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Supporting the Specification and Runtime

Validation of Asynchronous Calling Patterns
in Reactive Systems

Jiannan Zhai1, Nigamanth Sridhar2, and Jason O. Hallstrom1

1 School of Computing, Clemson University, Clemson, SC USA 29634
2 Electrical and Computer Engineering, Cleveland State University,

Cleveland, OH USA 44115

Abstract. Wireless sensor networks (“sensornets”) are highly
distributed and concurrent, with program actions bound to external
stimuli. They exemplify a system class known as reactive systems, which
comprise execution units that have “hidden” layers of control flow. A
key obstacle in enabling reactive system developers to rigorously validate
their implementations has been the absence of precise software compo-
nent specifications and tools to assist in leveraging those specifications at
runtime. We address this obstacle in three ways: (i) We describe a speci-
fication approach tailored for reactive environments and demonstrate its
application in the context of sensornets. (ii) We describe the design and
implementation of extensions to the popular nesC tool-chain that enable
the expression of these specifications and automate the generation of
runtime monitors that signal violations, if any. (iii) Finally, we apply the
specification approach to a significant collection of the most commonly
used software components in the TinyOS distribution and analyze the
overhead involved in monitoring their correctness.

1 Introduction

In software development, there is a behavioral spectrum that runs from purely
synchronous to purely asynchronous. A purely synchronous system contains a
single thread of control, typically originating from main(). Traditional component-
based specification and validation strategies were designed with these systems
in mind and have proven to be effective in ensuring application correctness.
Toward the middle of this spectrum are the more common applications, com-
prising multiple threads that communicate through narrow interfaces, or through
a small set of shared variables, essentially forming a collection of synchronous,
semi-independent activities. In this context, component-based specification and
validation mechanisms begin to break down; they were not designed to handle
frame property violations originating from outside the main control thread. At
the far end of the spectrum, in the presence of pure asynchrony, component-based
specification and validation mechanisms break down entirely.



A reactive system is one in which an invocation sequence may originate from
outside the main thread of control (e.g., main()). Such systems are increasingly
important, particularly in the context of embedded applications, which tend to
spend much of their time in a reduced power state to conserve energy, waking in
response to internal and external interrupts. We focus on the rigorous character-
ization and validation of such systems. The discussion is presented in the context
of nesC [12], a component-based dialect of the C programming language, using
examples from the TinyOS [14] distribution, the most popular operating system
(library) of its kind for building wireless sensor network systems. However, the
basic principles of the runtime verification approach are applicable to a range
of languages and systems, including standard event-based systems developed in
Java, and interrupt-based systems developed in other embedded C dialects.

Reactive systems often depend on external stimuli, e.g., from an attached
sensor or control system. These systems are commonly implemented using an
event-driven programming style, encoding the application’s behavior in the form
of a state machine, with actions tied to each state. The transitions among these
states are initiated internally by the application, as well as through external
signals. In this style of expression, all concurrent behaviors are explicit. So while
well-suited to accommodating interrupt behavior, it poses a significant burden in
terms of program understanding. Program logic is partitioned into disjoint units
that are often textually distant; the state shared among these units must be
managed manually, including control flow state [2]. Not only are these programs
more difficult to understand, the transition from synchrony to asynchrony pre-
cludes the application of contract-based specification and validation mechanisms
— arguably the most powerful tools for ensuring program correctness.

Contract specifications [23] have proven valuable for developing and validat-
ing component-based software. Unfortunately, pre- and post-conditions do not
support the encoding of event semantics, which dictate properties on the call
sequence of an execution. Without encoding call sequence properties, the con-
tracts are not as useful; the pre- and post-conditions need to be contextualized
by when a particular method invocation must occur. The latest attempt at defin-
ing interface contracts for TinyOS components suffers this same limitation [3].
The contracts do not preserve the timing context of method calls, offer little
abstraction, and leave virtually no implementation freedom.

We use the concept of a trace to specify reactive behavior in a precise man-
ner. Given the high degree of expressivity of trace variables, this may not be
surprising (though our approach is novel). Here is the surprising part: The trace
—traditionally viewed as a brute-force, heavy-weight mechanism— can be used
to specify reactive behavior in a manner that is both concise and accessible.
Using the trace construct, we define the notion of a promise that an operation
makes about its future behavior. This promise, captured in a specialized promises
clause, accompanies traditional pre- and post-conditions in the contract.

There has been extensive work in runtime validation using various temporal
logics and associated tools. Despite their expressive power, there is little evi-
dence of programmer adoption. The contributions of this paper are of an applied



nature, serving as a bridge from the theoretical programming languages commu-
nity to a popular programming domain. The goal is to provide a practical toolset,
both in terms of language extensions and supporting software tools, to enable
practitioners to make use of temporal concepts. Our specification approach is
to recast traditional temporal specifications as time-indexed state vectors, and
to introduce suitable language notations to integrate the resulting conditions as
part of state-based pre- and post-conditions. The supporting tools check these
conditions to the extent possible.

To support the use of promises in sensornet development, we extend the nesC
tool-chain to accommodate an optional promises clause as part of a method’s
signature. At compile-time, the promises are used to generate runtime monitors
that are woven throughout the resulting application image. If a promise is vio-
lated, the monitors signal the violation, notifying the developer, and potentially
triggering corrective measures. We describe the design and implementation of
the tool-chain extensions and demonstrate their use across a significant set of
commonly used components within the TinyOS distribution. Finally, we present
a detailed analysis of the runtime overhead these extensions introduce and show
that the overhead is modest in most cases.

2 TinyOS and nesC

TinyOS [14] is a software component library designed for constructing sensornets.
The components and the programs which use them are written in nesC [12], a
dialect of C that supports component-oriented, event-driven programming.

A nesC program consists of interfaces and modules. A nesC interface is anal-
ogous to a Java interface and defines the command signatures that must be
provided by implementations of that interface. An interface may additionally
define one or more events that will be signaled by an implementation. An event
declaration defines the signature of its callback handler.

A nesC module defines a set of interfaces provided by the component, and
a set of interfaces used by the component. The module is then responsible for
implementing the commands that it provides and relies on the commands that
it uses to satisfy those implementations. The module is also responsible for im-
plementing the events (i.e., handlers) defined by the interfaces that it uses.

Long-running operations in TinyOS are implemented as split-phase opera-
tions. In the first phase, the component that initiates the operation (e.g., sending
a message) calls a command to initiate the operation (send()). The component
that receives the command immediately returns control to the caller after regis-
tering the request. This prevents the processor from blocking, allowing the caller
to continue execution. At a later point, when the operation has completed, an
event is signaled (e.g., sendDone(), originating from interrupt context) to the
calling component notifying it of the completion of the split-phase operation.



3 The Specification Approach

1 interface Timer {
2 modeled by: (active: boolean, period: nat number)
3 initial state: (false, 0)
4 command void start(uint32_t delay);
5 command void stop();
6 event void fired();
7 }

Consider the Timer interface shown above. The interface provides commands
to start and stop a timer, and an event that serves as the timer’s periodic signal.
A component using this interface can start a timer, with the expectation that
when delay time units have elapsed, the fired() event will be signaled. Using
simple state predicates, a first spec attempt might look as follows (based on [3]):

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay

While the spec captures the state change induced by the call to start(), it
does not capture the most important impact of the call — at a future time (i.e.,
delay time units later), the fired() event will be signaled. Using a temporal
specification to capture this liveness property, a second attempt might look like:

1 start() � fired()

But such temporal specifications do not coexist well with state contracts, com-
promising compositional reasoning [18]. The desired goal is to express the direct
relationship between the call to start() and the signaling of fired(). To do
so, we introduce our main specification mechanism — namely, fτ , pronounced
“future trace” of execution. The future trace of a component is the sequence of
method footprints (both incoming and outgoing) that the component will ulti-
mately participate in. Using fτ , we can make an assertion that as a result of the
call to start(), the fired() event will be signaled in the future. To simplify the
expression of assertions defined over fτ , we introduce two predicates, CallAt()
and CallBet():

1 CallAt(source, target,method, time) ≡
2 (fτ [time].s = source) ∧ (fτ [time].t = target) ∧ (fτ [time].m = method)

CallAt() is true if the source object places a call to the method body provided
by the target object at the specified time, where time is defined as an index into fτ .

1 CallBet(source, target,method, lb, ub) ≡
2 ( ∃ft : lb < time < ub :
3 (fτ [time].s = source) ∧ (fτ [time].t = target) ∧ (fτ [time].m = method) )

CallBet() evaluates to true iff the call occurs within a specified window,
given by lower-bound lb, and upper-bound ub, again defined as indices into fτ .
When applying these predicates, we often wish to disregard the source and/or
target clauses. Rather than introducing additional predicates, we introduce the
special object value −, indicating “don’t care”; object = − evaluates to true for
all object values. With these definitions in place, consider a third attempt at
specifying Timer.start():



1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay ∧ CallBet(self,−,fired, now,∞)

The last conjunct states that at some time in the future (i.e., after the current
time, now), a fired event will be signaled. Now let us consider the rest of the
interface. The stop() command stops an active timer. In terms of fτ , the com-
mand guarantees that there is no fired() signal in the future, between current
time and the “end” of time.

1 command void stop();
2 requires: self.active
3 ensures: !self.active ∧ self.period = 0 ∧ ¬CallBet(self,−,fired, now,∞)

While individually meaningful, the specifications miss a key relationship be-
tween the two commands. In the case of start(), the method can guarantee a
fired() event in fτ only if there is no call to stop() in the intervening dura-
tion. Similarly, a call to start(), after a call to stop() will, in fact, introduce
a fired() event in fτ . Accounting for this in the specifications of start() and
stop() results in this next attempt:

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay ∧
4 ∃i : now < i : [CallAt(−,self,stop, i) ∧ ¬CallBet(self,−,fired, i,∞)] ∨
5 [¬CallBet(−,self,stop, now, i) ∧ CallAt(self,−,fired, i)]
6 command void stop();
7 requires: self.active
8 ensures: !self.active ∧ self.period = 0 ∧
9 ∀i : now < i : CallAt(self,−,fired, i) =⇒ CallBet(−,self,start, now, i)

While improved, the specifications are no longer independent. A post-condition
is intended to capture only what is true about the component upon successful
termination. The last conjunct in each post-condition is a predicate on the future
behavior of the component. One way of addressing this is to elevate predicates
on fτ to an invariant on the component, succinctly capturing all correct inter-
leavings of command invocations. Each command specification then refers only
to the corresponding command, independent of other commands. The invariant
for the Timer interface is as follows:

1 ∀i : [[CallAt(−,self,start, i)
2 =⇒ ∃j : i < j : CallAt(self,−,fired, j) ∨ CallBet(−,self,stop, i, j)] ∧
3 [CallAt(self,−,fired, i)
4 =⇒ ∃h : h < i : CallAt(−,self,start, h) ∧ ¬CallBet(−,self,stop, h, i)]]

The first conjunct states that each call to start() results in a future call to
fired(), or there is an interleaving call to stop(). The second conjunct states
that every call to fired() must have been preceded by a call to start(), and
there must have been no interleaving call to stop(). Given this invariant, the
command contracts can again be expressed as simple state assertions on the
abstract model. However, the split-phase correspondence between start() and
stop() is left implicit. This is a useful relationship for developers, one that can
be captured with a new promises clause.

The promises clause defines an obligation that a component must meet at
some point after termination of the current command. It is the dual of the



expects clause [18], which describes the obligations that a component expects
clients to meet after successful termination of an operation. The key difference
between expects and promises is in the “direction” of the deferred method call.

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired()

Operationally, in addition to the control-flow context and variable values in
each state of the program, each component maintains a promise set – a set of
actions that it has promised to other components. For example, upon successful
termination of the start() method, the Timer component promises to signal
fired() on the caller. The complete specification of Timer is as follows:

1 interface Timer {
2 modeled by: (active: boolean, period: nat number)
3 initial state: (false, 0)
4 maintains:
5 ...invariant clause presented above...
6 command void start(uint32_t delay);
7 requires: !self.active
8 ensures: self.active ∧ self.period = delay
9 promises: signal caller.fired()
10 command void stop();
11 requires: self.active
12 ensures: !self.active ∧ self.period = 0
13 event void fired();
14 requires: self.active
15 ensures: !self.active ∧ self.period = delay
16 }

The promises clause on start() specifies both halves of the split-phase op-
eration, adding significant reasoning value for client programmers. Consider a
program that invokes foo(), followed, after a delay of 1000 time units, by bar():

1 void op1() { foo(); call Timer.start(1000); }
2 ...
3 event void Timer.fired() { bar(); }

After calling foo(), op1() starts a timer and terminates. The call to bar()
appears within the event handler of fired(). Without the promises clause, there
is no indication of where program control will continue once the timer expires.

3.1 The Invariant as an Idiom

The invariant on the future trace has broad applicability in reactive program-
ming. In nesC, the invariant serves as an idiom for specifying interfaces that con-
tain a split-phase operation started by SPOpStart() and completed by SPOpDone();
and contain an operation cancelSPOp(), used to cancel an operation after it has
been initiated. The invariant idiom for such a component is:

1 ∀i : [[CallAt(−,self,SPOpStart, i)
2 =⇒ ∃j : i < j : CallAt(self,−,SPOpDone, j) ∨ CallBet(−,self,SPOpCancel, i, j)] ∧
3 [CallAt(self,−,SPOpDone, i)
4 =⇒ ∃h : h < i : CallAt(−,self,SPOpStart, h) ∧ ¬CallBet(−,self,SPOpCancel, h, i)]]



The structure mirrors the “instantiated” invariant for the Timer interface. As
another example, consider applying the idiom to the Send interface in TinyOS,
used to send wireless messages in a network. The idiom correspondence is as fol-
lows: send() corresponds to SPOpStart(), sendDone() corresponds to SPOpDone(),
and cancel() corresponds to cancelSPOp(). Combining the instantiated specifi-
cation idiom with the usual state predicates yields the following specification:

1 interface Send {
2 modeled by: (active: boolean, message: string)
3 initialization ensures: (false, <>)
4 maintains:
5 ...instantiated invariant...
6 command error_t send(message_t* msg, uint8_t len);
7 requires: !self.active
8 ensures: self.active ∧ self.message = #msg
9 promises: signal caller.sendDone()
10 command error_t cancel(message_t* msg);
11 ...standard state conditions...
12 event void sendDone(message_t* msg);
13 ...standard state conditions...
14 }

3.2 Refining Promises

Conditional Promise. Consider the Send interface. When send() is invoked, the
message to be sent is placed in an outgoing buffer. If this step completes, send()
returns SUCCESS; otherwise, it returns FAIL. The return value communicates to
the client that sendDone() will be signaled only if the message is successfully
scheduled for transmission. Accordingly, we modify the specification of send():

1 command error_t send(message_t* msg, uint8_t len);
2 requires: !self.active
3 ensures: self.active ∧ self.message = #msg
4 promises: (retval == SUCCESS) =⇒ signal caller.sendDone()

Conditional promises, which allow for a promise to be made contingent on a
state assertion, are a specialization of the basic idiom. The basic idiom assumes
that commands always complete in a state that guarantees the promise. Condi-
tional promises can be used in cases where such an assumption is unrealistic.

Timed Promise. It is often useful to specify when invocations must occur. Con-
sider again the Timer interface. When a timer is started, it is not enough to
promise that fired() will eventually be signaled. It is also necessary to state
that the event will be signaled after delay time. We can strengthen the specifi-
cation of start() as follows:

1 command void start(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired() within delay

Repeat Promise. In some cases, a single split-phase SPOpStart() can lead to
multiple event signals. Consider, for example, a periodic timer. In such cases,
the promises clause includes the repeat keyword, signifying that the event will
be signaled continuously until the cancel operation is called by the client. We
can specify the start of a periodic timer using a repeat promise as follows:



1 command void startPeriodic(uint32_t delay);
2 requires: !self.active
3 ensures: self.active ∧ self.period = delay
4 promises: signal caller.fired() within delay repeat

Notice here that the promise includes both a time limit and a repeat condition.
In practice, most promises have multiple refinement annotations.

4 nesC / TinyOS Tool-Chain Extensions

To assist developers use our approach, we have developed extensions to the nesC
compiler . Specifically, we have extended the nesC parser to accommodate a vari-
ation on the specification syntax introduced in the previous sections. Further, we
have modified the compiler to enable the generation of runtime monitoring logic
used to detect promise violations. This logic is automatically woven throughout
the source base, if requested. For our case studies, we target a significant subset
of the components and applications included in the TinyOS 2.1.1 distribution.

4.1 Annotations

To support promises, we introduce command-level annotations within the nesC
interface grammar. When specifying that a given command issues a promise,
the developer introduces the following annotation on the event signature, where
the <event> parameter specifies the signature of the event to be invoked in the
future: @promises <event>

To support refined promises, three subordinate annotations (applied beneath
the root @promises annotation) are introduced. The first is used to support a
conditional promise; it imposes a condition on the return value of the initiating
command. A <condition> clause specifies a value to compare against the initi-
ating command’s return value. Only if these values match is a promise made:
@condition <condition>

The second subordinate annotation supports timed promises. The annotation
specifies that the promised event will be invoked within <p> time units, where
the unit of measure is (at present) specified at compile time: @within <p>

The final subordinate annotation supports repeat promises. This annotation
accepts no parameters and specifies that the promised event will be invoked
repeatedly: @repeat

Consider the application of these annotations in specifying the behavior of
the SplitControl power management interface in TinyOS. The interface has two
commands, start() and stop(), with two corresponding events, startDone() and
stopDone(). The start()/ startDone() operation is used to initialize a peripheral,
while the stop()/stopDone() operation is used to put a peripheral into a low-
power state. The commands, return codes, and events have the usual meanings.
The annotated signature of start() is:

1 // @promises startDone
2 // @condition SUCCESS
3 command error_t start();



Table 1. Annotated TinyOS 2.1.1 Interfaces

Interface Command Promised Event Periodicity Timed Condition

Send send sendDone singleton NO SUCCESS
AMSend send sendDone singleton NO SUCCESS

CC2420Config sync syncDone singleton NO SUCCESS
Tcp connect connectDone singleton NO SUCCESS

Mount mount mountDone singleton NO SUCCESS
Read read readDone singleton NO SUCCESS

ReadStream
postBuffer bufferDone singleton NO SUCCESS

read readDone singleton NO SUCCESS

SplitControl
start startDone singleton NO SUCCESS
stop stopDone singleton NO SUCCESS

Timer
startOneShot fired singleton YES (none)
startPeriodic fired repeat YES (none)

ConfigStorage
read readDone singleton NO SUCCESS
write writeDone singleton NO SUCCESS

commit commitDone singleton NO SUCCESS

LogWrite
append appendDone singleton NO SUCCESS
erase eraseDone singleton NO SUCCESS
sync syncDone singleton NO SUCCESS

LogRead
read readDone singleton NO SUCCESS
seek seekDone singleton NO SUCCESS

Next recall the Timer interface. This interface includes a command
startPeriodic(), which makes a promise that the event fired() will be invoked
repeatedly, with a period specified as argument. The command does not return
a value, so the promise is unconditional. Here is the annotated signature of
startPeriodic():

1 // @promises fired
2 // @within dt
3 // @repeat
4 command void startPeriodic(uint32_t dt);

These are demonstrative examples. We have annotated all of the core inter-
faces in TinyOS 2.1.1 to specify the appropriate promises (Table 1).

4.2 Overhead Evaluation

To use the PromiseTracker tool with TinyOS applications, we recompiled all of
the constituent applications to use the annotated interfaces and corresponding
runtime monitors. The number and types of promises introduced in each ap-
plication are summarized in Table 2a. Each application is intended to illustrate
only one or two TinyOS concepts. As such, each application uses a small number
of split-phase operations. Table 2b shows the overhead introduced by Promise-
Tracker. In absolute terms, the overhead is nearly the same in each application.

To evaluate PromiseTracker in a realistic scenario, we instrumented a com-
mon spanning tree data collection protocol. Upon deployment, the nodes in the
network organize themselves into a spanning tree, with the base-station at the
root of the tree. All nodes collect data from their sensors and transmit the data
up the tree toward the root. When instrumented with PromiseTracker, the span-
ning tree protocol uses a total of 30 promises and nearly all of the core interfaces
in TinyOS. In terms of overhead, RAM usage increased by 33% (from 1,612b to
2,138b), and ROM usage increased by 13% (from 35,404b to 40,130b).



Table 2. TinyOS Evaluation Results

(a) Number of Clauses Introduced

Application
Number of Promises

single
basic

single
timed

repeat
timed

Blink 0 0 3
BaseStation 4 0 0
MultihopOscilloscope 5 0 1
MultihopOscilloscopeLqi 5 0 1
MViz 5 0 2
Oscilloscope 3 0 1
PowerUp 0 0 0
RadioSenseToLeds 3 0 1
RadioCountToLeds 3 0 1
Sense 1 0 1

(b) Application Sizes After Injection

Application
Memory Overhead

RAM (bytes)/ROM (bytes)/
overhead (%) overhead (%)

Blink 672 / 92% 10260 / 74%
BaseStation 2111 / 16% 18696 / 16%
MultihopOscilloscope 3947 / 9% 34716 / 10%
MultihopOscilloscopeLqi 3030 / 12% 30604 / 12%
MViz 2176 / 18% 38814 / 10%
Oscilloscope 1020 / 56% 24948 / 30%
PowerUp 560 / 99% 7032 / 79%
RadioSenseToLeds 990 / 58% 24890 / 30%
RadioCountToLeds 902 / 64% 19736 / 39%
Sense 696 / 83% 15480 / 48%

file search operation 
search

promise 
search

code 
regeneration

code 
injection

Fig. 1. Monitor Generation Process

4.3 Monitoring Promises at Runtime

The runtime monitoring logic generated by PromiseTracker is automatically wo-
ven into a target system image to detect and report violations at runtime. This
is useful either as a debugging aid or as the foundation for fault recovery.

A summary of the monitor generation process is shown in Figure 1. The first
step is the file search, which mirrors the behavior of the nesC make system. The
project makefile is parsed to identify the top-level component, which is then
parsed using the nesC Analysis and Instrumentation Toolkit [10] to identify all
implementation modules linked (transitively) from the top-level component.

The next step, the operation search, is the most compute-intensive. All of the
implementation modules identified in the previous step are parsed and analyzed.
This yields three hash-tables containing information about all of the interfaces
used in the target application, all of the commands invoked, and all of the events
signaled, respectively.

At this point, the promise search, a second-level parse is performed on each of
the interfaces identified in the previous step. For each command invoked in the
application, the corresponding declaration in the interface is examined to deter-
mine whether there are associated promise annotations. If so, the annotations
associated with the command are added to the information contained within the
command hash-table.

Next, the code injection step is performed, which introduces the runtime moni-
toring logic. The most basic component of this step is the introduction of support
components and data structures to record pending and failed promises. In addi-
tion, for each annotated command invoked in the application, instrumentation
is introduced at the call site to capture the (perhaps conditional) promise being



made. Similarly, the corresponding <event> specified in the promises annotation
is instrumented to capture the attempt to satisfy the promise.

Finally, the code regeneration step is performed to generate augmented nesC
source materials ready for compilation and installation on the target device(s).

Implementation Details. The PromiseTracker interface lies at the core of the
system. The interface provides commands to register new promises, flag that
particular promises have been satisfied, and check for pending promises. An
implementation of this interface is linked into every monitored application. This
single instance is shared across all module implementations that invoke methods
involving a promise.

During code analysis, each call site involving a command that establishes a
promise is identified. To differentiate these promises and monitor their correct-
ness over time, the analysis stage assigns a unique identifier to each promise, a
promiseID. The identifier serves as an index into an array that stores informa-
tion about each promise. The data structure used to store information about an
unbounded promise is as follows:

1 struct UnboundedPromise { uint8_t state; }

UnboundedPromise defines a single field, state, used to record the current state
of the promise. There are only two possibilities, PENDING and SUCCESS. The first
indicates that a promise of future behavior has been made. The latter indicates
that there is no pending promise. It is interesting to note that these are the
only two states required since an unbounded promise can never be violated in
a finite prefix of a computation. However, recording unbounded promises at the
time they are made and keeping a tally of unfulfilled promises is a valuable tool
for system developers. This class of problems (unfulfilled promises) represents a
large class of errors in embedded networked systems; the identification of where
these errors originate is useful. The data structure used to store information
about a timed promise is as follows:

1 struct TimeBoundedPromise {
2 bool repeat; uint8_t state;
3 uint32_t timeConstraint, startTime; }

TimeBoundedPromise defines four fields. The first, repeat, is a boolean that
records whether the promise is a repeat promise. The second, timeConstraint,
stores the time constraint, <p>, specified as part of the @within annotation. The
third, startTime, stores the time at which the promise obligation was registered.
(Comparing the current system time to startTime and timeConstraint is per-
formed to detect timing failures.) Finally, the state field records the current
state of the promise. As before, a promise may be in the PENDING or SUCCESS
state. In addition, a timed promise may be in the MARKED or FAIL states. When a
promise is MARKED, it indicates that the specified future event has been signaled,
but the timing has not yet been checked. The FAIL state indicates that a promise
of future behavior was not satisfied within the specified time limit.

The essential elements of the PromiseTracker interface are: makePromise(),
markPromise(), and checkPromise(). Calls to these methods are inserted
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automatically during the instrumentation process. When a command that in-
cludes a promises clause is invoked, makePromise() is called to register the promise
of future behavior. Note that if the promise is a conditional promise, the re-
turn value of the command is compared to the <condition> specified in the
@condition annotation; makePromise() is not called if there is a mismatch. The
call results in the corresponding promise being marked as PENDING. Similarly, a
call to markPromise() is introduced in the corresponding event. In the case of an
unbounded promise, the call results in the promise state being set to SUCCESS.
In the case of a timed promise, the state is set to MARKED. The complete lifecycle
of an unbounded promise is illustrated in Figure 2.

The lifecycle of a singleton, timed promise is more complicated, as shown in
Figure 3. The call to markPromise() is not the end of the lifecycle; an additional
step remains. Specifically, the monitoring logic must check whether the promise
was satisfied within its deadline. This is done using the checkPromise() method.
At the time the promise was made, makePromise() initiates a timer with a period
equal to the specified promise deadline. When the timer fires, checkPromise() is
invoked. If checkPromise() finds the promise in the PENDING state, it means the
promise has not been kept, and therefore, the deadline has not been met. If the
state is MARKED, it means the promised event has already been signaled within
the deadline. For singleton, timed promises, if the deadline is met properly, the
promise is marked SUCCESS, otherwise it is marked FAIL.

The lifecycle of a repeat, timed promise is similar, as shown in Figure 4. This
type of promise is also examined by checkPromise() when the deadline timer
expires. If the promised event has been signaled by the deadline (MARKED), the
promise is returned to the PENDING state to wait for the next promised event. If
the promised event has not yet been signaled (PENDING), the promise has been
violated and is marked FAIL.



4.4 Using PromiseTracker during Development

Once interfaces have been annotated using promises clauses to establish links
between commands and events, the PromiseTracker tool can be used as a de-
bugging aid during development. When a developer chooses to use a particular
interface, the promises provide a better understanding of command and event
behaviors. During the development cycle, the developer can use PromiseTracker
to identify the promises that have been made, and to inject code to monitor these
promises. At any point during execution, the developer can query the state of
all promises in the system. Errors involving promise violations are notoriously
difficult to identify using traditional debugging methods. The capability that
PromiseTracker affords in tracking the status of each promise provides value to
developers, making the development process more predictable.

5 Related Work

Specification techniques for reactive systems usually include explicit statements
of safety and progress properties. Popular specification languages such as UNITY
[6] and TLA [19] model concurrency using nondeterministic interleaving of ac-
tions. Other major approaches to capturing concurrent behavior include rely-
guarantee [1,15,29], hypothesis-conclusion [6], and assumption-commitment [8].
All these techniques suffer from a similar problem; they do not map well to
procedural languages.

Contract specifications [23] map well to procedural code, and [18] presents
techniques to capture concurrent behavior in contracts. The promises clause we
have presented is a dual to the expects clause presented in [18]. Contract spec-
ifications have been written for TinyOS before [3]; however, these contracts do
not capture the reactive nature of the components. In particular, these contracts
do not capture the relationship between the halves of a split-phase operation.

Others have worked on capturing the behavior of TinyOS applications. [17]
presents a technique to automatically derive state machines from TinyOS pro-
grams. They use symbolic execution to infer the execution trace of an applica-
tion, and based on this trace, to construct a finite state machine that represents
the behavior of the program. There has also been work in runtime monitor-
ing of TinyOS applications [13]. TOSTracer is a lightweight monitor that runs
concurrently with the application program and generates a sequence diagram
representation of the application’s execution. [4] describes work on verifying
TinyOS programs using the CBMC bounded model checker [7].

Li and Regehr [22] present T-Check, a model checking approach for finding
interaction bugs in sensor networks. T-Check is implemented on top of Safe
TinyOS [9] and allows developers to specify both safety and liveness properties.
T-Check incorporates multiple models of non-determinism in order to explore
the complete state space of a sensornet. Some of the liveness bugs that T-Check
can capture (node-level bugs) can be expressed as promises. Kleenet [26] is a tool
based on symbolic execution for discovering interaction bugs in sensor networks.
Kleenet has been integrated into Contiki [11].



Several authors have considered monitoring runtime errors using pre-defined
specifications. The Monitoring and Checking framework (MaC) [20] is an ap-
proach to conducting runtime analysis of a system’s execution. MaC uses a
formal language to specify execution requirements, which assert events and con-
ditions in a high-level manner. A monitoring script is used to link the high-level
events and conditions with low-level information at runtime. Monitored informa-
tion is converted to events, which are verified based on the requirements. Based
on MaC, [28] presents an approach that uses verification results and user spec-
ifications to detect errors and adjust the system back to normal execution. [21]
presents an approach that not only monitors execution and logs errors, but also
takes programmers’ system recovery specification as input to perform a desired
repair. These efforts focus on monitoring program execution using user-defined
specs, whereas our work is focused on tracking split-phase operations at runtime
by extending the nesC tool-chain to support command-level annotations.

Dustminer [16] is a diagnostic tool that automatically detects root causes of
interaction bugs and performance anomalies in sensor networks. For example,
after analyzing collected logs from good nodes and crashed nodes in a sensor
network running LiteOS [5], the packet received event was identified as highly
correlated with the get current radio handle event in the good nodes, whereas
it was highly correlated with the get serial send function event in the crashed
nodes. By capturing unexpected event sequences that cause errors, Dustminer
focuses on non-localized errors when nodes run distributed protocols. As such,
Dustminer helps with diagnosing errors that occur in distributed scenarios, which
are usually hard to reproduce. However, Dustminer is not designed to help lo-
calize the events in the code that cause these errors.

[30] presents a technique for TinyOS applications that reconstructs control-
flow paths between procedures based on captured concurrent events and control-
flow paths inside each event. The target program is statically analyzed, and
tracing statements are inserted in each event function body. At runtime, the
recorded trace is stored in RAM, and then compressed and transferred to flash.
When an error is detected, the stored trace is sent to the base-station. By replay-
ing the trace and reproducing the execution sequence in a simulator or debugger,
the programmer is better able to locate the fault and the call sequence that led
to the fault. This tool requires manual operations and depends highly on the
capability of the programmer to identify the error and problematic trace.

There is a vast literature base exploring runtime monitoring for error detec-
tion. [27] presents an approach to monitoring the execution of reactive systems
and recovering from runtime failures. This approach uses a module that learns
the behavior of a reactive system, and when an error is detected, applies a repair
action. The choice of which repair action to use is based on an analysis of the
execution history. [24] presents a discussion of how to design runtime monitors
for real-time systems. The focus is on how to enforce real-time guarantees. Copi-
lot [25] focuses on hard real-time guarantees. The monitoring system samples
observable state variables; the monitor and the system share a global clock.



6 Conclusion

Asynchronous behavior in reactive systems is difficult to capture using tradi-
tional contract-based specification mechanisms. Such behavior is usually cap-
tured using temporal specifications, but the mapping between such specifications
and corresponding implementations in procedural languages is cumbersome. In
this paper, we have presented a specification idiom that can be used to capture
asynchronous behavior in reactive systems using the concept of a future trace.
When a split-phase operation is initiated, the start command makes a promise
that an event will be signaled in the future. The promise is encoded as part of
the method’s contract along with its pre- and post-condition.

The promises clause offers a way to capture asynchronous behavior in contract
specifications that can be easily integrated with software written in procedural
languages such as C. Split-phase operations are particularly common in embed-
ded systems, where blocking operations are not viable. At this point, the promises
we are able to specify and capture are only local to a single sensor node. While
these represent a large class of potential interaction bugs, interactions between
commands and events across nodes represent an even larger class of such bugs.
These are even harder to find. We are currently working on extending the seman-
tics of the promises clause to be able to express such cross-node promises. Once
the semantics are extended, tool support can be readily added. In fact, we already
have tools that can capture execution snapshots across nodes in a sensor network
and check predicates; promises can be added to such a set of predicates.

As a case study, we have written specifications for TinyOS, which is designed
for sensornets. As a way of enforcing promises at runtime, we have implemented
a runtime monitoring infrastructure that runs in parallel with the application
running on an embedded microcontroller. The runtime monitor, PromiseTracker,
injects bookkeeping calls to track each promise made, and to check if the promise
is satisfied. This runtime monitor, implemented for TinyOS 2.1.1, serves as a
powerful debugging aid in the presence of asynchronous behavior.
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