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Automotive simulations often prohibit the use of traditional optimization techniques because these 
simulations are complex and computationally expensive. These two qualities motivate the use of 
evolutionary algorithms and meta-modeling techniques respectively. In this work, we apply 
biogeography-based optimization (BBO) to optimize radial basis function (RBF)-based lookup table 
controls of a variable camshaft timing system for fuel economy. Also, we reduce computational search 
effort by finding an effective parameterization of the problem, optimizing the parameters of the BBO 
algorithm for the problem, and estimating the cost of a portion of the candidate solutions in BBO with 
design and analysis of computer experiments (DACE). We find that we can improve fuel economy by 1.7% 
over the original control parameters, and we find a tradeoff in population size, and an optimal value for 
mutation rate. Finally, we find that we can use a small number of samples to construct DACE models, and 
we can use these models to estimate a significant portion of the candidate solutions each generation to 
reduce computation effort and still obtain good BBO solutions.

1. Introduction

Internal combustion engine (ICE) variables have been optimized 
for over half a century, although the optimization approaches and 
objectives have changed over the years in response to the changing 
environment in which these engines are used. Early work in ICE 
optimization includes an application of control systems theory in 
which the spark timing and air intake throttle are manipulated as 
inputs to optimize the output brake mean effective pressure (BMEP) 
(Draper and Li, 1951). The oil embargo to the USA in 1973 (Society of 
Automotive Engineers, 1976) and the subsequent corporate average 
fuel consumption (CAFE) standards (Congress of the United States: 
Office of Technology Assessment, 1991) set by the US government 
shifted the auto industry’s focus toward optimizing ICEs for fuel 
economy, instead of engine power output as in (Draper and Li, 1951). 
The reduction of exhaust emissions formed into an objective at about 
the same time, starting with 1966 regulations in California (Ribbens, 
1984). Further, the introduction of the microprocessor into engine 
control in the middle 1970s greatly simplified tuning of engine 
performance over previous analog, mechanical engine control, and 
thus facilitated further ICE optimization (Ribbens, 1984).

Since the 1970s, there has been an explosion in the application of 
new engineering techniques such as standard and multi-objective

evolutionary algorithms (EAs) (Zhao and Min, 2013), (Kim et al., 2005) 
and artificial neural network-based surrogate models (Wu et al., 2006) 
to the optimization of different ICE actuator variables such as variable 
valve actuation (VVA), spark angle, and air-fuel (A/F) ratio (Sellnau and 
Rask, 2003; Zhao and Min, 2013) for fuel economy and emissions.

EAs are robust global optimizers and only require ways of 
evaluating the fitness of solutions, instead of differentiable or 
analytical models for a given problem. The robustness of EAs 
makes them attractive options for complex, nonlinear, multimodal, 
or black-box optimization problems like ICE optimization, and thus 
we have chosen an EA called biogeography-based optimization 
(BBO) for this problem.

BBO is an EA inspired by biogeography, which is the study of 
the migration of species between habitats (Simon, 2008). The 
novel evolutionary operator in BBO is migration. With migration, 
each solution in the population is given an immigration rate and 
an emigration rate based on its fitness; these migration rates 
determine the likelihood that a solution will give or receive 
features from other solutions in the population.

We are primarily interested in research on our automotive 
problem and applications of general EAs to this problem, instead 
of pure EA research. Because of this, we have chosen to use BBO as 
a typical EA. We justify our use of BBO by noting that it outper- 
forms many EAs on a variety of benchmarks (Simon, 2008), and 
some promising theoretical research has been done to support it, 
including an analysis of BBO’s migration models (Ma and Simon, 
2011), a theoretical comparison between BBO and GAs (Simon 
et al., 2011b), and a probabilistic study of BBO (Simon, 2011a). BBO



has also been successfully applied to a variety of nonlinear control 
problems such as fuzzy logic-based robot path tracking control 
optimization, open-loop knee prosthesis control, and load dis- 
patching in power systems (Thomas et al., 2011; Wilmot et al., 
2013; Bhattacharya, 2010), and so it is reasonable to expect it to 
perform well for ICE control optimization.

Automotive simulations are often computationally expensive, 
and if they are to be used as part of a cost function for an EA, they 
must be run many times. This fact poses a problem of particularly 
high computational effort. One solution is the use of surrogate 
models of the cost function, such as Design and Analysis of 
Computer Experiments (DACE) (Simon, 2013). DACE is a promising 
Gaussian process surrogate modeling method that applies the 
algorithm of kriging to the estimation of deterministic computer 
experiments. DACE has been applied to engineering meta- 
modeling (Wang and Shan, 2007) and reduction of fitness function 
evaluations in EAs (Jin and Branke, 2005), and the variety of EA 
applications of DACE has inspired us to use it for our problem.

Further, the choices of EA parameters, (i.e., population size) has an 
effect on the performance of the EA. For instance, a sensitivity analysis 
of the parameters of a particular GA on two different scheduling 
problems shows that crossover rate is the most important for one 
problem, and population size is the most important for the other (Pinel 
et al„ 2011). This problem-dependent sensitivity motivates us to 
optimize the EA parameters for our particular EA and problem, because 
doing so will allow us to find better solutions with less search effort.

Our main contribution to the topic of engine control tuning is the 
development of cam timing control tables that result in a 1.7% 
improvement in fuel economy over the tables that we started with. 
This fuel economy improvement has important implications that are 
explored in Section 4. Also, our use of DACE to reduce EA computa- 
tional effort for automotive system optimization, and our use of sub- 
functions of a vehicle drive trace may both be novel, because we have 
not seen these particular research items discussed in the literature.

The remainder of this paper is organized as follows. In Section 
2, we explore our formulation of the problem, and how we choose 
to construct a parameterization for use with BBO and our applica- 
tion of the DACE algorithm to BBO; in Section 3, we show our 
development of effective BBO and DACE parameters for the cam 
timing optimization problem; in Section 4, we examine BBO 
solutions to the VCT problem; and finally, we draw conclusions 
and suggest future work in Section 5.

2. Problem formulation and related work

The Simulink® vehicle simulation that we use throughout this 
work is of a passenger vehicle equipped with a turbocharged 
gasoline powered direct injection engine, and includes variable 
timing of both intake and exhaust camshafts. Although there are a 
variety of control systems that we can optimize in this vehicle, we

restrict our attention to the variable camshaft timing (VCT) system. 
VCT is a particular type of VVA technology in which the timing of 
intake valves, exhaust valves, or both are manipulated by changing 
the angular position of one or more camshafts with respect to the 
crankshaft.

Our objective is to optimize the fuel economy of a simulated 
vehicle by adjusting the control of the vehicle’s VCT. Specifically, 
we make modifications to lookup tables that define the controller 
set points for the two actuators in this system - the independent 
variables used for these lookup tables are engine speed and engine 
load, which can be considered the state variables of the ICE system 
(Meyer, 2007). Further, we take three approaches to improve the 
performance of BBO for the problem of optimizing the fuel 
economy of simulated internal combustion engines via adjust- 
ments of intake and exhaust cam timing. The first of these three 
meta-optimization approaches is to make adjustments to the 
problem formulation to make the problem more conducive to 
BBO; the ways we can accomplish this include choosing a para- 
meterization of the optimization problem that is best suited for 
BBO and adjusting simulation parameters, such as driving condi- 
tions. The next approach is to apply modifications to BBO to 
improve its performance in light of the computationally intensive 
nature of the ICE fuel economy problem, and we use surrogate 
modeling with DACE to accomplish this. The third approach is to 
find optimal values of the standard BBO parameters that result in 
the fastest convergence to an optimum solution.

The simulation that we use is of moderate fidelity, in that it 
uses simplified models of combustion and engine flow, and is 
intended for preliminary control system parameter optimization. 
We choose to use this simulation model because preliminary 
parameter optimization with an EA is often an interactive process 
that requires running the simulation many times, and to do so 
using a high fidelity model would be prohibitive in terms of CPU 
time. In order to illustrate what systems and subsystems of the 
vehicle we simulate, we provide a simplified block diagram of our 
Simulink software in Fig. 1.

The intake and exhaust camshaft timing actuators in our VCT 
system are controlled via lookup table mappings that cover a 
limited domain of engine load and engine speed. The reference 
values used for controlling the camshaft timing actuators are 
generated at runtime by linearly interpolating between adjacent 
table values. We have chosen to modify the tables produced via 
prior research. These tables are shown in (Thomas, 2014). We have 
chosen to modify these tables instead of generating completely 
new tables, because the tables we have chosen to modify produce 
good results in simulation tests, despite being suboptimal. We 
have chosen this strategy because using BBO to optimize mod- 
ifications to these tables, rather than using BBO to create new 
tables, effectively reduces the size of the search space and takes 
advantage of prior expert knowledge.

Fig. 1. Block diagram of Simulink vehicle simulation, showing subsystems and quantities that are taken into account, r is the collection of actuator target (set-point) signals 
(note that there are closed-loop controllers within the block labeled “Engine and Actuators" that are not depicted) Tq is the torque output of the engine, To is the torque 
supplied to the wheels, x is the state of the vehicle, including states of the included subsystems, and x is the derivate of the vehicle state.



Further, we have chosen to parameterize these modifications 
(which are arbitrary mappings in (load, speed)-space) with Gaus- 
sian radial basis functions (RBFs) in order to formulate the lookup 
table optimization problem as a parameter optimization problem 
for use with BBO. We choose Gaussian RBFs because each basis in 
such a RBF-based mapping contributes locally about its center, 
while still producing a continuous mapping when they are 
summed. As a result, RBF-based mappings are intuitive, since it 
is easy to visually examine the numerical optimization results. 
Further, depending on which parameters of the optimization 
problem are fixed and which are allowed to vary as independent 
optimization variables, the problem dimension can be made 
relatively small while still retaining a great deal of flexibility in 
the variety of solutions that can be represented.

We generate RBF-based lookup-tables by sampling all of our 
RBFs at all of the (load-speed) points specified by the elements of 
the original lookup tables, and we add the sampled RBF values to 
the original tables at these points. Finally, we set any resulting 
lookup table values outside the range that the actuators can 
produce, [-27, 50], to the nearest minimum or maximum. This 
approach optimizes the parameters (lookup tables) of a specific 
control structure. This is a typical case in industry, where the same 
control structure is applied in multiple instances, each with its 
own lookup table values or calibration parameters.

2.1. RBF parameterization approach

The parameterization approach we have chosen is to fix the 
locations (μ) and the shapes (the widths, σ and the correlation, ρ) 
of the RBFs, while optimizing the heights or magnitudes. The 
choices of these fixed parameters itself is an optimization problem. 
Our approach to this optimization step is to chose these para- 
meters such that the resulting RBFs span the trajectory of the 
simulated vehicle through (load, speed)-space given the original 
actuator lookup tables.

In this method, we chose a fixed number of RBFs to span (load, 
speed)-space, given a subjective inspection of the number of 
clusters of data in the simulation trajectory, and we fix the heights 
of these RBFs to unity. We then manually adjust the locations and 
shapes of the RBFs until the level curves of the unity-height RBFs 
visually correlate with the data from the nominal simulation.

We choose to use the five clusters in our formulation, based on 
results of ad hoc BBO runs. We were able to find better solutions 
using a five cluster formulation than we could with the three and 
10 cluster formulations we tried, which suggests that five clusters 
provides a good tradeoff between search space manageability and 
parameterization flexibility.

Fig. 2 shows the locations and shapes produced via the manual 
pre-BBO step using five clusters of (load, speed) data; Fig. 3 shows 
filled contour plots of the surface made by the sum of the RBFs 
with their heights set to unity. These plots are useful for this 
design process, because they qualitatively show us what areas of 
the controller lookup tables we can adjust with BBO and how well 
these correlate to the (load, speed) subspace that the vehicle 
traverses. The centers of the RBFs are given in captions of Fig. 2 
and Fig. 3. Note that the locations of the centers given in these 
figures do not directly correspond to the RBF parameters used 
with BBO, since these parameters were manually tuned after the 
RBF placement procedure to further to fit the unity height RBF 
surfaces as shown in Fig. 3 to the scatter plots of simulation data as 
shown in Fig. 2. Future work may involve applying a more 
systematic optimization approach to fitting the shapes and loca- 
tions of the RBFs to the simulation data.

Finally, we note we arbitrarily choose to use a search range of 
[-20, 20] for the RBF heights with BBO. This range was chosen 
because it is a round number that is roughly one quarter of the full

Fig. 2. Engine load and speed data scatter plot with circles showing the locations 
and shapes of five RBFs found with an ad-hoc placement approach. We note that 
the first RBF is centered at (525, 0.21), the second, third, fourth, and fifth are 
centered at (700, 0.15), (850, 0.45), (1200, 0.30), and (1600, 0.65).

Fig. 3. Contour plot of the RBF surface created by setting the RBF heights to unity, 
in the case of five clusters.

range of camshaft phase angles, [-50, 27], that can be produced 
by the actuators that we are controlling. Larger search ranges 
could be used, but the slow dynamics of the actuators require that 
difference between adjacent camshaft angle values in the lookup 
tables be small, and giving BBO the freedom to make drastic 
changes to the tables may encourage BBO to produce solutions 
that include large changes between adjacent table values. This 
constraint is important, because if the engine control unit (ECU) 
constantly applies drastic changes to the set points of the camshaft 
timing actuators (which may occur during slow, stop-and-go 
traffic), the actuators may not be able to reach their set points. 
This may reduce the improvements in efficiency that we can 
obtain with VCT, and may result in an engine operation that is 
undesirable to the driver, as it may constantly and abruptly change 
its performance characteristics. Future work may include adjust- 
ments of the search ranges, and formulating the problem as a 
constrained one.

2.2. Simulation drive traces

The choice of simulation parameters can have a drastic effect 
on the search effort needed to obtain good solutions, therefore, we 
need to closely examine the vehicle velocity profiles that we 
evaluate the vehicle simulation over. We have chosen to use the 
EPA urban dynamometer driving schedule (UDDS), also known as 
the LA4 cycle (US EPA, 2012). We have also developed a method to 
pick sub-traces from a given drive trace. Any particular drive trace 
can be split into a sequence of sub-traces that each begin with a 
period of idle (vehicle velocity equal to zero) and end with the 
next period of idle. For instance, the LA4 city trace used in our 
work can be split into 18 different sub-traces, including one sub- 
trace that consists only of a period of idling. A plot of the LA4 drive 
trace with vertical lines denoting the beginning of each sub-trace 
is shown in Fig. 4.



The sub-trace approach is a way of extracting sub-functions of 
the cost function as mentioned in (Simon, 2013). The details of this 
approach (especially initial velocity, v0=O) are important because 
they ensure that the initial conditions of each sub-trace are 
consistent.

We can determine which sub-traces to use for approximating 
the full fitness function trace by examining quantities such as root- 
mean-square (RMS) velocity and acceleration, the time length of 
the sub-trace (proportional to the number samples in the drive 
trace, since the traces are sampled at a constant rate), and the 
empirically measured CPU time needed to run the simulation over 
that sub-trace. Afterwards, we can determine which of these 
quantities are most strongly correlated with the minimum cost 
of a BBO run to decide which sub-traces to use.

To execute this test, we ran three Monte Carlo simulations of 
BBO over each of the 18 sub-traces and evaluated the sub-traces at 
the four previously mentioned quantities. In order to evaluate how 
well a sub-trace represents the full LA4 city trace and to provide a 
basis for comparisons between sub-traces, we evaluate all of the 
BBO solutions from each run on the full trace during the final 
generation. In other words, the cost (fuel economy) values that are 
discussed in this section are all evaluated on the full city trace, 
though the candidate solutions were evolved using a particular 
sub-trace. The BBO parameters for this test are given in Table 1. 
We note that population size was chosen to be a multiple of 12 to 
reduce overhead, as we run fitness function evaluations with 12 
MATLAB1-’ parallel workers on a 24-core AMD Opteron-based™ PC. 
Also, the number of Monte Carlo simulations was chosen arbitra- 
rily as part of a tradeoff between computational effort and 
collecting a significant sample size.

Pearson correlation coefficients between minimum cost and each 
of the metrics, as well as the associated no-correlation probabilities 
from these Monte Carlo trials are shown in Table 2. Specifically, the 
data in the table are the averages over all sub-traces and over all 
Monte Carlo simulations (i.e., 18 sub-traces • 3 Monte Carlo 
trials=54 simulations). We have chosen to use the Pearson

Subtrace index

Fig. 4. Plot of EPA urban drive cycle with vertical lines showing how we have 
partitioned it into sub-traces. An index is denoted above each sub-trace, and these 
are referred to in the remainder of this paper. Not shown in this plot is the 18th sub- 
trace which consists of all of the idling time between each of the other sub-traces.

Table 1
BBO parameters for the Monte Carlo simulations where we exam- 
ine correlations of various quantities with fuel economy for 
different sub-traces.

Parameter Value

Generation count 20
Population size 48
Mutation probability 0.02
Problem dimension 10
Number of elite solutions 2

Table 2
Correlations between minimum cost after a BBO run and the following metrics; 
RMS velocity, vRMS; RMS acceleration, aRMS; simulation time, Tsim; and CPU time, 
Tcpu. Also shown are the associated probabilities that there is no correlation 
between each metric and final minimum cost.

Metric Pearson's ρ: p-value (Ho)

vRMS -0.6851 0.0017
aRMS -0.5299 0.0237
Tsim -0.1907 0.4485
TCPU -0.1995 0.4273

correlation coefficient because straight lines, and thus linear rela
tionships, can be fit to these data most easily.

Given a confidence interval of 5%, the two metrics that have 
statistically significant correlations are RMS acceleration and 
especially velocity. Further, the fact that all of the significant 
correlation coefficients are negative indicates that running BBO 
over sub-traces that measure higher than average in these metrics 
is more likely than average to result in better solutions. Since there 
is little evidence supporting a correlation between simulation or 
CPU time and minimum cost, we should be able to run for a 
relatively short simulation time and still get good BBO results, and 
it does not really matter how much CPU time it takes (which may 
vary depending on how numerically stiff the problem dynamics 
turn out to be, given the shape of the sub-traces).

Finally, we directly examine the minimum cost after running 20 
generations of BBO. The sub-trace that resulted in the lowest costs 
after running BBO is sub-trace 2. Further, running BBO with the 
full city trace results in minimum costs almost identical to those 
found by running BBO over the second sub-trace. Further, we also 
examined the cost after running various combinations of sub- 
traces (i.e., adding up the fuel consumed by running over both 
sub-traces 2 and 9). We found that these combinations generally 
give poorer costs than sub-trace 2.

The conclusion we can draw from these data is that it is better 
to run over sub-trace 2 than any other individual sub-trace, any of 
the combinations of sub-traces that we have tried, or the full drive 
trace itself. This is because, on average, BBO finds solutions with 
comparable performance when computing cost over sub-trace 
2 and the full city trace (i.e.; the differences in best costs found 
with both are insignificant), yet the simulation time of the full city 
trace is 1371 seconds long, whereas sub-trace 2 is only 174 seconds 
long. This means that, by running sub-trace 2 instead of the full 
trace, we can reduce simulation time, almost by a factor of 8, yet 
still find the best solutions possible given all of the drive traces 
that we have evaluated. One thing that should be kept in mind, is 
that these cost data are computed over the full drive trace as a 
means of comparison, however, this results in a selection bias 
where the solutions that are considered best are the ones that 
result in less fuel consumption over the particular driving condi- 
tions of the full drive trace, and so we again state that we assume 
the driving conditions of the city trace represent the average 
driving conditions faced by the public who would be driving this 
kind of car.

2.3. DACE application to BBO

Because DACE has been applied to other EAs before, it makes 
sense that it can be applied to BBO as well. Although there are 
several evolution control strategies (i.e., several algorithms for 
deciding when to estimate cost with DACE instead of calculating 
it) (Jin and Branke, 2005), we have chosen to develop our own 
strategy for using DACE with BBO to leverage the record of 
evaluated candidate solutions that we keep as a pool of samples 
for generating DACE models.



During each generation, we determine whether to estimate or 
calculate the cost of a candidate solution by comparing the 
Euclidean distance between the solution and the closest DACE 
sample point to it in search parameter space. Two strategies for 
making this decision include picking a fixed number of candidate 
solutions to estimate and choosing those who are closest to their 
nearest sample point, and estimating only those solutions that are 
closer than a given distance threshold to their nearest sample 
points. Fig. 5 illustrates the concept of the closest distance from a 
point that we are estimating and the nearest DACE sample to it, in 
a hypothetical, one-dimensional case. The distance threshold 
strategy makes sense because the mean-squared error (MSE) of a 
DACE model is zero at the sample points used to fit the model, and 
generally increases as one looks further and further away from the 
sample points (Jones et al., 1998). The main drawback to this 
method is the challenge associated with choosing the distance 
threshold given how aggressively we want the EA to estimate the 
cost function. We can alternatively use the MSE expression from 
(Jones et al., 1998) instead of distance to decide which solutions to 
estimate.

The set of samples chosen to generate a DACE model also 
strongly affects the performance of an EA using DACE. Latin 
hypercube sampling is often used for fitting DACE models (Jones 
et al., 1998), because a Latin hypercube sample set can better 
represent a distribution than a uniform sample set, given certain 
conditions (McKay et al., 1979). In contrast, building a DACE model 
from normally distributed samples is a bad idea, because the 
samples will tend to be close together, and the correlation matrix, 
R, which must be inverted in the process of fitting or sampling 
from a DACE model, becomes nearly singular (Jones et al., 1998). To 
see this, we show the DACE formula used to estimate the fitness 
function at point x* in the problem domain.

/(x*)=// + r(x*)'R '(/(x)-//lM) (1)

Note that r(x*) is the vector of correlations between the point at 
which we want to estimate the cost function and the samples used 
to generate the DACE model, R is the matrix of correlations 
between the DACE samples, μ is the constant term of the DACE 
model, M is the number of samples used to generate the DACE 
model, and 1M is an M element vector containing all ones. If there 
are samples that are very close to one another, R will become 
nearly singular and thus pose numerical problems. This motivates 
us to find a sampling heuristic that results in well-conditioned 
DACE models.

In order to obtain sample sets for use with DACE, we have 
developed a simple, sub-optimal sampling heuristic that selects 
samples from a record of evaluated candidate solutions, one-by- 
one, such that the resulting sample set is well spread out. This 
record is populated by with all of the candidate solutions whose 
cost has been evaluated during a particular BBO run. In our 
heuristic, the first sample is chosen as the solution closest to the

Solution variable space

Fig. 5. Drawing depicting the distance, d, between a solution to be estimated and 
its closest DACE sample.

previously chosen samples. Algorithm 1 provides a pseudocode 
description of this “spread out” sampling heuristic.

Algorithm 1. Pseudocode representation of our DACE sampling 
heuristic, where N is the size of the solution record, M is the 
desired number of samples, x is the vector of solution vectors in 
the record, x is the mean of the recorded solutions, y is the 
resulting set of DACE samples, g is the set of indices corresponding 
to previously chosen record solutions and is used to implement 
sampling without replacement, and imin and kmax are the indices 
that optimize their preceding equations.

y, = argmin||x-x;|| 
i = [l.N]

g1 ~ imin 
for j = 2 to M

= argmax||y-xk || 
k = [1, N|gg

gj = kmax 
end

We also note that, in addition to our sampling heuristic, we use 
the pseudoinverse and pseudodeterminant instead of the classical 
algorithms to reduce numerical difficulties when fitting DACE 
models. We also formulate the model fitting process as log- 
likelihood maximization instead of normal likelihood maximiza
tion, as this effectively increases the dynamic range of likelihoods 
that we can compute during the fitting process.

3. Optimization parameter studies

It is important to examine the characteristics of the optimiza- 
tion method chosen for any particular problem, since one algo- 
rithm or one set of optimization algorithm parameters may be 
better suited for a given problem than others. This is a conse- 
quence of the No Free Lunch theorem, which states that all 
algorithms perform equally well on average when tested on the 
most general class of problems (De Jong, 2007). This motivates us 
to study the DACE and BBO parameters that we use for our 
variable camshaft timing problem, since an algorithm that takes 
advantage of problem specific knowledge may perform better on 
that particular problem than algorithms that do not.

3.1. BBO parameter studies

In order to find effective BBO parameters for our particular 
problem, we first define a reference set of BBO variables which are 
shown in Table 3. We then vary parameters such as population 
size and mutation rate, one at a time. We note that we ran these 
tests on a single arbitrarily chosen sub-trace to facilitate the Monte 
Carlo approach, since running a BBO simulation over even a single 
sub-trace can take more than 3 hours depending on the BBO 
parameters.

First, we examined population size by running eight Monte 
Carlo simulations with population size equal to the values: 25, 50, 
75, 100, 150, 200, and 300. The cost of the best solution from each 
Monte Carlo simulation is represented by a point on a scatter plot 
in Fig. 6. See Thomas (2014) for standard deviation data.

Because this relationship appears to be a monotonic one (as 
one would expect), there is no optimum and so we must find a 
suitable tradeoff instead. It appears that we reach a point of 
diminishing returns after population size increases past 200, so 
this may be a useful value for population size, especially consider
ing that we can estimate the cost of many candidate solutions with 
a DACE model. This implies that up to 200 parallel processors



Table 3
Nominal BBO parameters for BBO parameter studies.

Parameter Value

Generation count 50
Population size 100
Mutation probability 0.02
Problem dimension 10
Number of elite solutions 2
Simulation drive trace sub-trace 10

Fig. 6. Scatter plot of normalized minimum cost after 50 BBO generations versus 
population size. A power function curve is also shown.

would be an attractive setup for a BBO run, but any more than that 
would be beyond the point of diminishing returns.

In order to quantitatively gauge the relationship between 
population size and the fitness of the best solution after a BBO 
run, we compute the Spearman rank-based correlation coefficient, 
ρ. Spearman’s correlation coefficient is useful for this case, because 
we are interested in gauging the strength of a general monotonic 
relationship between the two dimensions, not necessarily a linear 
one. For this data, ρ= -0.8709 and the probability of the no- 
correlation hypothesis is 2.7160.10-18.

Next, we examine mutation probability. We started with the 
reference BBO parameters from Table 3 and ran eight Monte Carlo 
simulations for each of the following mutation probability values: 
0.01, 0.05, 0.10, and 0.20. The reference BBO runs are also included 
in these data, for which mutation probability was set to 0.02. We 
show a scatter plot of these data, including a spline curve fit to the 
data in Fig. 7. See Thomas (2014) for standard deviation data. Most 
curves fit to this data will suggest that the minimum is in the 
neighborhood of mutation probability of 0.05. Given that the rest 
of the BBO parameters are set to the reference values from Table 3, 
this data suggests that mutation probability around 0.05 is 
optimal. This data appears to suggest a non-monotone relationship 
between minimum cost and mutation probability (one with a 
global minimum), and so we do not attempt to find a correlation 
coefficient.

We also examine the convergence of minimum cost in BBO as a 
function of the number of generations. We ran 10 Monte Carlo 
simulations for 200 generations each with the parameters from 
Table 3 held constant. Fig. 8 shows the average of the best costs 
from each Monte Carlo simulation with standard deviation bars. 
See Thomas (2014) for standard deviation data.

One way of quantifying the generation where the BBO population 
converges to a minimum solution on average, is to compare the 
sample sets of the minimum cost data from the final generation with 
the data from the previous generations. The first generation (that is, 
the one with the lowest index) whose cost data come from a 
distribution statistically similar to the final generation’s data can be 
considered the generation at which BBO converges. Using the t-test 
with a confidence interval of 0.05, the first generation to be statistically

Fig. 7. Scatter plot of normalized minimum cost after 50 BBO generations versus 
mutation probability. A spline curve fit to this data is also shown.

Fig. 8. Normalized minimum cost averaged over the 10 Monte Carlo simulations 
with vertical bars drawn to indicate minimum cost standard deviation taken over 
the 10 Monte Carlo simulations.

similar to the final one is generation 40. Fig. 8 corroborates this 
conclusion, however, the use of different confidence intervals will 
suggest different generations of convergence. This data tells us that we 
can run for 40 generations and get minimum cost solutions that are 
not significantly different from those that we would get from running 
for 200 generations. This also suggests that our choice of 50 genera- 
tions for the nominal BBO parameters given in Table 3 is well justified.

We conclude that the most effective BBO parameters for our 
problem include a population size that is large enough to contain 
significant information, but small enough so that computational 
complexity is not unnecessarily increased; specifically, a good 
tradeoff appears to be around 200. Also, a mutation rate around 
0.05 appears to produce the best solutions to our problem. We 
note that population size has a significantly larger correlation with 
minimum cost obtained in a given BBO run than mutation rate, so 
we can consider population size to be the most important BBO 
variable.

We also note that the conclusions drawn in this section are 
specific to this particular problem. For instance, problems with 
smooth objective functions that are smooth and characterized by 
low frequency spectral content may benefit more from an exploita
tive search strategy, whereas optimization of problems with highly 
irregular or multimodal objective functions may benefit from 
explorative search strategies. The optimal search strategy indicated 
by these results will not apply to all problems in general. Finally, 
additional analysis of these data can be found in (Thomas, 2014).

3.2. DACE parameter studies

In order to study the study the effect of DACE on a BBO run, we 
can run Monte Carlo simulations where we vary the parameters of 
DACE that define how it is used in the framework of BBO. We 
choose the method proposed in Section 2.3, in which we use DACE 
to estimate the cost of a fixed number of candidate solutions each 
generation. We vary the number of sample points, M, used to fit 
DACE models each generation in the range [10, 50,100, and 200], 
and the percentage of the population that is estimated using DACE



in the range [5%, 10%, 20%, and 50%]. We choose simulation 
parameters for this study based on the BBO parameter study 
results given in Section 3.1 and the sub-trace results given in 
Section 2.3 (that is, to use sub-trace 2); these BBO parameters are 
shown in Table 4.

First, we show surface fits that are quadratic functions of 
number of DACE sample points and estimated individual percen- 
tage. We fit these quadratic surfaces to both the minimum cost 
and CPU time data of these simulations, and we plot them in Fig. 9 
and Fig. 10. Quadratic surface fits were chosen because they appear 
to fit the data better than any other kind of elementary surface 
that was evaluated. We also note that several of these simulations 
were run using the R2011a version of the MATLAB software with 
up to 8 cost functions evaluated in parallel, and the rest of the 
simulations were run using MATLAB R2013a with up to 12 cost 
function evaluations in parallel. All of the simulations were run on 
the same computer using the same simulation software. We 
acknowledge that this is a significant source of systematic error, 
though only in the CPU time data that we have obtained. We have 
multiplied the CPU time data obtained in the simulations where 
up to 8 parallel simulations were run by a factor of 8/12 in order to 
compensate for the discrepancy in parallel computation speed.

The relationships we can infer from these figures are that, as 
number of DACE samples is increased, the minimum cost slightly 
increases and simulation time also increases. Also, as the percen- 
tage of estimated individuals increases, the minimum cost 
increases, while the simulation time decreases. Because of this, 
we can use a small number of DACE samples to reduce simulation 
time and obtain good BBO solutions, and we can also choose a 
tradeoff between good solutions and simulation time by picking 
the percentage of the population that we estimate. In our case, 
however, it seems that the penalty in best solution fitness incurred 
by estimating many individuals is minimal, so DACE can be used

aggressively to reduce simulation time while still obtaining good 
BBO solutions. Finally, we note that the positive correlation 
between minimum cost and number of DACE samples is a 
counterintuitive one. More DACE samples implies more estimation 
effort, which one would expect to improve (i.e.; reduce) the best 
cost obtained with BBO, however, we see the opposite. This result 
leads us to further examine the error in our DACE models.

We can explain the relationship between number of samples 
and minimum cost obtained with BBO by viewing the estimation 
of solutions with DACE as a noisy way of computing cost, and we 
note that injecting noise into the fitness function may actually 
improve EA performance, especially on harder problems (Branke 
and Schmidt, 2003; Qian et al., 2013). Fitness function noise in an 
EA can have an effect on the evolution of a population similar to 
the mutation operator, and thus can be beneficial or detrimental in 
particular cases (Branke and Schmidt, 2003).

We can also analyze the cost and CPU time data using statistics. 
We can compute correlation coefficients to determine the relation- 
ships between both independent and dependent variables in 
DACE. Table 5 shows the Spearman correlation coefficients 
between variables, and Table 6 shows the null hypothesis prob- 
abilities associated with each pair of variables. We have chosen to 
use the Spearman coefficient because the relationships between 
the independent and dependent variables are nonlinear (in fact, 
the relationships are approximately quadratic) as seen in 
Figs. 9 and 10.

These tables show a weak positive correlation between number 
of samples and cost, and a strong positive correlation between the 
number of estimated individuals and cost. Also, the correlation 
between number of samples and CPU time is positive, and the 
correlation between number of estimated individuals and CPU 
time is negative. This positive correlation between number of 
samples and cost corroborates our observation from Fig. 9; that is, 
if we increase the number of samples, cost will go slightly up.

Table 4
Nominal BBO parameters for DACE parameter studies.

Parameter Value

Generation count 50
Population size 200
Mutation probability 0.05
Problem dimension 10
Number of elite solutions 2
Simulation drive trace sub-trace 2

Fig. 10. Scatter plot of simulation time data as number of DACE samples and 
percentage of estimated individuals are varied, with a quadratic surface fit showing 
general trends.

Fig. 9. Scatter plot of minimum cost data as number of DACE samples and 
percentage of estimated individuals are varied, with a quadratic surface fit showing 
general trends.

Table 5
Spearman correlation coefficients between DACE variables.

Variable Number of 
samples

Individuals
estimated

Cost CPU
time

Number of samples 1 0 0.2353 0.3035
Individuals 0 1 0.6651 -0.6763

estimated
Cost 0.2353 0.6651 1 -0.3938
CPU time 0.3035 -0.6763 - 0.3938 1



Table 6
p-values associated with Spearman correlation coefficients between DACE 
variables.

Variable Number of 
samples

Individuals
estimated

Cost CPU time

Number of 1 1 0.0045 2.1763E-
samples 4

Individuals 1 1 9.7858E- 1.3834E-
estimated 20 20

Cost 0.0045 9.7858E-20 1 1.0470E-
6

CPU time 2.1763E-4 1.3834E-20 1.0470E-
6

1

Again, this may be explained by considering estimating individuals 
with DACE as a noisy way of calculating cost, which may improve 
the minimum cost obtained by an EA (Branke and Schmidt, 2003).

Next, we observe the effect DACE has on the convergence 
properties of BBO. The BBO populations generally seem to con- 
verge within 50 generations, no matter what DACE parameters 
are used.

We can examine the difference between using DACE aggres- 
sively versus using it conservatively by first noting that we can 
choose 10 DACE samples without a minimum cost penalty (in fact, 
the results show that using fewer samples actually improves the 
best solutions we find with BBO.) Next, we can compare the cost 
and simulation time obtained by running BBO and estimating 5% of 
the population with DACE, to estimating 50% of the population with 
DACE. When estimating 5% of the population with 10 DACE 
samples, the average simulation time is 9641, and the average best 
cost is 0.02142, whereas, when estimating 50% of the population 
with 10 samples, the average simulation time and best cost are 5476 
seconds, and 0.02146 gallons respectively. When going from 5% to 
50% estimated individuals, the percent increase in cost is 0.1867%, 
and percent decrease in simulation time is 43.20%. These percent 
changes should be similar when comparing not using DACE at all 
versus using it aggressively (e.g.; estimating half of the BBO 
solutions in a run). One’s optimization objectives will determine 
whether this tradeoff is acceptable. One of the future work items we 
propose is the application of this framework of BBO and DACE to 
higher fidelity simulation models of the vehicle to further validate 
the simulation results we get. This simulation may run at 10% of the 
speed of our current automotive simulation, so instead of saving 
3965 seconds by estimating half of the BBO solutions with DACE, we 
may instead save 39650 seconds. This corresponds to reducing the 
simulation time of a 27 hour BBO run by more than 11 h.

Finally, we note that these conclusions are only valid for this 
problem. For example, one would expect to see different results 
and to draw a different conclusion when applying DACE and BBO 
to a problem with an objective function that is more difficult to fit 
with DACE than our problem. In this case, a greater number of 
samples may be necessary to achieve enough estimation accuracy 
for good BBO performance.

parameters that were used in the optimization run where we 
obtained our best solution.

We note that the parameters in Table 7 are not necessarily the 
best, since BBO is a stochastic optimization algorithm and the best 
solution from each BBO run will be a function of random variables 
however, our parameter studies given in the previous sections 
suggest that we have a better chance of finding good solutions 
with these parameters than with the others we have tried.

The solution variables (RBF heights) for the best solution that 
we have found are given in Table 8 - the RBF indices correspond to 
the RBFs as numbered in Fig. 2.

Notice that many of these RBF heights are close to the limits of 
the search range (i.e.; [-20, 20].) Generally, if an EA consistently 
finds solutions close to the search range limits, then the search 
ranges should be changed, as the optimum that the EA is conver- 
ging to may be found outside of the range. We have chosen not to 
adjust our search ranges in this case, because doing so may 
encourage BBO to generate solutions that have deleteriously large 
differences between adjacent lookup table values. A significant 
future work direction is to increase the search ranges, establish 
limits on the changes between adjacent lookup table values, and 
implement these as constraints in BBO, which may allow us to find 
better solutions. We also notice that there are combinations of 
both large negative and positive values in this BBO solution’s 
variables. If a large positive value is applied to the height of a RBF, 
and a large negative value is applied to a RBF adjacent to the first, 
this results in the maximum change between adjacent lookup 
table values that we can apply. Since we are seeing this behavior in 
our best solution, this indicates that we are already in danger of 
producing lookup tables that have abrupt changes.

It is also important to examine the differences between our 
optimal solution and the reference cam timing lookup tables. 
Fig. 11 shows visualizations of the lookup tables before and 
after BBO.

We can observe the difference between adjacent lookup table 
values by comparing the colors surrounding adjacent black circles 
in the above plots. The differences between adjacent table ele- 
ments before and after BBO are fairly similar, so it is unlikely that 
the differences between adjacent values in the new lookup tables 
obtained via BBO are excessive and thus likely would not result in 
ringing or other control problems.

Table 7
BBO parameters used to obtain our best solution.

Parameter Value

Generation count 300
Population size 100
Mutation probability 0.02
Problem dimension 10
Number of elite solutions 2
Simulation drive trace LA4
DACE configuration not used

4. Results of cam timing control optimization with BBO

We explore our BBO simulation results in the cam timing 
optimization problem domain, so that we can determine what 
particular improvements we have made and what implications 
these improvements will have in the engine system. Instead of 
running additional simulations, we choose to use the optimal BBO 
solutions from the various Monte Carlo simulations of the previous 
sections, and we note that the differences between the best 
solutions from run to run are minimal. Table 7 lists the BBO

Table 8
Solution parameters resulting in the lowest cost that we have obtained with BBO.

RBF Index Intake adjustment Exhaust adjustment

1 -14.836 -17.340
2 19.691 17.324
3 -19.729 -19.241
4 19.668 -18.753
5 19.856 -19.619



Fig. 11. Filled contour plots of the unchanged reference intake and exhaust cam timing lookup tables (on the right, labeled as Original), and the intake and exhaust tables 
from the best solution obtained with BBO (on the left, labeled as New.) Locations of lookup table values in (engine load, engine speed) are indicated with black circles.

The cost of this best solution is 0.44152 gallons, and the cost 
obtained by running the simulation with the nominal, unchanged cam 
timing lookup tables is 0.44919 gallons. This means a decrease of 1.7%. 
This is a significant improvement that can be made without any 
changes to the control algorithm or the hardware.

Explanations for this improvement in fuel economy with the 
new table may be attributable to EGR effects. Judging from the 
distribution of engine load and engine speed data in Fig. 2, we may 
identify three operating regions of the engine: idle, low speed 
cruising, and high speed cruising. We define idle as engine load of 
0.2, and engine speed of 700 RPM. Also, we define low speed 
cruising as engine load of 0.4 and speed of 1200 RPM, and we 
define high speed cruising as a load of 0.6 and a speed of 
1500 RPM. In Fig. 12, we show the states of the intake and exhaust 
valves of cylinder 1 as a function of crankshaft angular position for 
idle, low speed, and high speed cruising, both before and after 
modifying the tables with BBO.

We can immediately see that the tables produced by BBO have 
less valve overlap at low vehicle speed, and BBO retards both 
intake and exhaust valve events significantly, especially at higher 
vehicle speed. The fuel economy improvement may be attributable 
to earlier closing of the intake valves, which reduces pumping 
losses (Sellnau and Rask, 2003). We can also see exhaust port EGR 
behavior both before and after optimization with BBO, as there is 
valve overlap after top-dead-center (Meyer, 2007) (which occurs 
at 360° in Fig. 12). This kind of operation is defined by the intake 
valve being open for part of the exhaust stroke, during which the 
high cylinder pressure forces residual gasses into the intake 
manifold which can also reduce pumping losses. We also note 
that the reduced valve overlap at idle may be good for reasons 
besides fuel economy, however, since the EGR behavior that 
results from valve overlap reduces the amount of combustible 
material in the cylinder, it can reduce combustion stability. It is 
important to reduce EGR at idle, since combustion stability is 
particularly fragile at idle.

We note that the best solutions obtained by BBO are generally 
similar, and so we can examine the change that BBO makes to the 
intake and exhaust tables on average, and what parts of these 
tables vary the greatest by taking the mean and standard deviation 
of the tables produced by various BBO runs. In Fig. 13, we show the 
means and standard deviations of the intake and exhaust lookup 
tables, taken over the best solutions obtained in all of the Monte 
Carlo simulations given in Section 3.1. We also include contour 
plots of some exemplary lookup tables from these Monte Carlo 
simulations in Fig. 14.

First, we note that the differences between tables shown in 
Fig. 14 occur in regions where the standard deviation is high, as 
shown in Fig. 13. The fact that the tables can be different in these 
ways, and still have similarly low costs, suggests that these 
changes do not affect cost. This makes sense, because changes in 
these regions often occur in parts of the lookup table domain that 
the vehicle does not operate in as can be seen by the vehicle (load, 
speed) trajectory in Fig. 2.

We also note that the changes made to both tables are 
exclusively negative or zero, this means that BBO is consistently 
retarding both the intake and exhaust cam timing. Further, for the 
intake cam, we are most strongly retarding the timing at low to 
moderate engine load and at low engine speed; this is the state of 
the engine at idle and when the vehicle starts to move after idle. 
We can see that the average intake table change is at its highest 
absolute value and the standard deviation is at its lowest value at 
idle and low vehicle speed conditions. This indicates that good 
BBO solutions consistently incorporate this change to the table, 
and thus, when considering only the range of BBO solutions that 
we have investigated, this particular change is essential for 
improving the intake table.

We also see that there is significant retarding of the exhaust 
cam timing throughout the whole table. We also see that the 
standard deviation is low throughout most of the table, except at 
very low engine load and moderate RPM. This vehicle is likely



Fig. 12. Cylinder 1 valve events for idling, low speed, and high speed operation as a function of crankshaft angle, illustrating valve overlap. The results using the original 
lookup tables are shown on the left, and the results produced by BBO are on the right. Note that the range of angles shown is [0, 720], because there are two revolutions of 
the camshaft for each crankshaft revolution.

Fig. 13. Average changes in intake and exhaust lookup tables, and standard deviation of changes to those tables produced by BBO.

decelerating when the engine is in this state, and so, since modern 
vehicles incorporate fuel cutoff during engine braking, it would 
not matter what state the valves are in during deceleration. 
Because we observe a significant absolute value of exhaust timing 
change and low standard deviation throughout most of the table

simultaneously, we can conclude that retarding the exhaust timing 
is also essential. This is likely the case, because in order to achieve 
the same degree of exhaust port EGR due to valve overlap, while 
retarding the intake cam to achieve earlier closing of the intake 
valve, we need to retard the exhaust cam timing as well.



Fig. 14. Examples of lookup tables from the best solutions obtained by running BBO several times. Several exemplary intake tables are shown on the left, and several exhaust 
tables are shown on the right.

5. Conclusion

We have developed a framework for optimizing the controller 
set-point lookup tables for a dual independent VCT system using 
BBO and DACE. This framework includes a medium fidelity 
simulation of the vehicle for evaluating the fitness of control 
solutions, which are parameterized using five RBFs. We reduce 
simulation time by keeping track of the cost of solutions so that 
we do not need to evaluate their costs more than once in a BBO 
run, by approximating the full simulation fitness by running over a 
subset of the simulation drive trace, by adjusting our problem 
parameterization so that changes to the parameters change the 
controller lookup tables in the region of the vehicle state space 
that the vehicle most often traverses, by finding BBO parameters 
that result in the best optimization results, and by estimating 
solutions with DACE.

The best search configuration for BBO that we have found 
involves running BBO with a population size around 200 and 
mutation probability around 0.05, and using fuel consumption 
computed over sub-traces with high RMS velocity and acceleration 
as the fitness function for BBO. We have found other BBO variables 
and other quantities of the simulation drive traces to have 
negligible effect on the performance of BBO. We have also 
developed an application of DACE to BBO that takes the numerical 
conditioning of DACE models into account. We can improve the 
numerical properties of our DACE models by using sample sets 
that are well spread out, which can be found using the sampling 
heuristic we have developed.

We have found a BBO solution that results in a 1.7% improve- 
ment in fuel economy. The vehicle we are simulating is an SUV 
with an average annual product of 120,000 units, and an average 
fuel economy of 22 miles per gallon. If we assume that these 
improved lookup tables are applied to 120,000 vehicles, each of 
these cars are driven 10,000 miles annually, the average fuel 
economy of the vehicle without the improvement is 22 miles 
per gallon, and that our 1.7% improvement in fuel economy can be 
extrapolated to apply to all of these vehicles, the reduction in fuel 
consumed by this group of vehicles will be over 900 thousand

gallons. Also, since about 9 kg of CO2 are produced for every gallon 
of gasoline consumed (U.S. Energy Information Administration, 
2014), this results in a reduction in CO2 emissions of 8,100 metric 
tons. This means a significant reduction in cost from a variety of 
sources. Not only will consumers save on fuel, but the cost 
associated with environmental impact will be reduced as well.

Future work may include running BBO on higher fidelity 
vehicle simulations to find optimal cam timing lookup tables. It 
is likely that the locations of good control solutions within the 
search space will change when changing to a more accurate 
simulation, and a more accurate simulation will help validate 
our simulation results. Other future work may include systematic 
approaches to search space parameterization or BBO parameter 
optimization. Finally, the BBO implementation we have produced 
for cam timing optimization may be applied to a variety of other 
computationally expensive optimization problems. Another direc- 
tion of future work is to use multi-objective BBO to simultaneously 
optimize engine control for a fuel economy, emissions, and power, 
and the control of other automotive subsystems can be optimized 
with BBO.
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