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On establishing elastic-plastic properties of a sphere by indentation testing 
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1. Introduction 

Instrumented indentation has emerged as a val uable too] for 
probing elastic and plastic material properties of engineering 
materials (Cheng and Cheng. 2004 : Green. 2005: Oliver and Pharr. 
1992; Johnson, 1987; Jackson et al" 2010; Van et ai., 2007 a, 2007b). 
During the experiment, a rigid indenter penetrates normally into a 
homogeneous solid. and the indenter force. P. and depth of pene-
tration, h. are continuously measured during a complete cycle of 
loading and unloading. A typical force-displacement response is 
shown in Fig. J. The force-displacement response is primarily a 
function of the elastic and plastic material properties of the sub­
strate and the geometry of the indenter. Based on the force-dis­
placement relationship and geometry of the substrate/indenter. 
the material properties of the substrate can be determined. 

The most widely used method for determining elastic modulus 
for a flat semi-infinite substra te is the so-called "Oliver-Pharr 
method" (Oliver and Pharr. 1992 ). This method assumes that the 
initial unloading is e lastic and thus uses the elast ic solution for 
the problem to express the unloading s lope in terms of e lastic 
modulus, Poisson's ratio and contact radius (radius of projected 
area of contact at maximum depth of penetration). Accordingly, 
the relationship between the e last ic properties of the substrate 
and the unloading slope is given by: 

* Corresponding author. Tel.: +1 30283264371. 
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Here, S is the initial unloading slope, a is the contact radius at max­
imum load, hm~x is the maximum depth of penetration. Eand I' are 
elastic modulus and Poisson's ratio, respectively, of the substrate 
material, and II is a correction factor. 

One disadvantage of this method is the need of the contact ra ­
dius at maximum load, a, which is difficult to measure experimen­
tally (Chen et al.. 2006: Johnson. 1987). A common method to 
determine contact radius is to use the contact depth, 0", which 
can be determined from the following equation: 

ii, = hrrw - I:P~ ( Ib) 

Here, Pm.>x is the force at maximum indentation depth, and 1: is a 
dimensionless constant which depends on the indenter geometry. 
for example c· 0.75 for a Berkovich indenter (Oliver and Pharr, 
1992). However. this re lat ionship is not va lid in the case of plastic 
pile-up and thus not applicable to a range of cases (Cheng and 
Cheng. 2004; Pharr. 199B). Moreover. Eq. (1) does not give any 
information about the inelastic properties of the material. Due to 
these limitations. several authors have successfully used other as­
pects of the force-displacement relationship, including the indenta­
tion work during loading, elastic work recovered during unloading. 
residual depth. and force at maximum depth to determine the 
elastic and plastic properties (Cao and Lu. 2004 : Xu and Li. 2005: 
Van et al.. 2oo7a. 2oo7b: Zhao et al.. 2006). 

http://dx.doi.org/10.1016/j.ijsolstr.2012.04.001
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Fig. 1. (a) A typical force–displacement curve obtained in indentation experiments, 
and (b) the geometry of a conical indentation of a flat surface. 

Instrumented indentation has become popular since the test is 
easy to conduct, and enables the establishment of mechanical 
properties for materials that only exist in small volumes. Currently, 
the literature on instrumented indentation is dedicated to indenta­
tion on flat surfaces, see for example reviews by Cheng and Cheng 
(2004) and by Oliver and Pharr (2004). However, not all small scale 
structures are flat. Examples of small scale spherical particles 
requiring material characterization include micron-sized metal 
coated polymer particles used in the manufacturing of anisotropic 
conductive adhesives (Kristiansen et al., 2001), and polymer latex 
particles for controlling the mechanical properties of latex films 
(Misawa et al., 1991; Tamai et al., 1989) used in the synthetic latex 
materials and living cells (Dao et al., 2003). The material properties 
are not affected by the geometry of the test specimen but the pro­
cedure to obtain material properties will vary according to the 
geometry of the substrate. Several authors have investigated the 
indentation of a hemi-sphere by a flat punch (Jackson and Green, 
2005; Lin and Lin, 2006; Malayalamurthi and Marappan, 2008; 
Sahoo et al., 2009). However, to the knowledge of the authors, 
there are no studies in the open literature of a sphere indented 
by a conical indenter available. Thus, we aim to develop a reliable 
evaluation technique for conical indentation testing of spherical 
particles, schematically shown in Fig. 2. Note that the force– 
displacement response will retain the schematic features as shown 
in Fig. 1a. 

2. Theoretical preliminaries 

The indentation of a sphere - assumed to be made of linear-
elastic, perfectly-plastic material is investigated. The sphere is rest­
ing on a rigid surface and the indenter is presumed rigid. Two 

Fig. 2. Conical indentation of a sphere resting on a rigid flat surface indicating 
selected geometric parameters. 

methodologies are proposed to determine the elastic and plastic 
material properties of the sphere, based on indentation testing. 
Both methods are founded on ‘‘reverse analysis.’’ In reverse analy­
sis, characteristic functions that link measurable structural behav­
ior during the test sequence (e.g., unloading slope) to the material 
properties are first established. Then, when testing such a struc­
ture, the measurable quantities are recorded and used as input to 
the characteristic functions from where the material properties 
are extracted. 

In the first method, the concept of elastic unloading is used. This 
method can be used to determine only the elastic modulus of the 
indented material. The characteristic function will be established 
via a mechanics based analytical approach. In the second method, 
a finite element based reverse analysis technique is utilized. To this 
end, numerical simulations of the indentation testing are con­
ducted for a range of cases and characteristic, non-dimensional 
functions are identified and extracted from the simulations. These 
functions can then be used to extract elastic modulus and yield 
strength from a sphere subjected to indentation (real testing). Both 
methodologies will converge to indentation of a flat half-space 
when the maximum depth of penetration becomes very small 
compared to the radius of the sphere. 

2.1. Elastic unloading 

First, the concept of elastic unloading is explored as a tool for 
determining the elastic modulus of the indented sphere. To this 
end, we assume that the response is elastic during unloading (in 
a similar manner as Oliver and Pharr (1992)) and the instantaneous 
unloading slope achieved in the force–displacement diagram will 
be employed to extract the elastic modulus. 

The concept of elastic unloading for flat surfaces can be summa­
rized as follows. The classical Galin–Sneddon’s solution for the 
force–displacement and contact depth–displacement relationship 
of a flat semi-infinite substrate indented by a rigid conical indenter 
is given by Galin (1961) and Sneddon (1965): 

2 tan a 
h2P ¼ Er ð2Þ 

p 

dc 2 ¼ ð3Þ
h p 



Here a is the indenter half-angle, dc is the contact depth, and Er is 
the reduced modulus: 

E
Er ¼ ð4Þ

1 - m2 

Based on the geometry (Fig. 1) the projected contact radius for a 
conical indenter can be expressed in terms of dc as: 

a ¼ dc tan a ð5Þ 

Oliver and Pharr (1992) assumed that unloading is elastic. This is a 
reasonable assumption, since unloading from a state of yielding 
results in an initial elastic response (Hill, 1998). For the current 
problem considered, the unloading slope can be established from 
Galin–Sneddon’s force–displacement relationship (Galin, 1961; 
Sneddon, 1965). Differentiating Eq. (2) with respect to indentation 
depth, h, and utilizing Eqs. (3) and (5),   S 1 dP  ¼ ¼ 2a ð6Þ  Er Er dh h¼hmax 

Later, various correction factors have been introduced to the above 
relation by several authors to incorporate for example the effect of 
pile-up. For a concise description of the correction factors proposed 
by various authors, see the review by Oliver and Pharr (2004). 

Inspired by this approach, we adopt the concept of elastic 
unloading of the sphere (of radius R) resting on a rigid flat surface 
and indented by a rigid conical indenter (of indenter half-angle a), 
Fig. 2. Similar to the Oliver–Pharr approach we propose that there 
exists a functional relationship between unloading slope, projected 
contact radius, at, and reduced elastic modulus: 

S ¼ Fðat Þ ð7Þ
Er 

Eq. (7) simplifies to Eq. (6) where F(a) = 2a for a flat surface. If the 
characteristic function F is known, the elastic modulus can be com­
puted by determining S and at experimentally. 

Assuming small and elastic displacements, the problem of a 
conical indenter indenting a sphere resting on a flat surface can 
be solved as superposition of two problems as shown in Fig. 3. 
The first part is a rigid cone–hemisphere contact problem where 
the bottom surface of the hemisphere is resting on a rigid surface 
(i.e., fixed) and the displacement of the conical indenter tip is hc 

(Fig. 3b). The second part is a hemisphere-flat punch contact prob­
lem where the flat punch is fixed and the top surface of the hemi­
sphere is displaced by hs (Fig. 3c). Using Newton’s second and third 
laws, it is evident that the indentation force P is acting on the two 
sub-problems as indicated in Fig. 3b and c. Using superposition, the 
overall displacement can be expressed as the sum of displacements 

of the two sub-problems, i.e., h = hc + hs. Solution for the first sub­
problem, the elastic indentation of a hemisphere by a rigid conical 
indenter (Fig 3b), has been reported by Fu (2007): ! rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

R 2 16hc ac ¼ - p cot a - ðp cot aÞ þ ð8aÞ
4 R 

  
pa2 

c cot a 2a3 
cP ¼ Er 2achc - - ð8bÞ

2 3R

To the knowledge of the authors, only two analytical solutions 
are available in the literature for the second sub-problem (a hemi­
sphere subjected to loading via a flat punch). These are reported by 
Hertz (Johnson, 1987) and by Tatara (1989, 1991). Hertz’s solution 
(Johnson, 1987) for this problem is given as: pffiffiffiffiffiffiffiffi 
ab ¼ hsR ð9aÞ 

4 
R1=2h3=2P ¼ Er s ð9bÞ

3 

The Tatara’s solution (Tatara, 1989, 1991) for this problem is given 
as:  ]1=33RP 
ab ¼ ð10aÞ

4Er

" # 
3P P 1 2R2 

hs ¼ - þ ð10bÞ
4abEr pEr L L3ð1 - mÞ 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
L ¼ a2 

b þ 4R2 ð10cÞ 

Hertz’s solution is based on small displacement formulation 
whereas Tatara’s solution is based on large displacement formula­
tion. Thus, Tatara’s solution is expected to be more accurate than 
Hertz’s solution as the load (deformation) is increased. 

Eqs. (8) and (10) do not lend themselves to be inverted 
analytically to form a closed-form solution. Consequently, the 
P–h relation of the complete system cannot be obtained analyti­
cally. However, using these relations, the following numerical 
algorithm is developed to establish the characteristic function 
defined in Eq. (7) for known values of sphere radius, R, and inden­
ter half angle, a: 

Step 1: Assume a value of the indentation depth for first sub­
problem, hc.
 
Step 2: Determine the contact radius, ac, and the ratio P/Er using
 
Eq. (8).
 

Fig. 3. Solving the cone–sphere contact problem via superposition: (a) the complete problem; (b) the upper half model; (c) the lower half model. 



  

  

  

  

  

  

  

Step 3: Utilizing the computed value of P/Er, determine the
 
deformation of the hemisphere, hs using Eq. (9) for Hertz’s solu­
tion or Eq. (10) for Tatara’s solution.
 
Step 4: Determine the total displacement of the sphere,
 
h = hc + hs.
 
Step 5: Repeat Steps 1–4 with a value of indentation depth
 
hc + Dhc in Step 1 where Dhc is a very small change in hc. Thus,
 
obtain P/Er + D(P/Er) from Step 2 and h + Dh from Step 4.
 
Step 6: Determine S/Er using the forward difference formula for
 
numerical differentiation as D(P/Er)/Dh.
 
Step 7: Repeat Steps 1–6 for a range of values of hc. Thus, obtain
 
extended sets of S/Er (from Step 6) and ac (from Step 2) which
 
can be used to develop an empirically established function S/
 
Er = F(ac).
 

If this algorithm is applied for indentation of a flat substrate in 
conjunction with Eqs. (2) and (5), it can be easily shown that Eq. (6) 
is obtained. This algorithm can also be used to determine the 
force–displacement relationship for the cone–sphere indentation 
problem of linear elastic materials, where the loading and unload­
ing curves will be identical. 

Ignoring plastic pile-up, Oliver and Pharr (1992) derived a for­
mula (Eq. (1b)) to compute the contact depth and the projected 
contact radius (which is difficult to measure experimentally). How­
ever, a similar formula cannot as readily be derived for the present 
problem, thus imposing a limitation of the present methodology. 

2.2. Functional forms from dimensional analysis 

Next, a finite element based reverse analysis technique is uti­
lized. To this end, numerical simulations of the indentation testing 
are conducted for a range of cases and characteristic, non-dimen­
sional functions are identified and extracted from the simulations. 
These functions can then be used to extract elastic modulus and 
yield strength from a sphere subjected to indentation (real testing). 

Dimensional analysis is widely used as a guideline for evaluat­
ing indentation testing and will be used here. Such an approach is 
used to reduce the computational cost involved with finite element 
simulations. Yan et al. (2007a) established a set of non-dimen­
sional relations for conical indentation on a homogeneous, isotro­
pic semi-infinite flat substrate, which can be expressed as 

S E ¼ f ð11Þ
Ehmax Y 

W E ¼ g ð12Þ 
Yh3 Y 

max 

where f and g represent functions obtained from extensive numer­
ical simulations. E and Y are the elastic modulus and yield strength, 
respectively, of the linear-elastic, perfectly-plastic material. hmax is 
the indentation depth at maximum load and W is the indentation R
work during loading i.e. W ¼ 0 

hmax PðhÞdh: Using a similar approach, 
and utilizing Buckingham’s PI theorem (Buckingham, 1914) for 
indentation on a sphere, the following non-dimensional relations 
with functions U and C can be obtained: 

S E hmax¼ U ; ; a ð13Þ
Ehmax Y R 

W E hmax¼ C ; ; a ð14Þ 
Yh3 Y R 

max 

Here, the expressions are augmented to include the half angle a of 
the indenter tip. Poisson’s ratio and the coefficient of friction are not 
included in these relations, as effects of these two parameters have 
been shown to be a minor factor during indentation testing (Cheng 

and Cheng, 1998, 2004; Hyun et al., 2011; Le, 2008; Mesarovic and 
Fleck, 1999). Thus, changing any of these two parameters will not 
result in considerable deviation in monitored indentation parame­
ters (it will be shown in Section 6 that the methodology is moder­
ately sensitive to experimental errors and consequently the 
sensitivity for these parameters cannot be resolved from indenta­
tion testing). Multiplying Eq. (13) by (E/Y) and Eq. (14) by (Y/E), 
two similar relations can be obtained as follows: 

S E hmax¼ U� ; ; a ð15Þ
Yhmax Y R 

W E hmax¼ C� ; ; a ð16Þ 
Eh3 Y R 

max 

Dividing Eq. (13) by Eq. (16) (or Eq. (15) by Eq. (14)) results in the 
following relation: 

S E hmaxh2 ¼ �H ; ; a ð17Þ
W max Y R 

The functional forms of the right hand sides of Eqs. (13)–(17) can be 
obtained from extensive finite element simulations and are charac­
teristic functions of the indentation experiments. 

The characteristic functions established above constitute a data 
reduction scheme which can be used to establish the elastic-plastic 
properties of a sphere. In particular, S, W, hmax and R are obtained 
from experiment and by using a subset of Eqs. (13)–(17), the mate­
rial properties E and Y can be obtained, as will be discussed in 
Section 4.2. 

3. Finite element model 

In the present work, the finite element simulations were per­
formed using the commercial finite element code ABAQUS (ABA­
QUS, 2009). The sphere is assumed to be composed of 
homogeneous, isotropic, linear-elastic, perfectly-plastic material 
with Poisson’s ratio of 0.2. An axisymmetric, two-dimensional 
model was adopted and approximately 24,000 CAX4R elements 
were used to model the sphere. The sphere is assumed to rest on 
a flat rigid surface. Both the flat surface and the indenter are mod­
eled as rigid bodies. Coulomb’s friction law is used and the friction 
coefficient between the surfaces is taken to be 0.2 (Taljat et al., 
1998). Several simulations with refined meshes and time incre­
ments (i.e., the step size of each simulation increment along the 
load path) were investigated for the convergence study.1 The model 
used, shown if Fig. 4, gave the same results as a finer mesh and time 
increment. Thus, the selected refinement is sufficient to capture the 
mechanism of indentation. This model has been used for most of the 
simulations whereas slightly different meshes were adopted for sim­
ulating large indentation depth-to-radius ratios. The surface nodes of 
the sphere are traction free and the nodes along the axis of symme­
try are constrained in the direction normal to indenter displacement 
to simulate symmetry conditions. The rigid surface at the bottom of 
the sphere is kept fixed in all three directions. 

The model simulates the rigid indenter being pushed into the 
sphere to a predefined position, and then the indenter is removed. 
The reaction force as a function of indenter displacement is re­
corded continuously over the loading and unloading sequence, 
similar to a real indentation experiment. Based on the force– 
displacement relationships obtained, indentation work, W, and 
initial unloading slope, S, can be established. In all these cases, 

1 The selection of proper incremental step size is important due to the highly 
nonlinear nature of the problem, which involves nonlinear material properties, 
nonlinear geometry (‘‘large deformations’’) and contact between two pairs of surfaces. 
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Fig. 4. Finite element model in ABAQUS, including enlargement of the refined mesh (plotted at the same scale) at the top of the sphere (conical indentation) and the bottom of 
the sphere (contact with the rigid surface). 
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Fig. 5. Comparison of the force displacement response obtained using the finite 
element method and the superposition techniques. For a linear-elastic material 
(assumed here), the loading and unloading curves are identical. 

the initial unloading slope, S, was computed using the two points 
associated with the maximum load and 90% of the maximum load. 

4. Establishing the functional forms 

4.1. Elastic unloading 

In Section 2.1, in order to determine the elastic modulus of the 
sphere, an algorithm based on utilizing the elastic unloading 
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Fig. 6. The function F(at) defined in Eq. (7) as function of at, the projected contact 
area for a 75° half-angle indenter indenting a sphere of radius 23 lm. 

obtained from instrumented indentation was proposed. The algo­
rithm is based on developing a relationship between the unloading 
slope, projected contact radius, and elastic modulus using a semi-
analytical approach. Thus, an experimentally obtained unloading 
slope and projected contact radius can be used to determine the 
elastic modulus of the sphere. We will now discuss the functional 
forms obtained via this algorithm. 

This algorithm provides the force–displacement relationship 
within the linear-elastic loading range for a sphere subjected to 
conical indentation. Thus, to investigate the viability of the algo­



  

  

  

  

  

rithm, we first compare the force-displacement response obtained 
from the algorithm (either using Hertz’s relation or Tatara’s relation 
for hemisphere-flat surface interaction) with results from finite ele­
ment simulations. A sphere of radius 23 lm with elastic modulus 
100 GPa and Poisson’s ratio 0.2 is considered. The indenter half-an­
gle is taken to be a ¼ 75�. The force–displacement relation relation­
ships are shown in Fig. 5. It can be seen that they are in good 
agreement with each other, where (within the resolution of the fig­
ure) the two analytical results overlap. Thus, the proposed algo­
rithm appears to give reliable force-displacement relationships. 

As discussed in Section 2.1, the proposed reversed analysis is based 
on developing a function, F, that relates the unloading slope 
S ¼ ðdP=dhÞjh¼hmax 

, to the projected contact area, at, and the reduced 
modulus, Er, as  defined  in  Eq.  (7). The function obtained by the pro­
posed algorithm is shown in Fig. 6. If the ‘‘Oliver–Pharr method,’’ 
Eq. (6), is used for this problem, it will predict F(at) = 2at which is also 
shown in Fig. 6. Thus, it can be seen from the graph, and by using Eq. 
(7), that the Oliver–Pharr method will significantly under-predict the 
elastic modulus if it is used for evaluating indentation on a spherical 
substrate. The erroneous result is of course not a surprise, since that 
method is formulated to evaluate indentation of a flat surface. How­
ever, it can be seen that, for a given at, Hertz’s model predicts a slightly 
smaller F(at) compared to Tatara’s model, and thus from Eq. (7), 
Hertz’s model will predict slightly larger elastic modulus compared 
to Tatara’s model. The accuracy of the present algorithm for predict­
ing elastic modulus will be discussed later in this section. 

4.2. Functional form from dimensional analysis 

In Section 2.2, an algorithm based on characteristic, non-dimen­
sional functions associated with the force–displacement relation­
ships obtained during indentation testing was proposed as a data 
reduction scheme to establish elastic–plastic properties. These 
functions are obtained by conducting extensive finite element sim­
ulations, replicating indentation testing. The functional forms and 
the corresponding reverse analysis technique will be discussed in 
this section. With these functions established, the elastic modulus 
and yield strength can be determined from a sphere subjected to 
indentation testing (actual experiment). 

To develop the functional forms presented in Eqs. (13)–(17), a  
material set with elastic modulus, E, and yield stress, Y, varying from 
20 GPa to 220 GPa and 0.2 GPa to 0.8 GPa, respectively, was chosen 
to cover a wide range of E/Y ratios. For a 70.3° half angle indenter, 
the left hand sides of Eqs. (18) and (17) are plotted as a function 
of E/Y in Fig. 7, for three sets of (hmax,R) of constant hmax/R = 0.05. 
The procedure that was used to obtain the graphs is as follows: 

Step 1: Select a set of materials with a range of E/Y ratios and
 
obtain the force-displacement relationships for these materials
 
for three sets of (hmax, R) of constant hmax/R = 0.05.
 
Step 2: From the obtained force-displacements relationships,
 
determine S and W for each material and for each set of (hmax, R)
 
and compute the left hand side of Eqs. (13)–(17) for these
 
materials.
 
Step 3: Plot the left hand side of Eqs. (13)–(17) as functions of E/
 
Y for three sets of (hmax,R).
 

Results from the algorithm above are plotted in Fig. 7(a–e) for 
three sets of of hmax/R = 0.05. Since the resulting curves in each 
graph overlap, it is clear that the results depend on the ratio 
hmax/R (rather than, for example, R). Thus, the assumption of using 
hmax/R as a non-dimensional quantity in Eqs. (13)–(17) is appropri­
ate. The graphs presented in Figs. 7c and e correspond to Eqs. (15) 
and (17), respectively. These results indicate approximately linear 
responses and thus appear to be most suitable functional expres­
sions to use in the reverse analysis. All other functional forms have 

significant regions with very low gradients within the range of 
investigated properties. That is, a large change in E/Y results in 
an insignificant change in the function, thus not being suitable as 
a base for the data reduction scheme. 

Next, the functional forms for Eq. (15) and (17) will be deter­
mined explicitly. This is easily done by curve fitting the graphs ob­
tained in Fig. 7. For simplicity, we assume a fixed indenter (i.e., 
constant half-angle, a) and various indentation depth-to-radius ra­
tios. In this case, Eqs. (15) and (17) can be written as: 

S E hmax¼ /1 ; ð18Þ
Yhmax Y R 

S E hmaxh2 
max ¼ h1 ; ð19Þ

W Y R 

These functions can be determined for a particular value of a by 
extensive finite element simulations and surface fitting. 

We now expand the functional forms to contain a range of hmax/ 
R. Here, an indenter with a ¼ 70:3� half-angle is assumed, which 
represents the widely used Berkovich indenter.2 A sphere of radius 
23 lm was chosen and the range of 0.05 6 hmax/R 6 0.20 was inves­
tigated. The numerical results are plotted in Fig. 8. The functional 
forms based on these results can be fitted as: 

S E ¼ A1 þ A2 ð20aÞ
Yhmax Y 

S E
h2 ¼ A3 þ A4 ð20bÞ

W max Y 

Here, 

5 5-j
hmax
 
X 

Ai ¼ aij ; for i ¼ 1; 2; 3; 4 ð20cÞ
R

j¼0 

The coefficients aij are tabulated in Table 1.3 

Solving for E and Y, we get the following closed form equations 
relating E and Y with S, W, hmax and R: 

SðSh2 
max - A4WÞ

E ¼ ð21aÞ 
hmaxfA1 ðSh2 - A4 WÞ þ A2A3 Wgmax 

SA3W
Y ¼ ð21bÞ 

hmax fA1ðSh2 - A4WÞ þ A2A3Wgmax 

Eq. (21) assumes a Berkovich indenter tip for a range of inden­
tation depths. An alternative indentation test is to keep the ratio of 
indentation depth to radius fixed, and use various indenter half-an­
gles. In this case, Eqs. (15) and (17) can be written as: 

S E ¼ u2 ; a ð22Þ
Yhmax Y 

S E
h2 

max ¼ h2 ; a ð23Þ
W Y 

2 The Berkovich and conical indenter with half-angle 70.3° are equivalent since 
they have same projected contact area (Cheng and Cheng, 2004; Lichinchi et al., 
1998). We assume that this equivalency holds for a substrate of any geometry 
including spherical substrate, at least within the range of deformations considered. 

3 In this case 20 coefficients are needed to describe the functions. This may seem 
like a large number of parameters, and we note that we are not striving to develop a 
relationship where the parameters can be interpreted as physical parameters, but we 
are just interested in finding ‘‘fitting parameters’’ that describe the intricate response. 
This method is commonly adopted in reverse analysis, see for example (Cao and Lu, 
2004; Chen et al., 2006; Hyun et al., 2011; Le, 2008). 
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max ¼ H� ðYE ; R ; aÞ. It can be seen that the curves overlap within the resolution of the figure, indicating that hmax/R is an appropriate non-dimensional factor. 

These functional forms can be determined using the previously de- and (23). The numerical results are plotted in Fig. 9. The functional 
scribed procedure except that in this case a is varied while hmax/R forms based on these results can be fitted as: 
is kept constant. To elucidate this approach, a depth-to-radius ratio 
0.10 was chosen and the range of indenter angle was set to S E ¼ B1 þ B2 ð24aÞ 
45o 
6 a 6 90o to produce the characteristic functions in Eqs. (22) Yhmax Y 
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Table 1 
The coefficients aij used in Eq. (20c). 

aij j = 0  j = 1  j = 2  j = 3  j = 4  j = 5  

i = 1  -8903.459 7831.082 -2594.525 413.2758 -34.64910 3.770216 
i = 2 8,270,307 -5,379,602 1,335,208 -156,565.5 8676.3909 -211.6974 
i = 3 278.3410 -77.16219 -6.997937 3.393041 0.4468455 0.09550578 
i = 4 634,260.5 -409,015.8 100,461.3 -11,597.18 616.9314 -6.415562 
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S E SB3W
h2 ¼ B3 þ B4 ð24bÞ Y ¼ ð25bÞ

W max Y hmax fB1ðSh2 - B4WÞ þ B2B3Wgmax 

where, The overall procedure for obtaining E and Y from an indentation X experiment on a sphere is presented in a flowchart in Fig. 10.5 pa 5-jBi ¼ bijð180 
Þ ; for i ¼ 1; 2; 3; 4 ð24cÞ Next, a procedure for the general case is presented. If it is not 

j¼0 possible to conduct the indentation testing for the range of inden­
tation depths or half-angles considered in the flowchart of Fig. 10 and the coefficients bij are tabulated in Table 2. 
(for example, it might be required to do an indentation testing with Solving for E and Y, we get following closed form equations 

relating E and Y with S, W, hmax and R: hmax/R = 15% and a = 60°), this procedure can be used. In this pro­
cedure, a finite element model needs to be built with experimen­

SðSh2 - B4WÞmax tally used values of hmax, R and a. Since hmax, R and a are fixed, E ¼ ð25aÞ 
hmaxfB1ðSh2 - B4 WÞ þ B2B3Wg Eqs. (15) and (17) can be rewritten in terms of u and h as: 
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Table 2 
The coefficients bij used in Eq. (24c). 

bij j = 0  j = 1  j = 2  j = 3  j = 4  j = 5  

i = 1 6.388084 -32.59418 66.00295 -64.13000 31.63645 -5.547653 
i = 2  -2098.035 12,211.78 -27,642.29 30,394.75 -16,291.38 3419.229 
i = 3  -0.0319618 0.2350247 -0.6716827 1.081783 -1.262186 0.8789901 
i = 4  -5.409768 10.34754 4.641567 6.113474 -56.41857 48.33569 

S E ¼ u ð26Þ
Yhmax Y 

S E
h2 ¼ h ð27Þ

W max Y 

Once the functional forms are established from the finite element 
simulations, properties such as E and Y can be determined based 
on experimentally obtained values for S and W in the following 
steps: 

Step 1: Determine the left hand side of of Eq. (27) from the 
experiments. Determine E/Y using function h. 
Step 2: Substitute the obtained value of E/Y into the function u. 
As S and hmax are known from the experiments, calculate Y 
using Eq. (26). 
Step 3: Using the obtained value of Y, compute E using the value 
of E/Y obtained in Step 1. 

5. Numerical verification 

At this time, no comprehensive experimental data are available 
(to the authors’ knowledge) to verify the proposed scheme. Thus, 
we will use numerical simulations to investigate the validity of 
the proposed methods. Three sample materials (Yan et al., 2007a, 
2007b) are used to verify numerically the proposed methodologies. 
The properties used for these materials were not used to develop 
the functional forms presented above. 

Numerical simulations are conducted where the three sample 
materials are indented with an indenter with a = 70.3o. From these 
simulations (which acts as ‘‘numerical experiments’’), the unload­
ing slope, S, and the indentation work during loading, W, are ex­
tracted. The elastic modulus obtained using the method based on 
elastic unloading presented in Section 2.1 are tabulated in Table 
3 along with the original input material properties. Hertz’s solution 
predicts slightly higher elastic modulus than Tatara’s solution. This 
is also expected from Fig. 6 and considering Eq. (7), since for a gi­
ven value of at, the value of the function F(at) predicted by Tatara’s 
solution is slightly higher than predicted by Hertz’s solution. The 
error in predicting elastic modulus lies within 12%. Moreover, the 
elastic modulus, E, and yield strength, Y, obtained using Eq. (21) 
based on the defining the functional forms of S and W via finite ele­
ment simulations (the method proposed in Section 2.2), are also 
tabulated in Table 3. The proposed reverse analysis predicts the 
elastic modulus and yield strength quite accurately, with errors 
less than 3%. 

In a similar manner, the accuracy of the proposed method is 
evaluated for a fixed depth-to-radius ratio of 0.10. The same sam­
ple materials are used in the finite element simulations to extract S 
and W for three selected indenter shapes. The half-angles that are 
chosen are 63.14o (the cross-sectional area is half of that of the 
Berkovich indenter), 70.3o (the cross-sectional area is same as 
the Berkovich indenter) and 75.79o (the cross-sectional area is 
twice of that of the Berkovich indenter). The resultant E based on 
the method of elastic unloading, and E and Y obtained from Eq. 
(25), along with the original input material properties are tabu­
lated in Table 4. It can be seen that also in this case, the proposed 
reverse analysis method predicts the values of E and Y quite accu-

Fig. 10. Flowchart of the reverse analysis procedure. 

rately with errors less than 3% for the latter approach and the for­
mer with within 8% error. 

6. Sensitivity analysis 

Physical experiments always contain some degree of experi­
mental error. To investigate the sensitivity of the proposed meth­
odologies to such errors, we present a sensitivity analysis. 

For the first method, i.e. the method based on elastic unloading, 
a sphere of radius 23 lm is indented numerically by a 70.3o half-
angle indenter with a maximum depth of penetration taken as 
2.3 lm (hmax/R = 0.10). The input material properties used are typ­
ical for bulk Ti–Al–Fe alloy and are assumed linear-elastic, per­
fectly-plastic. To examine the sensitivity of the algorithm based 
on elastic unloading with respect to unloading slope, S, and the 
projected contact radius, at, these two output parameters are var­
ied within ±12% and corresponding errors obtained in calculated 
E are noted. It can be seen from Fig. 11 that for 12% difference in 
S or at, the percentage error in calculating E lies between 5% and 
15% i.e. the same order of magnitude as the error imposed. 

For the second method, a sphere of radius 23 lm is indented 
numerically by a 63.14° half-angle indenter with maximum depth 
of penetration as 2.3 lm (hmax/R = 0.10). The input material is 
taken as typical properties for steel and linear-elastic, perfectly-
plastic material is assumed. To examine the sensitivity of the algo­
rithm developed based on non-dimensional functional forms with 
respect to unloading slope, S, and loading energy, W, these two out­
put parameters are varied within ±12% and corresponding errors 
obtained in calculated (via the proposed evaluation techniques) E 
and Y are noted. It can be seen from Fig. 12 that the error in S does 
not affect the calculated value of Y considerably, whereas error in 
W does not affect the calculated value of E considerably. This 
may be expected since the unloading slope is determined from 



Table 3 
For selected indentation depths: Comparison of input material properties with that obtained using the functional forms based on elastic unloading (Section 2.1) and the finite 
element analysis (Section 2.2). 

Input material properties hmax/R Elastic unloading Functional form from FEA 

Hertz Tatara E (% error) Y (% error) 
E (% error) E (% error) 

Bulk Ti 0.06 126 (3.08) 121 (6.92) 128 (1.54) 584 (2.67) 
E = 130 GPa 0.11 135 (3.85) 127 (2.31) 129 (0.77) 588 (2.00) 
Y = 600 MPa 0.16 145 (11.5) 133 (2.31) 129 (0.77) 591 (1.50) 

Bulk Ti–Al–Fe 0.06 107 (2.73) 103 (6.36) 108 (1.82) 780 (1.89) 
E = 110 GPa 0.11 115 (4.55) 109 (0.91) 109 (0.91) 780 (1.89) 
Y = 795 MPa 0.16 122 (10.9) 113 (2.73) 108 (1.82) 784 (1.38) 

Bulk steel 0.06 198 (5.71) 190 (9.52) 208 (0.95) 493 (1.40) 
E = 210 GPa 0.11 219 (3.81) 204 (2.86) 209 (0.48) 495 (1.00) 
Y = 500 MPa 0.16 232 (10.5) 214 (1.90) 209 (0.48) 497 (0.60) 

Table 4 
For selected half-angles of indentation: Comparison of input material properties with that obtained using the functional forms based on elastic unloading (Section 2.1) and the 
finite element analysis (Section 2.2). 

Input material properties Half-angle Elastic unloading Functional Form from FEA 

Hertz Tatara E (% error) Y (% error) 
E (% error) E (% error) 

Bulk Ti 63.14 126 (3.08) 120 (7.69) 129 (0.77) 589 (1.83) 
E = 130 GPa 70.3 134 (3.08) 127 (2.31) 129 (0.77) 587 (2.17) 
Y = 600 MPa 75.79 140 (7.69) 131 (0.77) 128 (1.54) 585 (2.50) 

Bulk Ti–Al–Fe 63.14 109 (0.91) 103 (6.36) 109 (0.91) 783 (1.51) 
E = 110 GPa 70.3 113 (2.73) 107 (2.73) 109 (0.91) 779 (2.01) 
Y = 795 MPa 75.79 119 (8.18) 112 (1.82) 108 (1.82) 779 (2.01) 

Bulk steel 63.14 201 (4.29) 191 (9.05) 210 (0.00) 495 (1.00) 
E = 210 GPa 70.3 215 (2.38) 202 (3.81) 210 (0.00) 495 (1.00) 
Y = 500 MPa 75.79 225 (7.14) 211 (0.48) 209 (0.48) 494 (1.20) 
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Fig. 11. Sensitivity in determining elastic modulus, E, with respect to imposing a small error in (a) the unloading slope, S, and (b) the projected contact radius, at, using the 
method based on elastic unloading. 

the elastic unloading behavior and the loading work is governed by modulus and yield strength of a sphere via conical indentation. 
yielding. Further, it can be noted that for a 12% difference in S (or In both methods, functional forms are derived that relate output 
W) the percentage error in calculating E (or Y) lies between 10% parameters from the indentation experiments to the elastic modu­
and 15% i.e. the same order of magnitude as the error imposed. lus and yield strength of the indented material. 

In the first method, a relationship between the initial unloading 

7. Concluding remarks	 slope, projected contact radius and elastic modulus is developed. 
The derivation is based on a semi-analytical approach and can be 

In this paper, two methodologies based on reverse analysis are used to obtain the elastic modulus based the experimental data. 

presented as a data reduction scheme to determine the elastic By comparing the results obtained from the proposed method with 



  
−15 −10 −5 0 5 10 15

−15 

−10 

−5 

0 

5 

10 

15 
Pe

rc
en

ta
ge

 e
rr

or
 

E 
Y 

(a) 

−15 −10 −5 0 5 10 15
−15 

−10 

−5 

0 

5 

10 

15 

Pe
rc

en
ta

ge
 e

rr
or

 

E 
Y 

(b) 

Percentage change in WPercentage change in S 

Fig. 12. Sensitivity in determining elastic modulus, E, and yield strength, Y, with respect to imposing a small error in (a) the unloading slope, S, and (b) the loading energy, Wt, 
using the method based on functional forms from non-dimensional groups. 

results from finite element simulations, we show that this method 
predicts the elastic modulus with a less than 12% error. For com­
parison, the ‘‘Oliver–Pharr method’’ that is developed for flat sur­
faces will significantly under-predict the elastic modulus if it is 
applied for a sphere. 

In the second method, dimensional analysis and finite element 
simulations are used to correlate governing characteristic func­
tions, expressed in non-dimensional parameter groups, with mate­
rial properties. For the particular scheme shown in this work using 
a Berkovich indenter, the experiment has to be performed by keep­
ing the maximum indentation depth between 5% and 20% of the ra­
dius of the sphere whereas for a non-Berkovich indenter, the 
maximum indentation depth has to be kept at 10% of the radius. 
However, by following the proposed methodology the approach 
can be extended to any indenter geometry. By comparing the re­
sults obtained from the proposed method with results from finite 
element simulations, we show that this method predicts the elastic 
modulus and yield strength with a less than 3% error. 

The sensitivity of the methodologies to experimental error was 
also investigated. In this case, the characteristic properties 
obtained from the (numerical) experiment were perturbed so to 
simulate experimental errors, and the properties predicted by the 
two methods were recorded. The results suggest that the error ob­
tained when determining the material properties is of same order 
of magnitude of error in the experimental data. Thus, the method 
proposed is only moderately sensitive to experimental errors and 
– for the case of linear-elastic, perfectly-plastic materials – is 
therefore a viable data reduction method for conical indentation 
of spherical particles. 
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