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The influence of orthotic devices and vastus medialis strength and 

timing on patellofemoral loads during running 

R.R. Neptune "', I.e. Wright " A.l. van den Bogert b 
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1. Introduction 

Running is a popular form of recreation and fitness 
and is cen tral to many sports. However, running is also 
associated with a high injury rate for both younger 
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(32%) and older (41%) age populations [I ). Depending 
on the study citcd, the overall yearly incidence ra le for 
running injuries is between 37% and 56% [2] with 42% of 
these inju ries related to the knee and 26% of knee in
juries associated with patellofemoral pain (PFP) [3]. 
PFP includes a ll d isorders associated wi th d iscomfort on 
the anterior side of the knee joint. Two of the more 
common, conservative PFP treatments are exercise 
programs and the prescription of orthoses [4]. Although 
conservative treatments have been reported to be 
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successful, the efectiveness is often based on subjective 
or empirical data [5]. Therefore, there is considerable 
disagreement within the scientifc community on the 
mechanisms causing PFP and consequently, it is not 
clear which treatment is the most efective for specifc 
patients [5-7]. Further, running mechanics and muscu
loskeletal properties vary among individuals and may 
play an important role in the efectiveness of individual 
treatments. 

Studies have suggested that diferences in relative 
muscle forces exerted on the patella between the vastus 
medialis (VM) and vastus lateralis (VL) contribute to 
lateral patellar tracking and malalignment, which have 
been linked to PFP [4-7]. The lateral tracking and 
malalignment occurs when the lateral pull of VL is not 
adequately balanced by pull of the vastus medialis lon
gus (VML) and vastus medialis oblique (VMO). This 
imbalance can lead to altered patellofemoral contact 
forces and pressures that may lead to PFP. The VMO is 
deemed the primary medial patellar stabilizer due to the 
anatomical diferences between the VML and VMO [8]. 
Therefore, much efort has been directed towards iden
tifying techniques to selectively strengthen the VMO to 
improve the force balance on the patella [4,5,7], al
though the efectiveness and feasibility of selective VMO 
strengthening have been widely questioned [6,7,9,10]. 
Much of the controversy regarding the efectiveness of 
VMO strengthening is caused by the difculty of iso
lating the treatment efect in patients. Electrical stimu
lation may be the only way to strengthen the VMO 
selectively [11], but should not be recommended unless 
its efect on patellofemoral joint mechanics is shown to 
be signifcant. Therefore, a theoretical analysis is needed 
to quantify the efect of VMO strengthening on patel
lofemoral joint loads to justify further studies seeking to 
identify techniques to selectively strengthen the VMO. 

From a neuromechanical perspective, selective VMO 
activation can also reduce the lateral dominance of VL 
by either increasing the intensity of VMO relative to VL, 
or by initiating VMO activity prior to VL [6]. In patients 
with PFP, it is speculated that VL is activated earlier 
than VMO [6,12] and at a higher relative intensity [13]. 
But studies examining this dynamic imbalance theory 
have provided conficting results [7,12-16], and the 
functional signifcance of the identifed timing difer
ences, on the order of 5 ms, has been questioned [6,7]. 
Methodological diferences between studies and the in
herent difculty identifying muscle excitation onset and 
ofset make reconciling diferences difcult, but these 
studies suggest a theoretical investigation into the in
fuence of vasti timing and intensity is warranted. 

Another conservative treatment for PFP has been the 
prescription of foot orthoses [4]. Eng and Pierrynowski 
[17] found that foot orthoses combined with an exercise 
program can be an efective method to reduce PFP in 
young females. Bahlsen [18] examined the relationship 

between excessive foot pronation and PFP and found a 
signifcant association. The mechanism behind the pain 
is speculated to be a kinematic coupling between ex
cessive foot pronation and prolonged tibial rotation [18-
20]. Tiberio [20] used a theoretical model to examine the 
relationship between excessive pronation and lateral 
patellofemoral joint compression. Tiberio [20] suggested 
that during gait, the prolonged tibial rotation prevents 
the knee from extending freely. To compensate for this, 
the femur rotates internally relative to the tibia causing 
changes to the patella contact force and pressure pat
terns. This biomechanical explanation was termed 
compensatory internal rotation of the femur, although 
other studies have provided alternative explanations of 
the relationship between excessive foot pronation and 
PFP [5]. These studies suggest that further research is 
needed to understand the biomechanical relationship 
between excessive pronation and PFP before the efec
tiveness of foot orthoses verses exercise programs can be 
evaluated. 

Running is a highly dynamic and complex movement 
that makes it difcult to predict the efect of these 
treatments on musculoskeletal loading during move
ment. Changes in the movement caused by these me
chanical treatments (e.g., orthoses, [21]) result in 
changes in the muscle kinematics and therefore the 
muscle forces through the intrinsic muscle force, length 
and velocity relationships. The dynamic interaction 
within the musculoskeletal system makes such changes 
difcult to predict and interpret and are often counter
intuitive [22]. Thus, the mechanisms behind the changes 
in patellofemoral joint loading are difcult to identify. 

Forward dynamic simulations of running have been 
developed that allow for the precise identifcation of 
muscle forces and joint loading and have contributed to 
the understanding of mechanisms involved in loading 
the leg during running (e.g., [23-25]). These models 
were, however, limited to the initial impact phase (0-
50 ms). Since the etiology and mechanics of PFP and the 
efectiveness of conservative treatments are not well 
understood, a theoretical model and simulation ap
proach may contribute to our understanding and pro
vide the information necessary to design efective 
rehabilitation protocols. Therefore, the goal of this 
study was to use a threedimensional forward dynamic 
simulation of running to investigate the efectiveness of 
selective VMO strength and activation and the pre
scription of orthoses on patellofemoral loads. 

2. Methods 

2.1. Musculoskeletal model 

A forward dynamic musculoskeletal model was used 
to produce simulations of heel-toe running. The model 
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was previously described in detail [26] and will be de
scribed briefy here. The musculoskeletal model was 
developed using DADS 8.5 software (CADSI, Coral
ville, IA, USA) and consisted of rigid segments repre
senting the foot, talus, shank, patella, thigh of the 
support leg, pelvis, and a restofbody segment. The 
model was dimensioned to represent a male subject with 
a height of 180 cm and a mass of 75 kg. Musculoskeletal 
geometry was based on the work of Delp [27] and seg
ment masses and inertial properties were determined 
using regression equations [28,29]. 

The joint models were based on existing literature [27] 
and further developed to allow threedimensional 
movements at the knee. The hip joint was modeled as a 
spherical joint while rotations about the subtalar and 
talocrural joints were allowed at the ankle [30]. The 
tibiofemoral joint was modeled with three degrees of 
freedom with a moving center of rotation for fexion/ 
extension and appropriate passive stifness for abad
duction and internal/external rotation. The patella was 
constrained to move along a prescribed trajectory rela
tive to the femur [27]. The rotation and anterior/poste
rior translation were functions of the superior/inferior 
translation relative to the femur. The patella was at
tached to the tibia by an inextensible patellar tendon. 
The foot consisted of three segments: rearfoot, midfoot 
and toes. Flexion/extension and internal/external rota
tions were allowed between the rear-mid and midfoot, 
and fexion/extension was allowed between the midfoot 
and toes. Passive stifness torques were applied at these 
joints so that realistic displacements were achieved 
during the midstance. Only translation, controlled by a 
passive spring and damper, was allowed between the 
pelvis and the restofbody segment. The model had a 
total of 20 degrees of freedom. 

Fourteen functionally independent muscle groups 
were used to drive the model (Fig. 1). The vasti muscle 
group consisted of four individual muscles all receiving 
the same muscle excitation; the VL, VML, VMO and 
vastus intermedius with geometry based on Javadpour 
et al. [31]. The force-length-velocity characteristics of 
the muscles were represented by a Hillbased lumped 
parameter model (e.g., [32]). The complete set of mus
culoskeletal model parameters can be found in Neptune 
et al. [26]. 

2.2. Ground contact model 

The contact between the foot and the ground was 
modeled by 66 discrete independent viscoelastic ele
ments, each attached to one of the three foot segments in 
locations that describe the threedimension exterior 
surface of a shoe when the foot joints are in a neutral 
position (Fig. 2). Each element permitted deformation 
perpendicular to the foor and represented the mechan
ical properties of the shoe sole and underlying soft tis

Fig. 1. Musculoskeletal simulation model. The muscles included in the 
model were the gluteus maximus (GMAX), iliopsoas (PSOAS), ad
ductor magnus (ADDMAG), gluteus medius (GMED), hamstrings 
(HAMS), rectus femoris (RF), vasti lateralis, intermedius, medialis 
longus and medialis obliques (VAS), gastrocnemius (GAS), peroneus 
longus (PER), soleus (SOL), tibialis posterior (TIBPOST), tibialis 
anterior (TA), extensor digitorum longus (EXTDIG) and fexor digi
torum longus (FLEXDIG). The four vasti muscles all received the 
same excitation signal. 

Fig. 2. Array of ground contact elements on the rearfoot, midfoot 
and toes representing a soft running shoe. The solid lines crossing the 
foot segment indicate the intersections between the rearfoot, midfoot 
and toes. The point of contact is the center of each rectangular area. 

sue. The anterior-posterior, medial-lateral, and vertical 
force calculations as well as the determination of shoe 
specifc parameters were presented in detail [26]. 

2.3. Subject specifc simulations 

Subject specifc simulations were produced by 
searching for the muscle excitation patterns that mini
mized the diference between simulated and experimen
tally measured segment orientations and external 
ground reaction force profles (Eq. (1)) for each subject 
(n = 9) using a simulated annealing optimization algo
rithm [33]. The objective function to be minimized was 
defned as

  2  (        ) ( ) =  (1)
  2

  =1  =1 
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where is the measurement of variable j at time step i, 
the simulation data corresponding to , 2 the 

average intertrial variability of variable j, and  
= (  1 . . .  42) are the parameters describing the neu

ral excitation patterns. 
A similar form of the objective function (Eq. (1)) was 

used in a previous pedaling simulation study [34] and 
efectively produced simulations that reproduced ex
perimental data. The specifc quantities evaluated in Eq. 
(1) were the four Euler parameters describing the global 
attitude matrix of the rearfoot, shank and thigh, and 
the three (x y z) components of the ground reaction 
force, resulting in a total of m = 15 variables included in 
the objective function (Eq. (1)). The optimization was 
terminated when the cost function did not decrease the 
cost function by 1% within 500 function calls. This op
timization procedure was used to obtain nine diferent 
simulations of running stance, based on movement data 
from nine diferent subjects. 

2.4. Movement data 

Experimental data were collected from a group of 
nine healthy male subjects (height = 177.0 cm (S.D., 
10.4); weight = 73.3 kg (S.D., 12.0), age = 22.2 years 
(S.D., 2.1)) during heel-toe running to provide initial 
conditions for the simulation (positions and velocities of 
the body segments at heel strike) and tracking data (} ) 
for the optimization algorithm. The subjects volunteered 
to participate in the study and informed consent was 
obtained before the data collection. 

The subjects performed ten trials of heel-toe running 
at 4.0 m/s, while kinematic and ground reaction force 
data were collected. A high speed video system (Motion 
Analysis Corp., Santa Rosa, CA, USA) was used to 
record the threedimensional motion of the body seg
ments at 240 Hz. Three retrorefective markers were 
attached to each subject's right shoe (lateral head of the 
ffth metatarsal, posterior heel, superior lateral aspect of 
the navicular), shank (head of fbula, anterior midshaft 
of tibia, and distal fbula just proximal to the lateral 
maleolus), thigh (greater trochanter, anterior midthigh, 
lateral femoral epicondyle) and pelvis (left and right 
anterior superior illiac spines, and right posterior supe
rior illiac spine). The marker data were used to recon
struct the position and orientation of each body segment 
[35]. From the limb segment orientations, hip and knee 
angles were determined using the jointcoordinate sys
tem of Grood and Suntay [36] and the subtalar and 
talocrural joint angles were determined using the joint
coordinate system of Inman [30]. 

Ground reaction force data were collected simulta
neously with the kinematic data at 2400 Hz using a force 
platform (Kistler Instumente AG, Winterthur, Switzer
land). The time of touchdown was determined when the 
vertical ground reaction force frst exceeded 20 N and 

toeof was indicated when the vertical ground reaction 
force fell below 20 N. All trials were normalized to the 
duration from heel strike to toeof, and the forces and 
joint angles were sampled at 100ths of this stance du
ration. The forces were then normalized to body weight. 
Neither the kinematic nor the ground reaction force 
data were fltered, but only averaged across trials. 

2.5. Simulation experiments 

Experiments were performed with the nine subject 
specifc simulations to examine the infuence of vastus 
medialis oblique strength (VMOS), vastus medialis ob
lique excitation timing (VMOT) and orthoses (ORTH) 
on lateral patella-femoral loads. VMOS was increased 
by 10% from the normal strength and VMOT was both 
delayed and advanced 5 ms relative to the other vasti 
muscles. To examine the infuence of ORTH, a medial 
arch orthosis obtained from a sports rehabilitation clinic 
was modeled in the shoe by increasing the stifness of the 
individual shoe elements in the medial arch area in the 
pattern of the orthosis (Fig. 2). Once the stifness con
tour replicating the orthosis was generated, the stifness 
values were uniformly scaled until changes in the ankle 
joint kinematics were similar to those experimentally 
measured [21]. The lateral patella-femoral joint load 
was defned as the mediolateral component of the joint 
constraint force vector that keeps the patella in the 
femoral groove and extracted from the simulation data 
using the DADS 8.5 postprocessor. 

To assess the efect of these treatments on lateral 
patellofemoral loads, a twoway mixed factor analysis of 
variance was performed on the peak and average lateral 
joint contact forces (P < 0.05). When signifcant treat
ment efects were detected, a Bonferroni pairwise com
parison was performed to identify which treatments 
were signifcantly diferent from the normal condition 
(P < 0.05). 

3. Results 

The optimization was able to fnd the muscle controls 
(excitation onset, ofset and magnitude) to reproduce the 
salient features of the experimentally collected data for 
the nine subjects. Typical simulation results have been 
previously reported [26]. The major joint angles and 
ground reaction forces were almost always within 2 S.D. 
of the subject's data, and the muscle stimulation pat
terns compared well with the collected EMG data. 

Typical mediolateral patellofemoral loading patterns 
are shown in Fig. 3. In this subject, there was an impact 
peak on the lateral side, followed by a phase of medial 
loading and a second phase of lateral loading during the 
active pushof. The impact loading was on the lateral 
side of the joint for all subjects, except for two subjects 
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Fig. 3. Typical simulated mediolateral loading patterns for the patel
lofemoral joint during the stance phase of running. The following 
treatments were applied: ORTH (orthosis), VMOS (strengthening of 
the vastus medialis oblique muscle), and VMOT+ (time advance of 
activation of the vastus medialis oblique muscle). 

Fig. 4. Average and peak lateral loads in the patellofemoral joint. 
Values represent the diference in the joint load relative to the normal 
simulation. Positive and negative values indicate an increase and de
crease in the constraint force, respectively. 

who had no impact peak. A lateral active peak occurred 
in four of the nine subjects, and in three of those this 
peak was higher than the impact peak (in the control 
condition). The impact peak was never afected by the 
orthosis, and the active peak was not or only slightly 
afected by VMO activation timing. 

The efect of the four treatments on the peak and 
average lateral patellofemoral load for the group is 
presented in Fig. 4. The treatments ORTH, VMOS, and 

Table 1 
Group average (N= 9, S.D. in parentheses) of the peak and average 
lateral constraint force for the normal condition and the four treat
ments: VMOS, VMOT+, VMOT- and ORTHa 

Condition Peak lateral contact 
force (N) 

Average lateral 
contact force (N) 

Normal 
ORTH 
VMOS 
VMOT+ 
VMOT-

230 (206) 
221 (198) 
220 (200)' 

220 (204) 
255 (208)' 

-5 (236) 
-14 (235)' 

-17 (237)' 

-12 (236)' 

1 (234)' 

a Note: a negative value for average lateral contact force indicates that 
contact occurred more on the medial than on the lateral side, when 
averaged over the stance phase. 
* Signifcantly diferent from the normal condition (P < 0.05). 

vastus medialis oblique excitation timing advance 
(VMOT+) produced either a reduction in lateral joint 
loading or no efect at all. The VMO time delay pro
duced an increase in lateral joint loading, which was 
about twice as large as the decrease produced by the 
VMO time advance. The statistical analysis revealed 
that VMOS was the only treatment to signifcantly re
duce the peak lateral constraint force (Table 1). Al
though ORTH and VMOT+ decreased the constraint 
force, the efect was not statistically signifcant. Vastus 
medialis oblique excitation timing delay (VMOT-) sig
nifcantly increased the peak force across all subjects. 
For the average lateral constraint force, all treatments 
had a signifcant efect with ORTH, VMOS and 
VMOT+ decreasing the lateral force while VMOT- in
creased the load (Table 1). Table 1 also illustrates the 
large variation in joint loading patterns between the 
modeled subjects. 

4. Discussion 

The goal of this work was to examine the infuence of 
two commonly prescribed treatments (vastus medialis 
strengthening and orthoses) for PFP and the functional 
signifcance of timing defcits between VMO and VL on 
lateral patellofemoral joint forces. The forward dynamic 
simulation model used in the present study had been 
shown to closely replicate experimentally collected ki
netic, kinematic and EMG data during the same run
ning conditions as the present study [26]. The close 
agreement between the subject and model kinematic, 
ground reaction force and muscle stimulation data in
dicated that the model's performance was indistin
guishable from the corresponding human subject. In 
addition, the model's behavior is based on a combina
tion of wellestablished knowledge: musculoskeletal 
anatomy, Newtonian mechanics, and Hill's threecom
ponent muscle model. These considerations provided 
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confdence in the model for experiments examining the 
efectiveness of common treatments for PFPs that can
not be performed on human subjects. The simulation 
approach also allowed for the explicit examination of 
the orthosis efect without the confounding efect of 
muscle coordination adaptation. 

A potential limitation of our simulation approach is 
that the musculoskeletal model was not customized to 
the anatomy of individual subjects. It is well known that 
joint anatomy may predispose individuals to overuse 
injuries. However, having nine models with identical 
anatomy but diferent running mechanics allowed us to 
unequivocally attribute diferent responses to treatments 
to diferences in running mechanics rather than anato
my. Such insight is clinically important since running 
mechanics is more easily altered than anatomy. A po
tential limitation of this approach is that all joint con
tact force results were reported using the same femoral 
joint coordinate system. Specifcally, the lateral force 
was taken as the force perpendicular to the femoral 
sagittal plane, which contained the patellofemoral 
groove. This plane may have had a diferent orientation 
in diferent subjects. Therefore, we cannot have conf
dence in the absolute magnitudes of the lateral con
straint force. However, the objective of this investigation 
was to examine the efectiveness of the treatments and 
identify mechanisms associated with the reduction in 
joint loading. To this end, comparisons were performed 
with the normal simulation and the emphasis was placed 
on the diferences (Fig. 4). 

The results showed that VMOS had the greatest efect 
in reducing the peak lateral constraint force and all 
treatments were efective in decreasing the average lat
eral constraint force except VMOT+ (Table 1). Al
though not presented in the results, the treatments were 
also applied in combination which showed that the joint 
loading response was linear (i.e., the reduction or in
crease in joint loading was additive). Therefore, there 
did not appear to be any nonlinear coupling associated 
with the combinations of treatments. 

Increasing VMO strength was shown to be the most 
efective treatment for reducing both the peak and 
average lateral constraint forces. A posthoc sensitivity 
analysis was performed on the degree of strengthening 
from -50% to +50% that showed the reduction in the 
lateral constraint force decreased linearly with in
creased strength (Fig. 5). These results would seem to 
support the treatment as a potentially efective method 
in reducing lateral patellofemoral loading. While clini
cal studies have shown that methods including selective 
electrical stimulation and biofeedback can produce 
appreciable results [11,37-39], selective VMO 
strengthening through isometric and isokinetic exer
cises has been widely questioned [6,7,9,10]. Neverthe
less, the theoretical results of the present study suggest 
future research might be usefully directed towards 

Fig. 5. Sensitivity of the peak lateral patellofemoral load to increases in 
VMOS for a typical subject. VMOS was systematically increased from 
-50% to +50% relative to the normal muscle strength that showed a 
linear association between VMOS and the magnitude of the lateral 
joint load. 

identifying efective techniques to selectively strengthen 
the VMO. 

The relative intensity and timing of VMO activity 
relative to VL activity has also been suggested to play an 
important role in reducing the lateral loads in the knee 
joint [6]. Although we did not explicitly assess the efect 
of increased VMO intensity, this was indirectly ac
counted for in the VMOS experiment. Since muscle 
force generation is scaled by the magnitude of muscle 
activation, increasing the muscle force can be achieved 
two ways, either by increasing the maximum isometric 
force or increasing the level of activation. Therefore, the 
VMOS results suggest that increased neural VMO ex
citation may play an important role in reducing the 
lateral joint loading, although the ability of the nervous 
system to selectively activate muscles within a synergistic 
group is highly debated [6]. 

Previous work has identifed a correlation between 
subjects with timing defcits between the VMO, VL and 
PFP [6,12], although the functional signifcance of the 
timing defcit (on the order of 5 ms) has been questioned 
[6,7]. The results of the present study suggest that a 5 ms 
timing advance or delay is indeed important, although 
this theoretical result may depend on the time constants 
used in the muscle activation model. The timing advance 
reduced the peak and average force by 9.8% and 6.6%, 
respectively. These reductions in the joint loading were 
similar in magnitude to the orthosis. An intriguing result 
was the efect of the timing delay. The peak and average 
lateral constraint force increased by 25.5% and 5.9%, 
respectively. Although the timing delay does not have a 
great impact on the average force throughout the stance 
phase, it does signifcantly afect the peak force that 
corresponds with the impact peak (Fig. 3(b)). The im
pact peak force is suggested to be a leading cause of 
overuse injuries during repetitive movement tasks [40]. 

An interesting result was the relatively small and less 
consistent orthosis efect, especially for the peak lateral 
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contact force. Proponents of orthoses have advocated 
orthoses as an important component in the treatment 
of PFP [17]. But the simulations showed that the 
orthosis examined in the present study was not as 
consistent as VMOS in reducing the joint loading. The 
lack of a stronger orthosis efect could be related to the 
specifc orthosis used in the study, which did not 
change the shape of the foot-ground interface, but 
only increased stifness in the arch area. This type of 
orthosis was chosen for this study because it is less 
likely to require adaptations in muscle activation pat
terns. Muscle coordination adaptation to the orthosis 
may be important and produce favorable or adverse 
efects. The advantage of the simulation model is that it 
allowed us to assess the efectiveness of the orthosis 
with all the parameters in the system preserved (e.g., 
muscle coordination). Further, the subjects used in the 
study were normal, healthy subjects without a history 
of PFP and most likely would not be candidates for the 
orthosis treatment. Specifcally, the lack of orthosis 
efect in certain subjects may have been due to the fact 
that those subjects had no pressure under the medial 
arch during running. It is possible that a simulation 
control group of subjects with chronic PFP and can
didates for orthoses would produce greater changes in 
the joint loading. The specifc orthosis examined in the 
present study is also one of many types used to treat 
PFP. Future studies should be directed towards ex
amining diferent confgurations and their efectiveness 
towards reducing patellofemoral loads. 

These fndings showed that the orthosis treatment 
had a benefcial efect in some subjects and no efect in 
other subjects. An adverse efect was never observed. 
The efect of selective VMO strengthening was more 
consistent across subjects, but the feasibility of this 
treatment is debatable. Activation timing of the VMO 
muscle had a consistent efect on lateral patellofemoral 
loading, especially the peak force developed during the 
impact phase. The advantage of both the orthosis and 
strengthening treatments is that these do not require 
changing the complex neuromuscular coordination 
patterns of the patient. Future studies should be di
rected towards identifying techniques that selectively 
increase VMO strength as a potential treatment for 
PFP, and towards predicting the efcacy of orthotic 
treatment in patients based on their individual running 
mechanics. 
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