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Development and Validation 
of a 3-D Model to Predict Knee 
Joint Loading During Dynamic 
Movement 
The purpose of this study was to develop a subject-specific 3-D model of the lower 

S. G. McLean1 
extremity to predict neuromuscular control effects on 3-D knee joint loading during move
ments that can potentially cause injury to the anterior cruciate ligament (ACL) in the 

A. Su knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the 
lower extremity, scaled to represent a specific subject. Inputs of the model were the initial 

A. J. van den Bogert position and velocity of the skeletal elements, and the muscle stimulation patterns. Out
puts of the model were movement and ground reaction forces, as well as resultant 3-D 

Department of Biomedical Engineering, forces and moments acting across the knee joint. An optimization method was established 
The Cleveland Clinic Foundation, to find muscle stimulation patterns that best reproduced the subject’s movement and 

Cleveland, OH ground reaction forces during a sidestepping task. The optimized model produced move
ments and forces that were generally within one standard deviation of the measured 
subject data. Resultant knee joint loading variables extracted from the optimized model 
were comparable to those reported in the literature. The ability of the model to success
fully predict the subject’s response to altered initial conditions was quantified and found 
acceptable for use of the model to investigate the effect of altered neuromuscular control 
on knee joint loading during sidestepping. Monte Carlo simulations (N=100,000) using 
randomly perturbed initial kinematic conditions, based on the subject’s variability, re
sulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm 
and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the pro
cedures described in this paper were successful in creating valid simulations of normal 
movement, and in simulating injuries that are caused by perturbed neuromuscular 
control. 

Introduction 
The knee joint is the largest and most complex joint in the 

human body. Comprised of multiple structures, including liga-
ments, menisci and the patella, it is a major load-bearing joint. In 
a number of sports activities, the knee is subjected to complex 3-D 
loading patterns that can cause injury to the internal joint struc-
tures. Anterior cruciate ligament (ACL) injury, for example, is one 
of the most common and potentially traumatic sports related knee 
injuries. Approximately 80,000 ACL injuries occur annually 
within the United States, with roughly 50,000 of these requiring 
surgical reconstruction [1–3]. Apart from the obvious acute injury 
effects, knee joint musculoskeletal injury often potentiates the 
likelihood of significant long-term debilitation. It has been shown 
for example, that ACL injury presents an 8 –10 fold increase in the 
long-term incidence of osteoarthritis [4,5]. 

A key to understanding the potential mechanisms of knee injury 
is to determine the joint loading characteristics associated with an 
injury-causing event. In the case of the ACL, injuries are typically 
non-contact in nature [6–8], occurring during the landing or 
stance phase of ‘‘high-risk’’ sporting postures that incorporate 
sudden deceleration and/or rapid speed or direction changes, such 
as sidestepping [9,10]. It has been suggested that poor or altered 
neuromuscular control during these movements may produce po-
tentially hazardous knee joint loading combinations that place the 
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ACL at risk [3,5,8,11,12]. It is known that anterior tibial force, 
valgus torque and internal rotation torque all contribute to the 
loading of the ACL [13–15]. However, the means by which these 
loads may manifest during an injury causing event, and more 
importantly, the impact that neuromuscular control has on these 
loading variables, remain unclear. 

Neuromuscular control during cutting/pivoting maneuvers has 
been quantified using kinematic, kinetic and muscle activation 
variables, and implications for the risk of non-contact ACL injury 
have been discussed [9,10,16–22]. Research of this type however, 
is unable to study the association between neuromuscular vari-
ables and joint loading during actual injury causing events, 
making the identification of ACL injury mechanisms virtually 
impossible. 

Computer modeling and simulation techniques have been 
widely used to investigate injuries resulting from passive dynamic 
movements such as in vehicle accidents and falls [23]. Application 
of these techniques to actively controlled dynamic movements has 
recently been demonstrated in relation to overuse injuries during 
running activities [24,25] and ankle sprains [26]. With proper vali-
dation, models such as this offer the potential to predict the effect 
of neuromuscular control on knee joint loading during potentially 
hazardous movements such as sidestep cutting. Such models 
would therefore allow in silico experiments to study potential 
mechanisms of acute knee injury. 

The primary purposes of this study were therefore: (1) to estab-
lish and subsequently validate a methodological approach that en-
abled realistic simulation of the stance phase of a sidestep cutting 
maneuver and subsequent estimation of the associated 3-D result-
ant joint loading variables: anterior-posterior force and varus-
valgus and internal-external rotation torques, and (2) to demon-

mailto:mcleans@bme.ri.ccf.org


Fig. 1 Marker placements used during the collection of high 
speed video data. Standing „neutral… maker data „A… were used 
to construct a kinematic model of the trunk and lower limb. 
These data along with those recorded during sidestepping tri-
als „B… were processed via Mocap Solver software to solve for 
the 12 degrees of freedom. 

strate the utility of a model developed using this approach by 
predicting the effects of variability in limb posture at impact on 
those loads shown specifically to impact the ACL, namely, ante-
rior force, valgus torque and internal rotation torque. 

Methods 

Experimental Data. Data were recorded from a single male 
subject (height=173 cm, weight=70 kg, age=30 years). Three-
dimensional coordinates of skin-mounted markers (Fig. 1) were 
obtained via six electronically shuttered video cameras at 240 fps 
and Eva 6.0 tracking software (Motion Analysis Corp., Santa Rosa 
California). A standing trial was first recorded with all joints in the 
neutral position. The markers on the forehead, medial femoral 
condyle and medial and lateral malleoli were then removed prior 
to the recording of the motion data. The subject then performed 10 
side-step cutting trials at a speed of 5.0±0.3 ms-1, targeting a 
cutting angle of 45 deg relative to the original direction of motion. 
Synchronized 3-D ground reaction force data were collected dur-
ing each side-step trial at 1,000 Hz via an AMTI force plate 
(Model OR6-5, Serial #4068). By collecting data from 10 trials, 

Table 1 Inertial characteristics of model representing a male 
subject of mass 70 kg and height 1.73 m 

Moments of Inertia 
Mass Length C of M pos (kg m2) 

Segment (kg) (m) (%)‡ I* Iyy Izzxx 

Pelvis 5.61 0.3376 0 2.90 2.99 1.40 
Femur 2.38 0.4231 40.95 0.20 0.21 0.04 
Tibia 3.03 0.3526 44.59 0.03 0.03 0.005 
Talus 0 0.01 0 0 0 0 
Foot † 0.96 0.2642 44.15 0.0047 0.0051 0.0012 
Pelvis WM 50.49 0 0 0 0 0 
Thigh WM 7.53 0 0 0 0 0 

‡Center of mass location was measured from the proximal to distal segment end-
points.  
*Ixx, Iyy and Izz =segment moment of inertia about the medio-lateral, anterior- 
posterior and longitudinal axes respectively.  
†WM=Wobbling mass. 

the movement variability of the subject (quantified as a between-
trial standard deviation) will be estimated with an accuracy of 
about 25% [27]. 

From the standing neutral trial, a kinematic model comprised of 
five skeletal segments (foot, talus, shank and thigh of the support 
limb, and the pelvis) and 12 degrees-of-freedom (DOF) was de-
fined using Mocap Solver software (version 6.14, Motion Analysis 
Corp., Santa Rosa, California). Mocap Solver performs model-
based kinematic analysis through global least-squares optimiza-
tion [28]. The pelvis was assigned 6 DOF relative to the labora-
tory coordinate system. The three rotational DOF (somersault, tilt, 
twist) were defined using the rotation sequence of Yeadon [29]. 
The hip joint possessed 3 DOF, with rotations (flexion-extension, 
abduction-adduction and internal-external rotation) defined about 
three orthogonal axes, passing through a fixed joint center defined 
according to Bell et al. [30]. Knee joint motion was described by 
rotation about a fixed flexion-extension axis located according to 
Vaughan et al. [31] and extending laterally as the subject stood in 
the neutral position. The ankle joint was modeled as a 2-DOF 
mechanism allowing rotation about talocrural and subtalar joint 
axes. The talocrural joint center was defined as the midpoint be-
tween the lateral and medial malleoli, with the plantar-dorsiflexion 
axis extending laterally from this point. This simplified orientation 
was justified based on known variations within a normal popula-
tion [32,33]. The subtalar joint was located 10 mm directly below 
that of the talocrural joint [33], with its axis oriented 41° up from 
horizontal and 23 deg medial from the foot axis [32]. The 3-D 
marker trajectories recorded during the 10 side-stepping trials 
were processed by the Mocap Solver software to solve the 12 
generalized coordinates for each frame, corresponding to the 12 
DOF of the skeletal model. 

Heel strike was defined as the instant when the vertical ground 
reaction force first exceeded 10 N. The generalized coordinate 
data for each trial were resampled at 1 ms intervals using linear 
interpolation, generating 200 resampled frames with the first 
frame corresponding to heel strike. The generalized speeds at heel 
strike were obtained using a finite difference calculation, without 
low-pass filtering. The generalized coordinates and speeds at heel 
strike were averaged over the ten trials. An ensemble average 
(±SD) for each rotational degree of freedom and the three ground 
reaction force components was also calculated across the ten 
trials, covering the first 200 ms of the stance phase during the 
side-step. 

Equations of Motion. A forward dynamic 3-D rigid body 
model of the trunk and lower extremity was developed to repre-
sent the subject. Inertial characteristics (Table 1) were based on 
anthropometric data presented by de Leva [34]. The model con-
sisted of the skeletal model described above, with wobbling 
masses added to the pelvis and thigh segments. Each wobbling 
mass segment was attached to the skeleton via a linear transla-



Table 2 Muscle properties adopted for the three-dimensional lower limb model used to simulate a sidestep 

Fmax LCEopt Lslack 
Muscle (group) (N) (m) W PEEslack (m) a0 a1 a2 a3 a4 a5 a6 

Illiopsoas 800 0.1019 1.298 1.0 0.1085 0.2304 0.03 0 0 0 0 0 
Hip extensors 1300 0.1447 0.625 1.366 0.1315 0.2218 -0.076 0.015 -0.01 0 0 0 
Hip adductors 1805 0.1228 0.56 1.0 0.1266 0.2310 -0.03 0.037 0.01 0 0 0 
Hip abductors 1950 0.0620 0.56 1.698 0.0538 0.0693 -0.062 -0.06 0 0 0 0 
Rectus femoris 780 0.0840 1.44 1.0 0.3460 0.4145 0.03 -0.03 0 0.043 0 0 
Vastus lateralis 1870 0.0840 0.627 1.332 0.1570 0.2023 0 0 0 0.043 0 0 
Vastus medialis 1295 0.0890 0.627 1.212 0.1260 0.1750 0 0 0 0.043 0 0 
Vastus interm 1235 0.0870 0.627 1.321 0.1360 0.1834 0 0 0 0.043 0 0 
Biceps femoris LH 720 0.1090 1.2 1.0 0.3410 0.4008 -0.075 0.03 0 -0.045 0 0 
Biceps femoris SH 400 0.1094 1.2 1.0 0.3355 0.4116 -0.055 0.03 0 -0.04 0 0 
Hamstrings 1360 0.1730 1.2 1.0 0.1000 0.2731 0 0 0 -0.045 0 0 
Gastrocnemius 1605 0.0508 0.89 1.0 0.4010 0.4518 0 0 0 -0.025 -0.053 0.008 
Soleus 2830 0.0300 1.039 1.616 0.2680 0.2941 0 0 0 0 -0.053 0.008 
Tibialis post 1270 0.0310 0.56 1.0 0.3100 0.3496 0 0 0 0 -0.008 0.019 
Tibialis ant 600 0.0980 0.442 1.0 0.2230 0.3203 0 0 0 0 0.035 0.005 
Peroneals 1195 0.0516 0.56 1.0 0.2727 0.3304 0 0 0 0 -0.011 -0.021 

Fmax—Maximum isometric force 
LCeopt—Optimum CE length 
W—Maximum length range of force production relative to LCEopt 
PEEslack—Slack length of PEE relative to LCEopt 
Lslack—Slack length of SEE 
a0—Muscle length in the neutral posture of the model. 
a1 – a6—Moment arms for hip flexion, hip adduction, hip internal rotation, knee extension, ankle dorsiflexion, ankle inversion-eversion respectively. 

tional spring and damper with 3 DOF. The mass attached to the 
pelvis represented all body segments that were not modeled, in-
cluding the non-support limb, arms and head. Ninety percent of 
the total mass of the head, arms and trunk was assigned to the 
wobbling mass segment with the remaining 10% being assigned 
to the pelvis [24]. For the thigh segment, 76% of the total mass 
was assigned to the soft tissue component [24]. The stiffness and 
damping parameters for the wobbling mass attached to the pelvis 
were determined via the optimization technique described later. 
Based on a 15 Hz natural frequency and a damping rate of 30 s-1 

[35], the stiffness and damping parameters of the thigh wobbling 
mass were set to 6.4X104 N/m and 390 Ns/m, respectively. 

A model description file for SD/FAST (Parametric Technology 
Corp., Needham, MA) was exported from Mocap Solver. Inertial 
properties and wobbling masses were added, and dynamic equa-
tions of motion were produced by SD/FAST as C code. The equa-
tions of motion are a set of second-order ordinary differential 
equations: 

M(q)q̈ =QM(q,q̇,t) QE(q,q̇ ) QC(q,q̇ ) (1) 

where M is the mass matrix, q are the generalized kinematic 
coordinates and QM, QE, and QC are the generalized force terms 
due to, respectively, muscles, external forces, and coriolis/ 
centrifugal forces. 

Muscles. Sixteen muscles were attached to the skeleton, as-
suming in each a linear relationship between muscle length and 
the angles of the n joints that the muscle crosses: 

Lm =a0 a1<1 . . .  an<n , (2) 

where <k is the kth joint angle in radians, ak is the moment arm of 
the muscle with respect to joint angle <k , and a0 is the muscle 
length in the neutral posture of the model. Moment arms for all 
muscles (Table 2) were assumed to be constant and based on 
published data [36–44]. Force generation of the muscle was mod-
eled by a three-element Hill model (Fig. 2). Muscle model equa-
tions were adapted from Van Soest and Bobbert [45] and are listed 
in detail in the Appendix. Muscle model parameters are listed in 
Table 2. Maximum isometric force in the contractile element 
(CE), optimal CE length and SEE slack length were taken from 
the work of Delp [46]. The width parameters W of the CE force-
length relationships were taken from the work of Walker and 
Schrodt [47] and Gerritsen et al. [48]. The force F produced by 

each muscle (equation Appendix A) was converted into its equiva-
lent of n joint moments using the constant moment arms defined 
in Eq. (2). 

For each muscle, the parameter a0 in Eq. (2) was adjusted such 
that maximal isometric force was generated at joint angles identi-
fied previously in literature. Specifically, maximal isometric force 
for the hip flexor and hip extensor muscles occurred at 30 deg 
and 45 deg of hip flexion respectively [49]. Maximal knee flexor 
and knee extensor force occurred at 5 deg knee extension and 
60 deg knee flexion [50]. For the plantar flexors, maximal isomet-
ric force occurred at 15 deg dorsiflexion [51], while the dorsi 
flexors produced maximum force at 15 deg plantar flexion [52]. 
Similarly, maximum eversion force was generated at 5 deg inver-
sion, while maximum inversion force was generated at 5 deg 
eversion. For hip abduction-adduction and external-internal rota-
tion, the muscles producing these movements were assumed to 
generate maximum isometric force in the neutral (0 deg rotation) 
position. 

Muscle activation dynamics were modeled as a first-order dif-
ferential equation [53] to solve active state a: 

ȧ ( t )=(c1u( t ) c2 )(u( t )-a( t ))  (3) 
1where c1 =3.3 s- and c2 =16.7 s-1, resulting in time constants 

of 50 ms and 60 ms for activation and deactivation, respectively 
[54]. The neural stimulation input u(t) was modeled as a piece-
wise linear function of time, with five parameters: the stimulation 

Fig. 2 Three-component Hill model for muscle force produc-
tion: contractile element „CE…, parallel elastic element „PEE…, 
and series elastic element „SEE…. The corresponding relation-
ships between lengths and forces are shown. 



 

value at times 0, 50, 100, 150, and 200 ms after heel strike. The 16 
muscles were grouped into 11 functional groups, each with a dif-
ferent control input u(t). Neuromuscular control of the model 
during the movement was thus represented by 55 parameters. 

Ground Contact Model. Contact between the foot and 
ground was modeled using 35 discrete viscoelastic elements. Each 
element was attached to the rigid foot segment in 3-D locations 
describing the exterior shoe surface. Each element permitted de-
formation perpendicular to the floor, representing the viscoelastic 
properties of the combined shoe sole and soft tissue structures and 
the intrinsic deformation of the foot. The vertical force-
deformation relationship was modeled as: 

Fz =k•z b•z•vz (4) 

where z is the vertical deformation and vz is its first derivative. 
The numerical values for the parameters were k=2500 N m-1 and 
b=500 N s m-2. The stiffness parameter k was chosen such that a 
static deformation of about 10 mm occurred under full body 
weight on the foot. The damping parameter b was then selected to 
produce force-deformation loops similar to those presented by 
Aerts and De Clercq [55]. 

Horizontal forces were modeled as an approximation of Cou-
lomb friction. 

/•Fz if vx<-
/Fz 

 b 

/Fz /Fz
Fx = -b•vx if - <vx< (5)

b b 

-/•Fz if vx> 
/Fz 

b 

where b is a large positive constant (700 Ns/m). We found that the 
horizontal ground reaction forces rise more smoothly when the 
coefficient of friction / is lower at low vertical load: 

-F /F0z/=1-e (6) 

where parameter F0 had a value of 60 N. The friction coefficient 
saturates quickly to a value of 1.0. 

Simulation and Optimization. The mean body segment po-
sitions and velocities obtained at heel strike from the experimental 
data were used as initial kinematic conditions for the sidestep 
simulation. The initial positions and velocities for the wobbling 
masses were chosen so that their spring attachments to the skel-
eton produced zero force. The rationale for this choice is that all 
body segments were in free fall prior to ground contact. Initial 
conditions for the muscle state variables a and LCE were obtained 

˙by assuming steady state at heel strike, that is, setting ȧ and LCE 
to zero in Eqs. (3) and (A.7) and solving for a and LCE . The 
equations of motion generated by SD/FAST, along with the dif-
ferential equations for muscle contraction (A.8) and muscle acti-
vation (3) were integrated using a variable step fourth-order 
Runge-Kutta method. 

An optimized simulation of a subject specific side-step was 
generated by searching for the 55 muscle control parameters and 
the six stiffness and damping parameters of the pelvis wobbling 
mass that minimized the difference between simulation and cor-
responding measurements. The optimization problem was defined 
as: 

12 200 2Vi j-V̂ 
i jminimize J(p)=  (7)  

j=1 i=1 SD j

where 
p=(p1 . . .  p61), the vector of model parameters to be opti-

mized 
Vi j  =measured value (mean of all trials) of variable j at time 

step i 

Fig. 3 Measured variables incorporated within the model opti-
mization, comprising three ground reaction forces „V1ÀV3…, 
three body rotations „V4ÀV6… and six joint rotations 
„V7ÀV12…. 

V̂ 
i j  =simulation result corresponding to Vi j  

SD j =the between-trial standard deviation in variable j, aver-
aged over the 200 time samples 

The cost function included 12 variables: three components of 
the ground reaction force, the three parameters describing the glo-
bal orientation of the pelvis, and the rotations at the hip, knee and 
ankle joints (Fig. 3). The optimization problem was solved using a 
simulated annealing algorithm [56]. The optimization was termi-
nated when the optimum cost function did not decrease by 1% 
within 1,000 simulations. 

Model Validation. The first criterion for model validity was a 
requirement that the differences between simulation and measure-
ments should be, on average, less than two between-trial standard 
deviations. Specifically, given the set of 10 normal performances 
of the subject, the simulated performance would be considered 
‘‘abnormal’’ when more than two standard deviations from the 
mean. Thus from Eq. (7), the optimized model was required to 
produce a cost function of less than 9,600. The contributions of 
each of the 12 variables to the cost function were also quantified. 

The second measure of model validity was its ability to predict 
the effect of perturbations in initial conditions. The initial (posi-
tion and velocity) conditions from each trial were used as indi-
vidual inputs into the optimized system, and single-trial simula-
tions were performed. The difference between the resultant 
simulated and measured value for each of the movement and GRF 
variables was calculated at each of the 200 time-steps and a root 
mean square (RMS) prediction error was then quantified across 
the ten trials for each variable. Specifically, for a measured 
variable (V): 



 m 
1(Vi jk  -V̂ 

i jk)
2 

RMSi j  =� k= (8)
m 

where, 
Vi jk=measurement of variable j at time i during trial k 
V̂ 

i jk=simulated data corresponding to Vi jk  
m=number of trials 
The RMS prediction errors for each variable were divided by 

the corresponding between-trial variability measurement (SD) 
from the measured data. This ratio was subsequently averaged 
over the 200 time samples, providing a normalized ‘‘RMS predic-
tion error’’ value for each variable. A second RMS prediction 
error was also calculated, based on the first 100 samples only. 

Extraction of Resultant Knee Joint Loads. For the opti-
mized system, A-P knee joint force and varus-valgus and internal-
external rotation knee moments were extracted as a function of 
time (0–200 ms). Data for each of these variables were obtained 
directly from the SD/FAST multibody software as resultant joint 
loads. These loads represent the externally applied ground reac-
tion forces transmitted to the knee joint, while accounting for 
inertial effects of the masses in between. Based on the orientation 
of the knee joint coordinate system, external anterior drawer 
force, varus moment, and internal rotation moment were all de-
fined as positive. 

Application Example: Effect of Neuromuscular Control on 
Knee Joint Loading. Monte Carlo simulations (N=100,000) 
were performed to determine the effects of variability in neuro-
muscular control on peak anterior drawer force, valgus moment 
and internal rotation moment. Specifically, pre-impact body seg-
ment angular positions and angular and linear velocities were ran-
domly perturbed, representing a Gaussian distribution based on 
measured variability for each of the movement variables across 
the ten sidestepping trials. Initial vertical position of the model 
was always set such that the lowest foot contact point was at z 
=0. Resultant loading variables (anterior force, valgus torque and 
internal rotation torque) were extracted for each simulated trial 
and peak values were subsequently determined and stored for 
analyses. 

Results 
A single simulation of the first 200 ms of stance for the sidestep 

required between 0.5 and 1.2 s of CPU time on a Pentium III 800 
MHz processor. The optimization algorithm terminated after ap-
proximately 165,000 simulations. The cost function was mini-
mized to a value of J=2674. Repeated runs of the simulated 
annealing algorithm, with new random number seeds, always re-
sulted in the same solution. Comparisons between measured and 
simulated sidestep data for the first 200 ms of stance are presented 
for key kinematic and GRF variables (Fig. 4). The optimized 
muscle activation parameters (n=5) for the 11 functional muscle 
groups that produced these movements, and comparative data re-
ported previously for a similar movement [18], are also presented 
(Fig. 5). The optimization identified muscle activation and wob-
bling mass stiffness/damping parameter values that, except in the 
case of body tilt, produced movement and GRF variables that 
were within two standard deviations of the measured subject data 
(Table 3, RMS fit values). 

RMS prediction errors over 200 ms for the optimized system 
for several movement (somersault, hip flexion-extension, knee 
flexion-extension and ankle plantar-dorsi flexion) and GRF 
(anterior-posterior and medio-lateral force) variables were within 
two standard deviations of measured between-trial variability val-
ues (Fig. 6). For other variables however (e.g., Vertical force, tilt, 
twist and ankle inversion-eversion), RMS prediction errors were 
much larger (Table 3, RMS pred values). RMS prediction errors 
calculated for each variable over the first 100 ms only, were con-

Fig. 4 Comparisons between measured and simulated side-
step data for the first 200 ms of stance for key movement „hip 
flexion-extension, knee flexion-extension and ankle inversion-
eversion… and GRF „vertical force… variables. 

siderably smaller than the corresponding 200 ms value, except in 
the case of anterior-posterior and medio-lateral GRF’s (Table 3). 

The anterior-posterior resultant joint reaction force between the 
tibia and femur, varus-valgus and internal-external knee moments 
are shown in Fig. 7 for the optimized simulation. A peak anterior 
drawer force of 34.6 N was observed, occurring at heel strike, 
with a peak posterior force of 118.6 N occurring 61 ms after 
impact. Peak varus and valgus moments of 8.51 Nm and 19.15 
Nm were observed to occur 59 ms and 10 ms after impact respec-
tively. Peak internal and external rotation moments of 19.24 Nm 
and 0.74 Nm occurred 75 ms and 184 ms after impact, respec-
tively. 

Fig. 5 Optimized muscle activations for the 11 functional 
muscle groups used in the simulation of the sidestep cutting 
maneuver. Activation patterns for each group were modeled as 
a 5 parameter piecewise linear functions of time. Quadriceps 
activations represented those applied to the vastus lateralis, 
medialis and intermedius muscles. Hamstring activation pat-
terns were applied to the hamstring and biceps femoris „short 
and long head… muscles. Plantar flexor activations were applied 
to the gastrocnemius and soleus muscles. Comparisons are 
also made between these and similar data reported previously 
for sidestepping maneuvers †18‡. 



Table 3 Validity measures for simulated model variables. RMS fit error corresponds to the 
average number of SD’s each simulated variable is away from the corresponding measured 
value. RMS prediction error was represented as the ratio of the mean RMS difference between 
the ten subject-specific sets of measured and simulated data, to the mean measured inter-trial 
variability, over both 200 and 100 ms. 

RMS pred/SD RMS pred/SD 
VARIABLE RMS fit/SD (200 ms) (100 ms) 

Medio-Lateral Force (Fx) 0.97 1.24 1.13 
Anterior-Posterior Force (Fy) 0.89 1.85 2.42 
Vertical Force (Fz) 1.29 3.17 1.61 
Somersault (Rx) 0.55 0.98 0.59 
Tilt (Ry) 2.13 9.36 3.40 
Twist (Rz) 0.86 4.55 3.79 
Hip Flexion-Extension (Hx) 1.01 1.31 1.06 
Hip Abduction-Adduction (Hy) 0.67 2.05 1.58 
Hip Axial Rotation (Hz) 0.79 2.72 1.63 
Knee Flexion-Extension (Kx) 0.36 0.61 0.59 
Ankle Planter-Dorsi Flexion (Ax) 0.69 1.34 0.95 
Ankle Inversion-Eversion (Ay) 1.01 4.15 3.29 

Random perturbations in initial body and segment positions and 
velocities produced noticeable increases in the resultant anterior 
drawer force and valgus and internal rotation knee moments (Fig. 
8). Monte Carlo simulations resulted in a peak anterior drawer 
force, valgus and internal rotation torques as high as 377.4 N, 93.5 
Nm and 70.6 Nm respectively. 

Discussion 
The primary objective of this study was to develop and subse-

quently validate a subject-specific 3-D model of the lower extrem-
ity that could simulate normal and perturbed sidestep cutting ma-
neuvers and hence, be used to predict specific resultant knee joint 
loads linked to ACL injury. A forward dynamic simulation of a 
side-step that reproduced experimental data obtained from a single 
subject was generated for this purpose. 

Optimization and Validation. Approximately 37 hours of 
computing time (165,000 simulations) were required to obtain an 
optimized solution to the forward dynamic problem. Neptune 
et al. [24] used a similar approach to obtain a dynamic simulation 
of running, using the DADS multibody software. Only 5,000 
simulations were used to perform the optimizations, which was 

Fig. 6 Comparisons between model RMS prediction errors 
and measured between-trial variability over 200 ms, for key 
movement „A. hip flexion-extension, B. knee flexion-extension 
and C. ankle inversion-eversion… and GRF „D. vertical force… 
variables 

reported to require 660 hours of computation. With the software 
based on SD/FAST we therefore reached a 600-fold increase in 
computation speed, which allowed us to solve the optimization 
problem much faster as well as perform more than 30 times the 
number of simulations. Repeated optimizations could therefore be 
conducted, which resulted in identical solutions, confirming that a 
global optimum had probably been found. 

Fig. 7 External 3D knee joint reaction forces calculated for the 
optimized sidestep simulation. Peak anterior force „A…, valgus 
„B… and internal rotation torque „C… values of 34.6 N, 19.15 Nm 
and 19.24 Nm respectively, were observed over the first 200 ms 
of stance 



Fig. 8 Monte Carlo simulations „nÄ100000…, representing real-
istic variations in neuromuscular control at impact, produced 
large increases in anterior knee joint reaction force, and valgus 
and internal rotation torques over the first 200 ms of stance 
during simulated sidestepping trials 

The RMS fit results (Table 3) suggest that the optimized model 
was able to simulate a sidestep cutting maneuver that was consis-
tent with movements performed by the subject. Except for body 
tilt, all simulated movements and GRF’s fell within two standard 
deviations of the mean measured subject data over the 200 ms 
simulation window, with 10 of the 12 variables falling within one 
standard deviation. The discrepancy between mean measured and 
simulated data observed for body tilt may be caused by the use of 
a lumped upper-body model and the lack of active muscle control 
on the wobbling mass. Joint angle patterns and peak ground reac-
tion force magnitudes obtained for the optimized solution were 
similar to those previously obtained in other experimental studies 
[10,17]. 

Previous studies [24,26] have not achieved fit errors as low as 
reported here. These studies modeled neural excitation patterns for 
each muscle as block functions defined by three parameters only, 
compared to piecewise linear functions of time, with five param-
eters in the current model. We found that optimization of block 
functions resulted in increased deviation from the measured data. 
Furthermore, the relatively long time taken previously to perform 
one simulation [24], limited the number of simulations that could 
be run in a reasonable time. It is therefore possible that a global 
solution to the optimization problem was not achieved previously. 

Optimized activation patterns for the major muscle groups were 
consistent with EMG data presented previously for similar move-
ments. Similar to our results, Colby et al. [10] found low ham-
string and very high (peak at 250% MVC) quadriceps activations 
during the stance phase of the side-step. Quadriceps activations 
observed for the optimized system were also similar to those re-
ported by Neptune et al. [18], where an increase in activation was 
seen following impact (Fig. 5). The activation patterns of the hip 
abductor, plantar flexor, peroneal and tibialis anterior muscles ob-
served in the current study were similarly consistent with those 
reported by Neptune et al. [18]. Direct comparisons are difficult 
however, due to the lack of EMG magnitude normalization [18], 
or the lack of timing information and movement consistency [10] 
in the experimental studies. 

The ability of the model to predict a response to variations in 
initial kinematic conditions was assessed. This aspect of the 
model is important for applications where the effect of neuromus-
cular control on knee joint loading is studied. These effects are an 
important component of current thinking on ACL injury mecha-
nisms [6,7]. Wright et al. [26] developed a computer model to 

examine the influence of initial foot position on ankle sprains. The 
model’s response to perturbations in the ground surface was ob-
served to be similar to that demonstrated by the subject and it was 
concluded that the model could be extended for experiments that 
could not be performed on subjects, such as in the case of a 
sprain-inducing event. Our evaluation of predictive ability of the 
model is based on a similar concept, though with a more formal 
quantitative analysis. An RMS prediction error was determined 
for each simulated variable, averaged over the duration of the 
simulation, and normalized to the measured inter-trial variability. 
Representing predictive error in this way is a simple and intuitive 
means to quantify model validity. Prediction errors smaller than 
one standard deviation indicate that the model is useful because in 
that case the simulation produces a better prediction than simply 
using an average of previous measurements. Furthermore, we 
found that quantifying validity in this way was a very effective 
method of deciding when changes to the model were improve-
ments. Adding more free parameters to a model will always re-
duce the fit error, but will not always reduce the prediction error. 
‘‘Overfitting’’ the model by adding excessive complexity can thus 
be avoided. 

Relatively large RMS prediction errors were observed for body 
tilt and twist, vertical ground reaction force and ankle inversion-
eversion. The inability of the model to successfully predict body 
tilt and body twist for a given set of initial kinematic conditions 
may be a result of approximating the upper body as a single rigid 
segment. The upper body segment comprising the trunk, head, 
arms and the non-contact limb, possessed a large percentage of the 
entire mass of the system. With no active muscle control allocated 
to this segment, the ability of lower limb musculature to control 
its motion during the simulated movement is likely to be limited. 
Neptune et al. [24] suggested that the modeling of specific upper-
body segments has the potential to improve a model’s ability to 
reproduce lower limb movements. This appears worth consider-
ation in future developments of the current model. The inability of 
the model to predict vertical GRF past 100 ms is probably also 
related to the lack of active control of the upper body, where most 
mass is located. The relatively large prediction errors observed for 
ankle inversion-eversion were found to result from the almost 
flat-footed landing in this subject, which made initial foot rota-
tions sensitive to initial joint angles and ground contact geometry. 
In a second subject, who performed the movement differently, 
these prediction errors were found to be much smaller. 

The RMS prediction errors calculated over the first 100 ms of 
the simulation were generally smaller than the 200 ms prediction 
errors (Table 3). An exponential increase of prediction error over 
time is to be expected from forward dynamic simulation of an 
unstable system using open loop muscle stimulation. Non-contact 
ACL injuries are reported to occur early in stance [57], and our 
initial results suggest that movements and GRF’s during early 
stance are more sensitive to limb posture at impact than to the 
muscle activation after impact. For injuries that occur later on in 
the stance phase, the modeling approach described here may be 
less effective. 

Model Limitations. Kinematic data were used as initial con-
ditions for the simulation, and as targets for the optimization pro-
cess. Error propagation analysis using Mocap Solver indicated 
that all measured degrees of freedom were robust against errors in 
marker trajectories, such as those caused by noise or skin move-
ment. In the simulations, we noticed that results, especially the 
ankle rotations and ground reaction forces, were moderately sen-
sitive to the measured initial generalized velocities q̇. It is well  
known that such velocity measurements are sensitive to high-
frequency noise, and we considered using low-pass filtering. 
However, at impact the velocity of the foot decreases very quickly 
from about 4 m/s to zero. Low-pass filtering caused temporal 
blurring and led to underestimation of impact velocities. We found 
that simulation results were more consistent without low pass fil-
tering, but some effect of measuring error remains inevitable. 



The knee joint mechanism was modeled as a simple hinge. This 
neglects the posterior shift of the joint axis that is known to occur 
during flexion. If moment arms of muscles had been modeled 
using their bony attachments, this would have led to large errors 
in moment arms at the knee. However, we modeled the muscle 
path analytically (Eq. 2), which eliminates that problem. What 
remains is an effect on whole body dynamics and joint loading. A 
moving joint axis would affect whole body motion, and hence 
ground reaction forces and joint loading, but this effect is obvi-
ously small relative to the gross movement of body mass. The 
second simplification was that internal-external rotation of tibia 
with respect to the femur was not included in the model. This 
would transfer all internal-external rotation to the hip joint, effec-
tively adding the femur mass to the rotational inertia of the tibia. 
A sensitivity analysis showed that this had only a minor impact on 
model performance. An additional consideration was that accurate 
measurement of internal-external knee rotation in the subject 
would be needed, which is almost impossible [58] and might have 
introduced additional error into the movement simulations. It was 
therefore decided not to include this degree of freedom in the 
model. 

Muscle paths were modeled using constant moment arms (Eq. 
2). It has been reported that the moment arm of the quadriceps can 
change as much as 50% over the 65 deg range of knee flexion that 
occurs during a sidestep [59]. We obtained our moment arms from 
an in vivo methodology [39], which did not report substantial 
changes in moment arms of hamstrings and quadriceps during 
knee flexion. A sensitivity analysis revealed that a model with 
either a 50% increase or decrease in the knee moment arms of the 
quadriceps (rectis femoris, vastus medialis, vastus lateralis and 
vastus intermedius) produced only small changes in the resultant 
knee joint loading variables after reoptimization of the muscle 
stimulation patterns. Specifically, peak values for resultant ante-
rior force, valgus moment and internal rotation moment were all 
within 8.1%, 14.7% and 12.3% of the original baseline loads. 
Furthermore, these peaks occurred within ±2 ms of those ex-
tracted from the baseline optimization. The minimum cost func-
tions obtained for the re-optimized systems were within 2.3% of 
that obtained for the original optimization, suggesting that a side-
stepping maneuver could still be simulated successfully within 
this range of quadriceps moment arm lengths. It was therefore felt 
that more detailed modeling of moment arms as a function of joint 
angle would not necessarily improve accuracy of current model 
outputs, nor better achieve the stated project goals. 

Knee Joint Loading. As noted earlier, joint loading variables 
were obtained directly from the SD/FAST multibody software as 
resultant joint loads. These loading variables are the same as those 
that would be obtained using a standard inverse dynamics ap-
proach. Obtaining these data via a forward dynamic optimization 
approach however, rather than via an inverse analysis, allows us to 
predict how these resultant loads would be affected by neuromus-
cular control. 

A resultant posterior force on the knee was observed throughout 
stance for the optimized sidestep model (Fig. 6). This result can be 
understood as follows. With the hip and knee slightly flexed at 
initial contact, the impact phase of the sidestep, involving rapid 
deceleration of the body on a planted foot, will necessarily result 
in posterior force being applied externally to the knee joint. It is, 
however, important to understand that this resultant force should 
not be interpreted as the force in passive joint structures. Muscle 
forces induce equal and opposite reaction forces in passive joint 
structures, and these therefore cancel out in the resultant. Our 
model predicted muscle forces, but did not include an accurate 
3-D model of musculoskeletal geometry. Such a model would be 
needed to quantify muscular contributions to the resultant joint 
loads, and is a likely progression of the current model so that 
loading of the passive structures can be estimated in future stud-
ies. It has been postulated that the quadriceps force, which pro-
duces an anterior tibial load when the knee is between approxi-

mately 0°–30° of flexion [60,61], can produce an injury to the 
ACL [7,62]. When we computed contribution of the quadriceps to 
the anterior-posterior knee force using a 2-D model [38], we in-
deed found an anterior drawer force acting on the passive joint 
structures. However, the highest value found during the Monte 
Carlo simulations was only 872.4 N, while it takes at least 2,000 
N to rupture the ACL [63]. We therefore conclude that this injury 
mechanism is unlikely to occur during sidestepping, as was also 
suggested by Simonsen et al. [19], and that rotational loading is 
required to injure the ACL. 

Peak internal-external rotation moments observed during stance 
for the optimized side-step were similar to those reported previ-
ously. Besier et al. [64] observed a mean peak internal rotation 
moment of approximately 0.35 Nm•kg-1 during what was termed 
the peak push-off phase of the sidestep, representing 10% either 
side of the peak vertical GRF. Little or no evidence of a net 
resultant external rotation moment was observed during the stance 
phase of the sidestep [64]. Peak internal-external moments re-
ported for the current model, while slightly smaller, occurred dur-
ing similar phases of the movement. The differences in the mo-
ment magnitudes between the two studies may be due to different 
cutting angles and speeds. 

Besier et al. [64] also reported peak varus and valgus moments 
of approximately 0.35 Nm•kg-1 and 0.4 Nm•kg-1 respectively to 
occur during sidestep stance. Specifically, a net varus moment was 
evident during the peak-push-off phase, while valgus moments 
occurred during weight acceptance, representing heel-strike to the 
first trough in the vertical GRF and final push-off, the last 15% of 
the stance phase. For the current model, varus and valgus mo-
ments and the associated peaks occurred during similar phases of 
ground contact to those reported by Besier et al. [64]. Again, dis-
crepancies between the two studies regarding the magnitudes of 
these moments may be due to differences in the protocol. 

A rapid change in magnitude was observed for all three result-
ant loads extracted from the optimized system immediately fol-
lowing contact, peaking 10 ms into stance. The peaks were asso-
ciated with simultaneous transients in the horizontal GRF and 
were found to be sensitive to the initial hip abduction-adduction 
velocity input into the model. As noted earlier, initial angular ve-
locities may be unreliable because of measurement noise and the 
sudden changes in velocity that occur at impact. However, this 
sensitivity of valgus and internal rotation moments to initial hip 
angular speed also suggests that neuromuscular control of hip ab-
adduction is a potential mechanism of ligament injury. To date 
however, there is no experimental data to support such a relation-
ship between control of hip ab-adduction and resultant knee 
torques. 

Random perturbations in the initial body and segment positions 
and velocities, representing variations in neuromuscular control, 
produced considerable increases in peak anterior, valgus and in-
ternal rotation loads. It is especially noteworthy that the statistical 
distribution of predicted peak valgus moments was much broader 
than that of the other variables (Fig. 8), indicating that this vari-
able is more sensitive to initial limb posture. These data suggest 
that excessive valgus loading may be an important mechanism for 
injury during sidestepping. Piziali et al. [65] reported that liga-
ment damage occurred in cadaveric knee joints within 125–210 
Nm of valgus torque or 35–80 Nm of internal rotation torque. The 
maximum peak valgus and internal moments generated via the 
Monte Carlo simulations were somewhat below this range. How-
ever, in the Piziali [65] study, valgus and internal rotation torques 
were applied in isolation only. Both Kanamori et al. [14] and 
Markolf et al. [15] have demonstrated that the greatest increase in 
ACL loading occurs when these loads are applied in combination, 
and also when combined with anterior drawer. Hence, the magni-
tudes of the valgus and internal rotation torques generated during 
the MC simulations may have been large enough to produce an 
injury when combined. However, the influence of combined knee 
loading states on ACL load is only known for extremely low 



  

 

 

 

 

 

 

 

 
 

 

levels of loading [14,15], which are not representative of the dy-
namic joint loads associated with sporting maneuvers such as 
sidestepping. Further research is required in this area so that our 
results can be better interpreted in terms of ACL injury. 

Summary and Conclusions 
A subject-specific 3-D rigid body model of the trunk and lower 

extremity, capable of simulating the stance phase (0–200 ms) of a 
sidestep cutting maneuver, was developed and used to predict the 
effect of limb posture at impact on the 3-D loading of the knee 
joint. Our conclusions are: 

1. The modeling approach was computationally feasible, with 
about 30 hours each required for model optimization and Monte 
Carlo simulations. 

2. The model could be optimized to produce movements and 
ground reaction forces that were consistent with the subject data. 

3. Predicted responses to small neuromuscular perturbations 
were valid for the first 100 ms of stance. 

4. Monte Carlo simulations resulted in a number of simulations 
where knee joint loading, especially the valgus moment, ap-
proached values that may cause injury. 

5. Further research is needed to study how ACL loading de-
pends on high-level combined loading states of the knee joint. 
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Nomenclature 
A = shape parameter of the CE force-velocity relationship 

ACL = anterior cruciate ligament 
CE = contractile element 

J = cost function for optimization 
M = mass matrix 

PEE = parallel elastic element 
SEE = series elastic element 

W = dimensionless width of the CE force-length relation-
ship 

a(t) = muscle active state at time t 
b = damping parameter 

c1 , c2 = rate parameters for muscle activation dynamics 
f = generalized forces 
f = normalized force-length relationship of the CE 
g = normalized force-velocity relationship of the CE 
k = stiffness parameter 
q = generalized kinematic coordinates 
p = model parameters to be optimized 

u(t) = neural muscle stimulation input at time t 
z = vertical deformation of a contact element attached to 

the foot 
/ = coefficient of friction 

A(a) = scaling factor for CE shortening velocity as a func-
tion of muscle active state 

FCE = force produced in the contractile element 
F0 = parameter for the change in friction coefficient as a 

function of compressive load 
Fmax = maximal isometric force of the CE 

Fz = vertical ground reaction force 
LCE = length of the contractile element 

LCEopt = length of the CE at which maximal force can be 
produced 

VCE = lengthening velocity of the CE(=dLCE /dt) 
Vi j  = measured value (mean of all trials) of variable j at 

time step i 
V̂ 

i j  = simulation result corresponding to Vi j  
Vi jk  = measurement of variable j at time i during trial k 
V̂ 

i jk  = simulation data corresponding to Vi jk  

ak = moment arm of the muscle with respect to joint angle 
k 

a0 = muscle length in the neutral posture of the model 
gmax = asymptotic value of g for large lengthening velocities 

vz = the first derivative of z 
<k = the kth joint angle in radians 

Appendix: Model for Muscle-Tendon Dynamics 
Each muscle-tendon unit in the model was modeled as a three-

component Hill model (Fig. 2). The contractile element (CE) was 
assumed to produce a force FCE which depends on CE length 
LCE , CE lengthening velocity VCE , and on active state a, accord-
ing to the following relationship: 

amin
FCE= f (LCE)•g(VCE ,a )•maxi (A.1)a 

The minimum activation level, amin =0.01, was set to prevent di-
vision by zero when solving for VCE . The force-length relation-
ship f of the CE was modeled as: 

Fmin 

f (LCE)=max (LCE -LCEopt)
2 (A.2)i Fmax 1- 2W2LCEopt 

where Fmax is the maximal isometric force, LCEopt is the length of 
the CE at which maximal force can be produced, and W is a 
dimensionless parameter describing the width of the force-length 
relationship. A minimum force level Fmin was needed to prevent 
division by zero when solving for VCE in equation (A.1) and was 
set at 10 N. 

The normalized force-velocity relationship of the CE was as-
sumed to be independent of LCE [66,67]: 

¦ 
A(a )Vmax VCE 

A(a )Vmax -VCE /A 

if VCE�0 (shortening) 
gmaxVCE d1 

g(VCE)= (A.3)VCE d1 

if 0<VCE�yd1 (slow lengthening) 
d3 d2VCE 

if VCE>yd1 (fast lengthening) 

where 

VmaxA(gmax -1 )
d1 = 

S(A 1 ) 

S(A 1 )
d2= 

VmaxA(y 1 )2 

(gmax -1 )y2 

d3 = 1 
(y 1 )2 

For shortening, this model is classical Hill equation [68]. The 
shape parameter A was assumed to have a value of 0.25, and the 
maximal shortening velocity Vmax was assumed to have a value of 
10•LCEopt per second [69]. A scaling factor A was introduced to 
account for the influence of a voluntary activation level a on the 
force-velocity relationship: 

3.82aA(a )=1-e - a•e -3.82 (A.4) 

This relationship fits the experimental data of Chow and Darling 
[70]. For slow lengthening, a second hyperbolic relationship was 
used. The parameter gmax , the asymptotic value of g, was assumed 
to be 1.5 and the parameter S was set to a value of 2.0 to produce 
a doubling of slope of the force-velocity curve at zero velocity 
[45,71]. At high lengthening velocities, a linear force-velocity re-



�

    

lationship was assumed to ensure that g is invertible. The transi-
tion point between the hyperbolic and linear parts was defined by 
a dimensionless parameter y, which should be large to approxi-
mate correct yielding behavior at high force [71]. A value of 
y=5.67 was used. The constants c2 and c3 were defined using 
continuity of the curve and its first derivative. 

The series elastic element (SEE) and parallel elastic element 
(PEE) were assumed to be nonlinear elastic, with a quadratic re-
lationship between force F and length L: 

i 0  if  L Lslack 
F= (A.5)

k(L-Lslack)
2 if L>Lslack 

The stiffness parameter k for the SEE was chosen for each muscle 
such that the SEE elongation was 4% when the maximal isometric 
force of the muscle was applied [72]. The stiffness parameter of 
the PEE in each muscle was chosen such that the PEE force was 
equal to the maximal isometric force when the CE was stretched 
to its maximal length for active force production: 

Fmax
kPEE = (A.6) 

(W•LCEopt)
2 

The slack length of the PEE was set equal to LCEopt , except 
where indicated otherwise in Table 2. 

When CE velocity is solved from Eq. (A.1), we obtain an ordi-
nary differential equation (ODE) with LCE as the state variable 
and active state a and muscle-tendon length Lm as inputs: 

dLCE -1 FCE -1 FSEE(Lm -LCE)-FPEE(LCE) 
=g =g

dt a• f (LCE) a• f (LCE) 
(A.7) 

Finally, muscle force is computed from the state variable: 

Fm =FSEE(Lm -LCE) (A.8) 
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