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Exploration of NDE Properties of 
AMB Supported Rotors for 
Structural Damage Detection 
This paper addresses self-diagnostic properties of active magnetic bearing (AMB) sup
ported rotors for online detection of the transverse crack on a rotating shaft. In addition 
to pure levitation, the rotor supporting bearing also serves as an actuator that transforms 
current signals additionally injected into the control loop into the superimposed specially 
selected excitation forces into the suspended rotor. These additional excitations induce 
combination frequencies in the rotor response, providing unique signatures for the pres
ence of crack. The background of theoretical modeling, experimental, and computer 
simulation results for the AMB supported cracked rotor with self-diagnostic excitation 
forces are presented and discussed. 

1 Introduction 

Recent advancements in actuator technology, power electronics, 
sensors, and signal processing have created a rapid development 
of smart machine technologies for rotating machinery [1,2]. Rang
ing from machine condition monitoring and diagnostics to full 
active control of machine behavior, the integration of electrical 
and computer systems has produced significant advances in ma
chine performance and reliability. 

Magnetic bearings are a typical mechatronics product. The 
hardware is composed of mechanical components combined with 
electronic elements such as sensors and power amplifiers and an 
information processing part, usually in the form of a microproces
sor. In addition, an increasingly important part is software, which 
specifies the coordination of bearing forces to sensed rotor motion 
and consequently dictates the dynamic properties of the complete 
system. The inherent ability for sensing, information processing, 
and actuation gives the magnetic bearing the potential to become 
a key element in smart and intelligent machines. 

2 Background 

The equation of motion in fixed coordinates for the cracked 
rotor with the Mayes crack model can be written as [3–5] 

Mq̈ + (D + G)q̇ + TTK̃ (4,t)T(q + qst) = W + Fun + Fex (1a) 
where 

k̃aa(4) 0 
K̃ (4) = (1b)[ ]

0 k̃jj(4)

k̃aa(4) = 0.5(k0 + ka) + 0.5(k0 − ka)cos 4 

k̃jj(4) = 0.5(k0 + kj) + 0.5(k0 − kj)cos 4 (1c) 

and W, Fun, and Fex are the gravitational force, the unbalance 
forces, and the external excitation forces applied to the rotor by 
the active magnetic force actuator, respectively; M, D, and G are 
the matrices of mass, damping, and gyroscopic, respectively. The 
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above stiffness matrix K̃ has been designed in a rotating coordi
nate system 0aj, where ko is the uncracked stiffness of the axi
symmetric rotor (the crack is fully closed) while ka and kj repre
sent the stiffness of the cracked rotor with a fully open crack in 
the a and j directions, respectively. Lastly, 4=it+40 is the 
angle between the crack axis and the rotor response at the crack 
location and T is the transformation matrix from rotating to iner
tial coordinates. 

Assuming weight dominance or IqstI� IqI and taking into ac
count that K0qst =W, one can obtain the parametrically excited 
cracked rotor model in fixed coordinates system as follows 
[3,4,6]: 

Mq̈ + (D + G)q̇ + [K0 −  K(t)]q = Fun + Fex (2) 

with 

k0 0 k11 k12
K0 = ,  K(t) = (3)[ ] [ ]

0 k0 k21 k22 

where the matrices K0 and  K(t) represent the undamaged shaft 
stiffness and the periodic function of time representing the stiff
ness change due to crack, respectively. In fixed coordinates, the 
above model produces a response at 1X, 2X, and 3X synchronous 
components as long as no other nonlinearities are present in the 
system [3,4]. 

Currently, there are two widely accepted industrial approaches 
for rotor crack detection. One includes monitoring of the changes 
in amplitude and phase of the synchronous response, and the other 
one is based on watching for the occurrence of 2X vibrations, 
especially when the rotor runs near the half of any balance reso
nance speed. Application of conventional nondestructive evalua
tion (NDE) methods is very limited due to their unacceptable 
limits. Some of these techniques are time-consuming and incon
venient for turbomachinery service testing. Almost all of these 
techniques require that the vicinity of the damage to be known in 
advance, and they can only provide local information and no in
dication of the structural strength at a component and/or system 
level. Also, the effectiveness of these experimental techniques is 
affected by the high measurement noise levels existing in complex 
turbomachine structures. It should be noted that for the rotor with 
breathing crack described by Eq. (2), the modal testing is ineffec
tive in identification of crack since such rotor behaves as a non
linear time varying system. 
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This paper explores NDE properties of rotors supported on 
magnetic bearings based on novel application of built-in actuation 
and diagnostics capabilities of AMB utilized for online detection 
of the shaft transverse crack. 

2.1 Application of Active Magnetic Bearing for Crack 
Detection. The key aspect of utilization of NDE properties of 
AMB supported rotors is based on the fact that the system has 
three different classes of frequencies, namely, the natural frequen
cies (or critical speeds), rotor spin speeds, and the forcing fre
quencies from the AMB. The parametric terms in the equations of 
motion (Eq. (2)) induce combinational frequencies in the response 
of the machine. Mani et al. [7] used a multiple scales analysis to 
determine the conditions required for a combinational resonance, 
which occurs when 

ie = Ini − WiI for n = ± 1, ± 2, ± 3,  . . .  (4) 

where i is the rotor spin speed, ie is the frequency of the AMB 
diagnostic excitation force, and Wi is a natural frequency of the 
system. This analysis was based on a two degree of freedom Jef
fcott rotor model with weight dominance. The multiple scales ap
proach seems to provide good results although the extension to 
complex systems with more than one resonance is difficult [6,8]. 
It should also be noted that there are AMB excitation frequencies 
that do not satisfy Eq. (4) but produce responses containing com
binations of the rotor spin speed and AMB excitation frequency. 
Indeed, any situation where the external excitation frequency, ro
tor spin speed, and natural frequency are linearly related with 
integer coefficients is likely to produce a significant response. 

3 Experimental Study 

3.1 Experimental Apparatus. The photo and the basic di
mensions of the experimental rotor test rig employed in this study 
are shown in Figs. 1(a) and 1(b), respectively. The facility was 
described in detail in Refs. [9–12]. The rig is equipped with coni
cal AMBs, which serve as rotor supporting bearings as well as 
actuators for injection of the specified excitation harmonic force. 
The eight-pole radial design bearings are equipped with four vari
able reluctance-type position sensors. The magnetic force is ap
plied to the rotor along two perpendicular V’s, W-axes, which are 
rotated 45 deg from the vertical. 

The solid shaft with a diameter of 15.875 mm and a length of 
659 mm is made of 400 series hardened stainless steel. The coni
cal rotors of AMBs have a 13 deg cone angle, and its diameter at 
the center of actuation is 42.9 mm. The 48 finite element model of 
the rotor presented in Fig. 1(c) shows the position of the support
ing magnetic bearings (at nodes 4 and 42), the position of external 
force injection (node 4), and the position of sensing (node 8) used 
for crack detection signal processing. The disk with a diameter of 
127 mm, a thickness of 30.5 mm, and a mass of 3.18 kg is located 
at the 22nd station, at the midspan of supporting bearings (see Fig. 
1(c)). 

For the operating conditions corresponding to the tested cases, 
the equivalent stiffness and damping of the magnetic bearings 
were calculated to be about 2X 105 N / m and 500 N s / m, re
spectively. The calculated natural frequencies of the considered 
active rotor-bearing system are 29.7 Hz and 70.6 Hz (the rigid 
body or bearing modes) and 102.1 Hz (first flexible mode), and 
they all agreed well with the experimental results. The undamped 
critical speed map for this system is presented in Fig. 2. 

A small notch approximating a breathing crack was cut using a 
wire electric discharge machine (EDM) with the wire diameter of 
0.1016 mm (0.004 in.). For the considered cases, two cracked 
shafts were tested, with 25% and 40% of the shaft diameter crack 
depth. The EDM notch was located at the distance of 275 mm 
from the center of nondrive end magnetic bearing (at node 4, Fig. 
1(c)). In theory, an actual crack would have a zero width; there
fore, a stainless steel shim was inserted into the 25% and 40% 
EDM cuts in order to ensure the opening and closing behaviors of 

Fig. 1 „a… Photo of experimental test rig, „b… schematic with 
dimensions in †mm‡, „c… finite element model of the rotor 

the real crack as close as possible. Magnified images of the EDM 
cut without and with the inserted shim are shown in Figs. 3(a) and 
3(b), respectively. 

It is known that the breathing action of the crack is restricted 
only to the weight dominated rotors, i.e., when static deflection is 
greater than the rotor response due to unbalance. Finite element 
analysis was employed in this study to estimate the rotor static 
deflection to be about 160 ,m, see Fig. 4, which is much larger 

Fig. 2 Undamped critical speed map for AMB rotor system 



Fig. 3 Magnified view of the shaft with EDM cut: „a… with no 
shim and „b… with an inserted shim 

than the experimentally measured peak amplitude of the 40% 
cracked rotor response (approximately 70 ,m). 

3.2 Controller Design and AMB Force Injection. Following 
the modeling campaign of all the components of the AMB rotor 
system, a proportional-integral-derivative (PID) controller with 
notch and low pass filters was developed and implemented at 10 
kHz to provide a stable and quiet rotor levitation at the given spin 
speed. The model of the controlled AMB rotor system was built in 
SIMULINK (see Fig. 5) and implemented via DSPACE rapid proto-

Fig. 4 Static deflection of the rotor due to its weight 

typing system. 
The overall transfer function of the controller, which consists of 

all the above components connected in series, can be expressed as 

G(s) = GPID(s)GLP(s)GN(s)KT (5) 

where KT is a total gain of the controller that works as a scaling 
factor for the entire control loop and GLP and GN are the transfer 
functions of low pass and notch filters, respectively. Figure 6 il
lustrates the transfer functions of the developed PID controller for 
one control axis. Since the system is axisymmetric, the controllers 
are identical in each axis of the system. 

Figure 7 presents the simulated (Fig. 7(a)) and measured (Fig. 
7(b)) orbits of the levitated rotor running at a speed of 1560 rpm 
(26 Hz) without (top row) and with (bottom row) external har
monic excitation force. The orbits apply to the rotor motion due to 

SIMULINK model of the rotor supported on conical AMBs 
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Fig. 6 Transfer function for single axis for the developed controller 
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Fig. 7 „a… Simulated and „b… experimental orbits of the uncracked rotor supported on conical AMBs at spin speed of 
w=1560 rpm without „top row… and with „bottom row… force injection 

residual unbalance measured at the bearings midspan at node 22 
(see Fig. 1(c)), and the excitation force of 5 N and frequency of 
18.6 Hz were applied at node 4. The simulated orbits were pro
duced by the model shown in Fig. 5, which includes PID control
ler with the transfer function presented in Fig. 6. It can be noticed 
that the orbits are similar although the amplitudes of the modeled 
vibrations are slightly overestimated regardless of the presence of 

150 

excitation force. It can be noticed that for the given running speed, 
the experimentally measured rotor dynamic response (Figs. 7(b)) 
is well below the estimated static deflection (Fig. 4), which en
sures the breathing action of the crack. 

The harmonic force excitation was generated by the current 
injection that was superimposed on the levitation current (i.e., bias 
plus control current) in one axis of the nondrive end magnetic 

no injection 
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Fig. 8 Measured total magnetic force in one axis of the nondrive bear
ing without and with excitation force 
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Fig. 9 Experimental time responses of the healthy and 40% cracked 
rotors running at 1560 rpm without „„a… and „b…… and with „„c… and „d…… 
external excitation force of 5 N at 18.6 Hz  applied at W-axis of a nondrive 
end bearing 

bearing. The total current and position data were collected, and (N ,m2 /A2), Itop and Ibot are the measured currents on the top and 
the force on the rotor axis was calculated online using the follow- bottom coils (A), respectively, g is the effective gap between the 
ing formula: magnet and the rotor (401.55 ,m), and x is the rotor displace

2 2Itop Ibot ment measured by the control system (,m).
 
FAMB = C X
 [( ) − ( ) ]X 106 (N) (6)

2(g − x) 2(g + x) Figure 8 shows the measured online total AMB force in single 
axis of AMB without (top) and with (bottom) force injection. where FAMB is the force on axis (N), C is the calibration factor 
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Fig. 11 Comparison between experimental frequency responses of the 
healthy „dotted line… and 40% cracked „solid line… rotors at spin speed of 
w=26  Hz and excitation force of 5 N with various frequencies, measured 
at the nondrive end bearing 

Here, only the injection of 0.12 A at 18.6 Hz has been shown for 
illustrative purposes. 

3.3 Experimental Results. For all presented experimental re
sults, the rotor was levitated on AMBs and spinning at a constant 
speed of 1560 rpm (26 Hz). In all test cases, the cracked rotor 
involved the shimmed EDM cut, as it was discussed previously. 
The experimental time series of measured displacement, in the 
direction of 45 deg from vertical one, for the cracked and healthy 
rotors are presented in Fig. 9. 

One can notice some increase in the cracked rotor response 
amplitude. More sophisticated changes can be seen in Figs. 9(c) 
and 9(d), where the healthy (Fig. 9(c)) and cracked (Fig. 9(d)) 
rotors are subjected to the magnetic actuator applied harmonic 
force having amplitude of 5 N peak-to-peak (p-p) and fixed fre
quency of 18.6 Hz [13,14]. 

Experimentally measured at the nondrive end bearing (sensor 

10
1 

located at node 8, see Fig. 1(c)) frequency responses for the un
cracked (healthy) and 25% cracked rotors are illustrated in Fig. 
10. The presented spectra are for different AMB excitation force 
frequencies calculated based on different mode frequencies using 
the formula in Eq. (4). Thus, the excitation frequency of 18.6 Hz 
was calculated using the second rigid body mode (70.6 Hz), 22.3 
Hz using the first rigid mode (29.7 Hz), and 50.1 Hz using the first 
flexible mode (102.1 Hz) with n=2 for all cases. It can be seen 
that in this case, the measured frequency responses are almost 
identical for the uncracked and 25% cracked rotors although one 
can notice a slightly higher overall amplitude for the cracked rotor 
case. The spectra show response at synchronous frequency and its 
integer multiples and, in the presence of the AMB forcing, also 
the excitation frequency. For excitation frequencies of 18.6 Hz 
and 22.3 Hz, there can be noticed incipience of combinational 
frequencies; however, they are not of sufficient amplitude to draw 
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any constructive conclusions. 
Figure 11 shows the comparison of the experimentally ex

tracted frequency responses for the uncracked and 40% cracked 
rotors measured at the same location and subjected to the same 
excitation frequencies as in Fig. 10. Here, the scenario is quite 
different than in a previously considered case. In the case of no 
AMB excitation, the only response can be seen at the rotor spin 
speed and its harmonics, and its amplitudes are higher for the 
cracked rotor. Application of nonzero frequency excitation force 
induces the cracked rotor responses at combinational frequencies, 
as defined by Eq. (4) in Sec. 3.2. For example, in the case of 
excitation frequency of 18.6 Hz, the following combination fre
quencies are induced: 7.4 Hz, 44.6 Hz, 55.7 Hz, 59.4 Hz, 70.6 Hz, 
74.3 Hz, 811.7 Hz, 85.4 Hz, 96.6 Hz, 111.4 Hz, 122.6 Hz, and 
137.4 Hz, in addition to synchronous response and its integer 
multiples. Similar sets (following Eq. (4)) can be found and ex
perimentally verified for other excitation frequency values. In all 

cases, the response amplitudes for the cracked rotor at the combi
nation frequencies are significantly higher in the presence of ex
ternal excitation. 

In order to better illustrate the significance of the experimental 
results presented in Fig. 11, the rotor responses at the close vicin
ity of 70.6 Hz and 111.4 Hz are shown in Figs. 12 and 13, respec
tively, for a case without (a) and with (b) AMB excitation. The 
considerable magnification of the cracked rotor response due to 
AMB excitation is transparent. A similar behavior can also be 
observed at other combinational frequencies. 

Since most rotating machinery has installed acceleration trans
ducers mounted on the bearing housings, the effort was made to 
evaluate feasibility of the presented crack detection approach for 
this type of transducer and its placement. The Bently–Nevada® 

330400 accelerometer [15] was mounted on the nondrive bearing 
housing, as is illustrated in photo in Fig. 1(a). Figure 14 shows the 
frequency responses for the uncracked and cracked rotors mea-

Fig. 14 Experimental responses of the healthy „dotted line… and 40% 
cracked „solid line… rotors at spin speed of w=26 Hz with excitation force of 
5 N at 50.1 Hz measured with accelerometer mounted on nondrive end bear
ing housing 



Fig. 15 Comparison between simulated „dotted line… and experimental 
„solid line… frequency responses of the 40% cracked rotor at spin speed of 
w=26  Hz and excitation force of 5 N with various frequencies measured at 
the nondrive end bearing 

sured by the accelerometer mounted on the nondrive end bearing 
in the presence of harmonic force excitation at 50.1 Hz and am
plitude of 5 N. Over the whole frequency range, the overall am
plitude of the cracked rotor response is higher than that of the 
uncracked rotor, and the set of combination frequencies, as de
fined by Eq. (4), can also be noticed. These experimental results 
provide evidence that there exists potential for the proposed ap
proach to be applied based on readout directly from accelerom
eters mounted on bearing housings. 

Finally, a direct comparison of computer simulation results and 
the experimental data are presented in Fig. 15. These comparisons 
use the 40% shimmed levitated cracked shaft running at 1560 rpm 
with AMB injection frequencies of 0 Hz, 18.6 Hz, 22.3 Hz, and 
50.1 Hz shown in the corresponding plots. In simulation, the 
breathing model for the cracked shaft finite element was based on 
fracture mechanics approach [16]. Each plot in Fig. 15 has de
noted major response frequencies, and one can notice that the 
simulation results closely resemble the experimental data. The 
major frequency components match very well, specifically the 
running speed and its multiples, AMB signal injection, natural 
frequency, and the major combination frequencies. It can be also 
noticed that for higher values of excitation frequency, experimen
tal responses show tendency for frequency components to be clus
tered around integer multiples of synchronous response. 

4 Conclusions 

The presented experimental and simulation results show that 
the use of an active magnetic bearing to apply specified force 
excitation to the rotor has the potential in diagnostics of structural 
damage of rotors. When the rotor system is interrogated by har
monic force, the combination frequencies based on the AMB fre
quency, the rotational speed, and the natural frequencies are in
duced, which can be used to detect damage. The important aspect 
is that in a case of AMB supported machines, no extra actuators 
are required. Also, the processed data for online crack detection 

be significant. However, these accuracy issues seen in other appli
cations have relatively little impact here, where the primary inter
est is in quantitative frequencies and qualitative (especially rela
tive) amplitudes. That is, the frequencies of data retrieved from 
the AMB will be quite accurate, and the absolute amplitudes may 
suffer from calibration issues but relative amplitude—especially 
over narrow frequency ranges—will also be accurate. 
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