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On establishing elastic-plastic properties of a sphere by indentation testing

J.K. Phadikar?, T.A. Bogetti®, A.M. Karlsson **

* Department of Mechanical Engineering, University of Delaware, Newark, DE, United States

" US Army Research Laboratory, Aberdeen Proving Ground, MD, United States

1. Introduction

Instrumented indentation has emerged as a valuable tool for
probing elastic and plastic material properties of engineering
materials (Cheng and Cheng, 2004; Green, 2005; Oliver and Pharr,
1992; Johnson, 1987; Jackson et al., 2010; Yan et al., 2007a, 2007b).
During the experiment, a rigid indenter penetrates normally into a
homogeneous solid, and the indenter force, P, and depth of pene-
tration, h, are continuously measured during a complete cycle of
loading and unloading. A typical force-displacement response is
shown in Fig. 1. The force-displacement response is primarily a
function of the elastic and plastic material properties of the sub-
strate and the geometry of the indenter. Based on the force-dis-
placement relationship and geometry of the substrate/indenter,
the material properties of the substrate can be determined.

The most widely used method for determining elastic modulus
for a flat semi-infinite substrate is the so-called “Oliver-Pharr
method” (Oliver and Pharr, 1992). This method assumes that the
initial unloading is elastic and thus uses the elastic solution for
the problem to express the unloading slope in terms of elastic
modulus, Poisson’s ratio and contact radius (radius of projected
area of contact at maximum depth of penetration). Accordingly,
the relationship between the elastic properties of the substrate
and the unloading slope is given by:

# Corresponding author. Tel.: +1 302 832 64371,
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Here, S is the initial unloading slope, a is the contact radius at max-
imum load, hyayx is the maximum depth of penetration, E and v are
elastic modulus and Poisson’s ratio, respectively, of the substrate
material, and £ is a correction factor.

One disadvantage of this method is the need of the contact ra-
dius at maximum load, a, which is difficult to measure experimen-
tally (Chen et al., 2006; Johnson, 1987). A common method to
determine contact radius is to use the contact depth, é., which
can be determined from the following equation:

Pmax

S (1b)

de = hmax —&

Here, P,y is the force at maximum indentation depth, and ¢ is a
dimensionless constant which depends on the indenter geometry,
for example £=0.75 for a Berkovich indenter (Oliver and Pharr,
1992). However, this relationship is not valid in the case of plastic
pile-up and thus not applicable to a range of cases (Cheng and
Cheng, 2004; Pharr, 1998). Moreover, Eq. (1) does not give any
information about the inelastic properties of the material. Due to
these limitations, several authors have successfully used other as-
pects of the force-displacement relationship, including the indenta-
tion work during loading, elastic work recovered during unloading,
residual depth, and force at maximum depth to determine the
elastic and plastic properties (Cao and Lu, 2004; Xu and Li, 2005;
Yan et al., 2007a, 2007b; Zhao et al., 2006).
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Fig. 1. (a) A typical force-displacement curve obtained in indentation experiments,
and (b) the geometry of a conical indentation of a flat surface.

Instrumented indentation has become popular since the test is
easy to conduct, and enables the establishment of mechanical
properties for materials that only exist in small volumes. Currently,
the literature on instrumented indentation is dedicated to indenta-
tion on flat surfaces, see for example reviews by Cheng and Cheng
(2004) and by Oliver and Pharr (2004). However, not all small scale
structures are flat. Examples of small scale spherical particles
requiring material characterization include micron-sized metal
coated polymer particles used in the manufacturing of anisotropic
conductive adhesives (Kristiansen et al., 2001), and polymer latex
particles for controlling the mechanical properties of latex films
(Misawa et al., 1991; Tamai et al., 1989) used in the synthetic latex
materials and living cells (Dao et al., 2003). The material properties
are not affected by the geometry of the test specimen but the pro-
cedure to obtain material properties will vary according to the
geometry of the substrate. Several authors have investigated the
indentation of a hemi-sphere by a flat punch (Jackson and Green,
2005; Lin and Lin, 2006; Malayalamurthi and Marappan, 2008;
Sahoo et al., 2009). However, to the knowledge of the authors,
there are no studies in the open literature of a sphere indented
by a conical indenter available. Thus, we aim to develop a reliable
evaluation technique for conical indentation testing of spherical
particles, schematically shown in Fig. 2. Note that the force-
displacement response will retain the schematic features as shown
in Fig. 1a.

2. Theoretical preliminaries
The indentation of a sphere —<«assumed to be made of linear-

elastic, perfectly-plastic material is investigated. The sphere is rest-
ing on a rigid surface and the indenter is presumed rigid. Two

Fixed rigid plate

Fig. 2. Conical indentation of a sphere resting on a rigid flat surface indicating
selected geometric parameters.

methodologies are proposed to determine the elastic and plastic
material properties of the sphere, based on indentation testing.
Both methods are founded on “reverse analysis.” In reverse analy-
sis, characteristic functions that link measurable structural behav-
ior during the test sequence (e.g., unloading slope) to the material
properties are first established. Then, when testing such a struc-
ture, the measurable quantities are recorded and used as input to
the characteristic functions from where the material properties
are extracted.

In the first method, the concept of elastic unloading is used. This
method can be used to determine only the elastic modulus of the
indented material. The characteristic function will be established
via a mechanics based analytical approach. In the second method,
a finite element based reverse analysis technique is utilized. To this
end, numerical simulations of the indentation testing are con-
ducted for a range of cases and characteristic, non-dimensional
functions are identified and extracted from the simulations. These
functions can then be used to extract elastic modulus and yield
strength from a sphere subjected to indentation (real testing). Both
methodologies will converge to indentation of a flat half-space
when the maximum depth of penetration becomes very small
compared to the radius of the sphere.

2.1. Elastic unloading

First, the concept of elastic unloading is explored as a tool for
determining the elastic modulus of the indented sphere. To this
end, we assume that the response is elastic during unloading (in
a similar manner as Oliver and Pharr (1992)) and the instantaneous
unloading slope achieved in the force-displacement diagram will
be employed to extract the elastic modulus.

The concept of elastic unloading for flat surfaces can be summa-
rized as follows. The classical Galin-Sneddon’s solution for the
force-displacement and contact depth-displacement relationship
of a flat semi-infinite substrate indented by a rigid conical indenter
is given by Galin (1961) and Sneddon (1965):

2tano

P =& h’ (2)—
oc 2
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Here o is the indenter half-angle, 6. is the contact depth, and E, is
the reduced modulus:

E

Based on the geometry (Fig. 1) the projected contact radius for a
conical indenter can be expressed in terms of . as:

a=J.tano (5)—

Oliver and Pharr (1992) assumed that unloading is elastic. This is a
reasonable assumption, since unloading from a state of yielding
results in an initial elastic response (Hill, 1998). For the current
problem considered, the unloading slope can be established from
Galin-Sneddon’s force-displacement relationship (Galin, 1961;
Sneddon, 1965). Differentiating Eq. (2) with respect to indentation
depth, h, and utilizing Eqgs. (3) and (5),

S 1dpP

EEdh,,,

(6)—
Later, various correction factors have been introduced to the above
relation by several authors to incorporate for example the effect of
pile-up. For a concise description of the correction factors proposed
by various authors, see the review by Oliver and Pharr (2004).

Inspired by this approach, we adopt the concept of elastic
unloading of the sphere (of radius R) resting on a rigid flat surface
and indented by a rigid conical indenter (of indenter half-angle «),
Fig. 2. Similar to the Oliver-Pharr approach we propose that there
exists a functional relationship between unloading slope, projected
contact radius, a;, and reduced elastic modulus:

S

£ =F@) )
Eq. (7) simplifies to Eq. (6) where F(a) = 2a for a flat surface. If the
characteristic function F is known, the elastic modulus can be com-
puted by determining S and a, experimentally.

Assuming small and elastic displacements, the problem of a
conical indenter indenting a sphere resting on a flat surface can
be solved as superposition of two problems as shown in Fig. 3.
The first part is a rigid cone-hemisphere contact problem where
the bottom surface of the hemisphere is resting on a rigid surface
(i.e., fixed) and the displacement of the conical indenter tip is h.
(Fig. 3b). The second part is a hemisphere-flat punch contact prob-
lem where the flat punch is fixed and the top surface of the hemi-
sphere is displaced by h; (Fig. 3c). Using Newton’s second and third
laws, it is evident that the indentation force P is acting on the two
sub-problems as indicated in Fig. 3b and c. Using superposition, the
overall displacement can be expressed as the sum of displacements

¥-
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N

Fixed plate
(a)

I

h /\a(-z h.

(b)

of the two sub-problems, i.e., h = h. + h,. Solution for the first sub-
problem, the elastic indentation of a hemisphere by a rigid conical
indenter (Fig 3b), has been reported by Fu (2007):

0 =-% neota—. (1 cot o) +ﬂ1< (8a)
4 R
ma®cotor  2a3
P—E <2achc _maccoty 2 15) (8)

To the knowledge of the authors, only two analytical solutions
are available in the literature for the second sub-problem (a hemi-
sphere subjected to loading via a flat punch). These are reported by
Hertz (Johnson, 1987) and by Tatara (1989, 1991). Hertz's solution
(Johnson, 1987) for this problem is given as:

ap =</ hsR (9a)—

4

P = ER'h]? (9b)

The Tatara’s solution (Tatara, 1989, 1991) for this problem is given
as:

3RP]'
ap = |:4Er:| (10a)
3p P |1 2R?
" =4a,E ~7E {L+L3(1 —v)J—( (100)
(10c)—
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Hertz's solution is based on small displacement formulation
whereas Tatara’s solution is based on large displacement formula-
tion. Thus, Tatara’s solution is expected to be more accurate than
Hertz’s solution as the load (deformation) is increased.

Egs. (8) and (10) do not lend themselves to be inverted
analytically to form a closed-form solution. Consequently, the
P-h relation of the complete system cannot be obtained analyti-
cally. However, using these relations, the following numerical
algorithm is developed to establish the characteristic function
defined in Eq. (7) for known values of sphere radius, R, and inden-
ter half angle, o:

Step 1: Assume a value of the indentation depth for first sub-
problem, h..

Step 2: Determine the contact radius, a., and the ratio P/E, using
Eq. (8).

/
= L 1 +

N,

Fixed plate 4
(©

Fig. 3. Solving the cone-sphere contact problem via superposition: (a) the complete problem; (b) the upper half model; (c) the lower half model.



Step 3: Utilizing the computed value of P/E,, determine the
deformation of the hemisphere, hs using Eq. (9) for Hertz'’s solu-
tion or Eq. (10) for Tatara’s solution.

Step 4: Determine the total displacement of the sphere,
h=h.+hs.

Step 5: Repeat Steps 1-4 with a value of indentation depth
hc + Ah. in Step 1 where Ah, is a very small change in h.. Thus,
obtain P/E, + A(PJE,) from Step 2 and h + Ah from Step 4.

Step 6: Determine S/E, using the forward difference formula for
numerical differentiation as A(P/E,)/Ah.

Step 7: Repeat Steps 1-6 for a range of values of h.. Thus, obtain
extended sets of S/E; (from Step 6) and a, (from Step 2) which
can be used to develop an empirically established function S/
E.=Fa,).

If this algorithm is applied for indentation of a flat substrate in
conjunction with Egs. (2) and (5), it can be easily shown that Eq. (6)
is obtained. This algorithm can also be used to determine the
force-displacement relationship for the cone-sphere indentation
problem of linear elastic materials, where the loading and unload-
ing curves will be identical.

Ignoring plastic pile-up, Oliver and Pharr (1992) derived a for-
mula (Eq. (1b)) to compute the contact depth and the projected
contact radius (which is difficult to measure experimentally). How-
ever, a similar formula cannot as readily be derived for the present
problem, thus imposing a limitation of the present methodology.

2.2. Functional forms from dimensional analysis

Next, a finite element based reverse analysis technique is uti-
lized. To this end, numerical simulations of the indentation testing
are conducted for a range of cases and characteristic, non-dimen-
sional functions are identified and extracted from the simulations.
These functions can then be used to extract elastic modulus and
yield strength from a sphere subjected to indentation (real testing).

Dimensional analysis is widely used as a guideline for evaluat-
ing indentation testing and will be used here. Such an approach is
used to reduce the computational cost involved with finite element
simulations. Yan et al. (2007a) established a set of non-dimen-
sional relations for conical indentation on a homogeneous, isotro-
pic semi-infinite flat substrate, which can be expressed as

S E

Eho =f v (11)
w E

e (12)—

max

where f and g represent functions obtained from extensive numer-
ical simulations. E and Y are the elastic modulus and yield strength,
respectively, of the linear-elastic, perfectly-plastic material. hpax iS
the indentation depth at maximum load and W is the indentation
work during loading i.e. W :«jﬁg"“‘x P(h)dh. Using a similar approach,
and utilizing Buckingham’s PI theorem (Buckingham, 1914) for
indentation on a sphere, the following non-dimensional relations
with functions @ and I" can be obtained:

s E o
o~ ® VR (13)
w E hmax

Yh3 = 77 R , % (14)<_

max

Here, the expressions are augmented to include the half angle o of
the indenter tip. Poisson’s ratio and the coefficient of friction are not
included in these relations, as effects of these two parameters have
been shown to be a minor factor during indentation testing (Cheng

and Cheng, 1998, 2004; Hyun et al., 2011; Le, 2008; Mesarovic and
Fleck, 1999). Thus, changing any of these two parameters will not
result in considerable deviation in monitored indentation parame-
ters (it will be shown in Section 6 that the methodology is moder-
ately sensitive to experimental errors and consequently the
sensitivity for these parameters cannot be resolved from indenta-
tion testing). Multiplying Eq. (13) by (E/Y) and Eq. (14) by (Y/E),
two similar relations can be obtained as follows:

S = E hmax
Yhmax: ?7 R , & (15)
W = E hna
T A (16)-

Dividing Eq. (13) by Eq. (16) (or Eq. (15) by Eq. (14)) results in the
following relation:
E hmax

S 2 _
whimax =@y 7g

Lol (17)

The functional forms of the right hand sides of Egs. (13)-(17) can be
obtained from extensive finite element simulations and are charac-
teristic functions of the indentation experiments.

The characteristic functions established above constitute a data
reduction scheme which can be used to establish the elastic-plastic
properties of a sphere. In particular, S, W, hyax and R are obtained
from experiment and by using a subset of Egs. (13)-(17), the mate-
rial properties E and Y can be obtained, as will be discussed in
Section 4.2.

3. Finite element model

In the present work, the finite element simulations were per-
formed using the commercial finite element code ABAQUS (ABA-
QUS, 2009). The sphere is assumed to be composed of
homogeneous, isotropic, linear-elastic, perfectly-plastic material
with Poisson’s ratio of 0.2. An axisymmetric, two-dimensional
model was adopted and approximately 24,000 CAX4R elements
were used to model the sphere. The sphere is assumed to rest on
a flat rigid surface. Both the flat surface and the indenter are mod-
eled as rigid bodies. Coulomb’s friction law is used and the friction
coefficient between the surfaces is taken to be 0.2 (Taljat et al,,
1998). Several simulations with refined meshes and time incre-
ments (i.e., the step size of each simulation increment along the
load path) were investigated for the convergence study.! The model
used, shown if Fig. 4, gave the same results as a finer mesh and time
increment. Thus, the selected refinement is sufficient to capture the
mechanism of indentation. This model has been used for most of the
simulations whereas slightly different meshes were adopted for sim-
ulating large indentation depth-to-radius ratios. The surface nodes of
the sphere are traction free and the nodes along the axis of symme-
try are constrained in the direction normal to indenter displacement
to simulate symmetry conditions. The rigid surface at the bottom of
the sphere is kept fixed in all three directions.

The model simulates the rigid indenter being pushed into the
sphere to a predefined position, and then the indenter is removed.
The reaction force as a function of indenter displacement is re-
corded continuously over the loading and unloading sequence,
similar to a real indentation experiment. Based on the force-
displacement relationships obtained, indentation work, W, and
initial unloading slope, S, can be established. In all these cases,

! The selection of proper incremental step size is important due to the highly
nonlinear nature of the problem, which involves nonlinear material properties,
nonlinear geometry (“large deformations”) and contact between two pairs of surfaces.



Fig. 4. Finite element model in ABAQUS, including enlargement of the refined mesh (plotted at the same scale) at the top of the sphere (conical indentation) and the bottom of

the sphere (contact with the rigid surface).
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Fig. 5. Comparison of the force displacement response obtained using the finite
element method and the superposition techniques. For a linear-elastic material

(assumed here), the loading and unloading curves are identical.

the initial unloading slope, S, was computed using the two points
associated with the maximum load and 90% of the maximum load.

4. Establishing the functional forms
4.1. Elastic unloading

In Section 2.1, in order to determine the elastic modulus of the
sphere, an algorithm based on utilizing the elastic unloading

16 \ \ \ ‘ ‘ ‘ ‘

—uw— Elastic unloading (Hertz)
12} —#— Elastic unloading (Tatara) 4
—&— Oliver—Pharr

10t .

F(a) (um)
[e¢]

a, (um)

Fig. 6. The function F(a,) defined in Eq. (7) as function of a;, the projected contact
area for a 75° half-angle indenter indenting a sphere of radius 23 pm.

obtained from instrumented indentation was proposed. The algo-
rithm is based on developing a relationship between the unloading
slope, projected contact radius, and elastic modulus using a semi-
analytical approach. Thus, an experimentally obtained unloading
slope and projected contact radius can be used to determine the
elastic modulus of the sphere. We will now discuss the functional
forms obtained via this algorithm.

This algorithm provides the force-displacement relationship
within the linear-elastic loading range for a sphere subjected to
conical indentation. Thus, to investigate the viability of the algo-



rithm, we first compare the force-displacement response obtained
from the algorithm (either using Hertz’s relation or Tatara’s relation
for hemisphere-flat surface interaction) with results from finite ele-
ment simulations. A sphere of radius 23 pm with elastic modulus
100 GPa and Poisson’s ratio 0.2 is considered. The indenter half-an-
gle is taken to be o = 75°. The force-displacement relation relation-
ships are shown in Fig. 5. It can be seen that they are in good
agreement with each other, where (within the resolution of the fig-
ure) the two analytical results overlap. Thus, the proposed algo-
rithm appears to give reliable force-displacement relationships.

Asdiscussed in Section 2.1, the proposed reversed analysis is based
on developing a function, F, that relates the unloading slope
S = (dP/dh)|,_, ., to the projected contact area, a, and the reduced
modulus, E,, as defined in Eq. (7). The function obtained by the pro-
posed algorithm is shown in Fig. 6. If the “Oliver-Pharr method,”
Eq. (6), is used for this problem, it will predict F(a;) = 2a, which is also
shown in Fig. 6. Thus, it can be seen from the graph, and by using Eq.
(7), that the Oliver-Pharr method will significantly under-predict the
elastic modulus if it is used for evaluating indentation on a spherical
substrate. The erroneous result is of course not a surprise, since that
method is formulated to evaluate indentation of a flat surface. How-
ever, it can be seen that, for a given a,, Hertz’s model predicts a slightly
smaller F(a;) compared to Tatara’s model, and thus from Eq. (7),
Hertz’s model will predict slightly larger elastic modulus compared
to Tatara’s model. The accuracy of the present algorithm for predict-
ing elastic modulus will be discussed later in this section.

4.2. Functional form from dimensional analysis

In Section 2.2, an algorithm based on characteristic, non-dimen-
sional functions associated with the force-displacement relation-
ships obtained during indentation testing was proposed as a data
reduction scheme to establish elastic-plastic properties. These
functions are obtained by conducting extensive finite element sim-
ulations, replicating indentation testing. The functional forms and
the corresponding reverse analysis technique will be discussed in
this section. With these functions established, the elastic modulus
and yield strength can be determined from a sphere subjected to
indentation testing (actual experiment).

To develop the functional forms presented in Egs. (13)-(17), a
material set with elastic modulus, E, and yield stress, Y, varying from
20 GPa to 220 GPa and 0.2 GPa to 0.8 GPa, respectively, was chosen
to cover a wide range of E/Y ratios. For a 70.3° half angle indenter,
the left hand sides of Egs. (18) and (17) are plotted as a function
of E/Y in Fig. 7, for three sets of (hpax, R) of constant hp,./R = 0.05.
The procedure that was used to obtain the graphs is as follows:

Step 1: Select a set of materials with a range of E/Y ratios and
obtain the force-displacement relationships for these materials
for three sets of (hpmax, R) of constant hy,.,/R = 0.05.

Step 2: From the obtained force-displacements relationships,
determine S and W for each material and for each set of (hyax R)
and compute the left hand side of Eqgs. (13)-(17) for these
materials.

Step 3: Plot the left hand side of Eqs. (13)-(17) as functions of E/
Y for three sets of (hmax, R).

Results from the algorithm above are plotted in Fig. 7(a-e) for
three sets of of hpyax/R=0.05. Since the resulting curves in each
graph overlap, it is clear that the results depend on the ratio
hmax/R (rather than, for example, R). Thus, the assumption of using
hmax/R as a non-dimensional quantity in Eqs. (13)-(17) is appropri-
ate. The graphs presented in Figs. 7c and e correspond to Egs. (15)
and (17), respectively. These results indicate approximately linear
responses and thus appear to be most suitable functional expres-
sions to use in the reverse analysis. All other functional forms have

significant regions with very low gradients within the range of
investigated properties. That is, a large change in E/Y results in
an insignificant change in the function, thus not being suitable as
a base for the data reduction scheme.

Next, the functional forms for Eq. (15) and (17) will be deter-
mined explicitly. This is easily done by curve fitting the graphs ob-
tained in Fig. 7. For simplicity, we assume a fixed indenter (i.e.,
constant half-angle, ) and various indentation depth-to-radius ra-
tios. In this case, Egs. (15) and (17) can be written as:

S E hmax

Yhmax_d)] Y R (18)
S Eh
Whma =00 g g (19)

These functions can be determined for a particular value of o by
extensive finite element simulations and surface fitting.

We now expand the functional forms to contain a range of hy.y/
R. Here, an indenter with oo = 70.3°-half-angle is assumed, which
represents the widely used Berkovich indenter.? A sphere of radius
23 pum was chosen and the range of 0.05 < hyax/R < 0.20 was inves-
tigated. The numerical results are plotted in Fig. 8. The functional
forms based on these results can be fitted as:

S E
m :A1 ?+A2 (20&)
S E
7 fimes = A+ A (20b)
Here,
5-j
fori=1,2,3,4 (20c)

A — > himax .
i _‘{: i TR "
5

The coefficients aj; are tabulated in Table 1.

Solving for E and Y, we get the following closed form equations

relating E and Y with S, W, hy.x and R:
S(Sh2.. — AsW)

max

e A1 (S — AsW) + A A5 W}

(21a)—

v SAW
hmax {Al (Sh2 — A4W) + A2A3 W}

max

(21b)—

Eq. (21) assumes a Berkovich indenter tip for a range of inden-
tation depths. An alternative indentation test is to keep the ratio of
indentation depth to radius fixed, and use various indenter half-an-
gles. In this case, Eqs. (15) and (17) can be written as:

S E
Tmax: (pz ?,OC (22)
S, . E
Whmax =0, 770{ (23)

2 The Berkovich and conical indenter with half-angle 70.3° are equivalent since
they have same projected contact area (Cheng and Cheng, 2004; Lichinchi et al.,
1998). We assume that this equivalency holds for a substrate of any geometry
including spherical substrate, at least within the range of deformations considered.

3 In this case 20 coefficients are needed to describe the functions. This may seem
like a large number of parameters, and we note that we are not striving to develop a
relationship where the parameters can be interpreted as physical parameters, but we
are just interested in finding “fitting parameters” that describe the intricate response.
This method is commonly adopted in reverse analysis, see for example (Cao and Lu,
2004; Chen et al., 2006; Hyun et al., 2011; Le, 2008).
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These functional forms can be determined using the previously de-
scribed procedure except that in this case o is varied while hyax/R
is kept constant. To elucidate this approach, a depth-to-radius ratio
0.10 was chosen and the range of indenter angle was set to
45° < o0 < 90° to produce the characteristic functions in Egs. (22)

and (23). The numerical results are plotted in Fig. 9. The functional
forms based on these results can be fitted as:

S

Yhoo (24a)—

+B;

E
:4.31?
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Table 1

The coefficients a; used in Eq. (20c).
aj j=0 j=1 j=2 j=3 j=4 j=5
i=1 —8903.459 7831.082 —2594.525 413.2758 —34.64910 3.770216
i=2 8,270,307 -5,379,602 1,335,208 —156,565.5 8676.3909 -211.6974
i=3 278.3410 —77.16219 —6.997937 3.393041 0.4468455 0.09550578
i=4 634,260.5 —409,015.8 100,461.3 -11,597.18 616.9314 —6.415562

E/Y 0 40

a(degree)

(b)

2
max.

Sh

E/Y 0 40
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Fig. 9. Graphs of functions ¢, and 0, of Eqgs. (22) and (23) for hmax/R = 0.10 and 45° < o0 < 90°: (a) g2 = @ (5, ) (b) %ﬂx = 0,5, ).

S
W

where,

h’ 33£+B4

max — Y

B =S () fori—1,2,3,4
i—*jgo ij(m) orori=1,2,5,
and the coefficients by are tabulated in Table 2.
Solving for E and Y, we get following closed form equations
relating E and Y with S, W, hpax and R:
S(Shfnax — B4W)

; hmax{B1 (thznax — B4W) + B;BsW}—

(25a)—

(24b)—

(24¢)—

Y= . SBsW (25b)
hmaX{B1 (Shmax — B4W) + BzB3 W}

The overall procedure for obtaining E and Y from an indentation
experiment on a sphere is presented in a flowchart in Fig. 10.

Next, a procedure for the general case is presented. If it is not
possible to conduct the indentation testing for the range of inden-
tation depths or half-angles considered in the flowchart of Fig. 10
(for example, it might be required to do an indentation testing with
hmax/R = 15% and o = 60°), this procedure can be used. In this pro-
cedure, a finite element model needs to be built with experimen-
tally used values of hyax, R and o. Since hpy.x, R and « are fixed,
Eqgs. (15) and (17) can be rewritten in terms of ¢ and 0 as:




Table 2
The coefficients bj; used in Eq. (24c).

by j=0 j=1 i=2 j=3 j=4 j=5
i=1 6.388084 —32.59418 66.00295 —64.13000 31.63645 —5.547653
i=2 —2098.035 12,211.78 —27,642.29 30,394.75 —16,291.38 3419.229
i=3 —0.0319618 0.2350247 —0.6716827 1.081783 -1.262186 0.8789901
i=4 —5.409768 10.34754 4.641567 6.113474 —56.41857 48.33569
S E

V=% v (26) ;

Yhmax Y ‘ Berkovich Indenter ? ‘

S > E

M=+ (27)

Once the functional forms are established from the finite element
simulations, properties such as E and Y can be determined based
on experimentally obtained values for S and W in the following
steps:
Step 1: Determine the left hand side of of Eq. (27) from the
experiments. Determine E/Y using function 6.
Step 2: Substitute the obtained value of E/Y into the function ¢.
As S and hp.x are known from the experiments, calculate Y
using Eq. (26).
Step 3: Using the obtained value of Y, compute E using the value
of E/Y obtained in Step 1.

5. Numerical verification

At this time, no comprehensive experimental data are available
(to the authors’ knowledge) to verify the proposed scheme. Thus,
we will use numerical simulations to investigate the validity of
the proposed methods. Three sample materials (Yan et al., 2007a,
2007b) are used to verify numerically the proposed methodologies.
The properties used for these materials were not used to develop
the functional forms presented above.

Numerical simulations are conducted where the three sample
materials are indented with an indenter with o = 70.3°. From these
simulations (which acts as “numerical experiments”), the unload-
ing slope, S, and the indentation work during loading, W, are ex-
tracted. The elastic modulus obtained using the method based on
elastic unloading presented in Section 2.1 are tabulated in Table
3 along with the original input material properties. Hertz’s solution
predicts slightly higher elastic modulus than Tatara’s solution. This
is also expected from Fig. 6 and considering Eq. (7), since for a gi-
ven value of a,, the value of the function F(a;) predicted by Tatara’s
solution is slightly higher than predicted by Hertz's solution. The
error in predicting elastic modulus lies within 12%. Moreover, the
elastic modulus, E, and yield strength, Y, obtained using Eq. (21)
based on the defining the functional forms of S and W via finite ele-
ment simulations (the method proposed in Section 2.2), are also
tabulated in Table 3. The proposed reverse analysis predicts the
elastic modulus and yield strength quite accurately, with errors
less than 3%.

In a similar manner, the accuracy of the proposed method is
evaluated for a fixed depth-to-radius ratio of 0.10. The same sam-
ple materials are used in the finite element simulations to extract S
and W for three selected indenter shapes. The half-angles that are
chosen are 63.14° (the cross-sectional area is half of that of the
Berkovich indenter), 70.3° (the cross-sectional area is same as
the Berkovich indenter) and 75.79° (the cross-sectional area is
twice of that of the Berkovich indenter). The resultant E based on
the method of elastic unloading, and E and Y obtained from Eq.
(25), along with the original input material properties are tabu-
lated in Table 4. It can be seen that also in this case, the proposed
reverse analysis method predicts the values of E and Y quite accu-

Perform indentation test for Perform indentation test with
0.05R < h,,,. <0.2R P = 0.1R

Obtain S, W, h,,,. & R
from the experiment

Obtain S, W, h, & R

max

from the experiment

Determine B,, B,, B; and
B, using Eq. (24¢)

Determine A4, A,, A; and
A, using Eq. (20¢)

Determine £ and Y using
Eq. (25)

Determine £ and Y using
Eq. (21)

Fig. 10. Flowchart of the reverse analysis procedure.

rately with errors less than 3% for the latter approach and the for-
mer with within 8% error.

6. Sensitivity analysis

Physical experiments always contain some degree of experi-
mental error. To investigate the sensitivity of the proposed meth-
odologies to such errors, we present a sensitivity analysis.

For the first method, i.e. the method based on elastic unloading,
a sphere of radius 23 pm is indented numerically by a 70.3° half-
angle indenter with a maximum depth of penetration taken as
2.3 pum (hpax/R = 0.10). The input material properties used are typ-
ical for bulk Ti-Al-Fe alloy and are assumed linear-elastic, per-
fectly-plastic. To examine the sensitivity of the algorithm based
on elastic unloading with respect to unloading slope, S, and the
projected contact radius, a,, these two output parameters are var-
ied within £+12% and corresponding errors obtained in calculated
E are noted. It can be seen from Fig. 11 that for 12% difference in
S or a;, the percentage error in calculating E lies between 5% and
15% i.e. the same order of magnitude as the error imposed.

For the second method, a sphere of radius 23 pum is indented
numerically by a 63.14° half-angle indenter with maximum depth
of penetration as 2.3 um (hmax/R=0.10). The input material is
taken as typical properties for steel and linear-elastic, perfectly-
plastic material is assumed. To examine the sensitivity of the algo-
rithm developed based on non-dimensional functional forms with
respect to unloading slope, S, and loading energy, W, these two out-
put parameters are varied within +12% and corresponding errors
obtained in calculated (via the proposed evaluation techniques) E
and Y are noted. It can be seen from Fig. 12 that the error in S does
not affect the calculated value of Y considerably, whereas error in
W does not affect the calculated value of E considerably. This
may be expected since the unloading slope is determined from



Table 3

For selected indentation depths: Comparison of input material properties with that obtained using the functional forms based on elastic unloading (Section 2.1) and the finite

element analysis (Section 2.2).

Input material properties Rmax/R Elastic unloading Functional form from FEA
Hertz Tatara E (% error) Y (% error)
E (% error) E (% error)
Bulk Ti 0.06 126 (3.08) 121 (6.92) 128 (1.54) 584 (2.67)
E=130GPa 0.11 135 (3.85) 127 (2.31) 129 (0.77) 588 (2.00)
Y =600 MPa 0.16 145 (11.5) 133 (2.31) 129 (0.77) 591 (1.50)
Bulk Ti-Al-Fe 0.06 107 (2.73) 103 (6.36) 108 (1.82) 780 (1.89)
E=110GPa 0.11 115 (4.55) 109 (0.91) 109 (0.91) 780 (1.89)
Y =795 MPa 0.16 122 (10.9) 113 (2.73) 108 (1.82) 784 (1.38)
Bulk steel 0.06 198 (5.71) 190 (9.52) 208 (0.95) 493 (1.40)
E=210GPa 0.11 219 (3.81) 204 (2.86) 209 (0.48) 495 (1.00)
Y =500 MPa 0.16 232 (10.5) 214 (1.90) 209 (0.48) 497 (0.60)

Table 4

For selected half-angles of indentation: Comparison of input material properties with that obtained using the functional forms based on elastic unloading (Section 2.1) and the

finite element analysis (Section 2.2).

Input material properties Half-angle Elastic unloading Functional Form from FEA
Hertz Tatara E (% error) Y (% error)
E (% error) E (% error)
Bulk Ti 63.14 126 (3.08) 120 (7.69) 129 (0.77) 589 (1.83)
E=130GPa 703 134 (3.08) 127 (2.31) 129 (0.77) 587 (2.17)
Y = 600 MPa 75.79 140 (7.69) 131 (0.77) 128 (1.54) 585 (2.50)
Bulk Ti-Al-Fe 63.14 109 (0.91) 103 (6.36) 109 (0.91) 783 (1.51)
E=110GPa 703 113 (2.73) 107 (2.73) 109 (0.91) 779 (2.01)
Y =795 MPa 75.79 119 (8.18) 112 (1.82) 108 (1.82) 779 (2.01)
Bulk steel 63.14 201 (4.29) 191 (9.05) 210 (0.00) 495 (1.00)
E=210GPa 70.3 215 (2.38) 202 (3.81) 210 (0.00) 495 (1.00)
Y =500 MPa 75.79 225 (7.14) 211 (0.48) 209 (0.48) 494 (1.20)
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Fig. 11. Sensitivity in determining elastic modulus, E, with respect to imposing a small error in (a) the unloading slope, S, and (b) the projected contact radius, a,, using the

method based on elastic unloading.

the elastic unloading behavior and the loading work is governed by
yielding. Further, it can be noted that for a 12% difference in S (or
W) the percentage error in calculating E (or Y) lies between 10%
and 15% i.e. the same order of magnitude as the error imposed.

7. Concluding remarks

In this paper, two methodologies based on reverse analysis are
presented as a data reduction scheme to determine the elastic

modulus and yield strength of a sphere via conical indentation.
In both methods, functional forms are derived that relate output
parameters from the indentation experiments to the elastic modu-
lus and yield strength of the indented material.

In the first method, a relationship between the initial unloading
slope, projected contact radius and elastic modulus is developed.
The derivation is based on a semi-analytical approach and can be
used to obtain the elastic modulus based the experimental data.
By comparing the results obtained from the proposed method with
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Fig. 12. Sensitivity in determining elastic modulus, E, and yield strength, Y, with respect to imposing a small error in (a) the unloading slope, S, and (b) the loading energy, W,,

using the method based on functional forms from non-dimensional groups.

results from finite element simulations, we show that this method
predicts the elastic modulus with a less than 12% error. For com-
parison, the “Oliver-Pharr method” that is developed for flat sur-
faces will significantly under-predict the elastic modulus if it is
applied for a sphere.

In the second method, dimensional analysis and finite element
simulations are used to correlate governing characteristic func-
tions, expressed in non-dimensional parameter groups, with mate-
rial properties. For the particular scheme shown in this work using
a Berkovich indenter, the experiment has to be performed by keep-
ing the maximum indentation depth between 5% and 20% of the ra-
dius of the sphere whereas for a non-Berkovich indenter, the
maximum indentation depth has to be kept at 10% of the radius.
However, by following the proposed methodology the approach
can be extended to any indenter geometry. By comparing the re-
sults obtained from the proposed method with results from finite
element simulations, we show that this method predicts the elastic
modulus and yield strength with a less than 3% error.

The sensitivity of the methodologies to experimental error was
also investigated. In this case, the characteristic properties
obtained from the (numerical) experiment were perturbed so to
simulate experimental errors, and the properties predicted by the
two methods were recorded. The results suggest that the error ob-
tained when determining the material properties is of same order
of magnitude of error in the experimental data. Thus, the method
proposed is only moderately sensitive to experimental errors and
- for the case of linear-elastic, perfectly-plastic materials - is
therefore a viable data reduction method for conical indentation
of spherical particles.
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