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Rotor Model Updating 
and Validation for an Active 
Magnetic Bearing Based 
High-Speed Machining Spindle 
This paper presents an experimentally driven model updating approach to address the 
dynamic inaccuracy of the nominal finite element (FE) rotor model of a machining spin­
dle supported on active magnetic bearings. Modeling error is minimized through the 
application of a numerical optimization algorithm to adjust appropriately selected FE 
model parameters. Minimizing the error of both resonance and antiresonance frequencies 
simultaneously accounts for rotor natural frequencies as well as for their mode shapes. 
Antiresonance frequencies, which are shown to heavily influence the model’s dynamic 
properties, are commonly disregarded in structural modeling. Evaluation of the updated 
rotor model is performed through comparison of transfer functions measured at the cut­
ting tool plane, which are independent of the experimental transfer function data used in 
model updating procedures. Final model validation is carried out with successful imple­
mentation of robust controller, which substantiates the effectiveness of the model updat­
ing methodology for model correction. 

Introduction 

High-speed machining (HSM) has received considerable atten­
tion in recent years. It offers many attractive qualities such as 
shorter machining cycles, higher part accuracy, better surface fin­
ishes, and overall lower production costs in comparison to con­
ventional machining techniques [1]. With proper application of 
high-speed machining, reduced cutting forces and increased mate­
rial removal rates (MRR) are achieved [2]. 

Magnetically levitated spindles feature many benefits in com­
parison to spindles that operate on conventional rolling-element 
bearings [3]. Appropriate utilization of active magnetic bearings 
(AMBs) minimizes, or even completely eliminates, known prob­
lems and limitations associated with conventional rotor support 
types. The contactless levitation allows for significant increases in 
surface speeds and spindle diameters. Consequently, greater struc­
tural rigidity of the rotor is achievable. Advantages for AMB sys­
tems are numerous and are detailed in many texts, such as Ref. [4]. 

Active magnetic bearing rotor systems inherently require active 
feedback control to preserve levitation. Commonly, this duty is 
fulfilled by single-input single-output (SISO) controllers such as 
proportional-integral-derivative (PID), where each axis of control 
is controlled independently. However, enhancement in perform­
ance is achieved with more advanced multiple-input multiple-out­
put (MIMO) robust controllers that operate by delivering cross-
coupled control to all axes simultaneously. Effective implementa­
tion of robust control improves AMB performance; however, 
enhanced rotor modeling accuracy is required due to the model-
based nature of the robust controller design procedure. 

Modeling of existing dynamic systems is often a nontrivial task 
and always has error associated with it. Manual correction of 
modeling error is a time consuming process that does not always 
promise improvement, especially for complicated structures. For 
this reason, an automated model updating routine is developed to 
improve model accuracy in terms of resonance frequencies as 
well as mode shapes, simultaneously. Model updating is as an 

evolving field that has been pursued by many researchers [5] with 
various different approaches [6] and computational methods. 

Dynamics of a structure are generally quantified by resonance 
frequencies and their corresponding mode shapes, which are 
measured with system identification methods. Natural frequencies 
are commonly extracted from frequency response functions 
(FRFs) through application of sine sweeps or impulse response 
measurements. Conversely, mode shapes are not easily measured 
since multiple discrete measurement points along the structure are 
required for each resonant frequency. Furthermore, mode shape 
measurements are not practical and in many cases are impossible 
due to accessibility limitations. The alternative to experimental 
mode shape measurement is utilization of antiresonance frequen­
cies within typical FRFs [7]. This work presents the substantial 
improvement of model accuracy when model correction process 
utilizes antiresonance information. 

To correct the FE rotor model’s dynamic characteristics, care­
fully selected design variables are required. In the case presented 
here, the rotor’s physical properties such as dimensions, mass, 
center of mass, and transverse and polar moments of inertia are 
known and were not altered. However, due to the complexity of 
the rotor components such as AMB rotors and the induction motor 
section, their local contributions to the rotor’s global stiffness are 
less known. Consequently, only the modulus of elasticity for these 
structurally unknown finite elements was adjusted in the model 
updating routine. 

The methodology in this work is outlined in the following tasks. 
First, open-loop spindle system identification is performed. Sec­
ond, open-loop modeling and model updating methodology is 
developed. Following this section, a brief case study presents how 
excluding antiresonances in model updating affects the accuracy 
of the first two mode shapes. Finally, the validity of the updated 
model is demonstrated through the experimental implementation 
of a robust AMB controller. 

HSM Spindle and System Identification 

The platform for this study is a high-speed magnetically levi-
Contributed by International Gas Turbine Institute (IGTI) of ASME for publica­ tated machining spindle developed by Revolve Magnetic Bear­

tion in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript 
received June 21, 2012; final manuscript received June 30, 2012; published online ings, a subsidiary of SKF, Inc., pictured in Fig. 1. It is supported 
October 25, 2012. Editor: Dilip R. Ballal. by two radial and one thrust AMB and is designed to operate to a 



Fig. 1 Top: spindle cross section. Note that the drawing does 
not include the tool holder. Bottom: spindle photo. 

maximum speed of 50,000 rpm. The maximum static loads that 
the front, rear, and thrust AMBs can support are 1400 N, 600 N, 
and 500 N, respectively. The 10 kW AC asynchronous induction 
motor rotor is located between the thrust AMB and the rear AMB. 
In the delevitated state, the rotor rests on backup ball bearings that 
provide a radial clearance of 254 lm. 

Complete open-loop MIMO transfer functions (TFs) were 
acquired [8] using the existing AMB hardware to inject current 
sine sweeps during levitation under PID control over the range of 
50 Hz to 4000 Hz. The motivation for in situ testing is to circum­
vent the removal of the spindle rotor. Each radial AMB has two 
perpendicular control axes. The thrust axis is assumed to be 
uncoupled from the four radial axes, resulting in a four by four 
open-loop MIMO transfer function representing four radial axes 
of control. Equation (1) shows the relationship of G(s), where 
G(s) is  a  4  x 4 matrix of transfer functions, and u (current) and y 
(displacement) are inputs and outputs, respectively [9]. 

y ¼ GðsÞu (1) 

At each frequency of the sine sweep, four by four matrices of Fou­
rier coefficients, Uðxf Þ and Yðxf Þ, are measured for each of the 
four current perturbation inputs and sensor displacement outputs. 
For each sine sweep perturbation, all inputs and outputs are 
recorded. Here, subscript f represents discretized frequencies 
throughout the sine sweep signal input. 

[ L
Uðxf Þ ¼  Uijðxf Þ i;j¼1:::4 [ L (2) 
Yðxf Þ ¼  Yijðxf Þ i;j¼1:::4 

In this way, the signals are related as follows: 

Yðxf Þ ¼ Gðjxf ÞUðxf Þ (3) 

To extract the open-loop transfer function, simple arithmetic is 
carried out to obtain 

Gðjxf Þ ¼ Yðxf ÞU 1ðxf Þ (4) 

Although a total of sixteen TFs were acquired, only two were uti­
lized for quantifying the rotor’s dynamic behavior. The TFs with 
sine sweep signal injection and response measurement on the 
same axis tend to show the strongest resonance and antiresonance 
peaks. For this reason, the TFs with coaxial inputs/outputs (I/O) at 
the front (Bode11) and at the rear (Bode33) AMBs on a common 
axial plane were used throughout this work. They are presented in 
Fig. 4, as well as in the remaining TFs plots. 

Spindle Modeling and Model Updating 

The nominal FE spindle rotor model is a simplification of the 
real rotor. The rotor is difficult to accurately model due to its elab­
orate geometry and complicated structure. More specifically, 
modeling difficulties were found to be in the structural properties 
of the laminate materials in the AMB and motor rotors, the shrink 
fit interfaces, and the tapered attachment of the tool holder. Based 
on the known geometrical and mass information of the spindle 
rotor, a finite element rotor model was developed as illustrated in 
Fig. 2. The finite element rotordynamic code used in this work did 
not account for the unknown interactions of shrink fit interfaces, 
multiple material layers, inhomogeneous materials, small geomet­
rical details, and so on, which additively contribute to modeling 
inaccuracy. 

A modally reduced state-space representation was most con­
venient for control oriented application. Modal truncation was 
applied in order to retain the first three flexible modes because the 
system identification measurements were not capable of capturing 
higher frequencies. Five modes mt were retained, which included 
two rigid-body modes mr and the first three flexible modes mf. In  
state-space representation, ordinary differential equations are rep­
resented in matrix format for programming convenience. They are 
also considered to be more numerically stable than models repre­
sented by transfer function equations. The state-space matrices for 
the free-free (ff) rotor, Aff, Bff, and Cff are generated and are uti­
lized for subsequent mathematical model manipulations [10]. The 
open-loop model is illustrated in Fig. 3 with solid lines. 

Initial open-loop modeling applied nominal material parameters 
to all elements in the FE model. However, due to the unknown 
stiffness contribution of the several rotor components, the nominal 
model was shown to be not representative of the real spindle rotor. 
Figure 4 illustrates the significant error of the nominal spindle 
model when compared with system identification data. Comparing 
modeled and experimental data should be performed on as many 
domains as possible, such as spatial, frequency, and time response 
[11,12]. Several techniques have been adopted to quantify the 
comparison and are categorized into either visual or numerical 

Fig. 2 The FE rotor model with subregions designating the structurally uncertain elements 



 

 

resonance or antiresonance peak number. The variables 
ð 2 R are the experimental and calculated values for eÞij;k x̂ij;k; ~x

2 Rresonances, respectively. The variables ax̂ij;k; ax~ðeÞij;k are 
the experimental and calculated values for antiresonances, respec­
tively, denoted with the superscript a. The frequency values for 
x̂ij;k 

aand x̂ij;k are extracted manually from the experimentally 
acquired transfer function G0;ij and are hard coded into expres­
sions rij;k and aij;k since they are fixed and do not change for this 
system. The frequency values ~xð and aeÞij;k ~xðeÞij;k are extracted 

Fig. 3 The open-loop model (solid lines) 

Fig. 4 Transfer functions from the front (top) and rear (bottom) 
AMBs illustrating the nominal model and experimental data 

assessments [13]. Here, quantification of modeling error is based 
on differences of the corresponding resonance and antiresonance 
frequencies between modeled and experimental data. 

Model updating was employed to correct for the modeling sim­
plifications through adjustments of the modulus of elasticity of the 
fifteen FE model regions seen in Fig. 2. Since computational 
effort must be taken into account in order for the model updating 
routine to finish in timely manner, a balance between solution 
flexibility and the number of design variables was necessary. For 
this case, fifteen design variables (corresponding to fifteen finite 
elements) provided a reasonable balance. The only bound 
imposed on the design variables was that they must be positive 
real values. 

Initialization of the updating routine began with the definition 
of the design variables ep, represented by the vector, e, in Eq. (5), 
where subscript p denotes the individual design variable and n is 
the total number of design variables. All other finite elements 
have fixed nominal properties and were assumed to be correct. 
Note that the vector e in Eq. (5) was initially populated with nomi­
nal modulus of elasticity values for the specific material. 

{ }
e 2 Rn so that ep (5)

p¼1:::n 

The vector e is utilized to calculate the model’s resonance and 
antiresonance peaks for subsequent comparison with experimental 
data. The variables rij;k and aij;k in Eq. (6) represent the corre­
sponding resonance and antiresonance errors, respectively. 

    

based on calculation of poles and zeros of the open-loop plant 
model P0ð The error, in the most general form, between G0eÞij. 
and P0ðeÞ is calculated by Eq. (7). The terms bx and by represent 
which of the 16 experimental MIMO Bode plots are utilized. The 
exponents wk;r and wk;a are the weighting factors for each error 
value, which can be different based on the mode error priority 
decided by the engineer. 

bx by mf h i 
wk;r wk;a 

XXX 
errðrij;k; aij;kÞ ¼  r þ a (7)ij;k ij;k 

i¼1 j¼1 k¼1 

The open-loop plant, experimental data, and error function are 
augmented into a black box operator B(e). The operator B(e) is  
referred to as a black box function because the optimization rou­
tine [14] disregards the inner operations of the several tasks 
within. Operator B(e) requires an input vector e generated by the 
optimization routine that then simply outputs an error value err. 
The smaller the error value, the more accurate the solution is. The 
tasks within B(e) begin with the calculation of the current model’s 
poles and zeros based on the most recently adjusted e vector, then 
calculation of the pole and zero error between the calculated and 
experimental data, and finally, evaluation of the error function 
errðrij;k ; aij;kÞ 2 R, which outputs an error value. The error value 
is directed to the optimization routine that generates another can­
didate e vector for the next loop evaluation. The error minimiza­
tion loop continues until stopping criteria have been met, which 
can be a subjective matter since a perfect model may never be 
achieved. 

The Nelder–Mead nonlinear unconstrained optimization 
method [15] is employed to adjust the e vector to minimize the 
error function. This is a well-established, derivative-free optimiza­
tion algorithm that can handle discontinuous, nonsmooth func­
tions. This method minimizes the real design variables using only 
the objective function’s error value. The search for a minimizer 
proceeds through recursive updates of the simplex vertices. Each 
simplex operation depends on the objective function evaluation, 
where the simplex is updated through a progression of reflection, 
expansion, contraction, and shrinkage operations. It is known as a 
relatively robust and simple routine, which is why it was initially 
applied to this problem, noting that a global minimum may not be 
achieved. The generalized minimization problem is defined to find 
the vector e such that 

min BðeÞ (8) 
e2Rn 

On average, approximately 400–500 iterations were necessary to 
generate an adequate solution. The final solution’s transfer func­
tions are plotted in Fig. 5, showing nearly zero error in resonance 
and antiresonance peaks. Note that the third antiresonance peak in 
Bode33 is not identifiable and was not included in the error 
function. 

Since the updated model utilizes antiresonance data in the 
objective function, mode shapes and resonance frequencies have 
been simultaneously corrected. Figure 6 plots the good agreement 

rij;k ¼ x̂ij;k x~ðeÞij;k  
of the updated model’s mode shapes with the available experi­  (6) 
mental mode shape data. Notice that mode shape measurements   ax̂ij;k 

a ~xðeÞij;kaij;k ¼   
were only possible at the exposed rotor length as well as AMB 
sensor locations. The experimental mode shape measurements 

The subscripts i and j reference the individual transfer function were acquired by injecting sine wave perturbation at resonance 
in Fig. 4 and the subscript k denotes the corresponding flexural frequency into an AMB during levitation and translating an 



Fig. 5 Transfer functions from the front (top) and rear (bottom) 
AMBs illustrating the updated model and experimental data 

external sensor along the exposed rotor length to make discrete 
point measurements. 

It is important to note that this model updating problem’s 
objective function included three resonance frequency errors and 
a total of five antiresonance frequency errors. Resonance frequen­
cies are the same for all measurement locations (AMBs), unlike 
antiresonances, which are unique from one transfer function mea­
surement to the next. Although two TFs were utilized in this 
problem, more objectives could be applied in the form of antireso­
nance errors from cross-coupled axis, such as Bode13, where the 
input signal injection is at the front AMB and the response mea­
surement is at the rear AMB. The mode shape accuracy of the 
updated model would improve but with the increased computa­
tional cost due to increased difficulty of minimizing additional 
errors. Conversely, fewer errors may be used such as by utilizing 
only information in Bode11, however, mode shape accuracy will 
suffer. In this work, utilization of coaxial TFs from the front and 
rear AMBs was found to be adequate. 

It should be pointed out that all operations were performed in 
the levitated, nonrotating state. This inherently neglects effects of 
rotation such as gyroscopic effects and potential centrifugal 
expansion of shrink-fit components, which may induce speed-
dependent dynamic changes. At this stage of the research, it is 
assumed that speed-dependent changes do not significantly alter 
spindle performance at high speed. 

Antiresonances in Model Updating 

Antiresonance frequencies play an important role in defining 
the rotor’s flexible behavior across a range of frequencies. Due to 
the burdensome nature of measuring the complete mode shape of 

Fig. 6 Mode shapes of the first two bending modes illustrating 
the updated model and the experimental data 

Fig. 7 Transfer functions from the front (top) and rear (bottom) 
AMBs illustrating the updated model (excluding antiresonan­
ces) and experimental data 

the spindle rotor for several resonance frequencies, utilization of 
antiresonance frequencies is a practical alternative. They are eas­
ily obtained from the system identification transfer functions using 
existing AMB hardware. The utilization of antiresonance frequen­
cies (in place of explicit mode shape measurements) is motivated 
by the anticipated routine changes of the tool holder and tool for 
each machining process. With each tool change, the spindle’s con­
trolled plant is changed and, thus, requiring a new corresponding 
robust controller. Since this may be a routine operation, spindle 
disassembly and reassembly for traditional testing is impractical, 
thus necessitating an in situ methodology. 

Rather than representing complete mode shapes, antiresonances 
represent frequencies at which bending nodes are located at the 
corresponding AMB sensor or actuator [7]. This information pro­
vides the engineer with knowledge of several discrete locations 
and frequencies where vibrations are effectively zero. Note that 
antiresonances are sensitive to locations of inputs and outputs in a 
system. An assumption behind the utilization of antiresonances 
for model updating is that the rotor structure performs linearly 
through the frequency range of interest. In other words, since the 
rotor’s flexural dynamics is defined at several (nonresonant) fre­
quencies, it is assumed that the rotor will continue to behave line­
arly at resonant frequencies and produce accurate mode shapes. 

The following section demonstrates the case where the model 
updating routine only corrects the resonance frequencies and dis­
regards all antiresonance frequencies. Figure 7 plots the updated 
model against the same experimental TF data as presented in 
Fig. 4. 

Table 1 lists the labeled errors of the antiresonances from 
Bode11 and Bode33 plotted in Fig. 7. Note that a33,3 is not identifi­
able and was not considered. 

Figure 8 illustrates mode shapes corresponding to the inaccur­
ately updated model represented by the TFs plotted in Fig. 7. 
Although the resonance frequencies exhibit nearly zero error, the 
mode shapes for the first two resonance frequencies show 

Table 1 Error Values of five antiresonance frequencies from 
Bode11 and Bode33 

Antiresonance error Hz/% 

a11,1 61/5.5 
a11,2 76/4.3 
a11,3 120/3.5 
a33,1 40/4.2 
a33,2 115/6.7 



Fig. 8 Mode shapes of the first two bending modes for the 
updated model (excluding antiresonances) and the experimen­
tal data 

significant disparity in comparison to the same experimental 
mode shape measurements presented in Fig. 6. 

Updated Model Validation 

Validity of the updated open-loop model was demonstrated 
through successful implementation of a MIMO l-synthesized con­
troller [9] that was generated utilizing the updated rotor model 
represented by Fig. 5. Since the l-controller is generated based on 
the spindle model, robust levitation of the real machining spindle 
is achieved only when the model is of high fidelity and representa­
tive of the real test platform. 

The l-controller used in this work was generated with perform­
ance weighting functions and uncertainty specifications shown in 
Table 2. This l-controller is referred to as the benchmark l-con­
troller in which subsequent controllers in the study are compared 
against. The design intent behind this controller was to sustain ro­
bust levitation under a variety of excitation sources such as unbal­
ance forces due to rotation over the entire speed range (0 to 
50,000 rpm) and impulse/step inputs at the tool location. The per­
formance weighting functions and uncertainty specifications were 
assumed to be reasonable for benchmarking purposes. Real 
machining operations were not considered in this work. 

The tool location dynamic stiffness measurements were per­
formed on the nonrotating spindle rotor in the levitated state uti­
lizing the l-controller, which are plotted in Fig. 9 alongside the 
corresponding model simulations. The tool location dynamic stiff­
ness of the spindle levitated with the PID controller is included as 
well for comparison. The measurements were conducted at the 
tool plane using an instrumented hammer and capacitance probe. 
The input and output responses of the instrumented hammer and 
capacitance probe were recorded by a spectrum analyzer that was 
used to calculate the dynamic stiffness, which is the inverse of the 
compliance. 

Several observations are made from Fig. 9. First, the overall 
tool location stiffness magnitude for the l-controller case is nota­
bly higher over the low frequency range as well as at the spindle’s 
maximum speed (833 Hz) in comparison to the PID controller 
case. Note that because Fig. 9 is the inverse of the dynamic com­
pliance plot, the spindle’s resonances are annotated as the mini­
mum peaks, which illustrate the rotor’s maximum compliance. 

Table 2 Specifications of the benchmark l-synthesis 
controller 

Tool Front AMB Rear AMB 

Max DC load (N) 40 100 100 
Max HF load (N) 5 10 10 
Max DC displacement (lm) 50 10 10 
Max HF displacement (lm) 10 30 30 
First mode uncertainty (%) 1 
Second mode uncertainty (%) 1 

Fig. 9 Experimental and simulated stiffness of the spindle at 
the tool plane for the l-controller and the PID controller 

Second, the responses of the three flexible modes, 1069 Hz, 
1955 Hz, and 3210 Hz, are substantially damped by the l-control­
ler, when compared with the PID controller. The suppression of 
resonance frequency responses can be a substantial performance 
and safety improvement in machines that have to pass through 
critical speeds. Since the maximum running speed (833 Hz) is 
well below the first rotor resonance frequency, passing though 
critical speeds is not a concern for this spindle. Third, rigid-body 
body modes are not identifiable when levitated with the l-control­
ler. Similar to the suppression of rotor resonance frequency 
response, the absence of rigid-body modes is a significant per­
formance and safety enhancement. 

Conclusions 

The model updating routine requires a carefully chosen objec­
tive function to solve for a plant model that is representative of 
experimental data. Typically, models are corrected in such a 
manner that corrects for resonance frequencies; however, it was 
demonstrated to be not completely sufficient in terms of mode 
shape accuracy. Since mode shapes are burdensome to measure, 
antiresonance frequencies are an effective alternative, particularly 
in cases of routine alterations to the controlled plant such as 
with a machining spindle. For the purpose of model updating, 
these terms within the objective function provide the simultaneous 
correction of resonances as well as the corresponding mode 
shapes. 

To ensure that the updated plant model is representative of the real 
system, model validation operations were required. Final updated 
model validations were performed through implementation of a 
l-controller generated based on the updated FE rotor model in con­
junction with electrical models of the surrounding components. The 
concept for this was that since the l-controller was designed based 
on the updated plant model provided, the rotor will not levitate 
robustly if the plant model was not adequate for the l-synthesis [16]. 
The successful experimental implementation of the l-controller dem­
onstrated the high fidelity of the updated open-loop plant model. 
Higher values of tool tip dynamic stiffness, in the presence of rigid 
body modes and flexible modes, were achieved with l-synthesis con­
trol. The automated open-loop model updating routine presents itself 
as a practical and an effective technique for model correction for sub­
sequent use in robust controller generation. Further, as presented in 
Ref. [7], the updated plant model provides accurate time domain 
response predictions at the tool plane. 

Nomenclature 

a ¼ superscript representing antiresonance 
aij,k ¼ antiresonance error 

A, B, C ¼ state-space representation 
AC ¼ alternating current 

AMB ¼ active magnetic bearing 
B(e) ¼ black-box operator 
DC ¼ low frequency 



ep ¼ design variables (modulus of elasticity) 
err ¼ error value 

e ¼ vector of design variables, modulus of elasticity 
ff ¼ subscripts representing free-free 

FE ¼ finite element 
G ¼ gyroscopic matrix 

G0 ¼ experimental open-loop transfer function 
G(s) ¼ matrix of experimental transfer functions 

G(jxf) ¼ matrix of experimental open-loop transfer functions 
HF ¼ high frequency 

HSM ¼ high-speed machining 
i,j ¼ subscripts representing input and output axes 

I/O ¼ input/output 
k ¼ subscript for flexible resonance or antiresonance peak 

mf ¼ number of flexible modes 
mt ¼ total number of modes 
mr ¼ number of rigid-body modes 

MIMO ¼ multiple-input multiple-output 
MRR ¼ material removal rate
 

n ¼ number of design variables
 
p ¼ subscript representing design variable number
 

P0 ¼ modeled open-loop transfer function
 
PID ¼ proportional-integral-derivative
 
rij,k ¼ resonance error
 

SISO ¼ single-input single-output
 
TF ¼ transfer function
 

u ¼ vector of input signals
 
U(xf) ¼ Fourier coefficients of signal inputs
 

y ¼ vector of output displacement
 
Y(xf) ¼ Fourier coefficients of response outputs
 

wk,r ¼ weighting factor for resonance error
 
wk,a ¼ weighting factor for antiresonance error
 
xf ¼ frequency 

a

a

xij;k ¼ experimental resonance frequency 
xij;k ¼ calculated resonance frequency 
xij;k ¼ experimental antiresonance frequency 
xij;k ¼ calculated antiresonance frequency 

^	
~
^
~
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