials needed to treat the large sized bone defects. The underling premise of tissue 

engineering is to mimic the in vivo microenvironment as best as possible in vitro culture 

system. To select an appropriate scaffold material used in this model system, mechanical 

and hydraulic permeability properties of 316L porous stainless steel and 

polymethylmethacrylate (PMMA) were studied, as well as their biocompatibility in short 

and long term cell culture. Results showed that scaffolds made of both stainless steel and 

PMMA: (1) could be manufactured to have similar permeability as that cortical bone, (2) 

exhibited biocompatibility in short term cell culture; and that as the ultimate tensile 

strength was concerned, the scaffold made of stainless steel was similar to cortical bone 

while not PMMA; and that as the elastic modulus was concerned, neither scaffolds made 

of stainless steel or PMMA was similar to cortical bone. To establish an optimal culture 

condition and select an appropriate cell source, the influence of an artificial osteoid layer 

made from type I collagen and fibronectin on the osteogenesis of bone marrow and 

periosteum cells were studied. Results showed that more extracellular matrix and calcium 

minerals were deposited in cultures on the artifical osteoid layer than on conventional 2D 

plastic; and that polarity of cell density distribution occurred in cultures on the artifical 

osteoid layer while not on 2D plastic; and that there was no significant difference of the 

osteogenesis between the cultures of bone marrow cells and periosteum cells.  
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CHAPTER I 

 INTRODUCTION 

 

 

        Damage to weight bearing bones either due to pathologies or trauma is a common 

occurrence and represents a significant problem in orthopedics [1, 4]. Large-sized bone 

defects and recalcitrant fractures often require surgical intervention using grafting 

materials to provide the best potential for healing. More than 500,000 bone-grafting 

procedures are performed annually in the United States as well as 1.2 million worldwide. 

For the average procedure, the initial surgical cost is around $20,000 US [4]. Therefore 

around 10 billion dollars in United States and 24 billion dollars worldwide are expended 

annually to treat large-sized bone damage. Among the bone grafts used in these 

procedures, about 55% are autografts and 35% are allografts [4, 39, 69]. The limitations 

of these two grafts are that (1) autografts are not always available and require a second 

operation, and (2) allografts are sometimes susceptible to disease transmission from 

donor to recipient. The other 10% bone graft substitutes include metals, natural and 
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synthetic polymers, ceramics and composite materials [66]. The criteria for the success of 

bone graft substitutes to regenerate new bone are: (1) biocompatibility, (2) 

osteoconductivity – permitting cells to attach, proliferate and migrate and allowing 

nutrient-waste exchange and vessel penetration, (3) osteoinductivity – inducing the 

osteoprogenitors to differentiate into osteoblasts, and (4) osteogenicity – producing 

mineralized tissue matrix [1, 4, 28, 39, 95]. Unfortunately, not all of existing substitutes 

satisfy all of the criteria required to regenerate substantial amounts of new osseous tissue. 

Therefore new bone graft substitutes still need to be designed and generated to fully 

match these criteria. Bone tissue engineering provides a promising new approach to 

generate novel graft substitutes combining cells, scaffolds, growth factors and mechanical 

loads that should satisfy all of the above criteria in a cost effective manner [1, 4, 28, 29, 

33, 39, 51, 75, 95].  

      An underlining premise of bone tissue engineering is to mimic key aspects of the in 

vivo microenvironment as best as possible within in vitro bioreactor culture systems. 

Several laboratories are developing bone culture systems in attempts to generate 

functional bone tissue in vitro using tissue engineering principles [6, 22, 30, 33, 49, 50], 

though none of them have been able to generate cortical bone tissue in a bioreactor 

system. This is in stark contrast to ample formation of functional cortical bone tissue in 

vivo. We surmise from this discrepancy that there must be some key attributes lacking in 

current in vitro bone bioreactor systems which are necessary for bone cells to behave as 

they do in vivo.  
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       One attribute that still needs to be addressed is hydraulic permeability of cortical 

bone. Permeability is defined as the ease with which a fluid passes through a porous 

material and can be determined from Darcy’s Law [69, 74]. The permeability of cortical 

bone is important for nutrient and growth factor transport, and waste product exchange. 

This places permeability critically important to maintain osteocyte viability and regulate 

the physiological processes of bone remodeling and homoestasis [17, 69].  

      Secondly, osteoid is the densely packed organic matrix secreted by mature surface 

osteoblasts that eventually becomes mineralized and forms bone tissue [9, 44]. 

Osteoblasts express receptors that engage two key molecules in osteoid, type I collagen 

and fibronectin. These receptors modulate interactions that have been reported to promote 

the process of osteogenesis [22, 27, 30, 33, 54, 62, 65, 87, 92, 93]. Thus the permeability 

of cortical bone and the assembly of an osteoid layer may be important for osteoblasts to 

optimize the formation of bone tissue in vivo. Accordingly, this dissertation will focus on 

cortical bone permeability and the interaction of osteoblasts with osteoid as two potential 

attributes that need to be investigated in a tissue engineering approach to form functional 

cortical bone tissue in vitro. The following chapters of this dissertation will focus on 

testing these attributes.  

       Chapter III-- Stainless steel and poly(methyl methacrylate) (PMMA) are commnonly 

used in orthopaedic procedures [66]. They were selected as candidate scaffold materials 

to be used in bone tissue engineering since they are inexpensive materials that can be 

fabricated in varying shapes and exhibit acceptable biocompatibility. Still their 
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mechanical properties (elastic modulus, ultimate tensile strength) and hydraulic 

permeability need to be investigated in order to choose those scaffold materials that best 

mimic key cortical bone properties. In addition, their biocompatibility needs to be tested 

by culturing bone cells on these scaffold materials. 

        In Chapter III, we proposed that (1) stainless steel and PMMA could be 

manufactured to exhibit similar pore size, permeability and mechanical properties as 

cortical bone, and (2) stainless steel and PMMA would exhibit sufficient biocompatibility 

in the cultures. To test the first hypothesis, the pore size, permeability and mechanical 

properties (elastic modulus, ultimate tensile strength) of stainless steel and PMMA were 

measured and compared with authentic cortical bone. To test the second hypothesis, for 

short term biocompatibility test, the cell attachment percentage and proliferation of UMR 

osteoblastic cells cultured on PMMA and stainless steel scaffolds for 14 days were 

compared with cultures on conventional plastics.  Also, for long term biocompatibility 

test, MC-4 pre-osteoblasts and periosteum- derived primary bone cells were cultured on 

stainless steel scaffolds for 25 days and the cell morphology and cell numbers were 

analyzed by histology and histomorphometry.  

     Chapter IV-- The permeability of cortical bone still needs to be accurately measured 

since few studies have experimentally measured the hydraulic permeability of adult 

cortical bone. In addition, there are no reports in the literature establishing what chemical 

components of cortical bone tissue regulate its hydraulic permeability. Knowledge 

regarding the permeability of cortical bone and the chemical components that may affect 
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cortical bone permeability is needed to help select scaffold materials that best mimic this 

property of cortical bone. Ultimately we intend to use this information in order to 

promote functional cortical bone tissue formation in vitro. Therefore, studies were 

completed to (1) accurately measure the permeability of adult cortical bone, and (2) 

determine the contribution of lipids and densely packed collagen matrix to the 

permeability of cortical bone.  

        In Chapter IV, we hypothesize that: (1) the presence of hydrophobic molecules 

within the porous compartment of cortical bone would reduce its permeability, and that 

removal of such hydrophobic materials would increase its permeability; and (2) the 

presence of a densely packed pericellular matrix (mostly type I collagen) within the 

porous compartment of cortical bone would reduce its permeability, and that removal or 

loosening of such collagen matrix would increase its overall permeability. To test these 

hypotheses, a new device with a detection limit of 4 x 10-17 m2 was designed to 

sequentially measure radial hydraulic permeability of the cortical bone wafers (1.5 mm 

thickness), before and after removing lipids, and digesting with bacterial collagenase. 

Confirmation of lipid extraction was done using gas chromatography and mass 

spectroscopy, while collagen digestion was monitored by a colorimetric method to 

measure hydroxyproline.  

       Chapter V-- Nutrient and waste product transport in bone tissue are controlled by 

both hydraulic permeability (a measure of the ability of a material to transmit fluids) and 

molecular diffusion (a net transport of molecules from a region of higher concentration to 
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one of lower concentration by random molecular motion). Knowing which property has a 

greater influence on nutrient transport in cortical bone tissue should aid in the selection of 

appropriate scaffolds for bone tissue engineering. Therefore, In Chapter V, the diffusion 

coefficient of glucose in cortical bone in radial direction was measured with diffusion cell. 

And a mathematical model was established to calculate the glucose concentration profile 

in the cultures with the scaffold material.   

        Chapter VI-- As previously mentioned, the presence of osteoid in long bone surfaces 

may be an important characteristic that needs to be mimicked in vitro in order to promote 

optimal osteogenesis leading to functional bone tissue formation. Osteoid is composed of 

collagen fibers and several non-collagenous proteins. The predominant fibrillar collagen 

in osteoid is type I collagen. In addition, an important matricellular protein, fibronectin, is 

found in the osteoid layer and is required for osteoblast differentiation and vitality. 

        Therefore in Chapter VI, we attempted to mimic this osteoid structure with a 3-D 

hydrogel made of native type I collagen and fibronectin. The osteogensis of different 

types of natural osteoprogenitor cells (bone marrow and periosteum derived cells) were 

measured on these 3D hydrogels and compared with conventional 2D plastic culture 

dishes. In this system the following hypotheses were tested: (1) osteo- progenitors 

derived from bone marrow and periosteum cells exhibit equivalent osteogenesis; (2) cell 

morphology at different stages of osteogenesis would be different; (3)more extracellular 

matrix would be deposited in the cultures of both periosteum and bone marrow cells on 

collagen-fibronectin hydrogels compared with cultures on conventional plastic, and a 
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more basal lateral deposition pattern of extracellular matrix would be observed collagen-

fibronectin hydrogel cultures while less so on conventional plastic; (4) and more mineral 

would be deposited in cultures of periosteum and bone marrow cells on collagen-

fibronectin hydrogels compared with cultures on conventional plastic, and a more basal 

lateral deposition pattern of mineral would be observed in collagen-fibronectin hydrogel 

cultures while less so on conventional plastic. To test these hypotheses, bone marrow and 

periosteum cells were cultured both on 3D collagen fibronectin hydrogels and 2D plastic. 

The amount and distribution of extracellular matrix (Bone sialoprotein (BSP) and Sereted 

protein acid rich with cysteines (SPARC)) and calcium mineral deposited in the cultures 

were measured by histomorphometry.  

       Chapter VII-- This chapter summarizes the novel findings from my investigations. It 

attempts to explain the limitations of these findings, provides conclusions stemming from 

these findings and discusses the physiological and tissue engineering relevance of the 

findings. Finally, comments are made on the next level of investigation that would 

logically build on these current data for future experimentation. 

       In all our approach and system design may provide a means for studies to be 

conducted towards the development of functional bone tissue in vitro. Our ultimate goal 

is to generate a functional bone tissue on a biocompatible scaffold, which will be peeled 

off from the scaffold and used as bone scaffold material to treat large size bone defect.  

The contents included in this dissertation provide the first step (scaffold and cell source 

selection) to develop the model system. And in the future growth factors and/or 
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biophysical stimuli will be incorporated into this system to promote sustained bone 

formation in vitro.    
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CHAPTER II 

 BACKGROUND 

 

 

2.1 Overview of Bone Tissue Engineering 

        Bone damage due to pathologies or traumas is a common occurrence and the repair 

of this damage represents a major concern in orthopedics.  Large size defects in load 

bearing bones with limited healing capacity often require graft intervention to provide the 

best potential for healing [4, 39]. The choices of bone graft include autografts, allografts 

and synthetic bone graft substitutes. Autografts, bone tissue taken from another part of a 

patients’ own body (e.g., grafts taken from the patient’s iliac crest) set a gold standard for 

bone graft choices. A patient’s overall health and the pain and morbidity of a second 

operation site restrict autograft applications. Allografts are bone tissues taken from 

cadavers. In addition to a limited availability, allografts involve the risk of blood-borne 

diseases and must be correctly donor-receiver immune matched [4, 28, 95]. Synthetic 

bone grafts are readily available, but from a mechanical aspect, they do not have the same 
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toughness and stiffness properties as cortical bone. From a biocompatibility aspect, some 

synthetic grafts lack either osteoconductive or osteoinductive properties [1, 28]. 

Therefore new bone graft substitutes with improved osteogenic properties are still needed. 

To these ends, one approach is bone tissue engineering, which may produce variably 

sized bone graft substitutes in the laboratory using a patient’s own source of bone cells 

from either periosteum [30, 39,, 42, 89], or bone marrow [5, 6, 13, 33, 39, 50, 51, 76-79]. 

          Tissue engineering is “an interdisciplinary field of research that applies the 

principles of engineering and life sciences towards the development of biological 

substitutes that restore, maintain, or improve tissue function”[29]. For bone tissue 

engineering an underlining premise is to mimic essential aspects of the in vivo bone tissue 

microenvironment as best as possible in an in vitro culture environment. Four different 

parameters affecting bone tissue engineering need to be investigated and optimized:  bone 

cells, scaffold materials, growth factors and mechanical load [29, 33, 66]. 

2.2 Bone 

         Bone is a living, highly vascular and dynamic mineralized connective tissue. It is 

characterized by it hardness, growth mechanisms, resilience and its ability to remodel and 

repair itself with high fidelity [9]. Its four main components are bone matrix, bone cells, 

bone marrow and its associated vascular network (Figure 2-1). Bone tissue matrix is 

comprised of organic and inorganic molecules. This biocomposite nature provides 

mechanical strength and a mineral store for the body [9, 17]. Various types of bone cells 

form (osteoblast), maintain (osteocytes), or resorb (osteoclast) this tissue matrix [9]. Bone 
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marrow, periosteum and associated vasculature provide sources of osteogenic stem cells. 

At the organ and tissue levels, bone is subjected to dynamic mechanical deformation. 

Mechanical stress or “load” has important consequences for the health of this tissue since 

bone loss occurs in the absence of mechanical load. The physiological range of 

mechanical strains in cortical bone tissue is 0.04~0.3% [17, 23, 31]. 

 

          The formation of bone during the fetal stage of development occurs by two general 

processes: intramembranous and endochondral ossification [9]. Intramembranous 

Figure 2-1 Hematoxylin and eosin (H&E) staining image of tibial 
diaphysis from a juvenile rat. A: Periosteum fibrous layer. B: Osseous 
cambium layer, done in Midura lab 
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ossification mainly occurs during formation of the flat bones of the skull; the bone is 

formed directly from mesenchyme tissue without a cartilaginous intermediate. 

Endochondral ossification, on the other hand, occurs in long bones, and forms using a 

cartilage tissue template. Remodeling is the process of resorption followed by 

replacement of new bone with little change in shape and occurs throughout a person's life 

[9]. Osteoblasts and osteoclasts, coupled together via paracrine cell signalling, are 

referred to as bone remodeling units. The purpose of remodeling is to regulate calcium 

homeostasis, repair micro-damaged bones (from everyday stress) but also to shape and 

sculpture the skeleton during growth. Bone resorption is done by osteoclasts [9].  

       Bone formation is done by osteoblasts through secretion of osteoid, which is 

stimulated by the secretion of several hormones and growth factors including growth 

hormone, thyroid hormone and the sex hormones (estrogens and androgens) [9]. Osteoid 

is the densely packed organic matrix that eventually becomes mineralized and forms bone 

tissue. Osteoid is composed of collagen fibers (mainly type I collagen) and several non-

collagenous proteins (such as fibronectin). Receptors expressed on osteoblasts can 

interact with the molecules in the osteoid layer to promote the process of osteogenesis [9]. 

Moreover, the osteoid layer is always deposited underneath the osteoblast (basal 

deposition pattern). This basal deposition pattern is important for osteoblasts to continue 

to form new cortical bone to widen the girth of long bone shafts [9]. This pattern may 

influence the packing and assembling of extracellular matrix deposited by osteoblasts, 



13 

 

and thereby influences the interactions of matrix receptors on osteoblasts and their 

extracellular matrix molecules, ultimately influencing the entire osteogenesis process [9].  

2.3 Cells used in bone tissue engineering field 

       Sources of cells used in bone tissue engineering includes mesenchymal stem cells 

derived from different tissues, such as bone marrow, periosteum, human umbilical cord 

blood[5, 6, 13, 29, 30, 33, 39, 42, 50, 51, 76-79, 89], and mature osteoblast cells, such as 

primary cells from human trabecular bone obtained during iliac crest biopsies [60]. 

Mesenchymal stem cells are mostly used in tissue engineering since compared to mature 

30 osteoblasts cells, they proliferate quicker and have longer population doubling limits 

[66]. Specifically, mesenchymal stem cells from bone marrow and periosteum are two 

sources widely used by investigators.  

        Bone marrow is the highly cellular tissue found in the medullary cavity of long 

bones (Figure 2-1) [9]. Cells from bone marrow comprise a heterogeneous group of 

phenotypes including hematopoietic stem cells, mesenchymal stem cells and endothelial 

stem cells [9]. Mesenchymal stem cells, a source of primary cells used in bone tissue 

engineering, can be separated from the other two stem cell populations by a colony 

forming adhesion assay [66]. Studies have shown the osteogenesis potential of bone 

marrow cells. For example, Barralet et al. cultured bone marrow cells on type I collagen 

gels for 21-28 days and showed new osteoid-like tissue formation by these cells [6]. 

Sikavitsas et al. cultured bone marrow cells in a flow perfusion bioreactor and showed 

that such a fluid-flow bioreactor culture system minimized diffusion constraints and 
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provided mechanical stimulation to the bone marrow cells, leading to the accumulation of 

a cancellous bone-like mineralized tissue [78]. Although these studies demonstrated the 

osteogenic nature of these cells, they were not able to generate cortical-bone like tissue in 

vitro. 

           Periosteum is the layer of cells that lines the outer surface of all bones, except at 

the joints of long bones (Figure. 2-1).[9] It consists of an irregular type of dense 

connective tissue and is divided into an outer "fibrous layer" and inner "cambium layer". 

The fibrous layer contains fibroblasts, adipocytes, and blood vessels, while the cambium 

layer contains osteo-progenitor cells which develop into osteoblasts.[9] These osteoblasts 

are responsible for increasing the width of a long bone and the overall size of other bone 

types. Osteo-progenitor cells within the periosteal cambium layer can be isolated, which 

provides another source of primary osteoblastic cells for bone tissue engineering [30, 89]. 

Several studies have reported on the osteogenic properties of periosteal cells. Wiesmann 

et al. cultured periosteal derived osteoblasts on Petri dishes as well as within 3D collagen 

constructs. They showed that these cells can form ‘bone like’ mineral deposits in both 2- 

and 3-D environments and formed an extracellular matrix containing osteocalcin, SPARC 

(osteonectin), and newly synthesized collagen type I in both environments [89].Koshihara 

et al showed that periosteum cells are osteoblastic cells and could differentiat into 

osteocytes and deposited calcified mineral in response to 1, 25 dihydroxyvitamin D3 [48].  

2.4 Scaffolds used in bone tissue engineering 
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       One of the four key elements in bone tissue engineering is a scaffold. The gold 

standard used in bone tissue engineering is autograft. Generally speaking, the criteria for 

selecting a scaffold includes[4, 30, 66 95]: (1) biocompatibility, (2) osteoconductivity – 

permitting cells to attach, proliferate and migrate and allowing nutrient-waste exchange 

and vessel penetration, (3) osteoinductivity – inducing osteoprogenitors to differentiate 

into osteoblasts, and (4) osteogenicity – producing ample amounts of mineralized tissue 

matrix. Besides these criteria, there are two more issues to be considered: (1) they should 

have similar mechanical properties as bone tissue; and (2) they should have similar 

hydraulic permeability as bone so that they can have proper nutrient/waste product 

exchange rates.  

         Currently many kinds of materials have been used in bone tissue engineering, which 

include demineralized allograft bone matrix, ceramics and ceramic composites [4, 30], 

collagen-mineral composites [86], bioactive glass [52], synthetic biodegradable polymers 

[108] and metals [3]. Demineralized allograft bone matrix is a biologically derived 

material exhibiting both osteoconductive and osteoinductive properties. Yet it lacks 

stiffness and in some cases may cause an immune-reaction [39, 66, 95]. Ceramics and 

ceramic composites are synthetic materials exhibiting osteoconductive properties and 

have a similar stiffness as that of bone. Yet they are limited by a lack of osteoinductivity 

and do not exhibit the same elastic modulus as that of bone [39, 66, 95]. Collagen-

mineral composites are matrices that exhibit the advantages of ceramics and 

demineralized allograft bone matrix, but still do not exhibit the same elastic modulus as 
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that of bone [39, 66, 95]. Bioactive glass exhibits both osteoconductive and 

osteoinductive properties, but does not have the same stiffness or toughness of bone [39, 

66, 95]. Synthetic polymers exhibit osteoconductive properties and are biodegradable [39, 

66, 95]. Yet, several such polymers can elicit metabolic side effects as they decompose to 

monomers. Metals, such as stainless steel or titanium, exhibit osteoconductive but no 

osteoinductive properties [39, 66, 95]. Thus the selection of an optimal bone scaffold 

material has not reached a single consensus and still requires careful consideration.  

2.5 Biophysical stimuli used in bone tissue engineering   

       At the organ and tissue levels, bone is subjected to dynamic mechanical deformation 

[17]. Mechanical stress or “load” has important consequences for the health of bone 

tissues [12, 16, 17]. Studies have shown that in vitro, application of dynamic mechanical 

forces influence bone cell proliferation and osteogenesis [33, 34, 50, 81]. Two different 

mechanisms have been investigated for explaining a bone cell’s response to mechanical 

load. One states that mechanical load drives nutrient and metabolite transport within bone 

tissue via fluid flow [18]. Such induced fluid flow can generate streaming potentials 

caused by fluid moving back and forth across fixed charges in the tissue matrix that 

generate electrical potentials. These streaming potentials are thought to play an important 

role in modulating bone cell activity [18, 33].  

        Another mechanism states that mechanical load is sensed directly by 

mechanoreceptors on the surface of bone cells leading to intracellular signaling in a 

manner referred to as the mechanotransduction pathway [32]--one common pathway for 
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force transmission is via the focal adhesions. Transmembrane proteins including 

mechanosensitive ion channels and signaling molecules such as integrins, form focal cell 

adhesions with the extracellular matrix. These focal adhesions constitute a primary 

pathway for intracellular force transmission and therefore have been viewed as likely 

candidates for an initiating mechanosensing event. On the intracellular side, many 

proteins tend to localize to focal adhesions, binding directly to either the α- or β-subunits 

of the integrin heterodimer. Other proteins link integrins to the actin cytoskeleton, having 

binding domains for both integrins and actin. Cell-cell junctional complexes and cell-

matrix interactions transmit mechanical stimuli to the internal cellular structures via 

cytoskeletal components. Some pathways of mechanotransduced signals lead to gene 

activation at the nucleus via nuclear junctions [32].  

      In vitro, mechanical loads are applied by an actuator device in a bioreactor system. 

Ideally, a bone tissue engineering bioreactor system should support rapid and orderly 

development of functional bone tissue by providing control over the entire cellular 

microenvironment (eg., temperature, pH, osmolality, levels of oxygen, nutrients, 

metabolite and regulatory molecules) [66, 78]. Such control would facilitate mass transfer 

to and from cells, and provide physiologically relevant stimuli and signals (eg., streaming 

potentials, mechanotransduction) [69]. Different bioreactor designs have been used in 

attempts to make tissue-engineered bone utilizing different scaffold materials and bone 

cell sources, and these designs include spinner flasks, rotating wall vessels, flow 

perfusion and mechanical loading devices [77, 78]. Mauney et al. applied mechanical 
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loads in a 3-D bioreactor system and showed that mechanical stimulation significantly 

reduced apoptosis and improved osteocyte viability in human bone tissue samples 

obtained from human patients [50]. Gomes et al. cultured bone marrow cells on porous 

fiber mesh scaffolds obtained from a blend of starch and poly(-caprolactone) in a fluid 

flow perfusion bioreactor. They showed that levels of alkaline phosphatase activity were 

higher in flow cultures compared to static ones, and that pore-like structures were formed 

within the extracellular matrix which were not observed in static cultures [25]. Meinel et 

al. cultured bone marrow derived mesenchymal stem cells in spinner flasks and observed 

that a dynamic flow environment upregulated their osteogenesis [51]. Yu et al cultured 

rat calvarial osteoblast cells in a dynamic flow culture system using high-aspect-ratio 

rotating vessel bioreactors and 3D scaffolds. They showed that a 3D dynamic flow 

environment affected bone cell distribution, enhanced osteogenic gene expression and 

increased the production of a mineralized matrix compared to static conditions [94]. 

Sikavitsas et al. cultured bone marrow stromal cells in spinner flasks and demonstrated 

enhanced cell proliferation at the end of the first week in spinner flasks as compare to 

static cultures [79]. 

2.6 Our proposed bone model system 

  Native cortical bone can be separated into three layers: periosteum tissue layer, osteoid 

layer and bone tissue layer (Figure 2-2). In our tissue engineering bone system, we 

attempt to mimic these three layers in order to promote bone formation in vitro as 

described in Figure 2-2. Specifically, periosteum tissue layer will be mimicked by 
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isolated bone marrow or periosteum cells since these two cell types are primary bone 

cells and exhibit osteogenesis in vitro. The osteoid layer will be mimicked by a native 

type I collagen gel and fibronectin coating, as type I collagen is the main component in 

bone extracellular matrix, and fibronectin is an extracellular matrix protein with a 

collagen binding domain. Fibronectin also promotes bone cell adherence, proliferation 

and osteogenic differentiation. The bone layer will be mimicked by a long term 

biocompatible scaffold material with similar mechanical and permeability properties as 

cortical bone.  

 

2.7 Summary 

       In summary, to build our bone model system, firstly the selected scaffold should 

have similar mechanical and permeability properties as cortical bone, and should be 

biocompatible; therefore the mechanical, the permeability and biocompatible properties 

of PMMA and stainless steel were investigated in Chapter III. Secondly, the contribution 

Figure 2-2 Cortical bone tissue engineering system. 



20 

 

of bone components to its permeability can be used to modify the permeability scaffold to 

obtain the similar permeability as bone; therefore the permeability of cortical bone and 

contribution of lipids and collagen matrix to its permeability were investigated in Chapter 

IV. Thirdly, nutrient supply was important issue to be considered in culture system and 

diffusion was the only way for the glucose transport in the static culture system; therefore 

the diffusion coefficient of glucose in cortical bone was investigated and a mathematical 

model was established to predict the glucose concentration profile in the static culture 

system in Chapter V.  Fourthly, osteoid layer was bone mineralization front and 

promoted osteogenesis in vivo; therefore an artificial osteoid layer made of type I 

collagen and fibronectin was investigated as a culture condistion to promotes the 

osteogenesis in vitro culture system in Chapter VI. Fifthly, osteoblasts derived from 

periosteum and bone marrow tissues showed their osteogenesis in vitro culture system; to 

select cells used in the model system, osteogenesis of these two cell types were 

investigated in Chapter VI.  

       In all our approach and system design may provide a means for studies to be 

conducted towards the development of functional bone tissue in vitro. Specifically, our 

design incorporates the use of a biocompatible bone–like scaffold layer coated with a 

bioartifical “ osteoid” layer of type I collagen and fibronectin, and primary osteogenitor 

cells as our first step to develop bone tissue in vitro. Based on this, in the future we may 

incorporate growth factors and/or biophysical stimuli into this system to promote 

sustained bone formation in vitro.    
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CHAPTER III 

 PROPERTIES OF PMMA AND STAINLESS STEEL SCAFFOLDS 

 

 

3.1 Introduction: 

     Scaffold is one of four components (cells source, scaffolds, growth factors and 

biophysical stimuli) that needs to be considered in bone tissue engineering. Key criteria 

for choosing appropriate biomaterials as scaffolds to be used in cortical bone tissue 

engineering are: (1) they should have similar mechanical properties as bone so that they 

can restore immediate mechanical function; (2) they should have similar permeability as 

authentic bone to maintain proper nutrient/waste product exchange rates; and (3) they 

should exhibit full biocompatibility so that they do no harm to surrounding cells and 

tissues in a patient [39, 66, 95]. 

      Elastic modulus and ultimate tensile strength are two parameters used to evaluate the 

mechanical properties of bone [17]. An elastic modulus, or modulus of elasticity, is the 
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mathematical description of an object or substance's tendency to be deformed elastically 

when a force is applied to it. The elastic modulus of an object is defined as the slope of its 

stress-strain curve in the elastic deformation region [17]. Stress is the force causing the 

deformation divided by the area to which the force is applied; and strain is the ratio of the 

change caused by the stress to the original state of the object. Tensile strength is the stress 

at which a material breaks or permanently deforms [17]. Ultimate tensile strength is the 

maximum stress a material can withstand when subjected to tension, compression or 

shearing. It is the maximum stress on the stress-strain curve [17]. 

      The permeability of cortical bone is the measurement of the ease of fluid flow 

through cortical bone and can be determined by Darcy’s law: pA
LvP
∆

=
µ

. Here, P 

(m2) is the hydraulic permeability of the material, µ (1 cp = 0.001 kg / (m·s)) is the 

viscosity of the fluid flowing through the material, L (mm) is the thickness of the material, 

v ( mL / hr) is the fluid flow rate, A (mm2) is the area fluid flowing through, ∆p (kpa) is 

the pressure difference between upstream flow and downstream flow.    

      The definition of biocompatibility has been refined over the last sixty years from “do 

no harm” to that of being clinically beneficial [28]. In 1940, an early definition of 

biocompatibility was to be ‘non-toxic, non-immunogenic, non-thrombogenic, non-

carcinogenic, non-irritant’ [28]. In 1987, biocompatibility was redefined as ‘the ability of 

a material to perform with an appropriate host response in a specific situation’[28]. The 

current definition (2008) of biocompatibility is the ‘ability of a biomaterial to perform its 
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desired function with respect to a medical therapy, without eliciting any undesirable local 

or systemic effects in the recipient or beneficiary of that therapy, but generating the most 

appropriate beneficial cellular or tissue response in that specific situation, and optimizing 

the clinically relevant performance of that therapy’ [28]. 

       Different biomaterials have been used in bone tissue engineering. They include 

metals (such as cobalt-chromium alloys, stainless steel and titanium), synthetic polymers 

(such as PMMA), ceramics, natural collagens and their bio-composites [39, 66, 95]. In 

the mid 1920’s, 316 L stainless steel was developed for surgical implants due to its higher 

stiffness and higher resistance to corrosion in vivo [20]. As of today 316 L stainless steel 

is still widely used in the field of orthopaedic applications since it has acceptable 

biocompatibility and physical properties, and can be fabricated into a variety of shapes 

and sizes for wires, screws and implants [3, 11]. Several studies have been done on the 

biocompatibility of stainless steel. Puleo et al. [61] showed that stainless steel exhibits 

good short term biocompatibility. However, Jocobs et al.[36] stated that 316 L stainless 

steel containing chromium (16-18%) and nickel (10-14%) was a probable source of long-

term complications, and their findings suggested caution for its use as an implant. Kraft et 

al. reported that stainless steel wear debris had a marked and persistent negative effect on 

leukocyte-endothelium interaction leading to chronic low levels of inflammation [41]. 

Bailey et al. also reported an immune response of the body to wear debris from stainless 

steel [3]. There is still no full agreement on the biocompatibility of stainless steel, 
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presumably which may because of the difference in manufacture process and the 

concentration of its heavy metal components (such as chromium and nickel). 

      PMMA is another biomaterial widely used in bone tissue engineering since it also 

exhibits acceptable biocompatibility and is easily to be manufactured [66]. The 

biocompatibility of PMMA has also been called into question. Chiu et al. showed that 

PMMA inhibits the proliferation and osteogenic differentiation of bone marrow cells 

suggesting that PMMA may not always exhibit high levels of biocompatibility [13]. In 

contrast, Ramachandran et al. showed that osteoblasts exhibited phenotypic stability 

when cultured on PMMA suggesting that PMMA exhibits adequate biocompatibility [63].  

      In this part of my study I addressed the selection of a suitable biomaterial as a bone 

scaffold in attempts to mimic cortical bone properties that may promote bone formation 

in our bioreactor design. As mentioned in previous chapters, a suitable biomaterial should 

have similar permeability and mechanical properties as cortical bone, and should be 

biocompatible in long term cultures. Stainless steel and PMMA were selected as 

candidates since they are relatively inexpensive to fabricate into any desired size and 

porosity, are stiff materials and are biocompatible. Therefore I hypothesized that (1) 

stainless steel and PMMA could be manufactured to exhibit similar porosity, 

permeability and mechanical properties as cortical bone, and that (2) stainless steel and 

PMMA would exhibit sufficient biocompatibility in cultures. To test the first hypothesis, 

the porosity, permeability and mechanical properties (elastic modulus, ultimate tensile 

strength) of stainless steel and PMMA were measured and compared with cortical bone. 
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To test the second hypothesis, for short term biocompatibility, the cell attachment 

percentage and proliferation of osteoblastic cells cultured on PMMA and stainless steel 

scaffolds for up to14 days were compared with cultures on conventional tissue culture 

plastic.  Also, for long term biocompatibility test, a pre-osteoblast cell line and 

periosteum derived primary bone cells were cultured on stainless steel scaffolds for up to 

25 days and the cell morphology and cell numbers were analyzed by H&E and DAPI 

staining.  

3.2 Materials and methods 

3.2.1 Synthesis of PMMA Scaffolds 

       Described below is the protocol used to create PMMA scaffolds that have a pore size 

structure that ranges from 28 -100 µm in diameter. A ‘layering’ approach utilizing 

PMMA/Sodium Chloride solutions of two bead diameters (28 µm and 100 µm) was used 

to create scaffolds with similar porosity property as native cortical bone.    

1. Preparation of PMMA  Layer Solutions  

       PMMA layer solutions of varying pore size were prepared as follows: (a)  Solution 1 

- 0.66 g of PMMA beads (bead diameter of 10-50 µm, Scientific Polymer Products, Inc., 

Ontario, NY) and 0.66 g of NaCl (sieved to 28 µm mean diameter, Scientific Polymer 

Products, Inc., Ontario, NY) were combined in a 50 mL conical test tube; (b) Solution 2 - 

0.66 g of PMMA beads (as above) and 0.66 g NaCl (sieved to 100 µm mean diameter, 

Scientific Polymer Products, Inc., Ontario, NY) were combined in a 50 mL conical tube; 

three tubes of solution 2 were required; and (c) Solution 3  -  0.66 g NaCl (either size) 
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was placed into a fifth 50 mL conical tube. Test tubes containing solutions 1 and 2 were 

mixed for 20 s with a spatula, then vortexed for 20 s, followed by incubation at 37o C in a 

humidified incubator for 48 hr. The solution 3 test tube was incubated in a 60o C dry oven 

for 48 hr. 

2. Preparation of PMMA Scaffolds 

      In an airflow hood, solution 1 PMMA mixture was spread onto a clean, dry silicone 

mold evenly along the surface of mold. One mL of acrylic solvent (methylene chloride 

and diacetone alcohol, Craftics Plastick Acrylic Solvent Cement, Albuquerque, NM) was 

added wetting the entire surface of layer. Acrylic was used to glue the layers together. 

This was followed by spreading the first test tube of the solution 2 PMMA mixture 

evenly over the first layer. This was followed by adding one mL acrylic solvent on top of 

the second layer. Repeat the same process with the remaining two test tubes of solution 2. 

Then solution 3 was spread evenly over the fourth layer of PMMA. This fifth layer was 

spread and evenly distributed with a spatula. Finally the mold was put in place and a 5 

pound weight placed on top of the mold cover for a 48 hr period to dry.  

After 48 hr, the PMMA scaffold was removed from the mold, then the excess salt crystal 

was shake off,  and the scaffold was placed in a Petri dish. This was followed by a serial 

washing of the scaffold, first with a 12 mL of 100% ethanol for 30 min, then with a 12 

mL 70% ethanol for 30 min. Then they were placed into a 1 L beaker and washed with 

Milli Q water until the conductivity of the wash water no longer changed (approximately 
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3-4 days with daily changes of the water in the 1 L beaker). At this point, the PMMA 

scaffold was ready for permeability and mechanical testing. 

3.2.2 Stainless Steel Scaffolds 

       316L stainless steel disc scaffolds with 0.750 ± 0.05 inch (1.90 ± 0.01 cm) diameter, 

1/16 inch (1.5 mm) thick and 0.5 µm pore size were purchased from Mott Corporation 

(Farmington, CT). The following table (Table 3-1) was the information they provided. 

316L SS  Pore size 

(µm)  

Thickness 

(Inches) 

Density  

(mg/cm3)

Porosity 

(%) 

Permeability 

(Darcy Value ) 

Characteristics 0.5 1.5 mm 5.83 16.8  0.103 

3.2.3 Processing for scanning electron microscope (SEM) 

       Scanning electron microscope (SEM) was used to view the micro-structure of 

PMMA, stainless steel and cortical bone. For SEM, specimens were fixed, dehydrated 

and coated with gold. In this study, stainless steel (n=3), PMMA (n=3) and cortical bone 

(n=3) were submitted for SEM.  

1. Fixation.  

     Specimens were placed into a fixative solution (2% glutaraldehyde (EMS), 3% 

sucrose (EMS), in 0.1M phosphate buffer (Cellgro) at pH 7.4) for overnight (the volume 

ratio of specimen to solution was 1:20). This was followed by a serial washing of the 

Table 3-1: Media Characterization – Mott porous 316LSS disc 
*. 1) Darcy value of 1.00 = the flow of 1 cc (mL) of 1 cp (centipoise, 1 cp = 0.001 kg/(m·s)) fluid in 1 
second at 1 atmosphere pressure (1atm = 101.3 kpa) through 1 cm2 x 1 cm thick section of porous 
media. (1 Darcy = 9.9 x 10-14 m2, therefore, the permeability of stainless steel is 1.02 x 10-14 m2) 
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specimen, first with PBS solution, 30 min each time for two times, then with milli Q 

water, 5 min each time for two times. 

2. Dehydration 

     The specimen was dehydrated with a series of ethanol (Fisher) solutions made from 

absolute ethanol (v/v) (50%, 70%, 80%, 90%, 95%, 100%, 100%), 15 min in each 

solution. The specimen was then dried using a series of Hexamethyldisolazane (HMDS) 

(Electron Microscopy Sciences) in ethanol solution (v/v) (1:1 HMDS-ethanol, 1:1 

HMDE-ethanol, 100% HMDS, 100% HMDS, 100% HMDS), 10 min in each solution. 

Then the specimen stayed in the air-flow hood for 2 hr to evaporate residual HMDS. 

3. Images taken 

      The dehydrated specimen was sputter coated with gold in SPI-Module Sputter Coater 

(Structure Probe Inc., West Chester, PA).to increase the ability of a specimen to conduct 

electricity and emit secondary electrons. Then the specimen was ready for SEM imaging.  

      SEM images were taken with a scanning electron microscope (SEM) (S570, Hitachi, 

Japan). 

3.2.4 Mechanical property measurement 

        The elastic modulus and ultimate tensile strength of stainless steel (sample size n=3), 

PMMA (sample size n=3) and cortical bone (sample size n=3) were measured using a 4 

point bending holder device. Specifically, specimens were placed in the holder, and a 

mechanical load was applied on the specimen using an Instron Model 8500 tensile test 

machine as depicted in Figure 3-1. The load and displacement data were recorded with 
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time. The elastic modulus and ultimate tensile strength were calculated based on the load 

and displacement curve generated using the standard equation as below. If we set the 

dimensions of the specimen and 

experiment parameters as: length = L, 

width = b, height = h, the distance 

between loading site = a, the load = P 

and the displacement = D.   

The moment of inertia (I) of the 

specimen can be calculated as equation 

(1); 

12

3hbI ×
=  (1), 

Strain can be calculated as equation (2) 

)23(2
2/12
aLa

hDStrain
−×

××
=  (2), 

 And Stress can be calculated as 

equation (3) 

 
I

haPStress
4

2/2 ××
=   (3). Therefore, 

stress-strain curves were generated 

(Figure 3-2); and the elastic modulus Figure 3-2 Stress strain curve of a specimen 

Figure 3-1 Schematic of mechanical load on 
the specimen. 
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was calculated as the slope of the stress –strain curve in the elastic phase and the ultimate 

tensile strength was the stress at the breaking point.  

3.2.5 Permeability measurement 

         The permeability of stainless steel (n=3) and PMMA (n=3) was measured three 

independent times in a radial flow direction using a custom built device (same as the 

device used to measure bone permeability, detailed in Chapter IV). All the samples were 

completely sealed in the holder and tested in the pressure range of 0 ~300 kpa. Phosphate 

buffered saline (PBS) solution was pumped through the samples using a 4 MPa pressure 

limit pump (Pump-P 500, Pharmacia Biotech) at 4 different flow rates (v):  10, 20, 30 and 

40 mL/hr. For each flow rate, ∆p, the pressure difference of the upstream fluid and the 

downstream fluid, which is atmosphere, was measured with a pressure gauge (Ashcroft 

Cat # 25D1005PS 02L 100). The thickness (L) of samples was measured with digital 

calipers (0.1 mm accuracy) at three different sites along the scaffold materials. Fluid flow 

was assessed through a circular area (A) of 5 mm in diameter. And µ is the viscosity of 

PBS solution (µ = 1cp). Permeability (P) was then calculated using Darcy’s Law shown 

in Equation (1) below:   

 
)1(

pA
LvP
∆

=
µ

.  

3.2.6 Optimizing the scaffold surface for bone cell adhesion, growth and osteogenic 

differentiation 

All following steps were performed sterilely.  
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1. Scaffold preparation 

1. a. Collagen gel coating process:   

     

          A 2 mg/mL rat tail type I collagen solution was prepared from a stock of native 

type I collagen solution (3.56 mg/mL, Gibco). A 250 µL aliquot of the 2 mg/mL collagen 

Figure 3-4 SEM images of the surface structure of stainless steel scaffold after 48 hr 2 
layer collagen gel coating 

Figure 3-3 SEM images of the surface structure of scaffold after collagen gel coating. the 
top layer was PMMA scaffold, the bottom layer was stainless steel (SS) 
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solution was placed onto PMMA and stainless steel scaffolds in a 12-well plate sitting on 

ice. Half an hour later; the plate was put into a 370 C incubator for 24 hr. Any excess 

collagen gel was trimmed off with a surgical blade. For second layer coating, a second 

collagen gel layer was coated onto the first layer, and the plate was put into a 370 C 

incubator for another 24 hr (total 48 hr).  

       The surface structure of the scaffold after collagen gel coating was shown in Figure 

3-3. Comparing to 24 hr one layer coating, 48 hr 2 layer coating generated the smoothest 

surface structure. Also, high magnification SEM images of the surface structure of 

stainless steel scaffold after 48 hr 2 layer collagen gel coating are shown in Figure 3-4. It 

shows that this collagen fiber dimensions are similar as in vivo collagen fiber dimensions. 

Therefore, for our biocompatibility test, the 48 hr 2 layer collagen coating process was 

applied.  

1. b. Fibronectin film coating 

        A 2 µg/mL fibronectin solution was prepared from a stock fibronectin solution (1 

mg/mL in PBS (Sigma)). The scaffold coated with collagen gel layers was put into a new 

12-well plate, and a 250 µL aliquot of the 2 µg/mL fibronectin solution was placed 

directly onto the collagen layer on the scaffold surface. The plate was put into a 370 C 

incubator, and after 2 hr incubation, the scaffold was washed with  500 µL PBS for ten 

times at room temperature.  

2. Short term biocompatibility test 
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      The osteoblast cell line, UMR106-01 BSP, was used to test the short-term 

biocompatibility of the PMMA and stainless steel scaffolds. A coverslip, a conventional 

culture material, was used as a positive control. Specifically, 1000 cells /mm2 cells were 

seeded onto the collagen and fibronectin coated PMMA, stainless steel scaffold and 

coverslip in a 12 well plate. Half a milliliter of growth medium (MEM (Cellgro) 

supplemented with 10% fetal bovine serum (FBS)) was put into each culture well. 

Cultures were incubated for 14 days and the medium was changed every other day. At 2 

hours, three cultures from each group were taken for cell attachment analysis. At day 2, 4, 

6, 8, 10, 12, 14, three cultures from each group were taken for cell number counting. The 

cell number per culture was quantified based on double stranded DNA content using the 

PicoGreen assay kit from the Molecular Probes. PicoGreen is a dye that binds to the 

major grooves in dsDNA, and the resulting fluorescence activity corresponds to the 

dsDNA concentration in solution and represents a surrogate measure of cell number. 

Specifically, for one culture well, half mL PBS solution was used to wash the well; then 

250 µL Lysis buffer (10 M Formamide (Fisher Scientific), 50mM Na acetate (Sigma), 

1% SDS (ICN) solution at pH 6) was added into each well; then the well was incubated at 

60 0C for 2 hours; after the culture was cooled down; the cells were scraped into a tube; 

the tube was sonicated for 30s, now the sample was ready for DNA analysis with 

PicoGreen assay kit.  

      At day 14, two cultures was fixed with 2% paraformaldehyde in PBS at 40 C 

overnight, and then stained with 4',6-diamidino-2-phenylindole (DAPI), a fluorescent 
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DNA dye that stains cell nuclei, and Rhodamine-Phalloidin, a high-affinity probe for F-

actin; Then confocal images were taken for morphology analysis with Leica TCS-SP 

spectral laser scanning confocal microscopes. Then the images were processed with 

Improvision Volocity software to generate 3D images.  

3. Long term biocompatibility test 

       MC-4 pre-osteoblast cell line (a cell line exhibiting oteogenesis in vitro) (a gift from 

R. Franceschi, Univ. of Michigan) and periosteum cells (primary bone cells) obtained 

from the tibial diaphyses of 30 day old Sprague Dawley male rats were used for long-

term biocompatibility tests of stainless steel scaffolds. Cells were seeded onto the 

stainless steel scaffolds double coated with collagen and fibronectin at a density of 200 

cells/mm2. Half a milliliter of growth medium (α-MEM (Cellgro) supplemented with 

10% fetal bovine serum (FBS)) was put into each culture well. After 4 days, this growth 

medium was changed to a differentiation osteogenic medium (α-MEM supplemented 

with 10% FBS and 50 µg/mL L-ascorbic acid 2-phosphate (Sigma), 50 µg/mL L-ascorbic 

acid (Sigma) and 10 mM β-glycerophosphate (Sigma)). Cultures were incubated for an 

additional 21 days with changing the medium every day. Cells cultured on a 3-D 

hydrogel made of collagen and fibronectin and 2-D tissue culture plastic served as 

controls. Triplicate cultures were done for each culture condition. 

        At the end of the culture period, cell layers (including collagen and fibronectin layer) 

were peeled off from stainless steel or culture plates and then fixed with 2% 

paraformaldehyde in PBS at 40 C overnight. After fixation, samples were embedded in 
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paraffin and oriented in order to cut cross-sectional slices, which would represent the top 

and bottom of each culture. Seven micron slices were cut from each tissue block. 

Hematoxylin and eosin (H&E) and DAPI were used to examine cell morphology and 

nuclei numbers. Three slides were examined from each block.  

3.2.7 Statistic analysis 

         Analysis of variance (ANOVA) caculations with post-hoc multiple comparison tests 

(Dunn Method) were used for statistical analysis (SigmaStat software v3.5). Quantitative 

results are reported as the mean ± standard deviation. Unless stated otherwise, statistical 

significance was set at a p value of less than 0.05.  

3.3 Results 

3.3.1 Porosity of PMMA and Stainless steel scaffold 

        A semi-quantitative analysis of the SEM images of PMMA and stainless steel as 

compared to rat cortical bone (lipids and collagen removed from porous part) showed that 

PMMA and stainless steel had similar pore sizes (Figure 3-5). From these images, the 

pore sizes of these three materials were generated: PMMA (21 ± 12 µm), stainless steel 

Figure 3-5 Scanning electron microscopy images of PMMA, stainless steel and 
cortical bone after collagenase treatment. A: PMMA, B: stainless steel, C: cortical 
bone. The red arrow points to the pores. 
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Figure 3-6 Elastic modulus of PMMA, 
stainless steel with mean pore size of 0.5 
µm and cortical bone. Mean ± SD, n = 3 

(18 ± 13 µm) and cortical bone (11 ± 10 µm). Based on one way ANOVA analysis 

(Duncan’s method), the differences in the mean value among the groups were not great 

enough to exclude the possibility that the difference was due to random sampling 

variability (n=3); there was no significant difference between the pore size of these three 

materials (p=0.592). A limitation of this analysis in the power of the performed test 

(0.050) is below the desired power of 0.800. Despite this limitation, this analysis suggests 

that both stainless steel and PMMA have roughly comparable pore size as cortical bone.  

3.3.2 Stiffness of PMMA and Stainless steel 

       The elastic modulus of PMMA, 

stainless steel and cortical bone are 

shown in Figure 3-6. Comparing elastic 

modulus of these three groups with one 

way ANOVA (Duncan’s method), the 

difference in the mean value among the 

groups are greater than would be 

expected by chance, there was a 

statistically significant difference 

(P<0.001). Specifically, the elastic modulus of PMMA (1.19 GPa) was significant 

smaller (10 fold) than that of cortical bone (17 GPa) (P < 0.01), and the elastic modulus 

of stainless steel with mean pore size 0.5 µm (51 GPa) was significant larger (3 fold) than 

cortical bone (P < 0.01). From this aspect, neither stainless steel nor PMMA exactly 
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Figure 3-7 Ultimate tensile strength of 
PMMA, stainless steel with mean pore 
size of 0.5 µm and cortical bone. Mean 
± SD, n = 3 

match the elastic modulus of cortical bone. 

         The ultimate tensile strength of PMMA, stainless steel and cortical bone are shown 

in Fig 3-7. Comparing the ultimate tensile strength of these three groups with one way 

ANOVA (Duncan’s method), the differences in the mean value between PMMA (21 Mpa) 

and cortical bone (152 MPa), were 

greater than would be expected by 

chance; there was a statistically 

significant difference (P < 0.001). 

Specifically, the ultimate tensile strength 

of PMMA was significantly lower (7 fold) 

than that of cortical bone. The differences 

in the mean value between stainless steel 

(160 Mpa) and cortical bone (152 MPa), 

was not great enough to reject the possibility that the difference might be due to random 

sampling variability. There was not a statistically significant difference between these 

two groups (P = 0.197). The power of the performed test (0.148) is below the desired 

power of 0.800. Despite this limitation, the ultimate tensile strength of stainless steel can 

be considered to be roughly similar to that of cortical bone.  From this aspect, stainless 

steel matched theultimate tensile strength of cortical bone, while PMMA did not.  

3.3.3 Permeability of stainless steel and PMMA 
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Figure 3-8 Permeability of PMMA, 
stainless steel with mean pore size of 
0.5 µm, cortical bone. Mean ± SD, n = 3 

Hydraulic permeability value for PMMA, stainless steel and cortical bone are shown in 

Figure 3-8. Comparing the permeability values of these three groups with one way 

ANOVA (Duncan’s method), the 

differences in the mean values among 

all the groups (PMMA (8.2 x 10-14 m2), 

stainless steel (5.9 x 10-14 m2) and 

cortical bone (3.05 x 10-14 m2)) were 

not great enough to exclude the 

possibility that the difference was due 

to random sampling variability; there 

was no statistically significant difference 

(P=0.057). The power of the performed 

test (0.462) was below the desired power 

of 0.800. Nevertheless, the permeability 

of PMMA and stainless steel were 

similar to that of cortical bone. 

Accordingly, PMMA and stainless steel 

can be considered to be roughly similar 

to the hydraulic permeability of cortical 

bone.    

 3.3.4 Short term biocompatibility of PMMA and stainless steel 

Figure 3-9 The percentage of attachment 
of UMR cells on PMMA and stainless steel 
scaffold after 2 hr, coverslip as a control. 
Mean ± SD, n = 3       
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Figure 3-11 The growth curve of UMR cells 
cultured on PMMA and stainless steel 
scaffold for 14 days. Coverslip as control. 
Mean ± SD, n = 3  

Figure 3-10 The growth curve of UMR 
cells cultured on PMMA and stainless 
steel scaffold for 72 hr. Coverslip as 
control. Mean ± SD, n = 3

        Cell attachment percentages of 

UMR osteoblastic cells on PMMA, 

stainless steel and coverslip scaffolds are 

shown in Figure 3-9.  Comparing the cell 

attachment percentage of these three 

groups with one way ANOVA 

(Duncan’s method), the differences in 

the mean value among all the groups 

(PMMA (86%), stainless steel (98%) and 

cortical bone (94%))  were not great 

enough to exclude the possibility that the difference was due to random sampling 

variability; there was not statistically 

significant difference (P = 0.228). The 

power of the performed test (0.142) is 

below the desired power of 0.800. 

Specifically, there was no significant 

difference among osteoblastic cell 

attachment percentages on PMMA, 

stainless steel and that on coverslip.  

        Growth of UMR cells on PMMA, 

stainless steel and glass coverslip 
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scaffolds over three day culture is shown in Figure 3-10. Comparing the DNA content per 

culture at the end point, with one way ANOVA (Duncan’s method), the differences in the 

mean value among all the groups were not great enough to exclude the possibility that the 

difference was due to random sampling variability; there was not statistically significant 

difference (P = 0.591). The power of the performed test (0.050) was below the desired 

power of 0.800. Thus, to the limits of our analysis no significant difference was among 

cell proliferation over three day culture period on PMMA, stainless steel scaffold and 

coverslip.  

           The growth curve of UMR cells on PMMA and stainless steel scaffold for 14 days 

is shown in Figure 3-11. A 2-way ANOVA analysis (means comparison using Tukey 

Test (factor 1: time point, factor 2: culture material)) was run to compare DNA content 

per culture, as culture material was concerned, the differences in the mean value among 

all the groups were not great enough to exclude the possibility that the difference was due 

to random sampling variability; there was not statistically significant difference 

(P=0.174). The power of the performed test was 0.99. Specifically, there is no difference 

between the cell proliferation of 14 days culture on PMMA, stainless steel scaffold and 

that on coverslip.  

     Moreover, since biocompatibility is  defined as ‘ability of a biomaterial to perform its 

desired function with respect to a medical therapy, without eliciting any undesirable local 

or systemic effects in the recipient or beneficiary of that therapy, but generating the most 

appropriate beneficial cellular or tissue response in that specific situation, and optimizing 
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Figure 3-12 Snapshot of confocal image of UMR cell cultured on stainless steel 
scaffold and coverslip. DAPI staining (nuclei) is blue color, Rhodamine-Phalloidin 
staining (F-actin) is red color.   

the clinically relevant performance of that therapy’, there it is important to compare the 

cell morphology and osteogenesis of osteoblastic on these material scaffold. Therefore 

the confocal images of UMR cell cultures on stainless steel and coverslip scaffold were 

taken (Figure 3-12). It showed that the cultures on both stainless steel and coverslip have 

been multilayer; the cell nuclei and F-actin staining patterns were similar, which 

suggested the similarity of the cell morphology of cultures on these two scaffolds.  

     In all, from the short-term cell growth tests, with limitation of that no data about the 

osteogenesis of osteoblastic cells on these two scaffolds, the PMMA and stainless steel 

scaffolds have roughly similar outcomes ( cell proliferation ( growth curve) nuclei 

morphology (growth curve)) as glass coverslip, which is conventional used biomaterial 

and exhibit good biocompatibility. Therefore, PMMA and stainless steel are considered 

to be biocompatible for short-term osteoblast cultures.  

3.3.5 Long term biocompatibility of stainless steel scaffold        

         Representative H&E staining images of sections from MC-4 and periosteum cells 

cultured on collagen-fibronectin coated stainless steel, 3D hydrogels made of type I 

collagen and fibronectin and 2D conventional tissue culture plastic are shown in Fig 3-13. 
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These images showed that, for both MC-4 and perisoteum derived bone cells, there were 

no substantial difference in the thickness of the resultant cell layer, though qualitative 

difference were noted in staining intensities between cultures on collagen gel, plastic and 

stainless steel scaffolds. To quantify cell numbers, DAPI staining was used to stain cell 

nuclei and nuclear numbers were counted.  

 

       Representative DAPI staining images of sections from MC-4 or periosteum cells 

cultured on collagen-fibronectin coated stainless steel, 3D hydrogels made of type I 

collagen and fibronectin and 2D conventional tissue culture plastic are shown in Fig 3-14. 

These images showed that, for both MC-4 and perisoteum cells, no significant differences 

between nuclear numbers on collagen gel, plastics and stainless steel scaffold. 

Figure 3-13 H&E staining of cultures on stainless steel, collagen-fibronectin 
hydrogel and plastic. A-C: MC-4 cells cultured on stainless steel, collagen-
fibronectin hydrogel and plastic respectively. D-E: Periosteum cells cultured on 
stainless steel, collagen-fibronectin hydrogel and plastic respectively. A1-F1: the 2 x 
enlarged image of A-F respectively.  
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 One way ANOVA (Duncan’s method) was used to compare nuclei number on collagen 

gel (3.11   ± 0.56 x 103 nuclei /mm2) (n = 3), plastics (3.01 ± 0.78 x 103 nuclei /mm2) (n = 

3) and stainless steel scaffolds (2.33 ± 0.33 x 103 nuclei /mm2) (n = 3). This analysis 

showed that the differences in the mean values among all the groups were not great 

enough to exclude the possibility that the difference was due to random sampling 

variability; there was no statistically significant differences (P = 0.342). The power of the 

performed test (0.078) was below the desired power of 0.800. Despite this limitation, it is 

reasonable to conclude that cultures on stainless steel scaffolds, glass coverslip or 

collagen- fibronectin gels yielded similar numbers of osteoblastic cells often extended 

culture incubation. This suggest that 316 L stainless steel scaffolds are biocompatible for 

long term bone cell culture.  

Figure 3-14 DAPI staining of cultures on stainless steel, collagen-fibronectin 
hydrogel and plastic. A-C: MC-4 cells cultured on stainless steel, collagen-
fibronectin hydrogel and plastic respectively. D-E: Periosteum cells cultured on 
stainless steel, collagen-fibronectin hydrogel and plastic respectively. A1-F1: the 2 x 
enlarged image of A-F respectively. 
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3.4 Discussion 

        The gold standard for selecting an optimal scaffold to be used in bone reconstruction 

surgery is autograft. It then stands to reason that the selection of an appropriate scaffold 

for bone tissue engineering should meet the key attributes of an autograft [66]. Generally 

speaking, the key criteria for selecting a bone scaffold includes: (1) biocompatibility, (2) 

osteoconductivity – permitting cells to attach, proliferate and migrate and allowing 

nutrient-waste exchange and vessel penetration, (3) osteoinductivity – inducing 

osteoprogenitors to differentiate into osteoblasts, and (4) osteogenicity – producing 

mineralized tissue matrix[39, 66, 95]. In addition, there are two more important issues to 

be considered: (1) having similar mechanical properties as bone; and (2) having similar 

permeability as bone to promote proper nutrient/waste product exchange rates. Our 

overall results are shown in table 3-2. It indicated that 316 L stainless steel and PMMA 

could be manufactured to exhibit roughly similar pore size and permeability properties as 

cortical bone. From a mechanical properties aspect, stainless steel partially matched with 

cortical bone (elastic modulus) while PMMA did not match up with cortical bone. 

     Moreover, our results showed that a 316L stainless steel scaffold exhibited appropriate 

biocompatibility both short term and long term bone cell culture. PMMA exhibited 

appropriate biocompatibility for short term culture; and its long term biocompatibility 

needs to be investigated in the future.  Therefore, we can conclude that both PMMA and 

316L stainless steel have reasonable well matched properties with cortical bone, thus 
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enabling them to be used in tissue engineering systems. Based on our data, our first 

choice would be 316L stainless steel, and the second choice would be PMMA.  

       Still there are some limitations in this study that should be addressed in future study: 

(1) the long term biocompatibility of PMMA was not tested; (2) an extensive growth 

curve of long term cultures; (3) extracellular matrix was not immuno- stained to 

investigate if there were qualitative differences between cultures on stainless steel, 

collagen fibernectin hydrogel and plastic by 25 days I culture culture; (4) Osteogensis 

(suck as alkaline phosphatase activity staining, bone matrix protein, and/ or calcium 

mineral staining) needs to be evaluated to determine the full biocompatibility of the 

materials for bone cells; (5) the power test showed that the power was below the designed 

power and in the future study the sample number should be increased to be able to 

exclude random variability.  

Properties PMMA Stainless steel Cortical bone 

Pore size √ √ √ 

Elastic modulus x x √ 

Ultimate tensile strength x √ √ 

Permeability √ √ √ 

Short term biocompatibility √ √ √ 

Long term biocompatibility n/a √ √ 

        
Table 3-2  The properties of PMMA and stainless steel scaffold 
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CHAPTER IV 

 LIPIDS AND FIBRILLAR COLLAGEN MATRIX RESTRICT THE 

HYDRAULIC PERMEABILITY WITHIN THE POROUS COMPARTMENT OF 

ADULT CORTICAL BONE  

 

 

4.1 Introduction 

      Hydraulic permeability of cortical bone is the measurement of the ease of fluid flow 

through cortical bone. Fluid flow inside cortical bone is critically important for nutrient 

and waste product transport, which is important to maintain osteocyte viability and 

regulate the physiological processes of bone remodeling and homoestasis [7, 98]. 

Therefore hydraulic permeability may be a key attributor that needs to be mimicked in 

bone tissue engineering. Thus a study of hydraulic permeability of cortical bone and the 

bone components that regulate it need to be further investigated.  
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      Adult cortical bone tissue is a biocomposite material which is composed of 67% 

mineral salts and 33% organic matrix by dry weight containing 62% type I collagen, 26% 

minor collagens and non-collagenous proteins, 6% lipids and 6% complex carbohydrates 

[19, 60]. Based on fluid accessibility, bone tissue is separated into two generalized 

compartments:  a non-porous compartment and a porous compartment comprising 

90~95% and 5~10% of its volume, respectively [14].  The porous compartment contains 

vascular channels (Haversian and Volkman’s canals) interconnected by a lacuna-

canalicular system filled with osteocytes, their filipodial extensions and a surrounding 

pericellular matrix [9, 10, 15, 88].  Biological fluids flow within this porous compartment 

of cortical bone thereby providing a system to exchange nutrients and metabolic waste 

products [18, 52]. Since permeability of cortical bone is a measure of fluid flow through 

this porous compartment, it should be affected by the tissue composition within this 

compartment. 

     To date, few studies have experimentally measured the hydraulic permeability of 

cortical bone in part because of the engineering challenges in measuring extreamly low 

permeabilities.  These devices require high pressure tolerances in both the bone tissue 

holding chamber and other upstream components of the permeability device in order to 

accurately measure the permeability of cortical bone. Li et al. measured the permeability 

of adult canine versus puppy cortical bone [46].  They reported that the radial 

permeability of adult canine tibial cortex was 5 x 10-17 m2 and that the radial permeability 

of puppy bone was 6-fold higher than that of adult canines. In addition, they suggested 
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that the periosteal portion of cortical bone was relatively impermeable as compared to the 

endosteal portion of cortical bone. Though this prior study provided fairly accurate 

estimations of the radial permeability of adult cortical bone, there have been no prior 

reports addressing what chemical components within the porous compartment of cortical 

bone are the primary contributors to these low permeability values. To select a bone 

tissue engineering scaffold with similar permeability properties as cortical bone, we need 

to first measure the permeability of cortical bone. Also, investigating the contributions of 

select components to bone permeability will help us to modify existing scaffold to obtain 

similar permeability level.  Therefore, in this Chapter we designed a device to assess 

radial hydraulic permeability of cortical bone that enabled us to make repeated measures 

on the same bone tissue wafers before and after sequential chemical or enzymatic 

treatments. This enabled us to test two hypotheses: (1) the presence of hydrophobic 

molecules within the porous compartment of cortical bone would reduce its permeability, 

and that removal of such hydrophobic materials would increase its permeability; and (2) 

the presence of a densely packed pericellular matrix (mostly type I collagen) within the 

porous compartment of cortical bone would reduce its permeability, and digestion of the 

collagen fibers would increase its overall permeability. To test the first hypothesis, 

acetone-methanol (or zwitterionic detergent) was used to remove lipids from the porous 

compartment of cortical bone and assess contribution of lipids to the hydraulic 

permeability of cortical bone. Bacterial collagenase and dispase were used to digest 
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fibrillar collagens in the porous compartment of cortical bone and assess the contribution 

of collagen matrix to the hydraulic permeability of cortical bone.  

4.2 Material and Methods 

      All bone tissues were obtained from animals that had been sacrificed in the course of 

IACUC approved research investigations conducted elsewhere at this institution. Mid-

diaphyseal portions of tibia were harvested from adult outbred canines (~25-30 kg body 

weight). Periosteal tissue layers, including most of the basal cambium cell layer, were 

stripped off the bone by dissection. Bone marrow was flushed out of the bone with 

phosphate buffer saline (PBS) (Cellgro). These tibial diaphyses were then stored in PBS 

with 0.05% sodium azide (Sigma) at 4° C and used within a 2 week period from 

collection.  Thin sections were cut from these tibial diaphyses in a cross-sectional plane 

and stained with basic fuchsin to reveal the patterns and orientation of Haversian and 

Volkman’s canals.  Such histological analysis revealed that the presence and orientation 

of Haversian and Volkman’s canals were different in the periosteal versus the endosteal 

halves of the canine cortical bone (Fig 4.1A). In the periosteal half there appeared to be 

fewer Volkman’s canals compared to the endosteal half. In the endosteal half, some of 

these channels traversed radially throughout its entire width. Thus, in agreement with the 

assessments by literature [51], the endosteal halves seemed to be more amendable for 

radial hydraulic permeability measurements than their corresponding periosteal halves.  
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Figure 4-1  Selection of bone tissue regions and the means to measure hydraulic 
permeability of cortical bone. Panel A shows a representative histology image of a 
cross section of canine tibial diaphysis. Panel B illustrates the sampling of cortical 
bone specimens along the tibial diaphysis length. Shaded areas represent the bone 
wafer tested. Panel C: The schematic of the device used for measuring permeability 
(dimensions of this device refer to appendix 1).
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Based on the above histological findings, this study focused on measuring radial 

hydraulic permeability of bone wafers from the endosteal halves of these adult canine 

tibial diaphyses. Endosteal bone wafers from the medial and lateral aspects of the 

diaphyseal cortex (over the entire superior to inferior axis, see shaded regions in Fig 4.1B) 

were separately collected and, if not analyzed immediately, then they were stored in PBS 

with 0.05% sodium azide in pre-weighed glass bottles. Bone wafers with dimensions of 

~20 mm length, ~15 mm width, and 1.5 mm thick were cut from the diaphyseal portions 

of tibial cortices with an EXTEC ® Labcut 1010 Low Speed Diamond Saw (EXTEC 

Corp) (Fig 4.2A-C).  The permeability of each fresh bone wafer was measured three 

Figure 4-2 Images of the devices for cutting bone and measuring bone 
permeability. A: Canine tibia. B. EXTEC ® Labcut 1010 Low Speed Diamond Saw 
(EXTEC Corp). C. Bone wafers. D. Bone holder. E. Overview of the permeability 
device. F. Pump-P 500  
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independent times in a radial direction using a customized device (Fig. 4.1C (dimensions 

of this devices in appendix 1), Fig 4.2D-F). The bone holder device was modified from 

Standard-Wall (Schedule 40) White PVC Pipe Fitting (1/2" Pipe Size, Female Union, 

pressure limit 150 PSI (1033 kpa). Device construction was completed in the Prototype 

and Polymer Labs in the Department of Biomedical Engineering at the Cleveland Clinic. 

Firstly, bone wafers were sealed in the bone holder. Then PBS solution was pumped 

through the bone wafers using a pump (Pump-P 500, Pharmacia Biotech), at four 

different flow rates (v):  10, 20, 30 and 40 mL/hr. For each flow rate, ∆p, the pressure 

difference between the upstream fluid and the downstream fluid (atmosphere) was 

measured with a pressure gauge (pressure limit 100 PSI (690 kpa)) (Ashcroft Cat # 

25D1005PS 02L 100). The thickness (L) of each bone wafer was measured with digital 

calipers (TRESNA, 111-102B; 0.1 mm accuracy) at three different sites along the bone 

wafer surface. Fluid flowed through a circular area (A) (5 mm diameter) of the bone 

wafer. Permeability (P) was then calculated based on Darcy’s Law:   pA
LvP
∆

=
µ

.  

Here, P: permeability (m2), µ: the viscosity of PBS solution (1 cp = 0.001 kg/(m·s)), L: 

the average thickness of bone wafer (mm), v: the flow rate of the flow through bone 

wafers (mL/h), A: the area of flow through bone wafers, ∆P: the pressure difference 

between the upstream and downstream of flow (kpa). 
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Figure 4-3 Relationship of flow rate and 
pressure difference  

       Based on Darcy’s law, there is a linear 

relationship between flow rate (v) and ∆p, 

the pressure difference between the 

upstream fluid and the downstream fluid. 

The relationship between the flow rate and 

pressure difference measured by our device 

(for one representative sample) is shown in 

Fig 4.3. It shows that a linear relationship 

(R2 = 0.9933) between these two parameters indicating it can be used to measure 

hydraulic permeability of cortical bone wafers. A visible inspection of the bone provided 

documentation indicating holder device at every test run lack of leakage, and in the case 

of fresh or unprocessed bone wafers, no fluid flow up to 100 psi pressure.  

       After permeability measurements of unprocessed bone wafers were completed, 

wafers were treated with 10 ml of a 1:1 (v/v) acetone-methanol (AM) (Sigma) solution at 

4° C for three days (or a limited number of wafers treated with 2% (w/v) chaps [80] in 

PBS solution at 4° C for 7 days) in pre-weighed glass bottles. This volume ratio of AM 

solution to sample volume is estimated to be 20~30-fold volume excess. After such 

treatments the bone wafers were put into new bottles and washed with 10 mL PBS 

solution three times for 2 hr each time. Permeability of each AM-treated bone wafer was 

measured three times independently.  Proof that the AM treatments of the bone wafers 

extracted lipids was sought as follows.  The AM solutions in their respective sample 
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bottles were placed under a nitrogen stream to evaporate the organic solvents and obtain 

dried waxy residues. After evaporation, the sample bottles were weighed again and the 

dry weight of lipids was obtained by taking the difference between the weight of each 

bottle before and after evaporation. Lipid residues were analyzed for specific lipid 

contents by gas chromatography-mass spectroscopy performed at the Kansas Lipidomics 

Research Center (Manhattan, KS). Cholesterol was measured spectrophotometrically as 

previously published [67].  

      After measuring permeability of AM-treated specimens, each bone wafer was then 

treated with 5 mL of a 100 U/mL bacterial collagenase (type XI, Sigma C-9407) solution 

in PBS supplemented with 10 µM 4-(2-Aminoethyl) benzenesulfonyl fluoride 

hydrochloride (AEBSF) (Sigma) overnight at 37° C. AEBSF was added to inhibit the 

activities of other serine proteases potentially contaminating the collagenase preps. 

Following collagenase digestion, all bone wafers were washed with 10 mL PBS solution 

three times for 1 hr each time. Permeability of each collagenase-treated bone wafer was 

measured three times independently. Proof of collagenase activity was sought by 

measuring the amounts of hydroxyl-proline released from the bone wafers into the 

collagenase solution. Briefly, a 0.5 mL aliquot from each collagenase digestion reaction 

was placed into Reacti –Vials (Pierce) and frozen overnight at -20° C. The frozen 

solutions were vacuum dried in a Speed Vac SC110 Concentrator (Savant) for 2 hrs. The 

dried residues were resuspended in 0.3 mL 6 N hydrochloric acid (Constant boiling purity 

for amino acid analysis, Pierce). These vials were placed into a Reacti-Therm III heating 
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module (Pierce) and heated at 105° C for 16 hrs to quantitatively release free amino acids. 

After acid hydrolysis, a nitrogen gas stream was used to remove the HCl from each 

sample at 37° C. Each sample was then rehydrated in 0.5 mL of Mill-Q water (Millipore), 

and their hydroxyl-proline contents were measured by a spectrophotometric method [8, 

81].  

        After measuring the permeability of collagenase-treated bone wafers, they were 

treated with 5 mL of a 1.2 U/mL bacterial Dispase (Sigma) solution overnight at 37° C. 

Following dispase digestion, all bone wafers were washed with 10 mL PBS solution three 

times for 1 hr each time. Permeability of each dispase-treated bone wafer was measured 

three times independently. Proof of dispase activity was sought by measuring the 

amounts of hydroxyl-proline released from the bone wafers into the dispase solution in a 

manner similar to that described above for the collagenase solution.  

       After measuring the permeability of dispase-treated specimens, bone wafers were 

then treated with 20 mL of a 400 mM EDTA (pH 8) solution at 4° C until all of the 

mineral content was removed (~2-3 weeks). Confirmation of a complete removal of the 

mineral content of each specimen was obtained by X-ray micro-computed tomography 

(micro-CT) imaging at an isotropic voxel resolution of 26 µm. Following EDTA 

decalcification, all specimens were washed with 10 mL PBS solution three times, 30 min 

each time. Permeability of each EDTA-treated bone wafer was measured three times 

independently. The remaining insoluble bone organic matrix was hydrolyzed with 6N 

hydrochloric acid and the total amount of hydroxyl-proline in the remaining insoluble 
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tissue matrix after EDTA treatment was measured by a spectrophotometric method as 

described above, and served as a measure of total insoluble collagen in each sample. 

         In addition, the porosity of fresh or unprocessed bone wafers was measured. Bone 

wafers with dimensions of 20 mm length, ~15 mm width, and 1 mm thick were cut from 

the diaphyseal portions of tibial cortices with an EXTEC ® Labcut 1010 Low Speed 

Diamond Saw (EXTEC Corp).  Micro-CT volumes of bone wafers (Sample size N = 6) 

were acquired using a SkyScan 1172 (3 µm voxel resolution) ex vivo imaging system.  

Porosity analysis was performed using Matlab R2008a (MathWorks), Image Pro-Plus 

v6.1 (Media Cybernetics), VolSuite (Ohio Supercomputer Center, Columbus, OH), and 

MicroView v2.2 (GE Healthcare).  Bone volumes (~1800 x 1000 x 1000 voxels) were 

rotated and cropped using VolSuite, and imported into Image-Pro as individual image 

stacks. In each plane of a particular stack, holes were filled using a morphological 

"closing" filter and bone outgrowths from the endosteal surface were removed using a 

watershed filter.  The resulting contiguous, "filled" bone volumes were then multiplied by 

an inverted and thresholded version of their corresponding original volume to reveal 

porous content that was further filtered in Matlab to remove pores below a given 

volumetric threshold (connected components algorithm). Subsequently, total pore volume 

and porous volumes in both the axial and radial directions were calculated (identified by 

ellipitical orientation of each pore -25 to 155 degrees from vertical in the xy plane with 

permeability measured along the x-axis, indicating the radial direction). The total 

porosity of cortical bone was calculated as the total pore volume divided by the total 
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cortical bone volume, the axial porosity was calculated as the axial porous volume 

divided by total cortical bone volume, and the radial porosity was calculated as the radial 

porous volume divided by total cortical bone volume. Segmented pore volumes were then 

imported into MicroView for anisotropy analysis that utilized a mean intercept length 

approach in which intersections of a test grid composed of lines separated by 3 pixels 

were passed through each volume at 200 different angles to generate a fabric ellipsoid 

whose long axis was aligned in the direction of the most prominent structural orientation. 

Lastly, Euler's number for both the axial and radial components of the segmented porous 

content of each sample was calculated and divided by total bone ("filled") volume to 

determine connectivity density (mm-3). 

       Repeat measures for Analysis of variance (ANOVA) (Friedman Repeated Measures 

of ANOVA) were used for statistical analysis (SigmaStat software v3.5). Quantitative 

results are reported as the mean ± standard deviation. Unless stated otherwise, statistical 

significance was set at a p value of less than 0.05.  

4. 3 Results  

4.3.1 Structure and Porosity of cortical bone 

         The structural properties of cortical bone wafers cut from adult canine tibial 

diaphyses were assessed after removing bone marrow and periosteum soft tissues. Gross 

observations of each bone wafer showed that the endosteal surface contained large ridges 

and valleys as compared to the cut surface (Fig 4.4A and B, ES versus CS panels). 

Environmental scanning electron microscopy images of each bone wafer showed that the 
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natural endosteal surface (ES) exhibited numerous large pores (50 – 100 µm width) and 

intermediate-sized pores (10 - 50  µm width) (Fig 4.4C).  Similar imaging of the 

opposing cut surface (CS) of these bone wafers revealed fewer intermediate-sized pores 

and numerous small pores (1 – 5  µm width), but no large pores (Fig. 4.4D and inset). 

Figure 4-4 Images of cortical bone wafers prior to permeability measurement. 
Panel A shows a representative gross view of a natural endosteal surface (ES) from a 
bone wafer. Panel B shows a representative gross view of the opposing cut surface 
(CS) from the bone wafer shown in panel A. Panel C shows an environmental 
scanning electron microscope image of the natural endosteal surface from a bone 
wafer. Panel D shows an environmental scanning electron microscope image of the 
opposing cut surface from the same bone wafer shown in panel C; the roughly parallel 
ridges apparent in the image are generated by the rotary cutting blade.  Inset image in 
panel D is a higher magnification view revealing the presence of small pores along the 
cut surface of a bone wafer.  Arrow points to the pores. 
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Presence of pores on both sides of the bone wafers suggested that some of these pores 

may interconnect across the wafer thickness and provide channels for fluid flow.      

Figure 4-5 Porosity and connectivity measurement of cortical bone wafers. Panel 
A shows a representative 3D micro-CT scanning image at 3 µm resolution. Panel B 
shows a representative inverted 3D micro-CT image in the radial direction. Panel C 
shows a representative inverted 3D micro-CT image in the axial direction. Panel D 
shows the total, radial and axial porosity of cortical bone.  Panel E shows the radial 
and axial connectivity of the porous compartment in cortical bone. Shown are box and 
whisker plots exhibiting median (line within the box) and percentiles of the data. The 
ends of the boxes define 25th and 75th percentiles, and the two bars outside the box 
define 10th and 90th percentiles.  Scale bars in panel A-C are 200 µm. 
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       Three dimensional, micro-CT imaging was used to assess the validity of this 

suggestion (Fig. 4.5). Micro-CT imaging (at 3 µm resolution) showed that the pores on 

both sides of the cortical bone wafers were interconnected across the wafer thickness 

both radially and axially (Fig. 4.5 B, C).  Our calculations showed that the total porosity 

of adult canine cortical bone wafers was 2.95 ± 0.91%, the radial porosity was 0.60 ± 

0.17%, and axial porosity was 2.36 ± 0.71% (Fig. 4.5D).  Connectivity density 

calculations revealed a value for radial connectivity of 175 ± 87mm-3 and axial 

connectivity of 438 ± 204 mm-

3 (Fig. 4.5 E).  

4.3.2  Radial hydraulic 

permeability of cortical bone 

1. The Permeability of 

unprocessed cortical bone 

          Figure 4.6 shows that 

the radial hydraulic 

permeability of fresh cortical 

bone wafers (1.5-mm thick) 

was below the detection limit 

of our customized system (4.0 

x 10-17 m2). We set 
Figure 4-6 The permeability of cortical bone. 
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Figure 4-7 Lipids extracted from cortical 
bone wafers by acetone-methanol (AM) 
treatment. Panel A shows the absolute 
amount of lipids recovered from the AM 
solutions normalized to the wet weight of 
each bone wafer. Panel B shows the 
percentage composition of extracted lipids 
recovered from the AM solutions. FFA: Free 
fatty acids. PL: Polar lipids. TAG: 
Triacylglycerols. Chol: cholesterol 

unprocessed bone at this limit value because prior evidence by Li et al [46] indicated the 

radial hydraulic permeability of adult canine cortical bone to be 5 x 10-17 m2. 

2. Contribution of lipids to the permeability of cortical bone 

      Figure 4.6 shows that after acetone-

methanol (AM) treatment, the 

permeability of bone wafers (1.5-mm 

thick) increased to 1.2 x 10-15 ± 1.1 x 10-

15 m2. Thus, the increase in permeability 

after AM treatment suggests that lipids in 

the porous compartment of cortical bone 

restricted its radial hydraulic 

permeability. 

3. Contribution of collagen to the 

permeability of cortical bone 

      After AM treatment, cortical bone 

wafers were then digested with high 

purity bacterial collagenase. Comparing 

the permeability of cortical bone before 

and after collagenase treatment with one 

way ANOVA, the differences in the 

mean value between these two groups 
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were greater than would be expected by chance (P < 0.001). Specifically Figure 4.6 

shows that the permeability of 1.5-mm thick specimens significantly increased to 5.6 x 

10-15 ± 8.3 x 10-15 m2 after collagenase digestion, which suggested that the densely 

packed collagen matrix also restricted radial hydraulic permeability of cortical bone. 

After collagenase treatment, cortical bone wafers were then digested with bacterial 

dispase solution. Comparing the permeability of cortical bone before and after dispase 

treatment with one way ANOVA, the difference in the mean value between these two 

groups was not great enough to reject the possibility that the difference might be due to 

random sampling ( p = 0.197). Specifically, there was no significance between the 

permeability of bone wafers before and after dispase treatment, which suggested that bulk 

removal of the organic matrix is not necessary to elevate its permeability.  

4. Contribution of mineral to the permeability of cortical bone 

         The contribution of the non-porous compartment to the permeability of cortical 

bone can only be accessed by removing its calcium mineral salts, here by using EDTA 

treatment. After dispase treatment, cortical bone wafers were then treated with EDTA 

solution. Comparing the permeability of cortical bone before and after EDTA 

decalcification with one way ANOVA, the differences in the mean value between these 

two groups were greater than would be expected by chance (P < 0.001). Specifically, Fig 

4.6 shows that after EDTA decalcification, the radial hydraulic permeability of the bone 

wafers was increased to 2.9 x 10-14 ± 4.1 x 10-14 m2. No surprisingly, this suggested that 

the mineral content of bone restricts its permeability. 
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5. Lipids in the porous compartment of cortical bone 

       To confirm that lipids were removed from these cortical bone wafers by AM 

treatment, the organic solvent phase of the recovered AM extracts was evaporated and the 

dried waxy residue was submitted to gas chromatography separation and mass 

spectrometry detection of free fatty acids, phospholipids and triacylglycerols and 

cholesterol was measured with a colorimetric method [67]. In total, these four types of 

lipids comprised ~76 % of the residue’s dry 

weight and accounted for ~9 mg/g wet 

weight of cortical bone. Triacylglycerols 

comprised the largest class of lipids (60%), 

followed by cholesterol (11%), free fatty 

acids (~4%) and phospholipids (~0.5%).  

6. Collagen in the porous compartment of 

cortical bone 

     To confirm digestion of fibrillar collagen 

from these bone wafers, the amounts of 

hydroxyl-proline released into the 

collagenase digestion solution were 

measured (Fig 4.8, CS) and found to be 63 ± 

37 µg hydroxyl-proline/g wet bone. 

Additional digestion of these bone wafers after collagenase with dispase released an 

Figure 4-8 Amounts of hydroxyl-proline 
released from cortical bone wafers by 
collagenase digestion.  CS represents the 
amount of hydroxyl-proline released into 
solution from the porous compartment of 
bone wafers by bacterial collagenase 
digestion.  Bone, represents the amount of 
hydroxyl-proline released into solution 
from the collagenous matrix within the 
non-porous compartment after complete 
decalcification of bone wafers using 
EDTA. 
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additional 90 ± 110 µg hydroxyl-proline/g wet bone. This observation suggested that 

collagenase digestion did not remove all the fibrillar collagen content from the porous 

compartment of these bone wafers. After EDTA treatment, the insoluble matrix from the 

decalcified bone wafers was totally hydrolyzed to measure its total amount of hydroxyl-

proline. The hydroxyl-proline content in the insoluble matrix of decalcified bone wafers 

was 3100 ± 1800 µg/g wet bone (Fig. 4.8, bone).  Using the values of hydroxyl-proline 

released by collagenase and dispase digestions mentioned above, the relative proportion 

of the porous to non-porous collagen content was calculated to be 4.9% (= [63 + 

90]/3100 x 100%).  This relative proportion of hydroxyl-proline content is close to the 

average porosity value (~3%) calculated from micro-CT imaging in Fig 4.5.  

4.4 Discussion 

     In living bone tissue, interstitial fluids flow through a porous compartment containing 

vascular channels referred to as Haversian and Volkmann’s canals [9, 88]. Fluid flow is 

important for the transport of nutrients, growth factors, and waste products inside bone. 

The permeability of cortical bone is the measurement of the ease of the fluid flow 

through the cortical bone [69]. The objective in this chapter was to identify some of the 

components in the porous compartment of cortical bone that regulate its radial hydraulic 

permeability. Two hypotheses were tested in this chapter: (1) the presence of 

hydrophobic molecules within the porous compartment of cortical bone restricts its 

hydraulic permeability; and (2) the presence of a densely packed pericellular matrix 
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(containing collagen fibers) will reduce the hydraulic permeability within the porous 

compartment of cortical bone.    

     Until now, few studies have experimentally measured the permeability of cortical 

bone. The earliest work was done by Johnson et al. [39] and they determined that the 

radial permeability of cortical bone containing large vascular channels was 2.5 x 10-14 m2. 

Li et al. [46] measured the radial permeability of fresh cortical bone devoid of large 

vascular channels and after removing 0.5-1.0 mm of bone from the periosteal surface.  

Their results revealed that the average radial permeability of cortical bone from adult 

canine tibiae was 5 x 10-17 m2.  Beno et al. [7] estimated the permeability within cortical 

bone based on finite elemental analysis using microstructural measurements strictly of 

the lacuna-canalicular system. They predicted that the permeability of cortical bone at the 

lacuna-canalicular level was in the range of 10-18~10-20 m2. They concluded that the 

permeability of actual cortical bone tissue should be higher than this value given that 

bone tissue contains both a lacuna-canalicular system and larger inter-connecting 

channels. We could not measure the permeability of unprocessed bone wafers (1.5 mm) 

since the detection limit of our device is 4 x 10-17 m2. However, based on the Darcy’s law, 

if we decreased the thickness of the bone wafers, we can lower the detection limit of the 

device. Moreover, the pressure limit of the bone holder is 150 PSI, increasing the 

pressure limit of the bone holder can also lower the detect limit of the device. Still, we 

were able to measure the permeability of bone wafers with 200 µm thickness, and found 

its permeability is in the range of 4.0 x 10-16 m2 to 1.0 x 10-17 m2, consistent with these 
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previous determinations. The limitation here is that there may be difference between the 

permeability of the thinner and thicker bone wafers since the pore space of cortical bone 

has a hierarchical structure. 

      The porous compartment of bone is mainly composed of type I collagen fibers, non-

collagenous proteins, lipids and cells [9]. The contributions exerted on bone’s hydraulic 

permeability by these various organic components within the porous compartment of 

cortical bone have not been determined until now. This knowledge should help to better 

understand the regulation of fluid flow inside bone tissue. In turns, this may help in vitro 

bone tissue engineering approaches to improve the design of new bone scaffolds to better 

mimic in vivo properties.  

     Our finding that removing lipids from the porous compartment of cortical bone 

increased its radial hydraulic permeability indicates that the presence of lipids in the 

porous compartment of cortical bone reduces its permeability and suggests that the 

presence of such lipids is a factor restricting fluid flow in cortical bone. Our lipid 

composition results are consistent with those reported by Dirksen and Marinetti [19] and 

Leach [45] who measured the lipid contents of human and ox cortical bone and found 

high levels of triacylglycerols and low levels of phospholipids.  

       The lipid composition results suggest that osteocyte cell membranes and any vesicles 

that bleb off from these membranes are not likely to be the major source of lipids located 

in the non-porous compartment of bone since they both have a high content of 

phospholipids[9]. Instead, triacylglycerols comprise the major source of lipids in this 
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bone compartment, and this observation raises an intriguing hypothesis for the source of 

this hydrophobic material.  Triacylglycerols are produced inside most vertebrate cells 

including those in the osteogenic lineage and stored within lipid droplets [82].  Takahashi 

[82]et al. have shown that osteogenic cells can secrete lipid droplets into their 

extracellular matrix.  Thus, the source of these triacylgycerols extracted from fresh 

cortical bone might originate from secretion by its resident bone cell populations 

(osteoblasts lining Haversian and Volkman canals and osteocytes embedded within the 

lacuna-canalicular system).  It is unclear at present what would regulate this secretion 

process and why such hydrophobic materials are deposited within the porous 

compartment of cortical bone tissue.  

        In addition to lipids reducing the radial permeability of cortical bone, we determined 

that the densely packed pericellular matrix [67] within the porous compartment of 

cortical bone also reduced its permeability.  Removal and/or loosening of the collagen-

rich matrix in the porous compartment of cortical bone with collagenase digestion 

substantially increased its permeability.  This indicates that the pericellular matrix in the 

porous compartment of cortical restricts fluid flow and represents another factor 

regulating its permeability.  

       There were some limitations that should be addressed in future. Studies includes:  (1) 

the hydraulic permeability of cortical bone needs to be measured. To do this there are two 

methods can be used: (a) with current device, the bone wafers can be cut into several 

pieces of thinner wafers with same thickness and the hydraulic permeability of these 



68 

 

wafers will be measured at same conditions; then the hydraulic permeability of bone 

wafers will be average of all these measurements; (b) a new device with lower detection 

limit needs to be made.  Right now the detect limit of the present device results from the 

pressure limit of the holder made of PVC. Therefore, the bone holder made from stainless 

steel with same design as proposed in this chapter will increase the pressure limit of the 

bone holder thereby lower the detection limit. Compare to method (a) the advantage of 

this method is that the hydraulic permeability can be measured directly and the 

disadvantage is that some cost will be applied on the new device. (2) Hydraulic 

permeability of the cortical bone from periosteum side and the contribution of bone 

components to its permeability need to be studied to understand the mechanism of the 

nutrient and waste transport underneath periosteum layer, which is critical important for 

bone formation in vivo. To do this, a new device with much lower detect limit needed. (3) 

Changes in ultrastructure of the remaining pericellular matrix after removing lipids and / 

or collagen may have effect on the changes on the permeability. To determine whether 

there is the change of ultrastructure, transmission electron microscopy (TEM) images of 

the wafers after collagenase and or acetone methonal treatment need to be compared with 

that of the wafers before treatments.    

     Altogether, our results from this study showed that the presence of lipids and 

collagen-rich pericellular matrix within the porous compartment of canine cortical bone 

reduced permeability in a radial direction and thereby restricted fluid flow through this 

bone tissue compartment. The findings in this study may have bearing on investigations 
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attempting to promote bone formation in vitro via tissue engineering approaches.  

Perhaps the presence and distribution of lipids and densely packed collagen matrix 

applied to appropriate scaffolds may help promote osteogenic differentiation of 

progenitor cells and produce a more bone-like tissue construct in bone bioreactor designs.   



70 

 

 

 

 

 

 

 

CHAPTER V 

EXPERIMENTAL MEASUREMENT AND MATHEMATICAL MODEL OF 

GLUCOSE DIFFUSION IN CORTICAL BONE SCAFFOLD  

 

 

5.1 Introduction 

       Glucose supply always needs to be considered in bone tissue engineering since it is 

essential to maintain cell viability [66]. Several studies have attempted to improve 

glucose supply, such as using rotating flasks instead of conventional immobile flasks [79]. 

In our proposed bone tissue engineering system, the 3D scaffold will consist of a cortical 

bone under layment and a type I collagen- fibronectin hydrogel interface to promote bone 

cell attachment this scaffold. In this 3D scaffold design, glucose will be supplied from 

both top and bottom of the 3D scaffold. Under static culture conditions, glucose transport 

is only mediated by diffusion. Over extended culture time under these conditions, nutrient 

supply may become limited for the metabolism of bone cells. To determine when glucose 
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becomes limited in our system, the glucose concentration profile will be calculated by a 

mathematical model. Mathematically, to calculate the glucose concentration profile, the 

diffusion coefficient of glucose needs to be known. Up to now, few studies have 

measured a glucose diffusion coefficient in cortical bone [35, 43]. Jackson et al. reported 

that the glucose diffusivity in bovine annulus fibrous was 1.38 x 10-10 m2 /s [35].  Lang et 

al showed that the glucose diffusivity in bone was in the magnitude of 3 x 10-13 m2/s [43]. 

Therefore in this chapter: (1) the diffusion coefficient of glucose in cortical bone in a 

radial direction was measured with diffusion cell; and (2) a mathematical model was 

established to generate the glucose diffusion profile in our system.  

5.2 Experimental measurement of glucose diffusion in cortical bone 

5.2.1 Materials and methods 

1. Bone wafer preparation:  

    All bone tissues were obtained from animals that had been sacrificed in the course of 

IACUC approved research investigations conducted elsewhere at this institution. Mid-

diaphyseal portions of tibia were harvested from outbred adult canines (~25-30 kg body 

weight). Periosteal tissue layers, including most of the basal cambium cell layer, were 

stripped off the bone by dissection. Bone marrow was flushed out of the bone with 

phosphate buffer saline (PBS) (Cellgro). These tibial diaphyses were then stored in PBS 

with 0.05% sodium azide (Sigma) at 4° C and used within a 2 week period from 

collection. Cortical bone wafers from the endosteal side of tibial diaphyses with 

dimensions of 15 mm length, 15 mm width, and 200 µm thick were cut with an EXTEC 
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® Labcut 1010 Low Speed Diamond Saw (EXTEC Corp). Six bone wafers were 

submitted for glucose diffusion measurements. These wafers were selected from the same 

tibial for which permeability values were determined.    

2. Diffusion measurements with a diffusion cell system 

     Solute diffusion coefficients can be measured using a diffusion cell system as shown 

in Figure 5-1 (Crown Glass, Somerville, NJ). A schematic of the diffusion cell system is 

shown in Fig 5-2. The cell consists of two well- stirred compartments that contain known 

volumes of a solute of interest (here glucose), separated by a thin membrane (here a 200 

µm thin cortical bone wafer). Initially, each compartment is filled with differing solute 

concentrations; typically a zero concentration on the receiver side and some specific 

initial concentration on the donor side. In our experiments we chose a glucose 

concentration of 2 mg/mL which is in the high physiological range. The flux of solute 

(glucose) across the membrane (bone wafer) can be determined by the measurement of 

the solute concentration in both donor and receiver sides over increasing time. 

Experiments ran for 10 days each.  The concentration of glucose was determined using 

glucose assay kit based on hexokinase activity (Sigma). The glucose detection limit is 

50µg / mL with this method. 

3. Calculation of diffusion coefficients 

       We assume that these experiments are in pseudo-steady state (volume change can be 

omitted in both donor and receiver sides). The solute concentrations in the donor and 

receiver sides were assigned as CD (mg/mL) and CR (mg/mL) respectively, the volumes 



73 

 

of solution in donor and receiver sides as VD (mL) and VR (mL), the fluid transport area 

as A (mm2), and the flux rate of glucose as J. Therefore, the mass transfer equation (1) for 

the donor side is:    

AJ
dt

dCV D
D −=     (1) 

The mass transfer equation (2) for the receiver side is:  

AJ
dt

dCV R
R =      (2) 

According to Fick’s law, the flux rate is:  

)( RD CC
L
DJ −=  (3) 

      Here, D is the diffusion coefficient of the solute and L is the thickness of the cortical 

bone. Since the volumes in the donor and receiver sides are equal, then we can 

set: VVV RD == .  

     Solving for D (the diffusion coefficient) using these three equations (1) ~ (3), we 

generate the following equation (4): 

)(
2 00 RD

RD

CC
CCLn

At
LVD

−
−

−=    (4) 

     Therefore, upon measuring the concentrations of glucose in both the donor and 

receiver sides at different time points, we can calculate the slope between time t and 

00 RD

RD

CC
CCLn

−
−

, and then input the thickness of cortical bone (L), the area of fluid 
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transport 

Figure 5-1 Picture of diffusion cell system 

Figure 5-2 Schematic of diffusion cell system
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area (A) and the volume of solution in donor and receiver side (V) therefore we can solve 

for the diffusion coefficient (D).  

 

 5.2.2 Results 

        Figure 5-3 shows the glucose concentration profiles in both donor and receiver sides. 

It showed that there is no change of glucose concentration in either side, suggesting that 

the diffusion coefficient of glucose in cortical bone is very low and can not be measured 

using the current diffusion cell system.  

5.2.3 Discussion and conclusions 

1. Limitation of the diffusion cell system: 

        In our system, the thickness of the cortical bone wafer is 200 µm, the fluid transport 

area is a 7 mm diameter circle, the original glucose concentration in the donor side is 2 

mg/mL, and the lowest concentration of glucose that can be detected in the receiver side 

with our assay is 50 µg/mL. Given that each experiment ran for 10 days, we can input all 

Figure 5-3 Glucose concentration profile in both donor and receiver 
id
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these parameters in equation (4), and then back-calculate the lowest diffusion coefficient 

that could be detected by this device (3.9 x 10-8 cm2 /s). Based on these calculations, we 

conclude that the diffusion coefficient of glucose in cortical bone must be less than the 

detect limit by this device. For future reference, in order to obtain an accurate measure of 

the diffusion coefficient of glucose in cortical bone, a more sensitive assay method (such 

as radio-labelled glucose), a thinner bone piece and / or extended experiment time can be 

applied in new experiments.   

2. Diffusion coefficient of glucose in cortical bone calculated from porosity and 

tortuosity 

        Diffusion coefficients of solutes in porous materials are influenced by its porosity 

and tortuosity [2, 73]. Several studies have been done to correlate the diffusion 

coefficient of solutes in porous materials with respect to material porosity and tortuosity 

[2, 73]. Since we were not able to accurately measure the diffusion coefficient of glucose 

in adult cortical bone, we can calculate the diffusion coefficient of glucose in adult 

cortical bone using an already established relationship between the diffusion coefficient 

of a solute in a porous material and its porosity (ε) and tortuosity (τ) based on porosity 

measurement of cortical bone (Chapter 4, 0.6% porosity in radial direction). Baron [2] et 

al. reported the relationship between the effective diffusion coefficient in a porous glass 

matrix and its porosity and toruosity as Equation (5):  

τ
εDDeff =  (5) 
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    Here Deff is the diffusion coefficient in a porous glass matrix, D is the diffusion 

coefficient in collagen, ε is porosity, and τ is tortuosity. Since cortical bone is composed 

of disc-shaped mineral crystals and the packed pattern of the porous glass approximates 

that of bone, we can apply this equation to calculate the diffusion coefficient of glucose 

in cortical bone from its (1) porosity (ε), (2) tortuosity (τ), and (3) the diffusion 

coefficient of glucose in a collagen matrix (D).  

     Since the mineral is disc-shaped in cortical bone, we can calculate its tortuosity from 

its porosity based on equation 

)(12 ετ Ln−=  [73] 

006.0=ε (Data from Chapter 4, the axial porosity of cortical bone 0.6% ) then 47.2=τ . 

The diffusion coefficient of glucose in collagen gel (D) is 1.3 x 10-6 cm2 /s  [96]. Input all 

parameters into equation 5, we calculate the diffusion coefficient of glucose in cortical 

bone (Deff) to be 3.15 x 10-9 cm2/s.  This value is consistent with the low end estimates of 

glucose diffusion in cortical bone. It also explains why we were unable to accurately 

measure the diffusion coefficient of glucose in our current diffusion cell system.  

      Therefore, we conclude that the glucose diffusion coefficient in cortical bone less is 

than 3.9 x 10-8 cm2/s and maybe around 3.15 x 10-9 cm2/s. 

5.3 Mathematical model of predicting a nutrient concentration profile in a 3D 

scaffold made of cortical bone and a type I collagen-fibronectin hydrogel 

5.3.1 Model establishment  
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       A concentration profile for small molecular weight nutrients inside a 3D scaffold 

used for cortical bone tissue engineering can be calculated using a mass balance analysis. 

This 3D scaffold includes bone cells on top of a type I collagen hydrogel layer 

(mimicking an osteoid layer) and a porous cortical bone layer underneath the collagen 

layer that has had its cellular contents removed by NaOH treatment.  Assumptions were 

made to calculate this concentration profile: (1) the diffusion process is at steady state, (2) 

a nutrient is transported only by molecular diffusion and not by convection, (3) nutrient 

consumption occurs only within the collagen gel layer and is consumed uniformly, and (4) 

non-metabolic consumption of a nutrient is negligible within the 3D scaffold because the 

nutrient content is well above the saturable limit for non-specific adsorption in the 3D 

scaffold. This concentration profile represents the relationship between the distance from 

the top surface of the collagen gel and the nutrient concentration at that site. The 

following variables are defined: (1) the distance from the top surface of the collagen gel 

is y, (2) the thickness of collagen gel is Lc, (3) the thickness of cortical bone is LB, (4) the 

starting concentration of the nutrient in the medium is C0 and represents the concentration 

at both the top surface of the collagen gel and the bottom surface of the cortical bone, (5) 

the metabolic consumption rate in the collagen gel is rmax, and (6) the diffusion 

coefficients of the nutrient in collagen gel and cortical bone layers are Dc and DB 

respectively. A schematic of the concentration profile is shown in Figure 5.4.  

       The mass balance equation (6) in the collagen gel layer can be expressed as:  
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Figure 5-4 The schematic of concentration profile of 
the nutrient in 3D scaffold 

max2

2

r
dy

Cd
D c

c =   (6) 

    The mass balance 

equation (7) in the 

cortical bone layer can 

be expressed as: 

02

2

=
dy

CdD B
B  (7) 

    The concentration of 

nutrient at both the top surface of the collagen gel and bottom surface of the cortical bone 

is C0. We can set boundary equations (8) and (9) as: 

0,0 CCy c ==   (8) 

0, CCLLy BBc =+=   (9) 

    At the boundary between the collagen gel and cortical bone, since they refer to the 

same interfacial surface, their concentrations and transport rates are the same. We can set 

boundary equations (10) and (11) respectively: 

  Bcc CCLy == ,   (10) 

dy
dC

D
dy

dC
DLy B

B
c

cc == ,  (11) 

    Intergrating equations (6) and (7) and applying the boundary equations (8)-(11) into 

these two equations, the nutrient concentration profile equations for both the collagen gel 
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layer and the cortical bone layer can be derived to yield equation (12) as the profile in the 

collagen layer and equation (13) as the profile in the cortical bone layer.  
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5.3.2 Discussion 

1. Application of this model 

       Based on our assumption, this model can only be applied to predict the nutrient 

concentration when the transport process is (1) at steady state, (2) only through molecular 

diffusion, (3) uniform consumption in the upper layer and (4) no consumption in the 

lower layer. Therefore, it can be used to predict the concentration of any nutrient or waste 

product molecules in the scaffold (composed of 2 layers) in static culture. It can not be 

used to predict a nutrient concentration in cortical bone in vivo since there is nutrient 

consumption in cortical bone. To be able to predict a nutrient concentration in vivo, a 

consumption factor needs to be added in equation (7) and diffusion coefficient (D) needs 

to be modified to incorporate any convection influence. 

2. Glucose concentration profiles in a 3-D scaffold design for bone tissue engineering in 

vitro 

     Using the above equations, we can calculate glucose concentration profiles in a 3-D 

scaffold made of a cortical bone wafer and a type I collagen hydrogel (Fig 5.4). Values 
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for the following variables were obtained from the literature: (1) our analysis suggested 

that the diffusion coefficient of glucose in cortical bone (DB) is in the range of 3.9 x 10-8 

~ 3.15 x 10-9 cm2/s, and here we assume a value within this range DB= 1x 10-8 cm2/s; (2) 

the diffusion coefficient of glucose in a collagen gel (Dc) is 1.3 x 10-6 cm2/s, and (3) the 

specific glucose consumption rate of 1 x 10 6 osteoblasts in bone is assumed to be 320 

nmol/h [97]. In our system, the thickness of the cortical bone scaffold would be 300 µm 

thick and the cells plus artificial osteoid layer yield a combined 30 µm thickness. We 

assume the maxium cell density in collagen gel layer is 5000 cells /mm2 (based on the 

average cell density in the cultures with collagen-fibronectin hydrogel, Chaper 6, Figure 

6-14), making the consumption rate of glucose in the collagen gel layer rmax = 320 nmol/h 

x 5000 cells/mm2 / (1 x 106 cells) [70]. We set the starting glucose concentration C0 as 1 

mg/mL as this is the physiological concentration of glucose in the growth medium. 

Putting all these parameters into equations (12) and (13), we can calculate the glucose 

concentration profile for the collagen gel and cortical bone layers respectively (Figure 5-

5). These profiles can be expressed as equations (14) and (15) respectively.    

Equations:  

10239.00004.0 2 +−= xxy  (14) 

6052.01963.1 −= xy  (15)  
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      These profiles show that the glucose concentration in the collagen gel layer decreased 

from 1 mg/mL to 0.64 mg/mL from its top to bottom surface. The glucose concentration 

in the cortical bone layer decreased from 1 mg/mL to 0.64 mg/mL from its bottom to top 

surface. This suggests that there is no limitation of glucose supply for bone cells to grow 

up to 30 µm thick on this type of cortical bone scaffold.  

3. The thickness of a bone cell layer growing on a 300 µm cortical bone scaffold without 

nutrient limitation. 

        When the glucose concentration on the bottom surface of the collagen gel becomes 0, 

the glucose supply would become limiting for cell survival, proliferation and/ or 

differentiation. During culture it is anticipated that new bone tissue would be deposited 

beneath the cell layer and in the collagen matrix over incubation time. If we set the 

concentration on the bottom of the collagen gel as 0, we can re-calculate the accumulated 

thickness of new matrix beneath the cell layer by equation (12) and (13) and it is 50 µm 

Figure 5-5 Glucose concentration profile in the culture on the scaffold. A: in the 
collagen gel layer; B: in scaffold layer 
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on the scaffold. These calculations suggest that the highest amount of new bone tissue 

that can be deposited in this system is 50 µm. To grow more tissue in this static system, 

we would need to improve nutrient (glucose) transport, which could be accomplished by 

applying dynamic mechanical loads to introduce convection to promote nutrient transport.  

4. Glucose transport in cortical bone in vivo 

       Glucose transport is considered important in cortical bone in order to maintain the 

viability of its constituent bone cells. Transport can be accomplished via diffusion, 

convection force and carrier diffusion. Here, we empirically measured the diffusion of 

glucose in cortical bone with a diffusion chamber. Our results showed that the diffusion 

coefficient of glucose in cortical bone was very low. After 10 days, few amount of 

glucose diffused through a 200 µm bone wafer. Given that osteocytes remain viable in 

bone tissue in vivo then it is more likely the transport of glucose in cortical bone is 

achieved by convection forces that move fluids (caused by dynamic mechanical load and 

blood pressure). Alternatively, perhaps there is another metabolic nutrient source to meet 

the needs of bone cells’ consumption. For example, extracellular lipids, may be 

internalized and degraded to carbon units that might meet the metabolic needs of 

osteocytes.  

        There were some limitations that should be addressed in future. Studies includes:  (1) 

the glucose diffusion coefficient in cortical bone could not be measured in current 

diffusion cell system. The detect limit of current system results from the method used to 

measure the glucose concentration. Therefore in future a more sensitive detection method 
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needs to apply this system, such as using radiolabel chemicals. (2) Oxygen transport is 

another important issue to be considered in bioreactor system. Diffusion coefficient of 

oxygen needs to be studied to generate the oxygen concentration profile with this model 

system [66]. (2) Based on my lipids data from Chapter IV, there were considerable 

amount of lipids in porous compartment of cortical bone. Therefore the diffusion 

coefficient of hydrophobic molecules (such as prostaglandin [64]) in cortical bone needs 

to be studied to better understand the nutrient transport inside the bone. (3)  Fluid flow 

caused by mechanical load increases the nutrient and waste product transport inside the 

bone [18]. Therefore, the diffusion coefficient of glucose in cortical bone under 

mechanical load needs to be studied to better understand the nutrient transport inside the 

bone.  (4) This mathematical model system can only be applied to the static system since 

only molecular diffusion was considered for glucose transport in this system. Therefore, 

in future convection factors needed to be included in the model system to predict the 

glucose concentration profile in the system with mechanical load. 
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CHAPTER VI 

 BASOLATERAL MINERAL DEPOSITION BY VARIOUS OSTEOBLAST 

SOURCES CULTURED ON 3D COLLAGEN FIBRONECTIN HYDROGEL 

SCAFFOLDS 

 

 

6. 1 Introduction 

       Cell source and scaffold material are two key components in bone tissue engineering 

[39, 66]. Until now, sources of cells used in bone tissue engineering have included 

mesenchymal stem cells derived from different tissues, such as bone marrow, periosteum, 

human umbilical cord blood [5, 6, 13, 29, 30, 33, 39, 42, 50, 51, 76-79, 89], and mature 

osteoblasts, such as primary cells from human trabecular bone obtained during iliac crest 

biopsies [60]. Bone marrow is the highly cellular tissue found in the medullary cavity of 

long bones (see Figure 2-1). Cells from bone marrow comprise a heterogeneous group of 

phenotypes including hematopoietic stem cells, mesenchymal stem cells and endothelial 

stem cells [9, 66]. Mesenchymal stem cells, a source of primary cells used in bone tissue 
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engineering, can be separated from the other two stem cell populations by a colony 

forming adhesion assay [66]. In vitro, studies have shown the osteogeneic potential of 

bone marrow cells. For example, Barralet et al. cultured bone marrow cells on type I 

collagen gels for 21-28 days and showed new osteoid-like tissue formation by these cells 

[6]. Sikavitsas et al. cultured bone marrow cells in a flow perfusion bioreactor and 

showed that such a fluid-flow bioreactor culture system minimized diffusion constraints 

and provided mechanical stimulation to the bone marrow cells, leading to the 

accumulation of a cancellous bone-like mineralized tissue [78]. 

      Osteo-progenitor cells also reside within the periosteal cambium layer and can 

develop into osteoblasts, which are responsible for increasing the width of a long bone 

and the overall size of axial and craniofacial bone types [48]. These osteo-progenitor cells 

can be isolated, which provides another source of primary osteoblastic cells for bone 

tissue engineering [48]. Several studies have reported on the osteogenic properties of 

periosteal cells. Wiesmann et al. cultured periosteal derived osteoblasts on Petri dishes as 

well as within 3D collagen constructs. They showed that these cells can form ‘bone like’ 

mineral deposits in both 2- and 3-D environments and formed an extracellular matrix 

containing osteocalcin, SPARC (osteonectin), and newly synthesized collagen type I in 

both environments [89]. Koshihara et al. showed that periosteum cells are osteoblastic 

cells that could differentiate into osteocytes and deposited calcified mineral in response to 

1, 25 dihydroxyvitamin D3 [48].   
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In vivo periosteum, (Figure 6-1) is composed of 6~7 cell layers; three different cell types 

are located in periosteum tissue: osteo-progenitor cells, pre-osteoblasts and osteoblasts. 

Pre-osteocytes are located within the osteoid layer-- the densely packed type I collagen 

rich organic matrix secreted by mature surface osteoblasts that eventually becomes 

mineralized and forms bone tissue [9]. All these cells are responsible for increasing the 

width of a long bone’s diaphysis and the overall thickness of bone types [9].  The 

morphology of these cells is different: from spindle shaped osteo-progenitors with a 

nuclear length/ width aspect ratio of 8- 9 at top cell layer (apical) to round/ cuboidal 

Figure 6-1 The morphology of cells in the periosteum. Done in Midura lab 
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shaped osteoblasts with an aspect ratio of 1- 2 at the bottom cell layer (basal). Moreover 

the space between nuclei in each layer from top to bottom is different, suggesting that 

different cell layers may contain different densities of cells. All of these observations 

indicate a polar distribution of cells and extracellular matrix along the bone formation 

front, whereby apical cells are more flattened than basal cells, and extracellular matrix 

accumulates beneath the basal cells. This kind of cell and matrix distribution may be 

important for continual bone formationin vivo.  

       To mimic the periosteum tissue structure in vitro, osteo-progenitors derived from 

bone marrow or periosteum could be used to form bone cell layers on a 3D collagen-

fibronectin hydrogel (artificial osteoid layer) intended to represent a bioartificial osteoid 

layer.  In this system we hypothesized that: (1) extracellular matrix protein and mineral 

deposition in bone marrow and periosteum 3D collagen fibronectin hydrogel cell cultures 

will be higher comparing to on conventional 2D tissue plastic; (2) cell density, 

extracellular matrix protein and mineral deposition in bone marrow and periosteum 3D 

collagen fibronectin hydrogel cell cultures will exhibit a basal lateral deposition pattern 

while not on 2D conventional tissue plastic; (3) cell nuclear morphology at different 

stages of osteogenesis would exhibit different aspect ratio; (4)osteo-progenitors derived 

from bone marrow and periosteum cells exhibit equivalent osteogenic capacity. 

        In order to test these hypotheses, bone marrow and periosteum cells were isolated 

from tibial diaphyses of juvenile rats because they are two conventional normal 

osteoblast models. A bio-artificial osteoid matrix was constructed using matrix type I 
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collagen gelled into 3D hydrogels coated with fibronectin because the components of 

osteoid layer is type I collagen (mainly) and some other extracellular protein (such as 

fibronectin); and studies showed that fibronectin and collagen scaffold promoted 

osteogenesis of osteoblasts in vitro. The experimental design used in this study employed 

a direct comparison of the same bone cell type cultured on the 3D bio- artificial osteoid 

matrix versus on conventional 2D tissue culture plastic surfaces. 3-4 weeks (25 days) 

culture period was selected based on prior knowledge that this is first time period to 

reliably assess mineral content in vitro [6, 30, 48].  The outcomes included the amount 

and distribution of cell nuclei density, extracellular matrix (bone sialoprotein (BSP [9, 

26]) and sereted protein acid rich with cysteines (SPARC [9, 38])) and calcium mineral 

[9, 68] deposited in the cultures. SPARC and BSP were selected as indicators of 

ostoegenesis because they are both bone matrix molecules that exhibit calcium binding 

properties and are deposited by osteoblast cells at different stage of osteogenic 

differentiation. The expression of SPARC occurs when osteoblasts stop proliferating and 

begin terminal differentiation. It is considered to be an early to intermediate marker of 

osteoblast differentiation [9, 38]. The expression of BSP occurs at a later stage of 

osteogenic differentiation coinciding with the ability to deposit calcium mineral [9, 26]. 

Ultimately, the unique attribute of osteoblast activity is the ability to deposit 

hydroxyapaptite crystals (calcium mineral) [9, 68] in a collagenous tissue matrix.  

         Specifically, osteo- progenitor cells derived from two different cell sources (bone 

marrow and periosteum) were cultured on two culture modality (3D collagen-fibronectin 
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hydrogels and 2D conventional tissue plastic) for 25 days  respectively in two culture 

conditions (growth medium and differentiation medium) (three cultures were done for 

each group (n=3)) for a total of 8 groups. At 25 days, the cultures were cultures were 

fixed and underwent standard paraffin histological processing. H&E staining was used to 

provide gross observation of the culture. 4',6-diamidino-2-phenylindole (DAPI) staining 

was used for nuclei morphology and nuclei number analysis. Immunohistochemistry 

staining of BSP and SPARC was used for the analysis of BSP and SPARC deposition. 

Alizarin red S staining was used for the analysis of calcium mineral deposition confirmed 

by decalcification in serial sections.  Three slides were stained for each staining. 25 ~30 

images were taken for each slide for each staining and the image-Pro software was used 

for quantification analysis. The amount (quantity) of extracellular matrix (BSP, SPARC) 

and mineral deposited on the cultures was defined as the average positive stained area per 

layer within each image. The distribution of extracellular matrix and mineral was defined 

as the spreading of positive stained area in each layer within image.  

6. 2 Methods and procedures 

6. 2.1 Preparation of type I collagen Gel 

       A 2 mg/mL type I collagen solution was prepared from a stock of native rat tail type 

I collagen solution (3.56 mg/mL, Gibco). 250 µL aliquot of the 2 mg/mL collagen 

solution was placed into each well of 12-well plate sitting on ice. The plate was placed 

into a 370 C incubator overnight to let the collagen gel solidify. A 2 µg/mL fibronectin 

solution was prepared from a stock of fibronectin powder (1mg stock stored in - 20 0C, 
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Sigma). A 200 µL aliquot of the 2 µg/mL fibronectin solution was placed onto each 

collagen gel. The plate was incubated at 370 C for 2 hours to coat the collagen gel with 

fibronectin because fibronectin has collagen binding domains. Each well was washed 

with 500 µL of phosphate buffered saline solution (PBS) for 10 times to remove any 

unbound fibronectin. An aliquot of 500 µL growth medium was put in each well and the 

plate was incubated at 370 C for overnight to equilibrate the collagen-fibronectin gel with 

culture medium. The collagen-fibronectin gel was ready for use in cell culture 

experiments.  

6.2.2 Cell culture 

1. Isolation of periosteum and bone marrow cells from rat tibia 

     All of the animal procedures used in this study were reviewed and approved by the 

Institutional Animal Care and Use Committee. The periosteum and bone tissue were 

harvested according to a previously published protocol [48]. Briefly 12 Harlan-Sprague-

Dawley male rats of one month age (40~ 45g body weight) were euthanized by 

asphyxiation with CO2. A 7-mm-long segment from the middle diaphysis of each tibia 

was obtained from the rats using aseptic techniques. Periosteal tissue layers, including 

most of the basal cambium cell layer were stripped off the bone by dissection, and bone 

marrow tissue was flushed out of the medullary cavity. Recovered periosteum tissues 

were placed into a 50 mL tube containing 3 mL Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Sigma) solution supplemented with 0.6 Unit/mL Dispase (Gibco) and 100 

Unit/mL bacterial Collagenase (Sigma). Cells were released from the periosteum matrix 



92 

 

by incubation in this digestion solution at 370 C for 2 hours at which time all the tissue 

matrix was completed dissolved. Cells were recovered from the digestion solution by 

centrifugation at 100g for 5 min, and re-suspended in 2 mL growth medium (α-minimal 

essential medium (MEM, Cellgro) supplemented with 10% FBS (Hyclone), 20 mM 

HEPES (Cellgro), 20 µg/ml gentamycin (Sigma), and 0.25 µg/ml Amphoterin B (Sigma)). 

This cell suspension solution was placed into a 35 mm culture dish and incubated at 37o C 

in a 5% CO2 humidified incubator. After 48 hr incubation, the medium was replaced and 

adherent cells were cultured for 5~6 more days to reach confluence with medium 

exchanges every 2 days. At this time, periosteum cells were ready for culture experiments.   

     Bone marrow tissue was placed into a 100 mm dish containing 10 mL of growth 

medium. Cells were released by repeated pipeting through 18 gage needles and 

transferred into a 50 mL tube. Cells were recovered by centrifugation at 100g for 5 min 

and re-suspended in 2 mL growth medium.  This cell suspension solution was placed into 

a 35 mm culture dish and incubated at 37o C in a 5% CO2 humidified incubator. After 48 

hr of incubation, the medium was replaced and adherent cells were cultured for 5~6 more 

days to reach confluence with medium exchanges every 2 days. At this time bone marrow 

cells were ready for culture experiments.  

2. Cell culture 
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      For both cell types, cells were typsinized, counted and then seeded onto conventional 

2D tissue culture plastic or 3D collagen-fibronectin hydrogels in a 12 well plate at an 

initial density of 200 cells/mm2, a density at which cells became confluent in 4 days 

(Figure 6-2). For the first four days of incubation, cells were cultured with 250 µL of 

growth medium. At this time point, for each cell type and each culture modality (2D and 

3D), cells were separated into two sub-groups. One sub-group was maintained in growth 

medium (250 µL/ well) for another 21 days with media exchanges every other day. The 

second sub-group was switched to an osteogenic differentiation medium (250 µL/ well) 

for another 21 days with media exchanges every other day. Growth medium was α-MEM 

Figure 6-2 cell culture and histology. 
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(Cellgro) supplemented with 10% FBS (Hyclone), 20 mM HEPES (Cellgro), 20 ug/ml 

gentamycin (Sigma) and 0.25 µg/ml Amphoterin B (Sigma). Differentiation medium 

consisted of growth medium supplemented with 50 µg/mL L-ascorbic acid 2-phosphate 

(Sigma), 50 µg/mL L-ascorbic acid (Sigma) and 10 mM β-glycerophosphate (Sigma).  

6. 2.3 Histological processing 

1. Fixation and embedding 

      At the end of the 25 day culture period, cultures were fixed with 2% 

paraformaldehyde in PBS at 40 C overnight. Intact tissues were peeled off from the 

culture well, dehydrated with an increasing series of ethanol concentrations, and 

embedded in paraffin maintaining an orientation, that yielded cross-sections of each 

tissue in order to locate the top and bottom of each culture (Figure 6-2). 

2. H & E staining 

     An overall histological assessment of each culture was determined by H&E staining. It 

was done by the histology lab in Biomedical Engineering Department in Cleveland Clinic. 

Specifically, three slices were de-paraffinized subsequently rinsed in running tap water 

for 5 minutes to re-hydrate, then stained in Haematoxylin for 20-30 seconds, rinsed in the 

running tap water until stain dissipated. To remove excess stain, the slices were treated 

with 1% ammonium hydroxide for 10 seconds. This step was repeated to remove excess 

bluing reagent. Then the slices were stained with Alcoholic Eosin for 1 minute and the 

dehydration begin immediately by dipping sequentially for 10 seconds in each of Ethanol 
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70%, 70%, 95%, 95%, Absolute Ethanol, Absolute Ethanol, Xylene, Xylene. Then the 

slices were mounted in Cytoseal-XL, dried and stored in dust-free box until evaluated.  

 3. BSP and SPARC Staining 

     The presence of extracellular proteins BSP and SPARC in the cell and matrix layer of 

each culture was determined with immunohistochemistry. Antibodies specific for BSP 

(LF-100) and SPARC (Bon-1) were kindly provided by Dr. Larry Fisher [N. I. D. C. R, 

NIH]. Three slides were deparaffinized and re-hydrated for 15 min with 50 mM Tris-

HCL buffer solution containing 150 mM sodium chloride (NaCl) (pH=7.5) (TBS), and 

then incubated with 5% ovalbumin in TBS for 1 hr at room temperature to reduce non-

specific antibody binding. After ovalbumin blocking, the slides were incubated with 

primary antibody solution in TBS with 0.1% ovalbumin (1:200 dilution) (LF100 or Bon-

1) for overnight at 4 oC. After primary antibody exposure, the slides were washed with 

TBS three times for 10 min each time, and then incubated with Alexa-Fluor 488 

(Invitrogen) anti-rabbit secondary antibody solution in TBS with 0.1% ovalbumin (1:200 

dilution) at room temperature for 2 hours. Following secondary antibody treatment, the 

slides were washed with TBS, 3 times for 10 min each time then stained with alizarin red. 

The serial section for each test section was only incubated with secondary antibody and 

stained under the same conditions as a control to determine secondary antibody non-

specific binding level (negative control). 

4. Alizarin Red –S Staining 
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     Calcium mineral location in the culture sections was determined with alizarin red S 

(ARS) staining. After BSP / SPARC staining, the slides were incubated with 0.4 mM 

alizarin red S (Sigma) in milli-Q water solution (pH 4.52) for 10 min at room temperature 

and then washed with TBS for 10 min. Slides were then ready for DAPI staining. A serial 

section was decalcified with 10% trichloroacetic (Sigma, TCA) at 4 oC for 30 min and 

stained with alizarin red S under same conditions. This section was set as alizarin red S 

stain negative control image to determine the non-specific binding level of ARS to 

collagen gel. 

5. DAPI staining 

     Both ARS and SPARC or BSP stained sections were counter stained with DAPI for 

cell nuclei identifying. The slides were incubated with 5 µg/mL DAPI in TBS solution 

for 20 min at room temperature and washed with PBS solution 10 min each for 5 times. 

Vectashield Mounting Medium (Vector Labs, H-1000) was added to each slide and a 

glass coverslip was placed over each specimen and sealed with clear nail polish.  

6.2.4 Image acquisition 

     Light or epi-fluorescent images of the samples were obtained using a Leica RXA2 

upright wide –field microscope outfitted with a Spot-RT cooled-CCD camera. A total of 

25-30 40 X field of view images (each 1520 x 1080 pixels) were imaged per slide. All 

together, these images constituted ~ 70% of the total area of each tissue section thus 

providing an accurate representation.  

6.2.5 Image Analysis  
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      Nuclei morphology (aspect ratio), SPARC and BSP positive stained areas, as well as 

alizarin red S (ARS) stained area were analyzed using commercially available image 

processing software (ImagePro Plus Version 6.2, Media Cybernetics, MA); since this 

method can enable us to generate both the amounts and distribution of cell nuclei density, 

extracellular matrix and mineral deposition. Briefly DAPI and Alizarin red S (ARS) 

images were uploaded into Image-Pro plus 6.2. Then a top boundary was set for both 

DAPI and ARS images as follows: (1) select ARS image, (2) apply large-spectral filter to 

equalize grayscales in all images, (3) apply a median filter to remove background noise, 

(4) segment image to generate a binary mask, (5) apply same process on DAPI image, (6) 

converge ARS and DAPI masks together, (7) fill in any discontinuous area with a 

morphological “ closing” operation , (8) apply a boundary search algorithm that proceeds 

along the width of the image looking for top-most pixel with a value >0. After setting the 

initial boundary conditions, apply area threshold to get a DAPI mask for each DAPI 

image (The area threshold is set as 5 mm2, which is based on the apoptotic body size), 

apply the intensity threshold to get a ARS mask for each ARS image (the intensity 

threshold is set as the highest intensity of decalcified control slide image). Then input the 

cell layer thickness (here set as 5 µm based on the average nuclei length) to generate a 

layer mask. Apply this layer mask to each segmented mask (DAPI, ARS) to calculate 

nuclear morphometrics (length, width, area, aspect ratio,and orientation) and the total 

positive staining area within the layer. Repeat applying the layer mask on the segmented 

mask until the end of the image. Finally, all data are exported to excel spreadsheet with 
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nuclei number, aspect ratio, apoptotic body number, ARS area, layer area and cell density. 

As for SPARC and BSP images, the similar process was applied except that the intensity 

threshold set for these images was the highest intensity of the control image and 10% 

value of the highest intensity of these images (Figure 6-3).  

Figure 6-3 Images process. A: original image B: make a mask of image C: set the 
boundary of the tissue, D: set the layer thickness (5 mm) and continue applying layer 
mask on the image, E: finish process, F: export the excel sheet 
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6.2.6 Statistical analysis 

      Analysis of variance (ANOVA) techniques with mean comparison with turkey test 

were used for statistical analysis (Sigma-Stat software v3.5). Significance was set as a P 

value less than 0.05.  

6.3 Results 

6.3.1 Osteogenesis of bone marrow and periosteum derived cells 

1. H&E staining of bone marrow and periosteum cultures on 2D plastic and 3D hydrogel 

       H&E staining was used to make gross visual observations regarding cells and 

extracellular matrix accumulation for 2D plastic and 3D hydrogel  cell cultures. 

Comparing the cultures of bone marrow and periosteum cells on both 2D plastic (top of 

Figure 6-4 and Figure 6-5) and 3D hydrogel (bottom of 6-4 and 6-5), these two cells 

showed considerable similarity to each other within the same culture modality (2D VS 

3D). Comparing the same cell types across different culture modality, both cell types on 

both 2D plastic and 3D hydrogels, had multiple cell layers (3~4); their nuclear shape was 

elongated; their cell / matrix layer thickness was around 15~20 µm; and there appeared to 

be some extracellular matrix substance surrounding the  cells. Differences were noted 

when comparing cultures on 2D plastic versus similar cultures on 3D collagen-

fibronectin hydrogels: 3D cultures exhibited a more intense staining, and had contained a 

few migrated cells in the underlying gel (Asterisks in Figure 6-4, 6-5). 
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Figure 6-4 Representative images of H&E staining of bone marrow cultures on 
2D plastic VS 3D control. T: top of the culture, B: bottom of the culture, Asterisks : 
point to migrating cells. For both cultures, the bottom refer to the plastic wall of the 
plate. Bars indicate linear measures used to determine the thickness of major 
cell/matrix layer. 
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2. Quality of immuno-histochemical staining of BSP and SPARC and chemical staining 

of minerals of calcium bone marrow and periosteum cells on 2D plastic and 3D hydrogels. 

        Representative images of DAPI, SPARC and ARS staining of bone marrow cells 

and periosteum cells in differentiation medium are shown in Figure 6-6 through 6-9. 

These two cell type showed roughly similar staining patterns on both 2D plastic and 3D 

hydrogel. When comparing the cultures on 2D plastics versus 3D hydrogels, both cell 

types had multiple cell layers, and had positive staining areas of SPARC and ARS. Some 

Figure 6-5 Representative images of H&E staining of periosteum cultures on 2D 
plastic VS 3D control. T: top of the culture, B: bottom of the culture, Asterisks : point 
to migrating cells. For both cultures, the bottom refer to the plastic wall of the plate. 
Bars indicate linear measures used to determine the thickness of major cell/matrix 
layer. 
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differences were noted regarding a little bit more positive SPARC and ARS stained areas 

on 3D hydrogel than on 2D plastic.  

        Representative images of DAPI, BSP and ARS staining of bone marrow cells and 

periosteum cells in differentiation medium are shown in Figure 6-10 through 6-13. Again 

these two cells showed roughly similar staining patterns on both 2D plastics and 3D 

hydrogels. When comparing the cultures on 2D plastics and 3D hydrogels, both cell types 

had multiple cell layers and positive staining area for BSP and ARS. As observed for 

SPARC staining there seemed to be a little more positive BSP and ARS stained area on 

3D hydrogels than on 2D plastics.  
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Figure 6-6 Representative images of SPARC and ARS staining of bone marrow 
cells cultures on 2D plastic in differentiated medium. T: top of the culture, B: 
bottom of the culture. Scale bar: 50 µm and 10 µm in low and high magnification 
images respectively. Low magnification images are in the left column of each group 
images. High magnification images are in the right column of each group images. 
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Figure 6-7 Representative images of SPARC and ARS staining of bone marrow 
cells cultures on 3D hydrogels in differentiation medium. T: top of the culture, B: 
bottom of the culture. Scale bar: 50 µm and 10 µm in low and high magnification 
images respectively. Low magnification images are in the left column of each group 
images. High magnification images are in the right column of each group images. 
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Figure 6-8 Representative images of SPARC and ARS staining of periosteum 
cells cultures on 2D plastic in differentiated medium. T: top of the culture, B: 
bottom of the culture. Scale bar: 50 µm and 10 µm in low and high magnification 
images respectively. Low magnification images are in the left column of each group 
images. High magnification images are in the right column of each group images.  
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Figure 6-9 Representative images of SPARC and ARS staining of periosteum 
cells cultures on 3D hydrogel. T: top of the culture, B: bottom of the culture. Scale 
bar: 50 µm and 10 µm in low and high magnification images respectively. Low 
magnification images are in the left column of each group images. High magnification 
images are in the right column of each group images. 
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Figure 6-10 Representative images of BSP and ARS staining of bone marrow 
cells cultures on 2D plastic in differentiated medium. T: top of the culture, B: 
bottom of the culture. Scale bar: 50 µm and 10 µm in low and high magnification 
images respectively. Low magnification images are in the left column of each group 
images. High magnification images are in the right column of each group images. 
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Figure 6-11 Representative images of BSP and ARS staining of bone marrow 
cells cultures on 3D hydrogel in differentiation medium. T: top of the culture, B: 
bottom of the culture. Scale bar: 50 µm and 10 µm in low and high magnification 
images respectively. Low magnification images are in the left column of each group 
images. High magnification images are in the right column of each group images. 
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Figure 6-12 Representative images of BSP and ARS staining of periosteum cells 
cultures on 2D plastic in differentiated medium. T: top of the culture, B: bottom 
of the culture. Scale bar: 50 µm and 10 µm in low and high magnification images 
respectively. Low magnification images are in the left column of each group images. 
High magnification images are in the right column of each group images.  
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Figure 6-13 Representative images of BSP and ARS staining of  periosteum cells 
cultures on 3D hydrogel in differentiation medium. T: top of the culture, B: bottom 
of the culture. Scale bar: 50 µm and 10 µm in low and high magnification images 
respectively. Low magnification images are in the left column of each group images. 
High magnification images are in the right column of each group images. 
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3. Quantity of cell density, extracellular matrix and calcium mineral of bone marrow and 

periosteum cell cultures on 2D plastic and 3D hydrogels. 

      To quantify cell density, immuno-histochemical staining of SPARC or BSP, chemical 

staining of calcium mineral and nuclei morphology of bone marrow and periosteum cell 

cultures on 2D plastic and 3D hydrogels, the top 5 layers were selected as main area of 

interest since the total cell layer thicknesses on both 2D plastic and 3D hydrogel were no 

more than 25 µm thick (Figure 6-4, 6-5), which would calculate to 5 layers, each of 5 µm 

thickness. Figure 6-14 and 6-16 show the quantitative results of cell density (Figure 6-14), 

extracellular matrix (Figure 6-15) and calcium mineral (Figure 6-16) of bone marrow and 

periosteum cell cultures. Here, the quantity is defined as the average positive stained area 

(µm2) per layer per standard image (around 1800 µm2). 

A. Cell density 

        For each cell type, there were a total of four different culture conditions: growth 

medium on 2D plastic, differentiation medium on 2D plastic, growth medium on 3D 

hydrogel and differentiation medium on 3D hydrogel. Comparing the quantity of cell 

density of the combined eight groups (bone marrow and periosteum) with three way 

ANOVA with a means comparison using a tukey test (factor one is cell type, factor two is 

culture medium, factor three is culture modality (2D VS 3D)) (Figure 6-14), none of 

these three factors (cell type, culture medium and culture modality) is a factor having 

significant influence on the cell density. Specifically, there was no significant difference 
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between the cell density of the bone marrow and periosteum cell cultures, no significant 

difference between the cell density of the cultures with growth medium and 

differentiation medium, and no significant difference between the cell density of the 

cultures on 2D plastics and 3D hydrogel (p values in table 6-1). 

 

B. SPARC and BSP  

      The quantity of immuno-histochemical staining of SPARC in these eight groups was 

compared with a three way ANOVA with means comparison using a tukey test (factor 

one is cell type, factor two is culture medium, factor three is culture modality (2D VS 

3D)) (Figure 6-15A, Figure 6-15B). Cell type was not a factor having a significant 

influence on the amount of SPARC staining area. Thus, there was no significant 

difference found between the SPARC staining areas of the bone marrow vs periosteum 

cell cultures. Culture medium was found to be a factor having a significant influence on 

Figure 6-14 The Quantity and distribution of cell density of cells cultures on 2D 
plastic VS 3D hydrogel. 
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the amount SPARC staining area. Specifically the SPARC staining area in differentiation 

medium was significantly higher than in growth medium. Culture modality was found to 

be a factor having a significant influence on the amount of SPARC staining area. 

Specifically, the SPARC staining area on 3D hydrogels was significantly higher than on 

2D plastics (p value in table 6-1). 

        The quantity of immuno-histochemical staining of BSP in these eight groups was 

Figure 6-15 The Quantity BSP and SPARC staining area of cells cultures on 2D 
plastic VS 3D hydrogel.  
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compared with a three way ANOVA with means comparison using a tukey test (factor 

one is cell type, factor two is culture medium, factor three is modality (2D VS 3D)) 

(Figure 6-15C, Figure 6-15D). Cell type was not a factor having a significant influence 

on the amount of BSP staining area. Thus there was no significant difference found 

between the BSP staining areas of bone marrow vs periosteum cell cultures. Culture 

medium was found to be a factor having a significant influence on the amount of BSP 

staining area. Specifically, BSP staining area in differentiation medium was significantly 

higher than in growth medium. Culture modality was found to be a factor having 

significant influence on the BSP staining area. Specifically, the BSP staining area on 3D 

hydrogels was significantly higher than on 2D plastics (p value in table 6-1). 

C. Calcium mineral  

       The quantity of calcium mineral staining of these eight groups was compared with a 

three way ANOVA with means comparison using a tukey test (factor one is cell type, 

Figure 6-16 The Quantity of calcium mineral staining area of cells cultures on 2D 
plastic VS 3D hydrogel. 
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factor two is culture medium, factor three is culture modality (2D VS 3D)) (Figure 6-16). 

Cell type was not a factor having significant influence on the mineral staining area. Thus, 

there was no significant difference between the calcium mineral staining area of bone 

marrow and periosteum cell cultures. Culture medium was found to be a factor having a 

significant influence on the amount of calcium mineral staining area. Specifically, 

calcium mineral staining area in differentiation medium was significantly higher than in 

growth medium. Culture modality was found to be a factor having a significant influence 

on the amount of calcium mineral staining area. Specifically, calcium mineral staining 

area on 3D hydrogels was significantly higher than on 2D plastics (p value in table 6-1).  

Factors Cell density SPARC BSP ARS 

Cell type 0.02 0.94 0.29 0.19 

Culture medium 0.53 0.008 0.001 0.009 

Culture modality 0.03 0.0001 0.0002 0.0001 

         In all, my results of this part studies showed that for both bone marrow and 

periosteum there were more SPARC, BSP and mineral staining in the culture on 3D 

hydrogel than on 2D plastic, which proved my first hypothesis that more extracellular 

matrix and calcium mineral were deposited in the cultures of both periosteum and bone 

marrow cells on 3D collagen-fibronectin hydrogel comparing with the culture on 2D 

conventional tissue plastic.  

Table 6-1 p value of quantitative analysis 
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4. Distribution of cell density, extracellular matrix and calcium mineral of bone marrow 

and periosteum cell cultures on 2D plastic and 3D hydrogels. 

 

     The original distribution of cell density, extracellular matrix and calcium mineral of 

the cell cultures on 2D plastic vs 3D hydrogel are shown in Figure 6-17 to Figure 6-19. 

The extracellular matrix and calcium mineral in the first layer can only be deposited by 

the cells in the first and/or second layers, while in the remaining cell layers they can be 

deposited by all the layers surrounding them, therefore the first layer is distinguished 

from all the remaining layers.  Thus, percentage of the first layer staining area to the total 

staining area can be used as a parameter used to compare the distribution pattern of 

extracellular matrix and calcium mineral on the cultures.   

Figure 6-17 The distribution of cell density of cultures on 2D plastic VS 3D 
hydrogel. 
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Figure 6-19 The distribution of calcium mineral staining area of cells cultures on 
2D plastic VS 3D hydrogel.

Figure 6-18 The distribution BSP and SPARC staining areas of cells cultures on 
2D plastic VS 3D hydrogel.  
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A. Cell density 

      Comparing the percentage of cell density in first layer of the combined eight groups 

(bone marrow and periosteum) with three way ANOVA with a means comparison using a 

tukey test (factor one is cell type, factor two is culture medium, factor three is culture 

modality (2D VS 3D)) (Figure 6-20), cell types and culture medium were not factors 

having significant influence on the percentage of cell density in first layer. Specifically, 

there was no significant difference between the percentage of first layer of the bone 

marrow and periosteum cell cultures, no significant difference between the percentage of 

cell density in first layer with growth medium and differentiation medium.  Culture 

modality was found to be a factor having a significant influence on the percentage of cell 

density. Specifically, the percentage of cell density in first layer on 3D hydrogels was 

significantly higher than that on 2D plastics (p value in table 6-2). This suggested that the 

cells density distribution on 3D hydrogel was different from that on 2D plastic. 

Figure 6-20 The percentage of cell density in first layer VS rest layers.  
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B. SPARC and BSP  

      The percentage of immuno-histochemical staining of SPARC in the first layer of 

these eight group cultures was compared with a three way ANOVA with means 

comparison using a tukey test (factor one is cell type, factor two is culture medium, factor 

three is culture modality (2D VS 3D)) (Figure 6-21). None of these three factors (cell 

type, culture medium and culture modality) was a factor having significant influence on 

the percentage of immuno-histochemical staining of SPARC in the first layer. 

Specifically, there was no significant difference between the percentage of immuno-

histochemical staining of SPARC in the first layer of the bone marrow and periosteum 

cell cultures, no significant difference between the percentage of immuno-histochemical 

staining of SPARC in the first layer of the cultures with growth medium and 

differentiation medium, and no significant difference between the percentage of immuno-

histochemical staining of SPARC in the first layer of the cultures on 2D plastics and 3D 

hydrogel (p value in table 6-2). In all no difference of SPARC distribution was found 

between these 8 groups.  

        The percentage of immuno-histochemical staining of BSP in the first layer of these 

eight group cultures was compared with a three way ANOVA with means comparison 
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using a tukey test (factor one is cell type, factor two is culture medium, factor three is 

culture modality (2D VS 3D)) (Figure 6-21). None of these three factors (cell type, 

culture medium and culture modality) was a factor having significant influence on the 

percentage of immuno-histochemical staining of BSP in the first layer. Specifically, there 

was no significant difference between the percentage of immuno-histochemical staining 

Figure 6-21 The percentage of immuno-histochemical staining SPARC and 
BSP in first layer VS rest layers.  
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of BSP in the first layer of the bone marrow and periosteum cell cultures, no significant 

difference between the percentage of immuno-histochemical staining of BSP in the first 

layer of the cultures with growth medium and differentiation medium, and no significant 

difference between the percentage of immuno-histochemical staining of BSP in the first 

layer of the cultures on 2D plastics and 3D hydrogel (p value in table 6-2). In all no 

difference of BSP distribution was found between these 8 groups.  

C. Calcium mineral  

 

       The percentage of chemical staining of calcium mineral in the first layer of these 

eight group cultures was compared with a three way ANOVA with means comparison 

using a tukey test (factor one is cell type, factor two is culture medium, factor three is 

culture modality (2D VS 3D)) (Figure 6-22). None of these three factors (cell type, 

culture medium and culture modality) was a factor having significant influence on the 

percentage of chemical staining of calcium mineral in the first layer. Specifically, there 

Figure 6-22 The percentage of calcium mineral in first layer VS rest layers  
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was no significant difference between the percentage of chemical staining of calcium 

mineral in the first layer of the bone marrow and periosteum cell cultures, no significant 

difference between the percentage of chemical staining of calcium mineral in the first 

layer of the cultures with growth medium and differentiation medium, and no significant 

difference between the percentage of chemical staining of calcium mineral in the first 

layer of the cultures on 2D plastics and 3D hydrogel (p value in table 6-2). In all no 

difference of calcium distribution was found between these 8 groups. 

Factors Cell density SPARC BSP ARS 

Cell type 0.86 0.36 0.10 0.06 

Culture medium 0.35 0.76 0.06 0.09 

Culture modality 0.0001 0.06 0.85 0.62 

         In all, my results of this part studies showed that for both bone marrow and 

periosteum there were no difference between the distribution of SPARC, BSP and 

mineral staining in the culture on 3D hydrogel with that on 2D plastic; while there was 

significant difference between the distribution of cell density on 3D hydrogel with that on 

2D plastic. This proved partly my second hypothesis that cell density in bone marrow and 

periosteum 3D collagen fibronectin hydrogel cell cultures will exhibit a basal lateral 

deposition pattern while not on 2D conventional tissue plastic, while partly rejected my 

second hypothesis that extracellular matrix protein and mineral deposition in bone 

Table 6-2 p value of distribution analysis 
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marrow and periosteum 3D collagen fibronectin hydrogel cell cultures will exhibit a basal 

lateral deposition pattern while not on 2D conventional tissue plastic.  

6.3.2 Nuclear morphologies of bone marrow and periosteum cells on 2D plastic and 

3D hydrogel cultures 

      As shown in Figure 6-1, in vivo periosteum tissue exhibits cells at different 

osteogenic stage having different morphologies. The quantity of nuclei aspect ratio of 

these eight groups was compared with three way ANOVA with means comparison using 

a tukey test (factor one is cell type, factor two is culture medium, factor three is culture 

modality (2D VS 3D)) (Figure 6-23), none of these three factors (cell type, culture 

medium and culture material) was a factor having significant influence on the nuclear 

aspect ratio. Specifically, there was no significant difference found between the nuclear 

aspect ratio of the bone marrow and periosteum cell cultures (p = 0.35), no significant 

difference between the nuclear aspect ratio of the cultures with growth medium and 

Figure 6-23 The quantity of nuclear aspect ratio of cells cultures on 2D plastic VS 
3D hydrogel. 
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differentiation medium (p = 0.03), and no significant difference between the nuclei aspect 

ratio of the cultures on 2D plastics and 3D hydrogel (p = 0.11).  

           The distribution of cell nuclei distribution was shown in Figure 6-24. One way 

ANOVA was used to compare the aspect ratio of nuclei among all the five layers in each 

culture to test the hypothesis that cells at different osteogenesis stage have different 

nuclear morphology.  For each culture, the result showed there was no significant 

difference of the aspect ratio of nuclei among the five layers, which suggest there was no 

different of nuclei morphology among the five layers in each culture.  Therefore, it 

rejected my third hypothesis that cells at different osteogenesis stage have different 

nuclear morphology. 

 

  6.3.3 Osteogenesis of bone marrow and periosteum cells 

Figure 6-24 The distribution of nuclear aspect ratio of cells cultures on 2D plastic 
VS 3D hydrogel. 
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      All the results from above suggested that cell type was not a factor that has significant 

influence on the amount and distribution of cell density, SPARC, BSP deposit, calcium 

mineral deposit and nuclear morphology of the cell cultures. This proved my fourth 

hypothesis that osteo-progenitors derived from bone marrow and periosteum cells exhibit 

equivalent osteogenic capacity.   

6.4 Discussion 

       Culture condition is an important component to be considered in my system. In vivo, 

bone formation cells lay on the osteoid layer to form bone (Figure 6-1), which is secreted 

by osteoblasts and becomes mineralization. Therefore, we propose that the chemicals in 

this layer and its structure are important for bone formation. To mimic this layer, an 

artificial osteoid layer was made from type I collagen and fibronectin. And the 

osteogenesis of primary bone cells cultured on this layer was compared with that on 2D 

plastic (Chapter VI). My results showed that there was significant increase of 

extracellular matrix (SPARC, BSP) and calcium mineral deposition in the culture on 3D 

collagen- fibronectin hydrogel than that on 2D plastic, which suggested that this artifical 

osteoid layer promoted osteogenesis of primary bone cells. This matches with previous 

studies showing that collagen [6, 22, 30, 33, 49, 65] and fibronectin [60] promoted 

osteogenesis of bone cells. Barralet et al. cultured bone marrow cells on type I collagen 

gels for 21-28 days and showed new osteoid-like tissue formation by these cells [6]. 

Wiesmann et al. cultured periosteal derived osteoblasts on Petri dishes as well as within 

3D collagen constructs. They showed that these cells can form ‘bone like’ mineral 
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deposits in both 2- and 3-D environments and formed an extracellular matrix containing 

osteocalcin, SPARC (osteonectin), and newly synthesized collagen type I in both 

environments [89] 

        Moreover, the polarity of cells, extracellular matric and calcium mineral deposition 

on this 3D collagen fibronectin hydrogel was analyzed. My results showed the polarity of 

cell density distribution on 3D collagen fibronectin hydrogel and no polarity on the 

distribution of extracellular matrix and mineral deposition, which may because that 

overall very small amount extracellular matrix and calcium mineral deposited on 3D 

collagen fibronectin cultures, which suggest that my end time point is the initial 

differentiation time point (bone cells starts to deposit extracellular matrix and mineral); 

and no polarity would be generated at this time point of culture.      

       Cell source is one key component in bone tissue engineering [39, 66], until now, 

bone cell sources used in bone tissue engineering have included mesenchymal stem cells 

derived from bone marrow, perioteum and umbilical et al [5, 6, 13, 29, 30, 33, 39, 42, 51, 

76-79, 89], and mature osteoblasts, such as trabecular bone obtained during iliac crest 

biopsies [60]. Osteo-progenitors derived from bone marrow and periostum are two 

popular cell types are used in bone tissue engineering.  My results that osteo-progenitors 

derived from bone marrow and periosteum cells exhibit equivalent osteogenesis, which 

suggested that both cell types are appropriate for the use in this model system.         

        There were some limitations that should be addressed in future. Studies includes:  (1) 

to investigate the polarity of cell cultures on 3D collagen fibronectin hydrogel, cultures 
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with extended culture time (6 week) will be needed. (2) Multiple experimental time 

points will be needed to investigate the cell osteogenesis status. (3)The amount of 

extracellular matrix in the culture medium needs to be measured to have a better 

comparison between the cultures on 3D collagen fibronectin hydrogel and 2D plastic. (4)  

The markers of cell osteogensis stage (e.g. alkaline phosphatase (osteoblast cells), E11 

(pre-osteocyte) [9, 66]) will be stained on the serial slides of the culture to determine 

whether cells in the culture are at different osteogenesis stage. (5) F-actin [54] needs to be 

stained to determine the morphology of cells which enable us to investigate the 

relationship between cell morphology and cell osteogenesis status.  

      In all, the results in this Chapter indicate that bone marrow and periosteum cells 

exhibit similar osteogenesis on both 2D plastic and 3D hydrolgel, and that the 3D 

collagen-fibronectin hydrogel promoted osteoblasts osteogenesis. Applying this 

knowledge to our prospective bone tissue engineerin3D bioreactor system, we propose to 

use 3D collagen-fibronectin hydrogel as interface between cells and scaffolds to promote 

osteoblasts osteogenesis, and to use either bone marrow or periosteum cells as the cell 

source.  
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CHAPTER VII 

 DISCUSSIONS AND CONCLUSIONS 

 

 

       Large-sized bone defects and recalcitrant fractures require surgical intervention with 

grafting materials to provide the best potential for healing [1, 4]. Around 10 billion 

dollars in United States and 24 billion dollars worldwide are expended annually to treat 

large-sized cortical bone damage with graft materials, such as autografts, allografts and 

synthetic grafts [4, 39, 69]. However, even these graft materials have limitations and may 

seem unsuitable for some clinical needs. Cortical bone tissue engineering provides a 

promising approach to generate new graft materials that may satisfy these clinical needs 

[39, 66]. Yet, cortical bone tissue has not been produced in vitro to date using 

engineering approaches. In order to generate ample amounts of cortical bone with a tissue 

engineering approach, three key aspects need to be considered: 1) an optimal osteogenic 

cell source needs to be identified, 2) biocompatible scaffold materials with similar 
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mechanical and permeability properties as cortical bone needs to be identified thereby 

providing immediate functional bone capacity, and 3) optimal culture conditions ( such as 

collagen scaffold)need to be identified that will promote osteogenesis of bone cells [66]. 

       In this dissertation work I set out to develop a cortical bone tissue engineering 

system that would mimic the three cortical bone layers to promote functional cortical 

bone formation in vitro. Specifically, the tissue engineering bone model system proposed 

(Figure 2-2) would be composed of a biocompatible scaffold with similar mechanical 

strength and permeability as cortical bone; an artificial osteoid layer made of type I 

collagen and fibronectin in hydrogel format to mimic the osteoid layer and osteogenic 

bone cells mimic the bone cell layer. We expect a functional bone tissue can be generated 

from this system in the future.  To set up this bone model system these three components 

need to be tested and selected.  

7.1 Characterization of Scaffold material 

      Different biomaterials have been used in bone tissue engineering. They include 

metals (such as cobalt-chromium alloys, stainless steel and titanium), synthetic polymers 

(such as PMMA), ceramics, natural collagens and their bio-composites [39, 66, 95]. 

Among all these materials, some match the mechanical property (such as ceramics and 

metals), some match the permeability property (such as porous metals, porous polymer 

and porous ceramics), and some exhibit appropriate biocompatibility [66]. PMMA and 

316L stainless steel were tested as candidate scaffolds since they are cost effective, easy 

to be manufactured into any shape and size needed, and more important have similar pore 
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size as cortical bone are reported to be biocompatible (Chapter III). To determine whether 

these two material scaffolds are appropriate for the use in our system, we measured their 

mechanical and hydraulic permeability properties, as well as their short term and long 

term- biocompatibility. My results showed that PMMA exhibited roughly similar 

hydraulic permeability as cortical bone and an appropriate biocompatibility for short term 

bone cell culture; and that 316L stainless steel exhibited roughly similar ultimate tensile 

strength and hydraulic permeability as cortical bone and an appropriate biocompatibility 

for both short term and long term bone cell culture. These biocompatibility results match 

with previous studies on the biocompatibility of stainless steel and PMMA; such as: 

Puleo et al. [61] showed that stainless steel exhibits good short term biocompatibility; and 

Ramachandran et al [71]. showed that osteoblasts exhibited phenotypic stability when 

cultured on PMMA suggesting that PMMA exhibits adequate biocompatibility. In the 

other hand, these results disagree with some other studies; such as Jocobs et al.[36] stated 

that 316 L stainless steel containing chromium (16-18%) and nickel (10-14%) was a 

probable source of long-term complications, and their findings suggested caution for its 

use as an implant; Chiu et al. [13] showed that PMMA inhibits the proliferation and 

osteogenic differentiation of bone marrow cells suggesting that PMMA may not always 

exhibit high levels of biocompatibility. The difference of the biocompatibility of stainless 

steel between mine and Jocobs’ may come from the difference in the test methods: mine 

are in vitro experiment results while theirs are in vivo experiment results. The difference 

of biocompatibility of PMMA between mine and Chiu’s may come from the difference of 
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the outcomes: mine are the proliferation rate of the cells while theirs are the osteogenesis 

properties. Therefore, based on my results, these two scaffold materials were appropriate 

for our system. Our first choice would be 316L stainless steel, and the second choice 

would be PMMA.   

7.2 Hydraulic permeability of cortical bone 

       One criterion for the selection the scaffold material used in my bone model system is 

the hydraulic permeability of cortical bone. Because in vivo fluid flow is critically 

important for the nutrient and waste product transport, which is important to maintain 

osteocyte viability and regulate the physiological processes of bone remodeling and 

homoestasis [7, 98 ]. Until now, few studies have experimentally measured the hydraulic 

permeability of cortical bone in part because of the engineering challenges in measuring 

extreamly low permeabilities.  These devices require high pressure tolerances in both the 

bone tissue holding chamber and other upstream components of the permeability device 

in order to accurately measure the permeability of cortical bone. Therefore, the hydraulic 

permeability of cortical bone and the contribution of bone components to its hydraulic 

permeability were studied in Chapter IV. My permeability results showed that the 

permeability of fresh cortical bone from endosteum side was below the detection limit of 

my device (4 x 10-17); after removing the lipids from the porous compartment of cortical 

bone, its permeability was increased around 3 fold; after removing the collagen in the 

porous compartment of cortical bone, its permeability was increased another 5 fold; after 

removing the crystal minerals, its permeability was increased another 5 fold. These 
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results match with Li’s study [46]. They reported that the radial permeability of adult 

canine tibial cortex was 5 x 10-17 m2 and that the radial permeability of puppy bone was 6-

fold higher than that of adult canines. In addition, they suggested that the periosteal 

portion of cortical bone was relatively impermeable as compared to the endosteal portion 

of cortical bone. My lipids results showed that the composition of the extracted lipids 

from porous compartment in cortical bone consisted of ~60% triacylglycerols, ~4% fatty 

acids, ~1% phospholipids and 11% cholesterol; which matched with previous reports 

measuring the lipid contents of human [19] or ox [45] cortical bone, respectively, and 

finding high levels of triacylglycerols and low levels of phospholipids.  In addition my 

hydroxyproline results showed that the relative proportion of the porous to non-porous 

collagen content calculates to be 4.9%, which approximates the relative volume ratio of 

these two compartments of cortical bone; which match with previous report of porosity of 

cortical bone (2~10%) [9, 14]. These results suggested that we might be able to decrease 

the permeability of scaffold materials by coating them with lipids and / or collagen to 

adjust their overall permeability similar to that of cortical bone. 

7.3 Glucose diffusion 

       Glucose supply always needs to be considered in bone tissue engineering since it is 

essential to maintain cell viability [66]. Under static culture conditions, glucose transport 

is only mediated by diffusion. To determine when glucose becomes limited in our system, 

the glucose concentration profile needed be calculated based on the diffusion coefficient 

of glucose in cortical bone. Therefore the diffusion coefficient of glucose in cortical bone 
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was experimental measured and mathematical modeling was established to generate the 

glucose concentration profile in Chapter IV. I can not measure the glucose diffusion 

coefficient with current diffusion chamber. With the measurement of the bone porosity, I 

can calculate the diffusion coefficient of cortical bone (3.15 x 10-9 cm2/s) based on the 

correlation of porosity, tortuosity and permeability established by previous study [2, 73]. 

In addition, a mathematical model was established based on the transport principles to 

predict the glucose concentration in scaffold (here is cortical bone) and cell layers in my 

model system. Base on this model, the largest thickness bone tissue can be generated 

from this system on 300µm cortical bone was 50 µm. Thus, to generate more bone tissue, 

the glucose transport needs to be increased in this system, which can be done by applying 

mechanical load in this system.  

7.4 Cell source and culture conditions 

          Cell source is one key component in bone tissue engineering, until now, bone cell 

sources used in bone tissue engineering have included mesenchymal stem cells derived 

from bone marrow, perioteum and umbilical et al, and mature osteoblasts, such as 

trabecular bone obtained during iliac crest biopsies[5, 6, 13, 29, 30, 33, 39, 42, 50, 51, 

76-79, 89]. Osteo-progenitors derived from bone marrow and periostum are two popular 

cell types are used in bone tissue engineering. Previous Studies showed that both cell 

types have osteogenesis properties. Barralet et al. [6] cultured bone marrow cells on type 

I collagen gels for 21-28 days and showed new osteoid-like tissue formation by these 

cells. Sikavitsas et al. [78] cultured bone marrow cells in a flow perfusion bioreactor and 
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showed that such a fluid-flow bioreactor culture system minimized diffusion constraints 

and provided mechanical stimulation to the bone marrow cells, leading to the 

accumulation of a cancellous bone-like mineralized tissue. Wiesmann et al [89] cultured 

periosteal derived osteoblasts on Petri dishes as well as within 3D collagen constructs. 

They showed that these cells can form ‘bone like’ mineral deposits in both 2- and 3-D 

environments and formed an extracellular matrix containing osteocalcin, SPARC 

(osteonectin), and newly synthesized collagen type I in both environments. Koshihara et 

al [48] showed that periosteum cells are osteoblastic cells and could differentiat into 

osteocytes and deposited calcified mineral in response to 1, 25 dihydroxyvitamin D3 . To 

select the cell source used in my model system, osteogenesis of these two cell types were 

compared side by side on both 2D conventional tissue plastic and 3D collagen fibronetin 

hydrogel. Our results showed that there was no significant difference between the 

osteogenesis of these two cell types. Therefore either of these two cells can be used in our 

system.  

       Culture condition is another important component to be considered in my system. In 

vivo, bone formation cells lay on the osteoid layer to form bone (Figure 6-1), which is 

secreted by osteoblasts and becomes mineralization. Therefore, we propose that the 

chemicals in this layer and its structure are important for bone formation. To mimic this 

layer, an artificial osteoid layer was made from type I collagen and fibronectin. And the 

osteogenesis of primary bone cells cultured on this layer was compared with that on 2D 

plastic (Chapter VI). My results showed that there was significant increase of 
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extracellular matrix (SPARC, BSP) and calcium mineral deposition in the culture on 3D 

collagen- fibronectin hydrogel than that on 2D plastic, which suggested that this artifical 

osteoid layer promoted osteogenesis of primary bone cells. This matches with previous 

studies showing that collagen [6, 22, 30, 33, 49, 65] and fibronectin [60] promoted 

osteogenesis of bone cells. Moreover, the polarity of cells, extracellular matric and 

calcium mineral deposition on this 3D collagen fibronectin hydrogel was analyzed. My 

results showed the polarity of cell density distribution on 3D collagen fibronectin 

hydrogel and no polarity on the distribution of extracellular matrix and mineral 

deposition, which may because that overall very small amount extracellular matrix and 

calcium mineral deposited on 3D collagen fibronectin cultures, which suggest that my 

end time point is the initial differentiation time point (bone cells starts to deposit 

extracellular matrix and mineral); and no polarity would be generated at this time point of 

culture.    

7.5 Future direction 

1. Scaffold material 

       There were some limitations in characterizing the scaffold material that should be 

addressed in future, which include: (1) the long term biocompatibility of PMMA will be 

tested; (2) osteogenesis potential of bone cells cultured on these material will be 

measured basing on the deposition amount of extracellular matrix (alkaline phosphatase 

(expressed at early stage of differentiation), BSP (expressed at later stage of 

differentiation) and calcium mineral on these cultures with simple biochemistry methods; 
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specifically the amount of activity of alkaline phosphatase can be measured with alkaline 

phosphatase assay kit (BioAssay System), amount of the BSP can be measured with west 

blotting method and the mount of calcium mineral can be measured with a colorimetric 

method; 3) Sample size will be increased to be able to exclude random variability.  

2. Hydraulic permeability of cortical bone  

       There were some limitations in measuring the hydraulic permeability of cortical bone 

that should be addressed in future, which include:  (1) the hydraulic permeability of fresh 

cortical bone will be measured. To do this there are two methods can be used: (a) with 

current device, the bone wafers can be cut into several pieces of thinner wafers with same 

thickness and the hydraulic permeability of these wafers will be measured at same 

conditions; then the hydraulic permeability of bone wafers will be average of all these 

measurements; (b) a new device with lower detection limit needs to be made.  Right now 

the detect limit of the present device results from the pressure limit of the holder made of 

PVC. Therefore, the bone holder made from stainless steel with same design as proposed 

in this chapter will increase the pressure limit of the bone holder thereby lower the 

detection limit. Compare to method (a) the advantage of this method is that the hydraulic 

permeability can be measured directly and the disadvantage is that some cost will be 

applied on the new device. (2) Hydraulic permeability of the cortical bone from 

periosteum side and the contribution of bone components to its permeability need to be 

studied to understand the mechanism of the nutrient and waste transport underneath 

periosteum layer, which is critical important for bone formation in vivo. To do this, a new 
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device with much lower detect limit needed. (3) Changes in ultrastructure of the 

remaining pericellular matrix after removing lipids and / or collagen may have effect on 

the changes on the permeability. To determine whether there is the change of 

ultrastructure, transmission electron microscopy (TEM) images of the wafers after 

collagenase and or acetone methonal treatment need to be compared with that of the 

wafers before treatments.  

3. Glucose diffusion  

       There were some limitations in measuring the diffusion coefficient of glucose in 

cortical bone that should be addressed in future, which include:  (1) the glucose diffusion 

coefficient in cortical bone will be measured with a more sensitive detection method 

needs to apply this system, such as using radiolabel chemicals. (2) Diffusion coefficient 

of oxygen will be studied to generate the oxygen concentration profile with this model 

system. (2) Diffusion coefficient of hydrophobic molecular (such as prostaglandin [64]) 

in cortical bone will be studied to better understand the nutrient transport inside the bone. 

(3)  The diffusion coefficient of glucose in cortical bone under mechanical load will be 

studied to better understand the nutrient transport inside the bone.  (4) Convection factors 

will be included in the model system to predict the glucose concentration profile in the 

system with mechanical load. 

4. Cell source and culture condition  

        There were some limitations in selecting the cell source and culture conditions that 

should be addressed in future, which include:  (1) Cultures with extended culture time (6 



138 

 

week) will be done to investigate the polarity of cell cultures on 3D collagen fibronectin 

hydrogel. (2) Multiple experimental time points will be done to investigate the cell 

osteogenesis status. (3)The amount of extracellular matrix in the culture medium will be 

measured to have a better comparison between the cultures on 3D collagen fibronectin 

hydrogel and 2D plastic. (4) F-actin will be stained to determine the morphology of cells 

which enable us to investigate the relationship between cell morphology and cell 

osteogenesis status.  

7.6 Significance of this work 

     Clinically there is a need for bone graft alternatives. However there are no functional 

bone grafts that have been generated to meet this demand. My approach and system 

design provide a means for studies to be conducted towards the development of 

functional bone tissue in vitro. My ultimate goal is to generate a functional bone tissue on 

a biocompatible scaffold, which will be peeled off from the scaffold and used as bone 

scaffold material to treat large size bone defect.  The data in this work provide the basis 

for future studies that may incorporate growth factors, mechanical stimuli and co-culture 

of different cells types in this bone model system to promote sustained bone formation in 

vitro.    
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APPENDIX 1: The schematic of permeability device 
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