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1. Introduction 

Instrumented indentation is widely used to probe the elastic 
and plastic material properties of engineering materials (Cheng 
and Cheng, 2004; Oliver and Pharr, 1992; Johnson. 1987; Van 
et .II.. 2007a,b ). During the experiment (Fig. 1.1 ), a rigid indenter 
is pushed into and then removed from the surface of a homoge-
neous solid. while the indentation force, P. and depth of penetra-
tion, h, are continuously recorded during loading and unloading. 
The resulting force~displacement relationship (Fig. 1b) is implicitly 
related to the material properties and the geometry of the solid and 
the indenter. The objective of an indentation analysis is to correlate 
the force~displacement response to the material properties of the 
solid, such that the elastoplastic properties can be determined 
from an indentat ion experiment. However, various authors (Cheng 
and Cheng. 1999: Capehart and Cheng, 2003: Tho et al.. 2004 : 
Alkorta et aI., 2005) have shown that several materials can result 
in indistinguishable force~displacement relat ionships. Thus. a 
one-to-one relationship between material properties and experi-
mentally obtained data is not guaranteed. In addition. it is impor-
tant to investigate the sensitivity for experimental errors of the 

• Corresponding ~uthor ~t: Fenn College of Engi neeri ng. crevel~nd S~~(e Univer_ 
sity. Clevel~nd. OH. Unite<;! St~tes. Tel; + 1 216687 2558: f~x: +1 2166879280. 

[ -mail addresses: ~.kdrlsson@csuohio.edu . karlsson@udel.e<;!u (AM. Karlsson~ 

technique: will a small experimental error result in a reliable solu-
tion? In the present work. a systematic investigation of these two 
issues is conducted for conical indentation on an infinite half-
space. 

A review of the essential concepts involved in indentation anal-
ysis is presented below to serve as foundation for the present work. 

J. I. Shape fuuctions 

We consider a homogeneous, isotropic material wi th linear-
elastic response, followed by power-law strain hardening plas tic-
ity. The power-law for strain-hardening (Fig. 2) provides a very 
good description of the behavior of many metals or metallic alloys 
(Dieter. 1976 : Lubliner. 1990), According to this. the uniaxial 
stress~strain relationship of a material ca n be expressed as: 

for E ~ fa ~ {" ( I ) K'" for c ~ f 

Here. u and c correspond to the stress and the strain, respec-
tively and E. Yand n denote the elastic modu lus, Ihe yield strength 
and the strain hardening exponent of the material, respectively. K 
is a strength coefficient which can be written as K =0 E"yl - " . Pois-
son's ratio is assumed constant since it is a minor factor in inden-
tation (Cheng and Cheng. 2004). Thus. changing this will not result 
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Fig. 1. Schematic diagram of (a) conical indentation on half-space and (b) the typical force–displacement response obtained during loading and unloading. 

Fig. 2. Schematic stress–strain relationship of an elastic, power, law hardening 
material. 

in considerable deviation in monitored indentation parameters. In 
all, the material parameter set to be determined in the indentation 
analysis is (E, Y, n). 

The concept of representative stress, rr, and representative 
strain, er, have been used to simplify the functional equations aris­
ing from indentation analyses (Yan et al., 2007a, 2007b; Dao et al., 
2003; Cao and Lu, 2004a,b; Ogasawara et al., 2009; Cao et al., 2005; 
Cao and Huber, 2006). In such indentation analyses, er is identified 
and the set (E, rr, n) is determined from the indentation analysis. In 
turn, Y is determined using the obtained er, E, rr and n. Thus, the 
two sets of unknown parameters, (E, Y, n) and (E, rr, n), are funda­
mentally equivalent and the use of representative stress and strain 
does not reduce the number of unknowns. Since one can use either 
(E, Y, n) or  (E, rr, n) as the unknown parameter set, we will here use 
the set (E, Y, n). 

The most widely used indenter geometry, conical indenter, will 
be considered (Fig. 1a) in this work. A conical indenter can be char­
acterized by the half-angle, a. The Berkovich indenter can be rep­
resented with a conical indenter of a = 70.30 (Cheng and Cheng, 
2004; Lichinchi et al., 1998). 

The force–displacement response (Fig. 1b) obtained from a dis­
placement controlled (maximum indentation depth, hm) indenta­
tion experiment can be characterized by various ‘‘shape 
functions’’ such as the total energy during loading (e.g. the area un­
der the loading curve), Wt, maximum force, Pm, unloading slope, Su, 
elastic energy (e.g. the area under the unloading curve), We, and 
residual or final depth, hf (Yan et al., 2007a, 2007b; Dao et al., 
2003; Ogasawara et al., 2009; Cao et al., 2005). The force–displacement 
relationship depends on the material properties, such as E, Y and n, 

and geometrical parameters, such as hm and a. The shape functions, 
Pi can be written as: 

Pi ¼ FiðE; Y; n; a; hm Þ; i ¼ 1 - 5 ð2Þ 

where P1 ¼ Wt ; P2 ¼ Pm; P3 ¼ Su; P4 ¼ We and P5 ¼ hf . Using the 
above relations, various combinations of the shape functions can 
also be expressed in terms of the material and geometric parame­
ters, for example, 

Wt =hf ¼ F6ðE; Y; n; a; hmÞ; Su =We ¼ F7ðE; Y; n; a; hmÞ; ð3Þ 
Wt =We ¼ F8ðE; Y ; n; a; hmÞ; Su =hf ¼ F9ðE; Y; n; a; hmÞ 

Applying dimensional analysis and Buckingham’s PI theorem 
(Buckingham, 1914) to Eq. (2), the relations can be simplified as 
follows: <

E 
Wi ¼ FFi ; n; a ; i ¼ 1 - 5 ð4Þ

Y 

where W1 ¼ Wt ; W2 ¼ Pm ; W3 ¼ Su ; W4 ¼ We ; W5 ¼ 
hf and the over-

m m mYh3 Yh2 Yhm Yh3 hm 

head bar indicates normalized form. 
In an indentation experiment, the geometrical parameters are 

known. Thus, for fixed geometric parameters (a and hm), Eqs. (2) 
and (4) can be written as 

Pi ¼ GiðE; Y; nÞ <
E ð5Þ 

Wi ¼ Gi ; n ; i ¼ 1 - 5
Y 

In summary, the shape functions are characteristic functions 
that describe the indentation response. The functions Gi and Gi 

can be determined by extensive finite element analysis where 
the indentations are simulated and the material parameters are 
varied systematically. To this end, finite element models simulat­
ing the indentation experiment are built and the shape functions 
are extracted from the force–displacement response for the range 
of material properties investigated. With the functional forms 
established, Eq. (5) serves as the constitutive relationship between 
the data obtained from a real indentation test (e.g. Wt) and the 
properties sought (E, Y and n). This is further explored in 
Section 1.2. 

1.2. Uniqueness and sensitivity 

Since three unknown material properties (E, Y, n) are to be 
determined to define our material, any three shape functions (or 
their combinations) can be selected to establish the properties. 
However, only two of the five equations involving shape functions 
are independent, see for example (Cheng and Cheng, 1999; 
Capehart and Cheng, 2003; Tho et al., 2004; Alkorta et al., 
2005). That is, two different materials can give an identical 



Table 1 
Various shape functions and half-angles used by previous researchers for dual 
indentation technique. 

Shape function combination Ref. 

Su j70:3� ; Pmj70:3� ; Pmj45� Le (2008) 
Su j70:3� ; hf j70:3� ; Pmj70:3� ; Pmj60� Chollacoop et al. (2003) 
ðSu =PmÞj70:3� ; Pmj70:3� ; Pmj60� and Lan and Venkatesh (2007) 
ðWt =WeÞj70:3� ; Pmj70:3� ; ðWt =WeÞj60� 

Sj70:3� ; ðPm =SÞj70:3� ; ðPm =SÞj80:5� Wang et al. (2005) 
ðWe =Wt Þj60� ; Pm j60� ; ðWe =Wt Þj70:3� ; Pmj70:3� Swaddiwudhipong et al. 

(2005) 
Sj70:3� ; hf j70:3� ; Pmj70:3� ; Pmj60� ;50� ;42:3� Bucaille et al. (2003) 
Two of Pmj60� ; Pmj63:14� ; Pmj70:3� ðE was knownÞ Yan et al. (2007a,b) 
Su j70:3� ; Pmj70:3� ; Pmj60� Heinrich et al. (2009) 
ðWt =WeÞj70:3� ; Pmj70:3� ; ðWt =WeÞj60� Le (2009, 2011) 

force–displacement response and therefore identical shape func­
tions. It follows that a single indentation cannot uniquely deter­
mine the three unknown material properties of a substrate. 

To address this shortcoming of the single indentation technique, 
dual indentation techniques have been proposed by several authors 
(Table 1). In dual indentation techniques, two indenter geometries 
are utilized giving two additional shape functions. Since only three 
equations are needed, the premise is that two sets of geometrical 
parameters will provide distinct displacement responses, thus it will 
be possible to uniquely determine the material properties. For two 
sets of fixed geometrical parameters (a ¼ a1; hm ¼ hm1 and a ¼ 
a2; hm ¼ hm2 ), Eqs. (2) and (4) can be written as: 
Pj

i ¼ G
j
i ðE; Y; nÞ <

E ð6Þ 
Wj

i ¼ G
j
i ; n ; i ¼ 1 - 5; j ¼ 1; 2

Y 

where superscripts j = 1 and 2 correspond to test 1 and test 2, 
respectively, and i is defined after Eqs. (2) and (4). In a dual inden­
tation technique three equations from Eq. (6) are selected, along 
with two half-angles, a1 and a2. Thus, there are innumerable ways 
to conduct and evaluate a dual indentation experiment. 

However, Chen et al. (2007) showed that certain groups 
of materials exist which result in indistinguishable force– 
displacement responses for dual indentation testing. The authors 
showed that generally materials with low values of E/Y and n fall 
into this category. The range of such materials depends on the 
half-angles of the indenters used in the dual indentation experi­
ment. For example, the authors reported that for dual indentation 
with a1 = 70.30 and a2 = 800, materials with identical force–dis­
placement relationships lie in the range of 100 < E/Y < 250 and 
0.0 < n < 0.2. Thus, unfortunately a dual indentation technique does 
not guarantee a unique data reduction scheme for all materials. 

Closely related to uniqueness is sensitivity to experimental er­
rors (Chollacoop et al., 2003; Lan and Venkatesh, 2007; Le, 2008; 
Hyun et al., 2011; Cao and Lu, 2004a,b; Swaddiwudhipong et al., 
2005). A complete and systematic investigation of the sensitivity 
to experimental error in dual indentation techniques has not been 
developed and is the focus of the present work. 

In the following section the procedure to develop the functional 
forms of Eqs. (3) and (4) will be described. With that established, 
we introduce the concept of condition number to capture unique­
ness and sensitivity. Finally, sensitivity analysis results for a wide 
range of dual indentation techniques and material properties will 
be presented to evaluate their reliability. 

2. Functional forms from finite element analysis 

In this section, the finite element model and regression analysis 
used to derive the functional forms of Eqs. (2)–(4) will be 
described. 

2.1. Finite element model 

Finite element simulations were performed using the commer­
cial finite element program ABAQUS (ABAQUS, 2009). The flat 
half-space is assumed to be composed of homogeneous, isotropic, 
linear-elastic, power-law strain-hardening material, Eq. (1). An  
axisymmetric, two-dimensional model was adopted and approxi­
mately 25,000 CAX4R elements were used to model the half-space. 
The mesh is significantly refined in the vicinity of indentation to 
resolve the stress and strain field. The conical indenter is modeled 
as a rigid body. Coulomb’s friction law is used and the friction coef­
ficient between the surfaces is taken to be 0.15 (Bowden and Tabor, 
2001). Several simulations with refined meshes and time incre­
ments were investigated for the convergence study. The model 
used in the investigation was one that gave the same results as a 
finer mesh and time increment. Thus, the selected refinement 
was demonstrated to be sufficient to accurately capture the mech­
anism of indentation. The surface nodes of the half-space were 
traction free and the nodes along the axis of symmetry were con­
strained in the direction normal to indenter displacement to simu­
late symmetry conditions. The bottom of the half-space was kept 
fixed in all three directions. 

The model simulates the rigid indenter being pushed into the 
half-space to a predefined displacement, hm, and then the indenter 
is removed. The reaction force as a function of indenter displace­
ment is recorded continuously over the loading and unloading se­
quence, similar to a real indentation experiment (Fig. 1b). 

2.2. Functional forms 

To develop the functional forms presented in Eqs. (2)–(4), a  
material set with elastic modulus 80 6 E (GPa) 6 300 and yield 
stress 0.1 6 Y (GPa) 6 2.0 was chosen to cover a wide range of E/ 
Y ratios (80 6 E/Y 6 1000). We limit the investigations to this range 
since it was shown by Chen et al. (2007) that materials with iden­
tical force–displacement relationships have comparatively lower 
E/Y ratios and as will be discussed later, non-uniqueness can be 
considered as an ‘‘extreme case of sensitivity.’’ The strain harden­
ing exponent was taken to be 0.0 6 n 6 0.5, which is common for 
metals (Chen et al., 2007). Poisson’s ratio was taken to be constant 
at 0.3. As previously noted, Poisson’s ratio has only a minor effect 
on the force–displacement response. Various half-angles ranging 
from 500 to 850 were used in the study. Altogether, approximately 
400 finite element simulations were conducted to attain the func­
tional forms. Considering Eqs. (5) and (6), the normalized shape 
functions of the left hand sides were expressed as functions of 
E/Y and n for fixed values of a. The fitting function used has the fol­
lowing form: 
< <5 5 i XX 

jE E
f ; n ¼ n ð7ÞgijY Y

i¼0 j¼0 

Here, gij are fitting coefficients.1 

The initial unloading slope, Su, was computed using the two 
points associated with the maximum load and 90% of the maxi­
mum load (i.e. 10% of the unloading curve). For a 500 half-angle 
conical indenter penetrating a half-space, the fitting coefficients 
for the normalized unloading slope, Su, are tabulated in Table 2, 
as an example of how this fitting routine is implemented. Fitting 
coefficients for other cases are not presented in this paper for 

1 In this case, 36 coefficients are needed to describe the functions. This may seem 
like a large number of parameters, and we note that we are not striving to develop a 
relationship where the parameters can be interpreted as physical parameters, but we 
are just interested in finding ‘‘fitting parameters’’ that describe the intricate response. 
This method is commonly adopted in reverse analysis, see for example (Cao and Lu, 
2004a,b; Chen et al., 2006; Hyun et al., 2011; Le, 2008). 



Table 2 
Fitting coefficients for Eq. (7) for the unloading slope, Su, for a = 500. 

gij j = 0  j = 1  j = 2  j = 3  j = 4  j = 5  

i = 0  -1.3776E-08 1.8984E-08 -9.4536E-09 2.0161E-09 -1.5497E-10 -8.5559E-14 
i = 1 3.6781E-05 -5.0824E-05 2.5416E-05 -5.4501E-06 4.2205E-07 1.3196E-10 
i = 2  -3.6636E-01 5.0698E-02 -2.5452E-02 5.4923E-03 -4.2953E-04 5.1739E-08 
i = 3 1.6313E01 -2.2605E01 1.1411E01 -2.4864 1.9758E-01 -1.8699E-04 
i = 4  -2.4736E03 3.5185E04 -1.8409E03 4.1875E02 -3.6111E01 3.1671 
i = 5 8.8827E04 -1.3523E05 7.6600E04 -1.8983E04 1.7449E03 -2.5036E01 

brevity. 

3. Sensitivity and uniqueness 

In this section, a method will be developed to determine E, Y 
and n of a material based on a conical dual indentation test. The 
uniqueness and sensitivity of the solution will be discussed in a 
manner similar to the examples given in Appendix A. 

3.1. Method of iso-Pm/(Suhm) lines 

For conical indentation on a half-space, only two of the five 
shape functions listed in Eq. (2) are independent (Alkorta et al., 
2005). Consider two shape functions: maximum load, Pm, and 
unloading slope, Su. For a single indentation test, two materials 
(materials 1 and 2) will have identical force–displacement rela­
tionships if both of them have the same values of Pm and Su. That 
also holds if they have the same Pm and the same Pm/Su. Thus, 
two conditions for identical force–displacement relationship can 
be written as: 

ðPmÞ1 ¼ ðPmÞ2 ð8aÞ 

ðPm =SuÞ1 ¼ ðPm =SuÞ2 ð8bÞ 

Using the relation of normalized Pm in Eq. (4), the first condition 
can be written as: < <

E1 E2Y1h2 G2 ; n1 ¼ Y2h2 G2 ; n2 ð9Þm Y1 
m Y2 

which gives the ratio of their yield strengths as follows: <<  <<
Y1 E E 

r ¼ ¼ G2 ; n2 G2 ; n1 ð10Þ
Y2 Y 2 Y 1 

The two materials can be made to satisfy the second condition, 
Eq. (8b) by deriving non-dimensional relations involving Pm and Su 

in Eq. (4), which gives <<  <
Pm E E E ¼ G2 ; n G3 ; n ¼ G6 ; n ð11Þ

Suhm Y Y Y 

Eq. (8b) can be rewritten using Eq. (11) as: << <<
E E

G6 ; n1 ¼ G6 ; n2 ð12Þ
Y 1 Y 2 

The graph of Eq. (11) for a = 500 with Pm/(Suhm) as a function of 
E/Y and n is shown in Fig. 3. Iso-Pm/(Suhm) lines can be drawn in the 
E/Y – n space which is shown in Fig. 4a. Since all materials lying on 
a particular iso-Pm/(Suhm) line have identical value of Pm/(Suhm), it 
follows that any two materials selected from a particular iso-Pm/ 
(Suhm) line will satisfy the second condition for identical force–dis­
placement relationship, Eq. (12). From Fig. 4a, pairs of materials 
having identical force–displacement relationship can be found in 
the following steps: 

Step 1: Select any two points on a particular iso-Pm/(Suhm) curve 
(as illustrated in Fig. 4a). This will give (E/Y) and n of two materials 

Fig. 3. Graph of the function, Pm ¼ GF6ðYE ; nÞ (Eq. (11)) for a = 500.Su hm 

that satisfy the second condition of identical force–displacement 
relationship (Eq. (8b)). 

Step 2: Determine the ratio r = Y1/Y2 from Eq. (10) using (E/Y)1, 
n1, (E/Y)2 and n2 obtained in Step 1. Since Eq. (10) is derived from 
Eq. (8a), the materials now satisfy the first condition (Eq. (8a)) as  
well. 

Step 3: Assume any value of Y2 and determine Y1 using Y1 = rY2, 
from Step 2. 

Step 4: Using Y1 and Y2, and (E/Y)1 and (E/Y)2 obtained in Step 1, 
determine E1 and E2. 

Since Y2 is selected arbitrarily, there are an infinite number of 
materials having the same force–displacement relationship corre­
sponding to any two points of an iso-Pm/(Suhm) line. 

Let us now consider the case of dual indentation testing, for 
example when a = 500 (conical indentation) is augmented with 
three alternative indentation shapes: a = 800, 700 and 600. Using 
the same approach discussed above for these three indenters, the 
iso-lines can be generated. These are shown in Fig. 4b–d respec­
tively together with the iso-lines from a = 500. The iso-lines can 
be used to determine the material properties of a material based 
on a dual indentation test using the procedure described as follows 
(described for a1 = 500 and a2 = 800): conduct the dual indentation 
test with a1 = 500 and a2 = 800. Obtain the force–displacement rela­
tionships and thereby the quantities Pm/Suhm from the tests corre­
sponding to each half-angle. Draw the two particular iso-lines 
corresponding to the two half-angles in the E/Y – n space. Since 
both the iso-lines correspond to the same material, the intersection 
of the two lines will give E/Y and n for the material. The modulus, E 
can be determined using the commonly used ‘‘Oliver–Pharr meth­
od’’ (Oliver and Pharr, 1992). 

3.2. Demonstration of sensitivity 

The basic definitions of condition number and how it can be 
used to quantify uniqueness and sensitivity are described in 
Appendix A. A condition number gives a measure of the ratio of 
perturbation in the solution (e.g., material properties) and pertur­
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Fig. 4. Iso-(Pm/Suhm) lines for (a) a = 500; (b) a = 500 and a = 800; (c) a = 500 and a = 700; (d) a = 500 and a = 600. As the iso-lines from two tests approach each other, the system 
becomes increasingly sensitive to experimental errors. 

the elements of x (solution), and values of Pm/(Suhm) corresponding 
1000 

α = 50° 
α = 60° 
α = 70° 
α = 80° 

to two different indentation tests are equivalent to the elements of 
y (data) in Appendix A. The sensitivity of the solution (i.e., sensitive 900 
to experimental errors) and the condition number of the system in­

800 crease as the iso-lines get closer to each other, similar to the dis­
cussion in Appendix A. For clarity, Fig. 5 illustrates this, where 700 
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300 
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100
0 

the iso-lines passing through the point E/Y = 500, n = 0.25 corre­
sponding to four indenter-tip angles are shown. 

Although, condition numbers are not explicitly computed for 
the examples presented in this section, it can be understood from 
the discussion in Appendix A that as the indentation system be­
comes increasingly sensitive and approaches non-uniqueness, the 
condition number of the system will increase. This will be dis­
cussed next in more detail. 

0.1 0.2 0.3 0.4 0.5 
n 4. Condition numbers of single and dual indentation techniques 

E
 / 

Y
 

Fig. 5. Iso-(Pm/Suhm) lines passing through the point E/Y = 500, n = 0.25 for four 
selected conical indenters. 

bation in the data (e.g., experimentally obtained indentation shape 
functions). If the condition number is large, a small perturbation in 
the data will cause a large change in the solution (i.e., the system is 
highly sensitive) and vice versa. When the condition number is 
infinite, several solutions can be found for a given set of data, i.e. 
the system yields non-unique solutions. 

The method of iso-Pm/(Suhm) lines can be used to assess the 
sensitivity of dual indentation techniques, that is, assessing how 
sensitive the technique is to experimental errors. Fig. 4b–d can 
be compared with Fig. A1a–c. Here E/Y and n are equivalent to 

So far, the issues of sensitivity and non-uniqueness have only 
been discussed in qualitative terms. We will now attempt to quan­
tify them using the concept of condition numbers. 

4.1. Modified condition number 

Appendix A gives a brief overview of the definition and estab­
lishment of the condition number. The definition of relative error 
used to define the condition number, is not suitable for indentation 
problems due to the large differences in numerical values of the 
elastic modulus, E, yield strength, Y, and strain hardening expo­
nent, n. Thus, we will introduce a new definition of condition num­



ber which measures the relative change as kDz:=zk where the def­
inition of the ‘‘./’’ operation is 

m:=n ¼ ðm1; m2; m3 . . . mkÞ:=ðn1; n2; n3 . . . nk Þ 
¼ ðm1=n1; m2=n2; m3=n3 . . . mk =nk Þ ð13Þ 

In this operation, the relative change is measured on an element 
by element basis. Considering the equation y = f(x), where, x de­
notes the material property vector2 or a point in the input space, 
x ¼ ðE; Y ; nÞ, and y denotes the vector of shape functions or a point 
in the output space, y ¼ ðshape functionsÞ, similar to Eq. (A1), the 
modified condition number can be defined as 

jm ¼ 1=wðf ; C; zÞ ð14aÞ 

where 

wðf ; C; zÞ ¼  sup ft in ½0; 1Þ; kðf ðxÞ - f ðzÞÞ:=f ðzÞk 
x in C 

6 tkðx - zÞ:=zkg ð14bÞ 

and z is the point in material space where the condition number is 
computed, C is a user-defined domain enclosing z. A small jm im­
plies that the relative error of the material properties, kDx:=xk; is 
small for a given error in shape functions, kDy:=yk, and vice versa: 
From Eq. (14a), a small jm implies large wðf ; C; zÞ. Note that in Eq. 
(14b), kDx:=xk is denoted as kðx - zÞ:=zk and kDy:=yk is denoted as 
kðf ðxÞ - f ðzÞÞ:=f ðzÞk. From Eq. (14b), wðf ; C; zÞ approximately de­
notes the maximum value of kDy:=yk=kDx:=xk. Thus, for a given 
kDy:=yk, a large wðf ; C; zÞ implies a small kDx:=xk. It follows that a 
small jm results in small kDx:=xk for a given kDy:=yk. Since jm mea­
sures the relative change as kDzk=kzk, it is able to accommodate 
large numerical differences among the values of E, Y and n. Well-
conditioned systems have condition numbers close to 1, which is 
the case of tensile testing. 

4.2. Computational procedure 

To quantify the sensitivity of indentation techniques, the mod­
ified condition number, jm, has been computed numerically for a 
range of indentation conditions. The origin of the input space is 
set at z ¼ ðE0; Y0; n0Þ, and the origin of the output space is assumed 
as the point which is exactly mapped from (E0, Y0, n0). The pertur­
bation region or the subdomain, C, has been selected as: 

C ¼ f0:9zi < zi < 1:1zi g; i ¼ 1 - 3; z ¼ ðz1 ; z2; z3Þ 

Using the functional equations, the region of the output space 
which corresponds to the perturbation region of input space is 
determined. For all points in the perturbation region of the input 
space, the relative differences (Eq. (13)) between the points and 
the origins are computed. The ratio of the relative differences in 
output and input region gives the parameter t of Eq. (14b) at all 
points of the perturbation region. The maximum value of parame­
ter t is wðf ; C; zÞ. Its reciprocal, jm (Eq. (14a)) is the condition 
number. 

For both single and dual indentation and for a given geometry, the 
condition number is dependent on the material properties (elastic 
modulus, E, yield strength, Y, and strain hardening exponent, n). 
Dimensional analysis shows that the condition number only de­
pends on E/Y and n. Thus, denoting the functional relation by J, <

E
jm ¼ J ; n ð15Þ

Y 

For a given indentation geometry, the condition numbers have 
been calculated at 45 points of the E/Y – n space, numerically, with 

The material properties that are used in this expression are the original properties 
used in the FE model, and not the ones that are obtained from reverse analysis. 

Table 3 
Condition numbers for single indentation technique for 
various combinations of shape functions. 

Combination of shape function javg 
m 

Su; We; hf 88.6 
Pm; We ; hf 131 
Pm; Su; hf 125 
Pm; Su; We 99.8 
Wt ; We; hf 109 
Wt ; Su; hf 106 
Wt ; Su; We 88.6 
Wt ; Pm; hf 445 
Wt ; Pm; We 153 
Wt ; Pm; Su 165 

E0/Y0 = 100, 200, 300, 400, 500, 600, 700, 800, 900 and n0 = 0.05, 
0.15, 0.25, 0.35, 0.45. The average condition number for a particu­
lar indentation geometry is determined from these 45 cases, and 
used as the condition number for the indentation geometry, javg .m 

4.3. Condition numbers for single indentation 

As previously discussed, there are sets of materials resulting in 
identical force–displacement relationships for the single indenta­
tion technique. Thus, the condition number for the single indenta­
tion technique should be infinite since it is a non-unique system 
(Datta, 2010). To investigate this, we computed the average modi­
fied condition number, javg , for conical indentation with a = 700.m 

The resulting condition numbers are tabulated in Table 3. Recall 
that well-conditioned systems have a condition number close to 
1. It can be seen that the condition numbers are quite large but fi­
nite. The condition numbers are finite since the force–displace­
ment relationships are not truly non-unique, but there are very 
small differences among the force–displacement relationships of 
different materials (Tho et al., 2004; Alkorta et al., 2005). These dif­
ferences are typically indistinguishable with the resolution of a 
graph when the force–displacement relationships are plotted. Con­
sequently, a finite but very large condition number is obtained for 
the single indentation test. 

4.4. Condition numbers for dual indentation 

Next, we consider the condition number for dual indentation. 
The half-angles of the two indenters are denoted by a1 and a2, 
where a1 < a2. One can select any two of the five shape functions 
from an indenter with half-angle a1 and any one from the indenter 
with half-angle a2. Alternatively, one shape function from indenter 
with half-angle a1 and two shape functions from indenter with 
half-angle a2 can be used. 

First, condition numbers will be presented for a range of shape 
function combinations and then for various half-angles. The condi­
tion numbers were computed for indenters with a1 = 500 and 
a2 = 800. These half-angles may be considered as the limits of the 
range of half-angles that are of practical use. Results will be pre­
sented for the case where two shape functions are selected from 
a1 and one shape function is selected from a2. Results for the com­
bination of one shape function from a1 and two shape functions 
from a2 are omitted for brevity, since these gave almost the same 
condition number (for example, selecting Su and We from a1 = 500 
and Wt from a2 = 800 gave almost same results as selection of Wt 

from a1 = 500 and Su and We from a2 = 800). The condition numbers 
for 50 combinations of shape functions were arranged in ascending 
order and are listed in Table 4 (only selected values are tabulated 
for brevity). The condition numbers range from 5.82 to 322. Small 

2 
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Table 4 
Condition numbers for selected combinations of shape functions of dual indentation. 
Superscripts 1 and 2 indicate shape functions for half-angles a1 and a2 respectively. 

Combination # Shape function combination javg 
m 

1 W2 
e ; S

1 
u ; W

1 
e 

5.82 
2 W2 

e ; P
1 
m ; W

1 
e 

5.86 
3 W2 

e ; W
1 
t ; W

1 
e 

5.87 
4 W2 

e ; P
1 
m ; S

1 
u 

7.68 
5 W2 

e ; W
1 
t ; S

1 
u 

7.75 
6 P2 

m ; P
1 
m ; S

1 
u 

11.7 
7 P2 

m ; W
1 
t ; S

1 
u 

11.7 
8 W2 

t ; P
1 
m ; S

1 
u 

11.8 
9 W2 

t ; W
1 
t ; S

1 
u 

11.8 
10 P2 

m ; S
1 
u ; W

1 
e 

12.1 
: : : 
22 S2 

u; W
1 
t ; h

1 
f 

39.9 

23 S2 
u; P

1 
m ; h

1 
f 

40.6 

24 h2 
f ; S

1 
u ; W

1 
e 

42.7 

25 S2 
u; W

1 
t ; P

1 
m 

42.8 
26 h2 

f ; W
1 
t ; S

1 
u 

53.5 

27 h2 
f ; P

1 
m; S

1 
u 

54.6 

: : : 
45 W2 

e ; W
1 
t ; P

1 
m 

179 
46 h2 

f ; P
1 
m; h

1 
f 

183 

47 h2 
f ; W

1 
e ; h

1 
f 

194 

48 W2 
t ; W

1 
t ; P

1 
m 

292 
49 P2 

m ; W
1 
t ; P

1 
m 

312 
50 h2 

f ; W
1 
t ; P

1 
m 

322 

Table 5 
Condition numbers for various choices of half-angles 
for the shape function combination ðW2 ; S1 ; W1Þ.e u e 

a1 a2 javg 
m 

500 800 5.62 
600 800 7.17 
500 700 9.45 
700 800 10.7 
600 700 15.8 
500 600 16.6 

differences in condition number between two combinations may 
be due to inaccuracy of regression. Thus, for small differences, no 
conclusions can be drawn about the effectiveness of the combina­
tions involved. Interestingly, many combinations of shape func­
tions for dual indentation yield condition numbers which are of 
the same order of magnitude as for the single indentation tech­
nique. Only a few combinations have condition numbers less than 
10. Thus, we conclude that while dual indentation techniques may 
be inherently more reliable than single indentation techniques, the 
reliability strongly depends on the shape functions that are chosen. 

To investigate the effect the half-angle has on the sensitivity, we 
considered four half-angles: 500, 600, 700 and 800. The shape func­
tion combination giving lowest condition number is W2 ; S1 ; W1 

e u e 
(Table 4). Thus, for various choices of a1 and a2 among the four an­
gles, condition numbers were computed for the shape function 
combination W2 ; S1 ; W1 and are tabulated in Table 5. It can be seen e u e 
from Table 5 that as the difference between half-angle increases, 
the condition number decreases (for example a 500–800 combina­
tion has lower condition number than a 500–600 combination). It 
follows that a larger difference between the half-angles results in 
a less sensitive indentation technique for experimental errors 
and thus would be a preferred technique. This was observed for 

a few cases by Cao and Lu (2004b) and Chen et al. (2007). Further, 
for a given difference between two half-angles, the sensitivity of 
the system decreases as the smaller angle increases (Table 5). This 
was also been observed by Cao and Lu (2004b). 

5. Sensitivity analysis 

As discussed above, the condition number quantifies the sensi­
tivity of indentation testing to experimental error. However, the 
condition number does not give information about the amount of 
error that can occur in determined material properties for given 
experimental error in shape functions. Therefore, we will explore 
numerical sensitivity analyses to elucidate the characteristics of 
dual indentation techniques. 

The numerical sensitivity analyses are conducted as follows. 
The material properties are first determined via the (numerically) 
correct shape functions. These will be denoted by Ets , Yts and nts , 
where superscript ts indicates the true solution. Next, the shape 
functions are slightly perturbed, simulating an experimental error. 
Based on these perturbed shape functions, material properties are 
determined, Eps, Yps and nps, where subscript ps indicates the per­
turbed solution. Thus, Eps, Yps and nps correspond to the properties 
that would be determined based on an experiment that includes 
some specific experimental errors. The quantity, dmp, gives a mea­
sure in the difference between the true and perturbed solutions 
(material properties) and is determined by: sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi < 2 < 2 <

Ets Eps Yts Yps nts nps 2 

dmp ¼ 
Ets þ 

Yts þ ð16Þ 
nts 

In a well-conditioned system, a small perturbation (small 
experimental error) does not have a significant effect on the calcu­
lated material properties. Thus, a well-condition problem yields a 
small dmp. 

There are several methods used in the literature to conduct 
numerical sensitivity analyses. A popular method is the so called 
‘‘one factor at a time’’ (One Factor scheme) (Chollacoop et al., 
2003; Lan and Venkatesh, 2007; Le, 2008; Heinrich et al., 2009). 
In this case, one shape function is varied while the two others 
are kept constant. However, errors may occur in all the shape func­
tions simultaneously in a real experiment. Thus, the One Factor 
scheme may not accurately capture the errors that may occur in 
a real experiment. In an alternative scheme (Hyun et al., 2011; 
Heinrich et al., 2009) all shape functions are increased or decreased 
uniformly by same percentage amount (Uniform Factors scheme). 
However, as with the One Factor scheme, this scheme does not 
realistically represents errors as they occur in a real experiment 
since it is unlikely that all measured data contain the same amount 
of error. A more effective sensitivity analysis scheme is to vary all 
shape functions simultaneously by different amounts but keeping 
all of them within in a fixed limit (Cao and Lu, 2004a; Heinrich 
et al., 2009; Le, 2009; Le, 2011; Swaddiwudhipong et al., 2005). 
This is known as a Monte Carlo type sensitivity analysis scheme. 

Examples of common sources of errors in indentation experi­
ments are the measured indenter deformation (Cheng and Cheng, 
2004), indenter tip roundness (Cheng and Cheng, 2004), substrate 
surface roughness (Kim et al., 2007) and size effect (increase in 
hardness at shallow indentation depths) arising from increase in 
the density of dislocations (Huang et al., 2006). These errors can af­
fect either or both the loading and the unloading response. Thus, 
the shape functions are subjected to multiple sources of experi­
mental errors. Experimental errors in the shape functions from 
indentation testing have been reported to be within 5.1% (Wang 
et al., 2005; Chollacoop et al., 2003). We will investigate sensitivity 
for three error ranges of ±1%, ±5% and ±10% with step size of 0.5%, 
2.5% and 5% respectively. For example, for the 5% error range, the 



Table 6 
Errors in calculated material properties based on Monte Carlo, One Factor and Uniform Factors sensitivity analyses for dual indentation with a1 = 500 and a2 = 800 and shape 
function combination ðW2; S1 ; W1Þ, jm

avg ¼ 5:8248.e u e 

Material properties Percentage error in determined material properties 

Monte Carlo One Factor Uniform Factors 

0% ±1% (1, -1, 1) ±5% (-5, 2.5, 5) ±10% (-5, 10, -10) (10, 0, 0) (0, 10, 0) (0, 0, 10) (10, 10, 10) (-10, -10, -10) 

E -0.152 -1.40 8.96 -6.27 -1.32 1.09 9.94 9.83 -10.1 
Y 0.727 4.67 -45.7 -54.6 24.7 -13.1 0.616 10.8 -9.35 
n -0.735 -4.51 41.9 50.7 -17.9 15.3 1.48 -0.735 -0.734 

Table 7 
Errors in calculated material properties based on Monte Carlo sensitivity analyse for dual indentation with a1 = 500 and a2 = 800 and shape function combination ðh2 

f ; S
1 
u ; W

1 
e Þ, 

javg Þ, javg 
m ¼ 42:715 and ðh2 

f ; W
1 
t ; P

1 
m ¼ 322:06.m

Material Properties Percentage error in determined material properties 

ðh2 
f ; S

1 
u ; W

1 
e Þ, j

avg 
m ¼ 42:715 ðh2 

f ; W
1 
t ; P

1 
mÞ, j

avg 
m ¼ 322:06 

0% ±1% (-1, -1, 1) ±5% (-5, 5, 5) ±10% (-10, 5, 5) 0% ±1% (1, -0.5, 1) ±5% (0, 2.5, 5) ±10% (-10, 5, 10) 

E -0.050 -1.75 -2.79 1.67 -7.27 37.4 73.4 -35.1 
Y -1.27 49.6 181 189 -33.3 158 155 183 
n 0.800 -34.2 -99.2 -99.9 32.0 -100 -100 -88.7 

three shape functions are perturbed with 5 errors i.e. -5%, -2.5%, 
0%, 2.5% and 5% to give a total of 125 possible combinations. Hence, 
in the following, the employment of the Monte Carlo analysis is 
more extensive than in the previous studies (Cao and Lu, 2004a; 
Heinrich et al., 2009; Le, 2009; Le, 2011; Swaddiwudhipong 
et al., 2005). A perturbation of 5%, 2.5% and 0% error in the three 
selected shape functions respectively, will be denoted as (5, 2.5, 
0). The procedure for the sensitivity analysis is: 

Step 1: Consider a specific material (material properties de­
noted by Ets , Yts and nts). 

Step 2: Conduct numerical dual indentation tests with selected 
combinations of half-angles, a, and extract the shape functions to 
obtain numerically correct shape functions. 

Step 3: Use the concept of reverse analysis outlined in 
Section 1.3 and the algorithm outlined in Appendix B to determine 
the material properties using the shape functions obtained in the 
previous step. This gives the material properties based on the re­
verse analysis. 

Step 4: Impose a perturbation on the shape functions from step 
2, simulating the experimental error. Compute the material prop­
erties Eps, Yps and nps for all perturbations combinations. The com­
bination which gives the largest dmp is recorded along with the 

, Ypsassociated solution Eps , nps for that particular combination. 
Step 5: Finally, determine the differences (expressed in percent­

age) between the true and perturbed elastic modulus, yield 
strength and strain hardening exponent. These percentage differ­
ences illustrate how much the material properties can deviate for 
a given uncertainty in the experimental measurements of the 
shape functions. 

In the next section, the sensitivity analyse discussed above will 
be applied to some specific dual indentation techniques. 

6. Sensitivity of dual indentation techniques 

To elucidate the sensitivity to experimental errors for dual 
indentation testing, we investigate a material with elastic modulus 
Ets = 180 GPa, yield strength Yts = 300 MPa and strain hardening 
exponent nts = 0.25, based on the procedure presented in Section 5. 

6.1. Dual conical indentation (a1 = 500, a2 = 800) 

First, we apply the sensitivity analysis (Section 5) on three 
shape functions combinations (see Table 4) spanning a range of 

javgcondition numbers: (i) ðW2; S1 ; W1Þ, m ¼ 5:8248; (ii)e u e 

f ; S
1 

m ¼ 42:715; and (iii) ðh2 
f ; W

1 
m ¼ 322:06.ðh2 

; W1Þ, javg ; P1 Þ, javg 
u e t m

The results obtained by the sensitivity analysis for the shape 
function combination ðW2 ; S1 ; W1Þ are tabulated in Table 6, where e u e 
the (unperturbed) reverse analysis results are included for compar­
ison. For small experimental error (perturbations of ±1%), this dual 
indentation method predicts the material properties quite well. 
However, for larger experimental error, the determined material 
may not be reliable. For example, the material properties are more 
than 40% off for the error combination of (-5, 2.5, 5). The One Fac­
tor and Uniform Factors schemes do not predict as large a devia­
tion in material properties as that predicted by the Monte Carlo 
sensitivity analysis procedure. Thus, this confirms that these two 
schemes are not sufficient to adequately conduct a sensitivity anal­
ysis. It is interesting to note that the Monte Carlo error range of 
(-5, 2.5, 5) gives larger error than the cases (10, 10, 10) or (-10, 
-10, -10). 

Next, we consider the results that are obtained by applying the 
Monte Carlo sensitivity analysis on the shape function combina­

javgtions with larger condition numbers, ðh2 
f ; Su 

1 ; We 
1Þ, m ¼ 42:715 

and ðh2 
f ; W

1 
t ; Pm

1 Þ, jm
avg ¼ 322:06, Table 7. Without any perturbations 

imposed on the shape functions, the dual indentation technique 
can determine material properties quite accurately using the com­
bination ðh2 

f ; S
1 
u ; W

1 
e Þ. However, a small error in experimental mea­

surement can create large errors in the determined material 
properties. For the combination ðh2 

f ; W
1 
t ; P

1 Þ, even when exact val­m

ues of the shape functions are used, the deviations in material 
properties are very large. Thus, this is not a suitable dual indenta­
tion technique as suggested by large javg .m 

From these examples, the correlation between the condition 
number and Monte Carlo sensitivity analysis can be seen clearly. 
For the three shape function combinations considered, as the con­
dition number increases, the sensitivity to experimental errors 
increases.3 

6.2. Sensitivity behavior across material range 

It was discussed in Section 4 that the condition number of a 
dual indentation technique depends on the material being 
considered. Thus, the sensitivity of a dual indentation technique 
also depends on the material properties. Based on our investigation 
of various dual indentation techniques, dual indentation with 

3 Although, the conclusions regarding the correlation between the condition 
number and Monte Carlo analysis presented in this section are based on one 
particular material, similar conclusions are observed for a range of materials. The 
results for those materials are not presented for brevity. 



Table 8 
Errors in calculated material properties based on Monte Carlo sensitivity analyse for 9 
selected materials spanning the E/Y-n space for dual indentation with a1 = 500 and 
a2 = 800 and shape function combination ðW2 ; S1 ; W1Þ.e u e 

Material Properties Error case Percentage error in 

E (GPa) Y (MPa) E/Y n E Y n 

180 1200 150 0.45 (-5, 5, -5) -1.59 38.9 -18.8 
180 360 500 0.45 (-5, 5, -5) -20.6 -74.6 9.90 
180 189 950 0.45 (5, -5, 5) -13.3 -38.9 3.69 
180 1200 150 0.25 (-5, 5, -5) -4.92 24.4 -33.4 
180 360 500 0.25 (5, -5, 5) 5.99 22.9 -19.7 
180 189 950 0.25 (-5, 5, 5) 6.34 24.5 -17.7 
180 1200 150 0.05 (5, -5, 5) -3.82 -91.1 674.0 
180 360 500 0.05 (-5, 5, -5) 5.44 -57.8 421.0 
180 189 950 0.05 (5, 2.5, -5) 6.27 19.7 -93.2 

a1 = 500 and a2 = 800 and shape function combination ðW2 
e ; S

1 
u; W

1 
e Þ 

was found to be least sensitive to experimental errors. To investi­
gate the effectiveness of this dual indentation technique over a 
range of materials, the Monte Carlo sensitivity analysis (±5% error 
range) has been applied to this technique for nine (9) materials, 
which are situated in a rectangular grid of the E/Y – n space consid­
ered (see Table 8). The results summarized in Table 8 shows that 
for all of the materials combinations considered, errors of at least 
15% in the determined properties were obtained for at least one 
material property. This is quite remarkable: Even the best dual 
indentation technique (the technique with the lowest condition 
number) cannot reliably establish the material properties for a 
range of materials. 

6.3. Sensitivity due to local material property variation 

Dual indentation tests are typically conducted by indenting two 
different locations of the same specimen. Thus, in addition to er­
rors in the experimental measurements, variations due to local 
material property within a specimen also affect the evaluated 
material properties. To explore this, two cases were considered 
for dual indentation with a1 = 500 and a2 = 800 and shape function 
combination resulting in the lowest condition number 
ðW2; S1 ; W1Þ. For indentation by indenter with a1 = 500, the original e u e 
material properties were assumed as: elastic modulus, Ets = 180 
GPa, yield strength, Yts = 300 MPa and strain hardening exponent, 
nts = 0.25. For indentation with a2 = 800, two cases were consid­
ered: the three material parameters were (i) increased by 3% and 
(ii) decreased by 3%. Based on this data scatter, a Monte Carlo sen­
sitivity analysis with error range of ±1% were conducted and tabu­
lated in Table 9. In both cases, the errors have been computed with 
respect to the nominal values (Ets = 180 GPa, Yts = 300 MPa and 
nts = 0.25). The results show that even for small experimental error 
(perturbations of ±1%), the error in the determined material prop­
erties can be in the order of 20%. 

6.4. A note on the use of condition number vs sensitivity analysis 

As discussed previously, the condition number provides guide­
lines about the effectiveness of an indentation technique whereas 
the sensitivity analysis provides numerical estimates of possible 
errors in the determined material properties. However, a sensitiv­
ity analysis is significantly more computationally intense to per­
form than computing a condition number: it takes a CPU time of 
about 2 s to compute the condition number for a material using 
the computational procedure outlined in Section 4.2, whereas a 
typical Monte Carlo sensitivity analysis takes about 50 min using 
the steps outlined in Section 5. Calculations were performed using 
a DELL OptiPlex 990 Desktop computer with Intel(R) Core(TM) i5­

Table 9 
Errors in calculated material properties based on Monte Carlo sensitivity analysis for 
dual indentation with a1 = 500 and a2 = 800 and shape function combination 
ðh2 

f ; S
1 
u ; W

1 
e Þ, to investigate the effect of local material property variation. 

Material Properties Percentage error in determined material properties 

Material properties Material properties 
increased by 3% for decreased by 3% for 
a2 = 800 a2 = 800 

0% ±1% (1, 1, -1) 0% ±1% (-1, -1, 1) 

E 0.750 2.05 -0.914 -2.15 
Y -14.9 -18.2 16.2 20.1 
n 11.71 15.2 -12.2 -15.7 

2500 processor. Thus, determining the condition number first will 
serve as a useful guidance in selecting data reduction schemes. 

7. Concluding remarks 

This work explored the uniqueness and sensitivity to experi­
mental errors when evaluating instrumented indentation. Of par­
ticular interests is to extract the elastic modulus, the yield 
strength and strain hardening coefficient of homogeneous, isotro­
pic material with linear-elastic and power-law strain hardening 
plasticity. To this end, a systematic investigation considering the 
concept of condition numbers, along with explicit numerical ap­
proaches for characterizing the sensitivity to experimental errors 
was carried out. The methods investigated are all based on consid­
ering ‘‘shape functions,’’ which are sets of functions that describe 
the force–displacement relationship obtained during the indenta­
tion testing. 

We extend the definition of condition numbers, and explore its 
use for dual indentation testing. In its redefined form, condition 
numbers and iso-(Pm/Suhm) lines provide a comprehensive quanti­
tative description characterizing uniqueness and sensitivity for 
indentation techniques. When considering condition number and 
the iso-(Pm/Suhm) lines, it is clear that non-uniqueness is an ex­
treme case of sensitivity for experimental errors. In particular, 
we show that the reliability of a dual indentation technique highly 
depends on the selection of the three shape functions that are 
needed to determine the three unknown material properties. 

Condition numbers are useful in determining effective choices 
of two half-angle combinations that reduce sensitivity to experi­
mental error when utilizing dual indentation techniques. However, 
as a complement to the condition numbers, numerical sensitivity 
analyses reveal more insight. To this end, three approaches for con­
ducting numerical sensitivity analysis were investigated. A proce­
dure based on a Monte Carlo approach was found to be more 
effective than both the One Factor (shape functions varied one at 
a time) and the Uniform Factors (all shape functions increased or 
decreased by same amount) schemes. The Monte Carlo sensitivity 
analysis procedure was applied to a wide range of dual indentation 
techniques with, 500 6 a 6 800. The most effective (least sensitive) 
conical dual indentation technique was suggested to be indenta­
tion with a1 = 500 and a2 = 800 and shape function combination 
(elastic energy, We and unloading slope, Su from a1 = 500; elastic 
energy, We from a2 = 800), which is consistent with having the low­
est condition number. 

Based on the Monte Carlo sensitivity analysis we conclude that 
dual indentation techniques are reliable when the experimental er­
ror is within ±1%. However, for the error range of ±5%, none of the 
three material properties can be determined with reasonable reli­
ability. Moreover, when considering that local material property 
may vary between the two indentations, the effectiveness of the 
dual indentation technique may be questionable. New dual inden­



tation techniques need to be developed to overcome the problem 
of sensitivity to experimental error. 

Appendix A 

The condition number can be used to quantify the sensitivity of 
a system (Datta, 2010). Generally, the condition number gives a 
measure of the ratio of error in the solution to the error in the data. 
For a system with a large condition number, a small perturbation 
in the data will cause a large error in the solution. Thus, a system 
with a large condition number is sensitive to experimental errors; 
an ill conditioned system. A small condition number implies that 
the system is not sensitive to perturbations (experimental errors); 
a well-conditioned system. The condition number is an inherent 
property of the problem and does not depend on the algorithm that 
is used to solve the system. 

Consider the general system (linear or nonlinear) of equations, 
f ðxÞ ¼ y, where x is the input/solution vector (e.g. the material 
parameters set (E, Y, n)) and y the output/data vector (e.g. the set 
of shape functions). Assuming that the solution of the system 
f ðxÞ ¼ y exists, the aim of the sensitivity analysis is to investigate 
how a small perturbation, Dy, of the output vector causes a changes 
the input vector, Dx. With the perturbations, the system of equa­
tions can be written as f ðx þ DxÞ ¼ y þ Dy. For the special case of 
a linear system, the system of equation, f ðxÞ ¼ y can be expressed 
as Ax ¼ y, where A is a matrix, and x and y are vectors. Hence, 
Aðx þ DxÞ ¼ y þ Dy. 

There are two definitions of condition numbers (Higham, 1996; 
Rheinboldt, 1976). One relates to the absolute error in data or solu­
tion, and the other to the relative error. The second condition num­
ber is used more widely than the first condition number, since the 
relative error tends to be more useful than the absolute error. For a 
general system, f ðxÞ ¼ y, the second condition number at a point z, 
of the domain (of x), is given by: 

j ¼ vðf ; C; zÞ=uðf ; C; zÞ ðA1aÞ 

where 

vðf ; C; zÞ ¼  inf ft in ½0; 1Þ; kf ðxÞ - f ðzÞk 6 tkx - zkg
x in C ðA1bÞ 

uðf ; C; zÞ ¼  sup ft in ½0; 1Þ; kf ðxÞ - f ðzÞkP tkx - zkg
x in C 

Here, C is a sub-domain enclosing the point z, k:k denotes the 
norm of the vector, which is defined as (for vector z): !1=pn 

kzk ¼ jzijp ðA2Þ 
X 

p  
i¼1  

where p P 1 and is a real number. Different norms can be defined 
depending on the values of p. The most commonly used norm, the 
Euclidean norm (p = 2) is used here. For the linear system, the 
second condition number reduces to a simpler expression, which 
is given as follows: 

j ¼ kAkkA-1k ðA3Þ 

It can be shown that, small a j implies that kDxk=kxk is small for 
a given kDyk=kyk and vice versa. 

To illustrate how the condition number can quantify the sensi­
tivity of a system, we considered four simple 2 by 2 linear systems. 
The condition numbers (Eq. (A1)) for these systems are tabulated 
in Table A1. For each of the four examples considered, the original 
system was perturbed by changing the first element of the data 
vector, y, by 1%. The solutions of the original and perturbed sys­
tems were computed and percentage differences were determined. 
It can be seen from Table A1 that the error increases with condition 
number increasing. The fourth example is of a non-unique system 
for which the condition number is infinity. Fig. A1 provides a 
graphical representation of the four systems. It can be seen that, 
as the condition number of the system increases, the straight lines 
get closer to each other. For the third example, the straight lines 
are so close that it appears they have overlapped. Finally, in the 
fourth example, when the two straight lines actually overlap, the 
solution becomes non-unique (figure omitted due to its triviality). 
Thus, non-uniqueness can be considered as an extreme case of 
highly sensitive system. 

Appendix B 

In order to carry out the sensitivity analyse outlined in Section 5, 
one needs to solve the functional equations to obtain the material 
properties. Denoting the three selected shape functions to be 
S1; S2 and S3, the three equations to be solved are: 

Si ¼ HiðE; Y ; nÞ; i ¼ 1; 2; 3 ðB1Þ 

In this set of equations, the quantities on the left hand side (the 
three shape functions), and the functions H1, H2 and H3 are 
known. The material properties E, Y and n need to be determined. 
The functions H1, H2 and H3 are highly nonlinear fitting functions 
(see Section 2.2). Non-linear system can be solved numerically 
using an iterative process. The predicted material properties, Epr, 
Ypr and npr, is the set for which the residual (or the distance) be­

, Ypr pr), H2(Epr, Yprtween the vectors ðS1; S2; S3Þ and (H1(Epr , n , 
pr), H3(Epr, Yprn , npr)) is minimized according to sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi < < <2 2 2sf1 - f1 sf2 - f2 sf3 - f3dsf ¼ þ þ ðB2Þ

sf1 sf2 sf3 

The ordinary line search and golden section line search (Arora, 
2012) methods were impractical to use for solving the present 
nonlinear system because of very high computational cost in­
volved. Although the Newton–Raphson method (Arora, 2012) con­
verged much faster, the convergence is dependent on the initial 
guess. Further, the Newton–Raphson method works well for a 
well-posed system, but does not converge for an ill-posed system. 
Thus, we use, a combination of the three methods to solve the set 

Table A1 
Correlation between condition number and the sensitivity to perturbation in four linear systems. 

Example Original system ðAx ¼ yÞ Perturbed system Condition 
number (of A) 

Solution of the 
original system 

Solution of the 
Perturbed system 

Percentage change in 
the solution 

a 

b 

c 

d 

1 3  
5 -1

[ ] 
x1 
x2

[  ]  
¼ 4 

4

[ ]  
1 3  
5 6

[ ] 
x1 
x2

[  ]  
¼ 4 

11

[  ]  
1000 999 
999 998

[ ] 
x1 
x2

[  ]  
¼ 1999 

1997

[ ] 
5 6  
5 6

[ ] 
x1 
x2 

[ ] 
¼ 11 

11

[ ]  

1 3  
5 -1

[ ] 
x1 
x2

[  ]  
¼ 4:04 

4

[ ] 
1 3  
5 6

[ ] 
x1 
x2

[  ]  
¼ 4:04 

11

[ ] 
1000 999 
999 998

[ ] 
x1 
x2

[  ]  
¼ 2019 

1997

[ ] 
– 

1.6400 

7.7606 

3.99E6 

Infinity 

x1 = 1  
x2 = 1  
x1 = 1  
x2 = 1  
x1 = 1  
x2 = 1  
Non-unique 

x1 = 1.0025 
x2 = 1.0125 
x1 = 0.9733 
x2 = 1.0222 
x1 = -1.995E4 
x2 = 1.997E4 
– 

x1: 0.25 
x2: 1.25 
x1: 2.67 
x2: 2.22 
x1: 1.995E6 
x2: -1.997E6 
– 
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Fig. A1. Three systems of straight lines (examples a–c of Table 1) with increasing condition number and sensitivity. As the condition number increases, the straight lines 
approach each other and finally overlap. 

Fig. B1. Algorithm used to solve the nonlinear set of equations. 

of nonlinear equations in the present work. The algorithm is 
schematically shown in Fig. B1. At first, an ordinary line search is 
employed to determine the solution. The predicted solution is fed 
as an initial guess to a Newton–Raphson algorithm. If the solution 

converges, the algorithm is ended. If it does not converge after 
1000 Newton–Raphson iterations, a golden section line search is 
employed thereafter starting from the solution of the ordinary line 
search. 
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