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Modeling nonlinear behavior in a piezoelectric actuator

H. Richter, E.A. Misawa*, D.A. Lucca, H. Lu!

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078-5016, USA

1. Introduction

Piezoelectric actuators have become a standard option in
positioning applications where the displacements must be
small and highly accurate. In particular, ultra-precision
manufacturing requires exceptionally fine and repeatable
motions, making piezoelectric actuators a common choice.
These actuators, however, are sensitive to environmental
changes such as temperature; and moreover, several non-
linearities are present in the behavior. The well-known phe-
nomena of hysteresis and creep, along with nonlinear volt-
age dependence affect the dynamic response, sometimes
precluding closed-loop operation [1]. Consequently, a pre-
cise mathematical model is necessary to design feedback
controllers properly. This work is motivated by a particular
problem related to ultra-precision manufacturing. A nano-
metric cutting instrument, denoted as Nanocut, was de-
signed and built as a team effort by Oklahoma State Uni-
versity and the University of North Carolina at Charlotte, as
a means to investigate the mechanics of ultra-precision
machining [2]. The instrument employs a tubular piezoelec-
tric actuator which achieves sub-nanometer resolution for
3D positioning, but not necessarily highly accurate motions

* Corresponding author. Tel.: +1-405-744-5904; fax: +1-405-744-
7873.
E-mail address: misawa@okstate.edu (E.A. Misawa).

when operated in open loop. This is primarily due to the
associated nonlinear effects, which can cause errors on the
order of microns, while environmental perturbations, such
as temperature changes, cause smaller errors when experi-
ments are carried out in a controlled environment. The
present work is focused on the axial extension of the piezo-
electric actuator, hereafter referred to as “PZT tube”. A
non-formal analogy between the observed behavior and that
of nonlinear viscoelastic materials is established. The mo-
tivation for such an analogy is a remarkable similarity
observed in the input/output behavior of the piezo tube and
nonlinear viscoelastic materials under uniaxial extension.
This analogy is used as a basis to construct the proposed
differential model. An extensive set of experiments is car-
ried out to estimate the parameters of the model. The ex-
periments involve both frequency and time domain mea-
surements, which are used to cross-examine the model for
self-consistency between domains. Finally, an independent
set of experiments is performed to validate the numerical
model.

Piezoelectric materials and actuators have received con-
siderable attention in the literature, especially in recent
years, with the advent of new applications based on scan-
ning-probe microscopy. Instruments such as the scanning
tunneling and atomic force microscope almost universally
use piezoelectric tube actuators to generate the fine motions
required [3]. In recent years PZT actuators have also been



introduced to high-density hard disk applications as a sub-
actuator for fin head displacement [4]. Much of the pub-
lished research, however, is concerned only with models
based on the linearized constitutive laws of piezoelectric
behavior. The most widely accepted linear description of
piezoelectric materials is given in the IEEE Standard on
Piezoelectricity published in 1987 as an American National
Standard [5]. In many instances, actuator geometry and
simple loading conditions -the term “loading” understood as
imposed stress and electric field result in simple second
order linear transfer functions that map applied voltage to
actuator displacement ([8], [7], [9], [10] among many oth-
ers.) Considerable research works have been reported in the
literature that describe the linear portion of the behavior of
piezoelectric actuators, especially for the stacked-type con-
struction. The fundamentals of nonlinear piezoelectric phe-
nomena are analyzed mostly in the framework of the phys-
ics of crystals and thermodynamics, rendering descriptions
that are extremely difficul to reduce to a set of nonlinear
ordinary differential equations [11]. As stated in [12], bas-
ing model derivation on the IEEE linear constitutive rela-
tions requires several assumptions, resulting in an oversim-
plifie description that fails to capture the essential
nonlinear behavior that is present in all piezoelectric ceram-
ics. In the case of PZT tube actuators, perhaps the highest
degree of simplificatio is given in [13], where the axial
motion is reduced to the description

= o M
where u,, is the axial strain, d?gf is an effective piezoelectric
constant that considers tube geometry and an average elec-
tric fiel value, V is the applied radial voltage, and L is tube
length. From an engineering modeling perspective, several
works have been reported that specificall address the non-
linearities, for example, Goldfarb and Celanovic [12] uti-
lized a Maxwell slip model to describe hysteresis. Another
work [21] that focuses on the modeling of hysteresis adapts
the Preisach mathematical model to the case of piezoelectric
actuators, with good agreement between model and exper-
iment. In several works ([7], [19]) hysteresis is accounted
for by augmenting the linear dynamics with an empirical
differential equation of hysteretic behavior. The main dis-
advantage of such an approach is the cumbersome mathe-
matical expressions which make it difficul to fin a set of
parameters that can match experimental data. An interesting
approach was taken by Tamer [3]. In that work, the linear
dynamic description is augmented in the frequency domain
by a describing functiorof a hysteresis nonlinearity, ren-
dering a model that is still linear, but includes the phase-lag
effects due to the actual nonlinear phenomenon. Thus, better
controllers can be designed, even though the model may not
be accurate in the time domain. This is presented as an
ad-hoc solution to a particular problem rather than as a
general treatment. The creep phenomenon that is observed
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Fig. 1. The Nanocutinstrument.

in piezoelectric materials has been treated in fewer publi-
cations. Moreover, these works mostly deal with descrip-
tions of creep that are not intended to serve as models for
control purposes [14]. Similarly, the nonlinear dependence
of axial displacement on input voltage has not received
much attention. Arguably, a reason for these voids is the
fact that both effects may be easily compensated by a
feedback controller, since the creep can be regarded as a
slow output disturbance and the nonlinear dependence on
input voltage as a gain uncertainty. A simple approach to the
compensation of creep and hysteresis by inserting a capac-
itor in series with the piezoelectric actuator was proposed by
Kaizuka and Siu [6]. In fact, controllers are now commer-
cially available that achieve subnanometer resolution and
accuracy for unidirectional actuators. A nonlinear three-
dimensional model that encompasses creep, nonlinear volt-
age dependence, and hysteresis would constitute an impor-
tant contribution to the development of high precision
piezoelectric tube actuators.

2. Observed behavior

In this section, the experimental setup used throughout
the research is described first Then, three nonlinear effects
are identifie from experimental results.

2.1. Experimental setup

The piezo actuator is used as a sample-positioning device
in the Nanocutinstrument. The instrument is capable of
three-dimensional positioning of a sample with respect to a
stationary cutting tool or indenter, and is equipped with
force and displacement transducers which transmit data into
a computer for later analysis. Fig. 1 illustrates the mechan-
ical hardware as viewed from the top. The piezoelectric tube
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(3) is mounted on the horizontal slide (1) as a cantilever
beam. The application of voltage to the appropriate elec-
trodes results in either horizontal/vertical tip displacement
by bending, or longitudinal expansion of the piezoelectric
tube. A capacitance gage is positioned inside the PZT tube
to measure changes in longitudinal motion. The piezoelec-
tric material employed in the actuator is PZT-5 (Lead-
Zirconate-Titanate).” Fig. 2 shows a functional diagram of
the open-loop z positioning system. The commanded posi-
tion in microns is sent to a 16 bit D/A board on a PC-
compatible computer. The resulting analog voltage is am-
plifie and applied to the z electrode of the PZT tube and the
expansion measured by the capacitance gage is amplifie to
be read by the 16 bit A/D board. The capacitance gage and
its signal conditioner have a combined sensitivity of 3.96 V
um~ !, resulting in a A/D resolution of 0.077 nm/bit. The
PZT tube has a nominal® sensitivity of 8.33 nmV !, and a
maximum displacement of 1.5 um, imposed by the con-
struction of Nanocut. This implies a maximum of 180 V
between electrodes. The tube and power amplifie have an
average combined sensitivity of 0.15 wmV !, resulting in a
D/A resolution of 0.046 nm/bit. These resolutions are far
from being fully effective in practice due to environmental
perturbations and the nonlinear effects under study. A more
detailed description of Nanocutis reported elsewhere [2].

2.2. Three nonlinear effects

2.2.1. Nonlinear gain

When several constant voltage inputs are applied to the
z-electrodes, the corresponding responses are not propor-
tional to the applied voltage. A set of experiments was
performed to evidence the effect. Power amplifie transient
effects were eliminated from the experiment by using a
switch, to better simulate a step input. For each input volt-
age, ranging from 15 to 120 Volts, data were recorded at
two different resolutions. Fig. 3 (left) represents short-term
behavior, sampled every 5 us, i.e., at 200 kHz. The plot on
the right shows the same experiment, with data sampled
every 500 us, (2 kHz), to evidence the slow creep phenom-
enon. In both cases the response has been normalized by
dividing by the input value. Physically, the source of non-
linearity in this case is the voltage-dependency of the pi-
ezoelectric constants. A damped oscillation near 12 kHz is
observed in the response. This is possibly a structural mode
of the PZT tube, not to be modeled in this work.

2.2.2. Nonlinear creep
The steady creep feature is evident in Fig. 3 (right). The
rate of creep is sensibly constant for each input voltage, up

Creep Data Normalized by Input Value

Step Reponses Normalized by Input Value
04 T T

0.0 K"___‘r___._
0.03f” - ~
3 =
0.025
2 s
:g @ 0.02
3 K
nE'» E0.0!S
s -+ 15.9V S - 15.9V
- 20.87V < 29.87V
001 - 50.4V | 001} - 50.4V |
-&# 63.3V -= 63.3V
-o- 83V -~ 83V
0.005 -4 98.8V | ] 00051 -4~ 98.8V
- 119.9V -+ 119.8V
00 0.002 0.004 0.006 0.008 0.01 ou 2 4 6 8 10

Time, seconds

Fig. 3. Nonlinear Response to a series of step voltage inputs.

to the time-frame of the experiment (about 10 seconds).
Physically, creep is caused by a gradual alignment of di-
poles, and therefore expansion -and not rate of expansion-
should converge to a steady value. Convergence is
achieved, however, over a period of time that is much larger
than the time constant of any practical control system. Creep
is deemed to be nonlinear based on the fact that expansion
rates depend on voltage in a nonlinear fashion, as will be
shown later.

2.2.3. Frequency behavior and hysteresis

A set of responses corresponding to sinusoidal inputs of
several amplitudes and frequencies was recorded. The input
frequency is observed to dominate the response up to the
firs few kilohertz. Significan distortion and appearance of
harmonics is observed beyond 5 kHz. Fig. 4 shows the
magnitude and phase of the fundamental frequency compo-
nent. The data represented correspond to a experimental
sinusoidal input describing functior SIDF. A nonlinear
gain characteristic is clear in this representation. Fig. 5
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Fig. 4. Sinusoidal Input Response.
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Fig. 5. Experimental Hysteresis Loops.

shows a set of experimental hysteresis loops. A 60 V trian-
gular voltage at several frequencies was applied to the
actuator electrodes. As discussed next, phase lag due to
linear dynamics is embedded in the loops, but the presence
of rate-independent hysteresis makes the effect nonlinear as
a whole.

2.2.4. Hysteresis in context: some important statements

There is no complete agreement in the use of the term
“hysteresis” among the various research field where mem-
ory effects are present. In the case of piezoelectric actuators,
only a few works explicitly point out the nature of the
memory effect that is under consideration [12]. The term
“hysteresis” is usually attributed to rate-independent mem-
ory, although some material has been published in which the
term is employed to describe rate-dependent phenomena
[15]. Some other publications employ the terms static hys
teresisand dynamic hysteresif20] to distinguish the two
effects. An important observation is the fact that rate-inde-
pendent effects are not found isolated from rate-dependent
memory, except in idealized situations. The relative impor-
tance of the two effects should be assessed before including
either in a mathematical model. In piezoelectric actuators
and in many other engineering systems, it is found that the
rate-dependent memory has a greater importance at high
frequencies, because of the common phase-lag characteris-
tics of most physical devices. Rate-independent phenomena
prevails at low frequencies for the same reasons. In fact, it
is a common practice to reveal the effect in experiments by
applying slow cyclic inputs, so that the phase lag due to
rate-dependent memory is negligible. This practice may
lead to erroneous results, however, when the system is only
linear, but contains poles at or near the origin. In this case,
for sufficientl slow inputs, a loop is obtained which may be
erroneously regarded as hysteretic. For the case of the
present PZT tube, the phase-lag due to the linear portion of
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Fig. 6. Simple Nonlinear Burgers Model.

the dynamics is seen to prevail over most of the frequency
range of interest. It is because of this observation that the
term “hysteresis loop” is used throughout this work to refer
to the coupledmemory effect. The proposed model, being
of a viscoelastic type, does notaccount for rate-independent
memory. It does provide sufficientl accurate predictions of
the coupled hysteresis loops, however.

2.3. Models for nonlinear viscoelastic behavior

A large number of models have been proposed and tested
over the years that explain the observed phenomena to a
certain degree of accuracy, but there is no all-embracing
theory which is likely to accommodate all eventualities
[17]. As in other fields models can be constructed by
empirical observation or by physical considerations. Phys-
ical models for nonlinear viscoelastic behavior are still in
development, and their reduction to a set of manageable
ordinary differential equations constitutes a difficul task.
For this reason, a phenomenological model for nonlinear
viscoelasticity is employed as a starting point. The model
presented here can be traced back to the work of Marin and
Pao, [16]. Even though the theory is based on empirical
observation of the stages of creep response when a constant
stress input is applied, the resulting model can still be linked
to a nonlinear Burgers rheological model [16, 18]. The
Burgers model in the linear case is of wide application in
linear viscoelasticity, and its parameters are physically well-
define quantities, such as viscosity and elastic modulus.
The equations for variable input represent the behavior of a
nonlinear spring-dashpot system, as shown in Fig. 6. In the



linear case, this is known as the four-element Burgers
model. In Fig. 6 the linear spring corresponds to an instan-
taneous elastic response. The single nonlinear dashpot re-
lates to the steady creep component for constant stress, and
the parallel arrangement of a nonlinear spring and dashpot
represents a transient component.* This parallel arrange-
ment, in the linear case, is known as a Voigt element.

2.4. A non-formal analogy

The input/output nonlinear features observed in the pi-
ezoelectric actuator match -at least in a qualitative sense-
those observed in nonlinear viscoelastic materials under
uniaxial extension. In order to construct a model, stress and
strain in the viscoelastic case can be interpreted as voltage
and longitudinal expansion, respectively. A differential
model that describes the basic Burgers model represented in
Fig. 6 is given as

o m
&g = (—) )
Me
o \P
&= —Ag + )\(—) 3)
Mec
e = g4t g “)

where g and g, represent the steady and transient com-
ponents of the total creep, e that is the response to an
applied stress o. Note that when p = 1, the spring and
dashpot in the linear Voigt element represent an elastic
modulus ., and a viscosity coefficien b = p/A. Simi-
larly, in the linear case, when m = 1, n, represents a
viscosity coefficient When p > 1, as usually found ex-
perimentally, the parallel arrangement must be treated as
a “black-box”, and it is not possible nor relevant to fin
isolated parameters that correspond to viscosity and elas-
ticity, in a strict sense. However, if p is close to one, as
it is usually the case, the physical significanc of w and
/A is maintained for practical purposes. The same argu-
ments apply to the nonlinear dashpot representing steady
creep.

Upon application of the analogy, nonlinear dynamic be-
havior of the PZT tube can be treated as nonlinear viscoelas-
tic response, which has received more attention than the
piezoelectric case. Of course, the analogy is of limited use
in gaining physical insight about the piezo actuator, but
once more, the goal is to produce a good control model.
This approach is conceptually similar to the one proposed
by Goldfarb and Celanovic [12], replacing the elasto-slide
elements by Voigt units. The present approach has the
advantages of being able to capture the observed creep
effect, which is ignored in [12], as well as the nonlinear
dependence on input voltage.

2.5. The proposed model

The model consists of a series arrangement of n Voigt
units and a nonlinear dashpot representing nonlinear creep.
The equations presented here result from extending and
modifying the equations for nonlinear viscoelasticity pre-
sented in [18]. The derivations are rather simple, but too
lengthy to be included in this paper. Using the n transient
components and the steady creep component as states, the
model equations can be written in state-space form. Note
that the states are completely decoupled.

&y, = —MNg, +Af(VO)
&, = —Aeg, t ALAVD)
: ; )
&, = —Agy, T ARVD)
&5 = T(V(O)
with output equation
e=gyte,t te, teg (6)
Also, the following restriction is imposed
n
=1 7

In the above equations, A; and r; are characteristic frequen-
cies and weights, respectively. The “transient” response to a
step input then becomes a weighted sum of exponentials
which converges to unity, with a common nonlinear gain
represented by the function f,(V(t)). The overall response is
composed of the transient response and a permanent creep
represented by the last state. Power functions of voltage are
to be tested for experimental validity. Note that when the
exponents are non-integer values, which are likely to arise
from the parameter estimation procedures, the power func-
tions are complex-valued. To avoid this inconvenience, the
following modificatio 1is introduced:

fi(V) = Sign(V)(M>p (®)
w

FoR—L

«V) = sign(V) - ©)

where sign(V) = |V|/V denotes the signum function. This,
however, implies that the step response must be an odd
function of V, because f(—V) = —f(V) for the chosen
power functions. This was experimentally confirme by
applying negative and positive steps of the same magnitude
and comparing the outputs.

2.5.1. Computation of the sinusoidal input describing
function (SIDF)

The SIDF of the model is found to be particularly useful
for cross-verificatio between time and frequency domains,
as described later. The SIDF is provided below



N(A, w) = NJA, w) + i N;(A, w), where: (10)

APl DT (p/2+ 1) A

Ni A, W) = " ll
(AW pP T T(p/2 + 3/2) A +jw (4
N(A, W) AT T2 + 1) 1 a2
, W) = —
° ™ Jm (/2 + 3/2) iw

The sinusoidal input amplitude is denoted by A and w is the
frequency. Also, I'(X) is the Gamma (generalized factorial)
function.

2.6. Parameter estimation from time domain data

Here we assume that model parameters are to be identifie
from a series of step-voltage responses. This is the easiest way
to estimate parameters using an oscilloscope with data storage
capability. In this case, it is assumed that the input functions in
the model given by Eq. (6) are power laws of the form

V\P
i

V m
fs(v) = <_)
n

It is also considered that there is no “instantaneous” elastic
component, as such an approximation is granted only for
true viscoelastic materials, in which the subsequent expan-
sion is slower than the initial fast transient by orders of
magnitude. The set of parameters to be estimated consists of
model order n + 1, the n characteristic frequencies A; and
their weights r;, and the parameters from the above power
laws, namely, p, m, w, m. These parameters are to be
recovered from the step responses and creep data described
earlier for seven input voltages. Note that parameter recov-
ery from a step response, which is not a frequency-rich
signal, is justifie by the fact that a resonance-free model
has been chosen a priori, and the estimation is based on the
solutionsof the differential equation rather than in the form
of the equations themselves. Having completed the param-
eter estimation, the model given by equations (6) can be
readily constructed and tested for inputs other than a step.

Table 1
Measured vs. Predicted Slopes of Steady Creep

n = 2850.37, m = 1.5313

Voltage Measured Slope Predicted Slope
15.90 2.4290 X 1074 3.5420 X 107*
29.87 1.6688 X 1073 0.9302 X 103
50.40 2.0194 X 1073 2.0724 X 1073
63.30 2.7963 X 1073 2.9377 X 1073
83.00 4.9799 x 103 4.4485 x 103
98.80 47710 X 1073 5.8088 X 1073
119.9 7.7445 X 1073 7.8131 X 1073

Table 2
Measured vs. Predicted Final Values of Transient Component

w = 313701, p = 1.1279

Voltage Final Value Final Slope Predicted F.V
15.90 0.4766 Zero, 16 digits 0.4646
29.87 0.9321 Zero, 16 digits 0.9462
50.40 1.6725 Zero, 16 digits 1.7071
63.30 2.1714 Zero, 16 digits 2.2074
83.00 2.9660 Zero, 16 digits 2.9964
98.80 3.6774 Zero, 16 digits 3.6472
119.9 4.6681 Zero, 16 digits 4.5371

2.7. Experimental results 1: time-domain estimation

2.7.1. Steady creep

The steady rates of creep are extracted using a regression
line fitte to the last portion of the long-term data. The
slopes of the regression lines are the constant rates to be
fitte to a voltage power law. To fi the obtained slopes to a
power law of voltage, another linear regression is applied.
The resulting parameters are summarized in Table 1.

2.7.2. Transient component

Once the steady creep is characterized, it is subtracted
from the overall creep response, leaving the transient com-
ponent for parameter identification To verify the constant
creep rate assumption, a regression line is fitte to the last
portion of the transient components, yielding an estimated
slope of zero and the fina steady values summarized in the
Table 2, with fina values expressed in Volts. Fig. 7 shows
a poor fi for the slopes of steady creep and a very close fi
for the fina values. Moreover, it is seen that the slope data
presented may not be suitable for approximation by any
reasonable, smooth function of voltage. In simulation stud-
ies for control system design, this limitation may be cir-
cumvented by implementing look-up tables.
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Fig. 7. Fitness of power law parameters.



Table 3
Estimated Characteristic Frequencies and Weights

Table 4
Confidenc Intervals for Parameter Estimates

Char. Freq. A Weight r Char. Freq. A Weight
Proc. X Proc. X NLSQ NLSQ
7549.700 0.4449 7506.799 0.6614
1343.200 0.0785 1365.767 0.2322
399.9356 0.2790 390.7856 0.0284
28.26340 0.0824 73.03461 0.0584
4.742100 0.0554 4.875001 0.0322
0.648000 0.0591 0.632376 0.0313

Sr, = 1.044(NLSQ)

2.7.3. Estimation of characteristic frequencies, weights,
and model order

The last step is to obtain the characteristic frequencies
and their corresponding weighting factors from the normal-
ized transient. For this purpose, the transient response ob-
tained from the 83 V input is chosen, for it has a good
signal-to-noise ratio. An iterative process that estimates real
characteristic frequencies from a step response known as
“Procedure X [15] is employed to obtain a firs approxi-
mation. Six frequencies and weights are found, resulting in
a model of order seven. These estimates are employed as
initial guesses in a standard nonlinear least-squares routine
(NLSQ), providing a set of refine parameters. Notice that
the 83 V normalized data are re-sampled to contain only
1000 logarithmically-spaced points, so that the NSLQ rou-
tine is possible to implement. Re-sampling also has a low-
pass filterin effect on the data. Table 3 summarizes the
obtained parameters. Note that the sum of the weighting
factors is close to one’, as required, and that some of them
are very small, so model reduction may be easy to accom-
plish by approximation. A comparison between predicted
and measured responses to a constant voltage input is shown
in Fig. 8. The predicted responses are plots of the analytic
solutions to Eq. (6) using the estimated parameters. The
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Fig. 8. Prediction of the Step Response.

Parameter Mean 95% Confidenc Interval
P 1.1279 [1.0948, 1.1610]

m 1.5313 [1.0480, 2.0145]

v 2850.37 [1597.12, 7255.03]

I 31.3701 [25.3219, 39.3701]

normalized rms prediction errors range from 0.64 to 2.75
percent. It can be stated that the model, together with its
estimated parameters, provides an adequate fi of the ob-
served time-domain data. The 95% confidenc intervals for
the parameters corresponding to the power laws are pro-
vided in Table 4. All parameters except n have acceptable
deviations. The poor fi observed graphically for the creep
rate is quantifie by the confidenc intervals.

2.8. Experimental results 2: time-frequency
cross-verification

It is evident that it is always possible, in principle, to fnd
appropriate voltage and time functions that match the step
responses to a good degree of accuracy. Given the model
structure, parameter recovery is adequate from a set of step
responses, however it is questionable if the structure itself is
compatible with the response in the frequency domain. In
order to verify this important aspect, the analytical SIDF of
the model is computed using parameters estimated from
time domain. Then, analytical and experimental SIDF’s are
compared. The experimental SIDF is obtained by applying
sinewaves of various amplitudes and frequencies, and re-
cording the output amplitudes and phase lags for each fre-
quency. Results are shown in Fig. 9, showing a good agree-
ment.

Sinusoidal Response
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Fig. 9. SIDF Prediction of Sinusoidal Response.
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Fig. 10. Normalized Sinusoidal Response.

2.8.1. An alternative estimation procedure

The measured magnitude and phase are converted into
complex form for each of the amplitudes and frequencies
under study. Then, in a manner analogous to removing the
steady creep from time-domain data, the creep portion of the
SIDF is removed from the complex data. This is possible
because parameters p, m, w, m are available from estima-
tion in time. Then, the remaining data are normalized by the
SIDF coefficien that corresponds to the transient compo-
nent. The result should be a set of data that fully matches in
frequency, phase, and magnitude. Also, the magnitude
should asymptotically approach unity (or 0 dB) as fre-
quency approaches zero. This is demonstrated in Fig. 10.
Note that such complex data constitutes the Bode plot of a
linear transfer function in partial fraction expansion form:

o AT

G(s) ='E o

therefore any suitable method can be employed to estimate
the poles and residues. This is offered as an alternative to
using Procedure X and the NLSQ refinement

2.8.2. Prediction of hysteresis loops

Unbiased triangular voltages with a fixe amplitude of
63 V and three representative frequencies are applied to the
PZT actuator. The input/output behavior is represented in
Fig. 11, where it can be confirme that, for this system,
linear phase lag dominates the loop shapes, since the sim-
ulated data corresponds to a model with essentially linear
phase characteristics. The difference between simulated and
predicted loops should provide any rate-independent hys-
teresis present in the system.

2.9. Experimental results 3: model validation

In this section, the numerical state-space model is con-
fronted with a set of arbitrary test input signals. The simu-
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Fig. 11. Prediction of Hysteresis Loops.

lations are performed using the Matlab/Simulink package.
The differential model is readily constructed from Eq. (6)
using the identifie parameters. The state-space model can
be compactly expressed as

q=Aq+ F(V)
e =Cq

(13)
where A is a 7-by-7 matrix given by

A = diag(—A;, —Ay, ..., =X, 0)
C is a row vector of ones

C=J[1,1,1,1,1,1, 1]

and F is the vector function given by

V\P V\P
F((T) = |:)t1|’1(—) N Azrz(_) PRI
w w
(V)p (V)m_
Aefol =] 5 | =
K n,
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Fig. 12. Prediction of response to sequential voltage steps, 100 Hz.
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Fig. 13. Prediction of response to sequential voltage steps, 1 kHz.

Three kinds of signals are employed for validation: Saw-
tooth, staircase and a band-limited random input. Figs. 12
and 13 show the simulated and measured responses when
the input is a staircase with nearly equal ascending steps and
unequal descending steps, for low, medium and high fre-
quencies. Figs. 14 and 15 show the simulated and measured
responses to sawtooth excitation at 100 Hz. and 1 kHz.
respectively. It is seen that the model adequately follows the
response, up to its design bandwidth. Additionally, the du-
ration of some experiments was extended to the second
range, to check the assumption of a time-invariant model,
with positive results. The model is tested in its ability to
predict the response to biased inputs. This is shown in Fig.
16. The bias is adequately predicted by the model, despite
the fact that the neglected resonance contributes to offset
error. Finally, a zero-biased, uniform random input band
limited at roughly 1 kHz is applied. The results are depicted
in Fig. 17. The general trend of the response is adequately
tracked, however there exists a moderate error in the am-
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Fig. 14. Prediction of response to sawtooth voltage, 100 Hz.
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Fig. 15. Prediction of response to sawtooth voltage, 1 kHz.

plitudes. The prediction error relative to actual output, taken
as a ratio of standard deviations is roughly 32 percent.

Conclusions

The model fit experimental data and predicts arbitrary
responses with a good degree of accuracy. The results show
that power laws are reasonable assumptions for the input
functions, although the creep law introduces moderate er-
rors. The model structure along with estimated parameters is
shown to be consistent in the frequency and time domains.
The model is also useful to reveal that dynamic hysteresis
predominates in this particular PZT actuator, at least within
the amplitude ranges under study. A shortcoming of the
model is, perhaps, its high order. By observing the normal-
ized frequency response in Fig. 10, it is obvious that a lower
order model can be constructed, but at the expense of
time-domain accuracy. For control applications, a lower
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Fig. 16. Prediction of response to biased sawtooth voltage, 500 Hz.
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Fig. 17. Prediction of response to random input band limited at 1 kHz.

order model may be preferable, as long as it retains the
essential characteristics in the frequency domain. If model
reduction produces significan error, it is the robust control
system’s task to account for those errors and still produce
desired closed-loop performance, which is the ultimate goal
of this line of research. Among the qualitative shortcomings
of the model is the fact that it predicts zero steady creep rate
for zero stress input, regardless of past input history. This is
a direct consequence of the strain-hardening theory em-
ployed for inducing dynamic behavior from the constant
input response. Step-down experimental data shows, how-
ever, that the piezo actuator will creep even when the input
is stepped down to zero from some constant voltage. This
effect may be hard to capture in a differential model, for it
involves not only past output history, but past input or input
rate history. A more general nonlinear hereditary integral
representation may be able to capture this effect, but an
integral representation is inconvenient for control system
design purposes, and it may be difficul to obtain an equiv-
alent differential model. A more practically oriented draw-
back is that a full identificatio procedure for each actuator
under study would be required, as it happens with all em-
pirical models that are tailored to a specifi component. The
model is a dynamic fi that allows the design of a control
system. The main conclusion is that the proposed analogy
does provide an adequate means to describe the nonlineari-
ties present in this PZT tube actuator system. The PZT
actuator has a quasi-linear behavior, at least in the range of
amplitudes considered in this work. Closed-loop control,
therefore, is straightforward to design and implement. The
only difficultie expected in the design process are the same
ones found in linear plants, namely, unmodeled resonance,
sensor noise, and actuator saturations.

Notes

1. The authors would like to thank M.J. Klopfstein for
his assistance with the use of Nanocut. The kind sup-

port by the National Science Foundation, Division of
Design, Manufacture and Industrial Innovation is
gratefully acknowledged.

2. Manufactured by Staveley Sensors Inc., E. Hartford,
Connecticut.

3. The PZT tube has a nonlinear static sensitivity.

4. In this context, transientrepresents a function of time
that quickly converges to some steady value.

5. The NLSQ problem did not include this constraint.
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