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Conical Indentation 
of a Viscoelastic Sphere 
Instrumented indentation is commonly used for determining mechanical properties of a 
range of materials, including viscoelastic materials. However, most—if not all—studies 
are limited to a flat substrate being indented by various shaped indenters (e.g., conical or 
spherical). This work investigates the possibility of extending instrumented indentation to 
nonflat viscoelastic substrates. In particular, conical indentation of a sphere is investi­
gated where a semi-analytical approach based on “the method of functional equations” 
has been developed to obtain the force–displacement relationship. To verify the accuracy 
of the proposed methodology selected numerical experiments have been performed 
and good agreement was obtained. Since it takes significantly less time to obtain force– 
displacement relationships using the proposed method compared to conducting full finite 
element simulations, the proposed method is an efficient substitute of the finite element 
method in determining material properties of viscoelatic spherical particles using 
indentation testing. 

1 Introduction 

Techniques for evaluating materials with instrumented indenta­
tion have been developed over the past two decades and have 
emerged as a versatile tool to measure mechanical properties at 
micro or nanolevels, see for example, Refs. [1–5]. During an 
indentation experiment, a rigid indenter penetrates normally into a 
homogeneous solid and the indenter force, P, and depth of pene­
tration, h, are continuously measured during a complete cycle of 
loading and unloading. A typical force–displacement curve is 
shown in Fig. 1(a). To extract the mechanical properties of a 
material from the force–displacement curve obtained from an 
indentation experiment, a clear understanding of the relationships 
between mechanical properties and various shape factors of the 
force–displacement curve need to be developed. Computational 
and theoretical studies are typically used to elucidate the contact 
mechanics and deformation mechanisms so to systematically 
extract mechanical properties from force–displacement relation­
ship [1–5]. 

In this work, we are investigating indentation of small2 spheri­
cal structures, made of visco-elastic material. Examples of small-
scale spherical bodies requiring material characterization include 
micron-sized metal coated polymer particles used in the manufac­
turing of anisotropic conductive adhesives [6,7], polymer latex 
particles for controlling the mechanical properties of latex films 
[8,9] used in synthetic latex materials, and living cells [10]. 

Although most of the literature discussing indentation techni­
ques is devoted to time-independent elastic–plastic materials, the 
indentation technique has recently been applied to time-dependent 
materials, see, for example, Refs. [11–15]. Cheng et al. [11] used 
“the method of functional equations” [16] to develop viscoelastic 
indentation solutions for spherical indentation on a semi-infinite 
half space. Similarly, Vandamme and Ulm [12] developed 

1Corresponding author. 
2“Small” is relative to the indentation depth; that is, the indentation depth affects 

the overall behavior of the sphere and cannot be considered to be local around the 
indentation. 

Contributed by the Materials Division of ASME for publication in the JOURNAL OF 

ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 10, 2013; 
final manuscript received April 21, 2013; published online June 10, 2013. Assoc. 
Editor: Georges Cailletaud. 

analytical solutions for viscoelastic conical indentation on a semi-
infinite half-space. Francius et al. [13] determined the viscoelastic 
properties of polyelectrolyte multilayer films using a standard lin­
ear solid model. Cheng and Cheng [14] established a relationship 
between initial unloading slope, contact depth and the instantane­
ous modulus for sufficiently high rate of unloading for conical 
indentation on a viscoelastic half-space. 

Most work pertaining to viscoelastic indentation has been dedi­
cated to indentation of flat surfaces [11–14]. Zhou and Lu [15] 
investigated viscoelastic properties of a spherical object indented 
by a spherical indenter tip. However, using Hertz-type solutions 
[1], the procedure is limited to shallow indentation depths. 

In this paper, we investigate the indentation of a viscoelastic 
sphere by a conical indenter as shown in Fig. 1(b), with the ulti­
mate goal of developing a reliable evaluation technique for inden­
tation testing of viscoelastic spherical particles. For this purpose, 
a semi-analytical technique has been employed for the forward 
analysis of the indentation problem, which is then verified by a 
geometrically nonlinear finite element analysis. 

Fig. 1 (a) Force–displacement relationship of a typical 
indentation experiment and (b) conical indentation of a sphere 
resting on a rigid and flat surface 
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2 Semi-Analytical Approach 

2.1 Elastic Solution. Lee and Radok [16] developed the 
method of functional equations for solving viscoelastic indenta­
tion problems using a corresponding linear-elasticity solution. In 
this approach, if the elastic solution of a boundary value problem 
is known, the functional equations can be obtained by replacing 
the elastic constants in the solution by equivalent viscoelastic 
operators. Here, we determine the elastic solution of the cone-
sphere contact problem by geometrically nonlinear finite element 
analysis. For a particular indenter half-angle, h, the indenter force, 
P, is in general a function of the indentation depth, h, the radius of 
the sphere, R, the elastic modulus, E, and Poisson’s ratio, v, of the 
material. Thus 

P ¼ f1ðE; h;R; vÞ (1) 

Applying dimensional analysis and utilizing Buckingham’s PI 
theorem [17], the above equation can be written in its nondimen­
sional form as follows: 

( ) 
P h ¼ f2 ; v  (2)

ER2 R 

We assume the following specific form of Eq. (2) 

( )  
P h ¼ / (3)

ErR2 R 

In this equation, Er is the plain strain reduced modulus, which is 
given by 

E 
Er ¼ (4)

1 - v2 

The validity of the above assumption, as well as the functional 
form of /, will be established using finite element analysis later in 
this paper. The reduced modulus, Er, generally appears in contact 
problems where contact interference is very small compared to 
the dimensions of the contacting bodies. However, it will be sub­
sequently shown that even for relatively deep indentation depth, 
the elastic modulus and Poisson’s ratio can be combined into the 
reduced modulus, Er. 

2.2 Viscoelastic Solution 

The viscoelastic behavior of a material can be represented by 
mechanical models consisting of finite networks of springs and 
dashpots. Here we simulate the behavior of a visoelastic material 
with a four-parameter Kelvin–Voigt deviator creep model [18] 
shown in Fig. 2(a). In this model, the shear behavior is repre­
sented by the standard three-element solid model (Figs 2(a) 
and 2(b)) where G1 and G2 are the moduli of the two spring ele­
ments and g is the viscosity of the dashpot element. The bulk 
behavior, with bulk modulus K (Fig. 2(b)), is time independent. 

To express the constitutive relation for this model, the stress 
and strain tensors need to be decomposed into deviatoric and 
spherical (volumetric) components as 

D V rij ¼ rij þ rij 
(5a)

D V eij ¼ e þ eij ij 

where indicial notation is employed, with i, j ¼ 1, 2, 3. The devia­
toric and spherical components in terms of stress and strain ten­
sors are given by 

1 1D Vrij ¼ rij - rkkdij; rij ¼ rkkdij
3 3 (5b)
1 1D Veij ¼ rij - ekkdij; eij ¼ ekk dij
3 3 

Fig. 2 Assumed constitutive behavior of the viscoelastic mate­
rial and the loading function: (a) standard three-element solid 
model for deviatoric behavior, (b) spring element for spherical 
(volumetric) behavior, and (c) triangular loading 

where dij is the Kronecker delta function. In the time, t, domain, 
the constitutive relation can be written as [18] 

  
DD d 2eg G1G2D

drij D G1g ij
r þ ¼ 2e þ (6a)ij ijG1 þ G2 dt G1 þ G2 G1 þ G2 dt 

rV ¼ 3KeV (6b)ij ij 

Employing Laplace transforms, the constitutive relations take the 
following form in the Laplace domain, using the Laplace integra­
tion parameter, s [18] 

rDðsÞ ¼ 2GðsÞeDðsÞ (7a)ij ij 

rV ðsÞ ¼ 3KðsÞeV ðsÞ (7b)ij ij 

where 

G1G2 þ G1gs 
GðsÞ ¼  (7c)

G1 þ G2 þ gs 

KðsÞ ¼ K (7d) 

Applying the “method of functional equations” [16] to the elastic 
solution given by Eq. (3), the following expression for the 
time-dependent indentation depth behavior under an arbitrary pre­
scribed indentation loading history, P(t), can be obtained 

( ) ð
hðtÞ 1 t dPðnÞ 

/ ¼ Jðt - nÞ (8)
R R2

0 dn 

where J(t) is the creep compliance function associated with the 
reduced modulus Er and n is the variable of integration. Eq. (8) 
can also be written in the Laplace domain as follows: 

( ) ( ) 
hðtÞ 1 PðsÞ 

C-1/ ¼ (9)
R R2 ErðsÞ 

where C-1 denotes inverse Laplace transform. Eq. (9) can easily 
be inverted to determine the indenter displacement as a function 
of time as follows: 



[ ( )   
1 PðsÞ1 1hðtÞ ¼ R/ - C- (10)

R2 ErðsÞ

Thus, for a given radius of the sphere, loading history and con­
stitutive equation, Eq. (10) can be used to determine the indenter 
displacement as a function of time. It follows that the force– 
displacement relationship for a specific viscoelastic indentation 
problem can thus be obtained. For the constitutive equation under 
consideration (Eq. (7)), the reduced modulus in the Laplace do­
main becomes (using Eqs. (7c) and (7d)) 

EðsÞ 4GðsÞf3KðsÞ þGðsÞg
ErðsÞ ¼  ¼ ) ErðsÞ2

1 - vðsÞ 3KðsÞ þ 4GðsÞ 
ðG2 þ sgÞf3KðG1 þG2 þ sgÞ þG1ðG2 þ sgÞg¼ 4G1 ðG1 þG2 þ sgÞf3KðG1 þG2 þ sgÞ þ 4G1ðG2 þ sgÞg

(11) 

To illustrate this, we consider loading–unloading history with 
maximum force F and time period 2T applied as a triangular ramp 
as shown in Fig. 2(c) as an example. The loading function for this 
history can be written as 

  
F F 

PðtÞ ¼  t HðtÞ - Hðt - TÞ] - t þ 2F½ þ
T T 

x ½Hðt - TÞ - Hðt - 2TÞ] (12) 

where H(t) is the Heaviside function. Taking the Laplace trans­
form of Eq. (12) gives 

F 
PðsÞ ¼  f1 - 2 expð-TsÞ þ expð2TsÞg (13)

Ts2 

Substituting Er(s) from Eq. (11), and P(s) from Eq. (13) into 
Eq. (10), we obtain 

[ (
1 1 

C-1 Ff1 - 2 expð-TsÞ þ expð2TsÞg
hðtÞ ¼ R/ -

R2 4Ts2G1ðG2 þ sgÞ ) 
ðG1 þ G2 þ sgÞf3KðG1 þ G2 þ sgÞ þ 4G1ðG2 þ sgÞgx f3KðG1 þ G2 þ sgÞ þ G1ðG2 þ sgÞg 

(14) 

By determining the inverse Laplace transform in the above 
expression, the displacement of the indenter can be computed as a 
function of time. The force–displacement relationship of the 
indentation problem can then be obtained by combining the load­
ing and displacement history. 

In Sec. 3, we will consider a numerical approach to investigate 
the accuracy of the present semi-analytical approach. 

3 Finite Element Analysis 

The commercial finite element code ABAQUS [19] has been used 
to simulate the elastic indentation of the sphere by a conical 
indenter. The sphere is assumed composed of homogeneous, iso­
tropic, elastic material. A two-dimensional axisymmetric model 
was adopted. The sphere was discretized by approximately 24,000 
four-node (CAX4R) elements. The sphere is assumed to rest on a 
flat surface. Both the surface and the indenter are modeled as rigid 
bodies. Several simulations with refined meshes and smaller time 
increments were investigated as part of a convergence study. The 
model used, shown in Fig. 3, gave the same results as a finer mesh 
and time increment. The selected mesh density is thus sufficient to 
accurately simulate the mechanism of indentation. The surface 
nodes of the sphere are traction-free and the nodes along the axis 
of symmetry are constrained in the direction normal to indenter 
displacement so as to simulate symmetry conditions. The rigid 

Fig. 3 Finite element model used in ABAQUS, including enlarge­
ment of the refined mesh (plotted at the same scale) at the top 
of the sphere (conical indentation) and the bottom of the sphere 
(contact with the rigid surface) for the present indentation 
problem 

surface at the bottom of the sphere is kept fixed in all three 
directions. 

4 Results 

A sphere of radius R ¼ 23 lm and made of a material with 
E ¼ 1000 MPa was numerically indented by a conical indenter 
with half-angle h ¼ 70.3 deg. To examine the validity of the 
assumption made in Sec. 2.1, the force–displacement curves are 
plotted in Fig. 4 for four different Poisson’s ratios up to a maxi­
mum indentation depth of 15% of the radius. 

Clearly there is some difference between these curves. The 
same data have been represented in Fig. 5, where P/(Er ) has R2

been plotted as a function of h/R (recall Eq. (3)) for four different 
Poisson’s ratios. 

Within the resolution of Fig. 5, the results obtained for the 
investigated Poison’s ratio essentially overlap, thus validating the 
assumption of writing Eq. (2) as Eq. (3). By curve-fitting, function 
/ in Eq. (3) was determined to be 

( ) ( ) ( ) ( )4 3 2h h h h 
/ ¼ 4:42685 -2:07899 þ0:932136 

R R R R( )
h þ 0:00468643 - 0:0000102475 (15)
R

The function / can be inverted and used in Eq. (14) to deter­
mine the force–displacement relationship of the viscoelastic in­
dentation problem. Since / is a fourth order polynomial, Eq. (14) 
yields four values of the displacement, h, (for a given t, since h is 
a function of t) and the realistic positive value was selected ignor­
ing the negative and imaginary roots. The curve fitting as well as 
other computations involved in solving Eq. (14) to determine the 
displacement, h, were performed using the commercial software 
MATLAB [20]. The method is characterized as semi-analytical since 
it uses finite element simulations to obtain the functional form of 
/ (Eq. (14)). 

As an example, we considered a sphere of radius 23 lm 
indented by an indenter of half-angle 70.3 deg. Following the 
simulations conducted in Refs. [2,12], the viscoelastic material 
properties are assumed as G1 ¼ 234.6 MPa, G2 ¼ 25.78 MPa, 
g ¼ 257.78 and K ¼ 687.62 MPa. Four values of loading time T 



Fig. 4 The force–displacement relationships for the elastic in­
dentation problem, for selected Poisson’s ratios as obtained 
from geometrically nonlinear finite element analysis 

Fig. 5 Normalized force–displacement relationships for the 
elastic indentation problem, for four selected Poisson’s ratios 

was selected: T ¼ 1 s,  T ¼ 10 s, T ¼ 20 s, and T ¼ 30 s; and all 
cases are loaded up to maximum force, F ¼ 1000 lN. The force– 
displacement relationships obtained using the proposed semi-
analytical approach are plotted in Fig. 6. 

To verify the semi-analytical approach for the indentation of a 
viscoelastic sphere discussed above, we used ABAQUS to simulate 
the problem numerically. The finite element model is the same as 
that described in Sec. 3 except that the viscoelastic material prop­
erties, in form of Prony series, have been used instead of elastic 
properties. The force–displacement relationships thus obtained for 
the indentation problem with geometry and material properties 
described in Sec. 3.1 are plotted in Fig. 6. 

It can be seen from Fig. 6 that the semi-analytical approach 
captures the loading curve quite accurately. It is noted that as the 
load time, T, increases, the difference between the semi-analytical 
model and the direct visco-elastic analysis increases (the error at 
max load for T ¼ 1 s is 0.57% and for T ¼ 30 s is 1.62%). This 
may be due to the increase in inaccuracy of the regression used in 
Eq. (15), with increasing depth-to-radius ratio. The increase in 
error in maximum displacement with load time was observed in a 
previous work [12] as well and the authors suggested the inaccur­
acy of the elastic solution as a possible reason. 

The semi-analytical approach captures the initial unloading 
well, similarly as to loading. However, it does not capture the final 
unloading part accurately. This was also observed for the case of 

Fig. 6 Comparison of force–displacement curves obtained 
using the proposed semi-analytical approach and ABAQUS for 
four selected loading times, T 

conical indentation on viscoelastic half-space [12]. In that case, 
the authors concluded that the discrepancy is due to that the 
method of functional equations is valid only when the contact ra­
dius is a monotonically increasing function of time (as reported by 
the researchers [16] who developed the method), which is not true 
during the final part of unloading. 

However, there is a significant difference, between the compu­
tational costs involved in obtaining the force–displacement rela­
tionships using the semi-analytical method and the direct finite 
element simulations. For example, for the case T ¼ 30 s, approxi­
mately 5 CPU hours were needed to obtain the force–displace­
ment relationship using finite element simulation, whereas it took 
less than 1 CPU second for the semi-analytical method (excluding 
the elastic finite element analysis). Computations were performed 
in a DELL Precision T7400 workstation with two Intel(R) 
Xeon(R) X5472 @3 GHz processors. Thus, the semi-analytical 
method is a viable method for obtaining force–displacement rela­
tionships for viscoelastic spheres where those are required for var­
ious material properties and loading histories, for example, in 
determining the viscoelatic material properties of spherical par­
ticles using indentation tests. The material properties can be 
obtained from the force–displacement relationship using a suitable 
reverse analysis technique as commonly done for time-
independent materials [3–5]. Although, the method has been dem­
onstrated for triangular loading–unloading history, the method can 
be applied for ramp-loading, hold, ramp-unloading history, which 
is commonly used in experiments pertaining to indentation of 
viscoelastic materials. This is illustrated for conical indentation on 
half-space in a previous work [12]. 

5 Concluding Remarks 

A semi-analytical approach has been proposed to investigate 
the conical indentation of a viscoelastic sphere. The approach is 
based on “the method of functional equations” and uses the finite 
element simulation results for the elastic indentation of a sphere. 
For a specific viscoelastic material model and loading history, the 
results from the semi-analytical approach have been compared to 
the finite element simulation results of the indentation of a visco­
elastic sphere. The results agree well for most of the loading and 
unloading parts. The proposed semi-analytical approach can easily 
be applied to other loading histories and viscoelastic material 
models. Thus, the proposed method can be useful for the determi­
nation of viscoelastic material properties of spherical particles 
based on an indentation test, since it is computationally much less 
intensive than the finite element simulations. 
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