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TOLERANCE SPECIFICATION OF ROBOT KINEMATIC PARAMETERS 
USING AN EXPERIMENTAL DESIGN TECHNIQUE-THE TAGUCHI 

METHOD 

Y. H. ANDREW LIOU,* PAUL P. LIN,t RICHARD R. LINDEKEt and H. D. CHIANGt 
*Industrial Engineering, Cleveland State University, U.S.A., tMechanical Engineering, Cleveland State 

University, U.S.A. and tlndustrial Engineering, University of Minnesota at Duluth, U.S.A. 

Tbis paper presents the tolerance specification of robot kinematic parameters using the Taguchi method. The concept 
of employing inner and outer orthogonal arrays to identify the significant parameters and select the optimal tolerance 
range for each parameter is proposed. The performance measure based on signal-to-noise ratios (SIN) using the 
Tagucbi method is .alidated by Monte Carlo simulations. Finally, a step-by-step tolerance specification methodology 
is developed and illustrated with a planar two-link manipulator and a fivHegree-of-freedom Rhino robot. 

1. INTRODUCTION 
Although some investigators have considered proba-
bilistic models of closed-loop mechanisms in the 
past,1-6 minimal attention has been paid to the proba-
bilistic analysis of open-loop mechanisms, especially 
robot manipulators. It is known that errors in robot 
joint variables are random in nature. The random 
nature of the errors seems to make it necessary to use a 
probabilistic approach to the solution of the kine-
matic model. 

Some significant studies 7-13 relevant to the stochas-
tic analysis of robot error have been performed. 
Among them Benhabib et al. 13 introduced direct and 
inverse robot error analyses. The inverse method led 
to the development of a feasible joint tolerance do-
main, but it was hypothetical in that joint tolerances 
were assumed either all equal or unequal. Besides, a 
method to identify the more significant joints in order 
to tighten the tolerances of those joints was not 
suggested. 

Bhatti and Rao 14 introduced the concept of reliabi-
lity through which a statistical measure of manipula-
tor performance can be made. They defined 
"manipulator reliability" as the probability of end-
effector position and/or orientation (pose) falling 
within a specified range from the desired pose. The 
manipulator reliability of a simple two-link planar 
manipulator was calculated analytically, and that of a 
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six-degree-of-freedom manipulator was obtained by 
the Monte Carlo simulation method. Manipulator 
reliability was found to be pose dependent. In indus-
trial robot applications, one can find, by a bubble sort 
approach, an optimal robot configuration to reach a 
given pose with least error in the work space. How-
ever, the reliability also depends on the size of the 
allowable region specified, which means that it cannot 
be used as a performance measure to identify the 
significant kinematic parameters of a robot manipula-
tor. In this paper, a performance measure, signal-to-
noise ratios (SIN) using the Taguchi method, is pro-
posed. The Taguchi method, an experimental design 
technique,15-17 provides a simple way to design an 
efficient and cost effective experiment. The Taguchi 
method employs systematic orthogonal arrays that 
contain the manipulator's parameters at their different 
nominal values, in order to investigate the effect of 
maximum positive and negative variations from nomi-
nal. As such, it provides a maximum and controlled 
"error" for each parameter in a single experimental 
set. The results of the designed experiment can be 
analyzed using the analysis of variance (ANOV A) 
technique, and the kinematic parameters that contri-
bute most to the observed performance measure can 
be identified. 

In the tolerance specification of robot kinematic 
parameters three important tasks can be accom-
plished. These are, one, to identify the significant 
parameters and their interactions, two, to evaluate the 
robot's performance as a function of tolerance range, 
and, three, to tighten the tolerances of significant 
parameters while considering improvement of perfor-
mance measures. In this study, a step-by-step toler-



ance specification methodology using the Taguchi 
method is presented, and the applicability of this 
method is investigated and validated by Monte Carlo 
simulations. Two different types of robot manipula-
tors, a two-link planar manipulator and a five-degree-
of-freedom Rhino robot, are used to illustrate the 
developed methodology. The presented tolerance spe-
cification technique is based on an assumption that a 
robot slowly approaches a static pose. The dynamic 
effects on the tolerances are not taken into account. 

2. MAJOR SOURCES OF ERRORS IN ROBOT 
MANIPULATORS 

In robot control, a set of joint variables is calculated 
when the desired pose of a robot end-effector is given. 
However, a discrepancy always exists between the 
actual and the desired pose due to the following 
sources of error. 

2.1. Errors in manufacture and assembly 
The errors due to tolerances in manufacture and 
assembly cause variations in the robot kinematic 
parameters. These errors can be minimized by tighten-
ing the tolerances. This, however, may increase the 
production cost considerably. Another possible rem-
edy to this problem is to identify the true kinematic 
parameters by employing parameter identification 
techniques. 1s However, the identification procedure 
is tedious and time consuming. It requires highly 
sophisticated measurement devices such as the 
theodolite. 19 These errors can be classified as deter-
ministic errors which generally do not vary during a 
robot motion. 

2.2. Errors in actuators and controllers 
Another source of errors is the result of joint drive 
compliance between the angular encoder and the 
actual angular output, dynamic effects or other ran-
dom disturbances. These variations can be minimized 
by placing sensors to act as feedback mechanisms at 
the joints. However, these errors cannot be completely 
eliminated due to the resolution of sensing devices and 
the accuracy of controller response. These errors can 
be decomposed into two components. One compo-
nent is the deterministic error which always acts in the 
same direction, an example being the bias in joint 
position. The other component is indeterministic error 
which is random and is assumed to follow a normal 
(Gaussian) distribution. 

3. 	TOLERANCE SPECIFICATION FOR ROBOT 
KINEMATIC PARAMETERS USING THE 

TAGUCm METHOD 
The Taguchi method has been widely and successfully 
used in the U.S. and Japan to optimize industrial 
designs and processes for years. This method identifies 
those factors (independent variables) that have a 
significant effect on the performance (dependent) vari-
able by using designed experiments. Traditional de-

sign of experiment (DOE) approaches utilize factorial 
and Latin square20 design techniques for a small 
number of factors, and employ fractional factorials, 
response surface methodology (RSM) and orthogonal 
arrays for large numbers of factors. Professor Taguchi 
adopted orthogonal arrays to simplify the experimen-
tal design procedure. 

Like other DOE techniques, designing an experi-
ment and analyzing data are the two main phases 
involved in conducting experimental studies using the 
Taguchi method. In the following sections, these two 
phases to perform tolerance specification for robot 
kinematic parameters, involving some special tech-
niques, are presented. 

3.1. Designing an experiment using orthogonal arrays 
While designing an experiment, the factors, their levels 
and interactions need to be determined. For the 
aforementioned tolerance design, each kinematic 
parameter could be considered as an independent 
variable, but the factors actually studied are the 
tolerance ranges of the kinematic parameters, and 
these ranges are under the control of the robot de-
signer, at a given manufacturing cost. The random 
error from the nominal value of each kinematic 
parameter within a given tolerance range can also be 
treated as an independent variable. However, this 
error is an uncontrollable factor, or noise. The inde-
pendent variables selected are then assigned to a 
limited set of discrete values (levels) rather than ran-
domly over the distribution space as is done in Monte 
Carlo simulation. In the Taguchi method, two levels 
(minimum and maximum) are usually recommended, 
but three levels (minimum, medium and maximum) 
are also used. In addition, the interaction effects 
between factors are also investigated. 

While using the Taguchi method, the experiment is 
designed by following the column assignments speci-
fied by an orthogonal array (OA). The OA design 
employed is based on the number of factors, their 
levels and the number of selected interactions. The 
basic OA designs in the Taguchi method are intended 
for use in experiments employing two-level indepen-
dent variables. They are L4(2 3

), L s(2 7
), L 16(2 15

) and 
L 32(2 31 

) orthogonal arrays. The a, band c for an 
orthogonal array LaCbC

) represent the number of runs, 
the number of levels of each factor and the number of 
columns in the array, respectively. A second set ofOAs 
is used for three-level factors, the L9(34

), L 2i3
13

) and 
LS1(340) OAs. In addition, several OA designs are 
used to specifically allow "mixed level" factors. They 
are L 1S(2 2 x 37) and L 36(2 3 x 313) OAs. After an OA 
is selected, designing an experiment becomes a "col-
umn assignment" task. Some of the above OAs are 
shown in the Appendix. 

In the Taguchi method special techniques using 
inner/outer OAs are employed to study the controll-
able factors and the noise of controllable factors in one 
experiment. Usually, the latter is not included due to 
its random nature. If needed, in traditional DOE 



techniques, the noise can be studied by experimental 
blocking. 

In the tolerance specification of robot kinematic 
parameters presented in this paper, the inner OA is 
used to study the controllable factors. For each experi-
mental run, consisting of specific tolerance ranges for 
each kinematic parameter in an inner OA, the outer 
OA provides noise to each factor. The noises are 
directions that the tolerance value deviates from a 
nominal position. They represent "worst-case" toler-
ance deviations and satisfy the 30' (3 times standard 
deviation) limits of normal Monte Carlo simulation 
variability. Each outer OA noise combination is 
treated as repetitive data in the inner OA. Thus, if an 
outer OA Lo is used for each run of an inner OA Lj, 
the size of the experiment is i * 0 runs. 

For instance, (01)m, (02)m, (03)m and (04)", are the 
nominal values of kinematic parameters (revolute 
joint angles), 01' 02' 03' 04' In designing the inner 
OA, two tolerance ranges (tight, T and loose, L) are 
used for each of the factors. The outer array, then, 
specifies a value, nominal ± tolerance range specified 
by the inner array that will be used to calculate the 
experimental result. The structure of the inner and 
outer arrays is shown as follows: 

Run 
No. 

1 

2 

3 
4 
5 
6 
7 
8 

Inner OA La 
(Controllable Factors) 

T T T T T 

IT T T L L 

T L L T T 
T L L L L 
L T L T L 
L T L L T 
L L T T L 
L L T L T 

T T 

L L', 
L L 
T T 
T L 
L T 
L T 
T L 

Outer Array La 
(Uncontrollable Factors) 

(01)m - T (02)'" - T (03)m - L (04)", -
(01)m - T (02)'" - T (03)," + L (04)," + L 
(01)m - T (02)," + T (03)'" - L (04)," + L 
(01)m - T (02)m + T (03)'" + L (04)'" - L 
(0 1 )m + T (02)m - T (03)'" - L (04)", + L 
(01)", + T (02)", - T (03)'" + L (04)", - L 
(01)", + T (02)", + T (03)'" - L (04)", - L 
(01)", + T (02)m + T (03)", + L (04)", + L 

The objective of the inner OAs is to determine the 
significance of controllable factors, and to select the 
levels of significant factors to optimize the perfor-
mance measure. Using the outer OA, noise is intro-
duced into the experiment in a systematic manner. 
Thus, the results of inner OA analysis should be more 
"robust" against the noise of controllable factors. 

3.2. Analyzing data using the SIN ratio 
In the Taguchi method, the signal to noise ratio 
(SIN)17 is used as a data transformation method to 
consolidate the repetitive data into one value which 
reflects the mean value and the amount of variation 
present in the data. The equations for calculating SIN 
ratios are based on the characteristics of the response 
variables being evaluated. In robotic tolerance design, 
the response variable is position or orientation error 
with a target of the smaller the better. The SIN 
equation for the case of the-smaller-the-better in the 
Taguchi method is: 

where: n = number of repetitive data 
Yi = individual data. 

The SIN ratio is essentially a measure of both the 
mean value (signal) and the standard deviation (noise) 
of a set of data. Factors that reduce variability in the 
error measures (positional or orientational) or move 
the error measures closer to zero (the target) increase 
the SIN ratio. The use of the SIN ratio to maintain 
accuracy in tolerance specification, as in parameter 
design results, is recommended since the outer array in 
the design attempts to dictate the variability during 
the experimentation through the control of noise 
factors. This contrasts with traditional DOE where 
replications of experimental runs let noise "contribu-
tions" seek their own levels. 

L -+ Y1 
-+ Y2 
-+ Y3 
-+ Y4 
-+ Ys 
-+ Y6 
-+ Y7 
-+ Ya 

Note: 
T -tight tolerance range 
L -loose tolerance range 
Yi -individual data 
(0;)m-nominal value of 0 i . 



Higher SjN ratios are indicative of experimental 
conditions that will be more robust during robot 
operation. Clausing21 stated that the SIN ratio is a 
good performance measure of robustness against 
noise. Thus, it can be expected that statistically signifi-
cant results found in analysis using SIN ratios will be 
the "Best Set" of kinematic parameter tolerances to 
control to render the robot more reliable. 

3.3 The step-by-step design methodology 
The methodology for tolerance design via the Taguchi 
method is described as follows: 

Step 1. 	 Identify the number of control factors, k, the 
robot kinematic parameters, and assign a 
reasonable amount of tolerance, t, to each 
factor. 

Step 2. Design the inner array. 
Step 3. Design the outer array. 
Step 4. Calculate the orientation vectors n, 0, a, and 

position vector P for all combinations of the 
inner and outer arrays. 

Step 5. Calculate the SIN ratios of the end-effector's 
position or orientation error. 

Step 6. Calculate the percentage of performance im-
provement based on the SIN ratios. 

Step 7. 	 Identify the significant factors by comparing 
the percentage of improvement on a case-by-
case basis. Alternatively, an ANOVA, a test of 
statistical significance, can be performed. 

Step 8. Find an optimum set of tolerance ranges. 
Step 9. Fine-tune the set of ranges based on the 

considerations of cost and technical difficulty. 

4. EXPERIMENTAL RESULTS AND 
DISCUSSIONS OF TOLERANCE 

SPECIFICATION 
In tolerance specification of robot kinematic para-
meters, a planar two-link manipulator was initially 
studied. Based on these results, the work was extended 
to a five-degree-of-freedom Rhino robot. 

4.1. Two-link robot manipulator 
For a planar two-link manipulator, there are four 
control factors which are the tolerances of the two 
revolute joint positions and those of the two link 
lengths. During this testing phase, the link length was 
considered an indeterministic factor due to errors in 
manufacture and assembly. Note that link lengths, 
unlike joint positions, do not randomly vary as a 
function of time during a robot motion. The objective 
here was to minimize the end-effector's positional 
error as this planar manipulator has limited orienta-
tion capabilities. The positional error is expressed by a 
square root of [(P~ - Py + (P~ - p y )2] where the 
unprimed and primed quantities represent the desired 
(nominal) and actual components of the end-effector's 
position, respectively. 

The nominal value of the first and second links 
lengths, (L 1 )m and (L 2 )m' are 10 cm and 8 cm, respec-

tively, and the mean value of joint angles, (0\)m and 
(0 2 )m' are both zero degrees. An initial value of 
tolerance for each of the four factors is assigned by a 
reasonable number, 0.03 cm (3 times (J of 0.01 cm) for 
the link lengths and 0.3 degree (3 times (J of 0.1 degree) 
for the joint positions. Thus, the tolerance ranges are 
set either at loose (original) value or tight (half-
original) value. For the planar two-link manipulator, 
there are 16 (24) possible cases forming the inner 
othogonal array in the Taguchi method. The outer 
array (noise array) uses Taguchi's L8(27) OA (shown 
in the Appendix) which accounts for the randomized 
variations about the nominal values. The SIN ratio of 
each case is used as a performance measure. The 
improvement in positional error can be observed by 
comparing the percentage change of the performance 
measure in the inner array. 

Table 1 shows the SIN ratios for this experiment. 
These ratios were calculated using both Taguchi 
method (TM) and Monte Carlo (MC) simulation 
techniques. The Monte Carlo simulation technique is 
based on random numbers generated within a speci-
fied range of each factor for approximately 10,000 runs 
to estimate the performance measure. As can be seen, 
the difference in SIN ratios calculated using MC and 
TM is very little. Significant parameters (factors) can 
be identified by comparing the improvement of SIN 
ratios. For instance, the performance improves from 
Case 16 to Case 14 by: 

(22.38 - 19.05)/19.05 = 17.48% 

while the SjN ratio improves from Case 16 to Case 15 
by 2.57%. It is obvious that 0 1 is more significant than 
O 2 in terms of positional error. In the Taguchi meth-
od, the significant factors can be simply identified 
through the analysis of variance (ANOV A) shown in 

Table 1. Results 	of Monte Carlo and Taguchi methods for a 
planar two-link manipulator 

Ll L2 0 1 O2 Monte Carlo Taguchi 
~.~---~---~--~--

Case (cm) (cm) (deg.) (deg.) SjN SjN 

1 0.D15 0.015 0.15 0.15 25.08 25.07 
2 0.D15 0.015 0.15 0.30 23.53 23.54 
3 0.015 0.015 0.30 0.15 20.13 20.10 
4 0.015 0.015 0.30 0.30 19.57 19.55 
5 0.015 0.030 0.15 0.15 24.21 24.22 
6 0.D15 0.030 0.15 0.30 22.91 22.92 
7 0.015 0.030 0.30 0.15 19.84 19.81 
8 0.015 0.030 0.30 0.30 19.30 19.29 
9 0.030 0.015 0.15 0.15 24.23 24.22 

10 0.030 0.015 0.15 0.30 22.92 22.92 
11 0.030 0.015 0.30 0.15 19.84 19.81 
12 0.030 0.015 0.30 0.30 19.31 19.29 
13 0.030 0.030 0.15 0.15 23.49 23.32 
14 0.030 0.030 0.15 0.30 22.36 22.38 
15 0.030 0.030 0.30 0.15 19.56 19.54 
16 0.030 0.030 0.30 0.30 19.06 19.05 

The data used to calculate the SIN ratios are the differences between the 
actual and desired end-effector's positions (positional error) in terms of 
length unit 

http:19.05)/19.05


Table 2. This alternative, without comparing data case 
by case, is much more computationally efficient. The F 
values in Table 2 clearly indicate that the tolerances of 
0 1 and O 2 are the most and second most significant 
factors, respectively. Another advantage of ANOV A is 
that the significance of parameter interaction can also 
be identified. 

The tolerance of each robotic joint or link para-
meter would initially have been assigned a reasonable 
tolerance range. The main objective here is to find an 
optimum set of tolerance ranges. The strategy is to 
tighten the tolerances of the significant factors and 
widen those of the insignificant factors. Once the 
ranges have been determined, the tolerances can be 
further "fine-tuned" to make the end-effector's perfor-
mance better and reduce the overall cost if possible. 

Robot performance (position accuracy of the robot 
end-effector) can be improved by tightening the toler-
ances of some joints. The choices are as follows: 

Choice 1: Tightening the tolerance of one factor. 
The tolerance of 0 1 is identified as the most 
significant factor. Using the data of Case 16 
(worst) as reference, the percentage im-
provement of Case 14 is 17.48% based on 
TM. 

Choice 2: 	Tightening the tolerances of two factors. 
The best way is to tighten the tolerances of 
0 1 and O 2 (Case 13). The percentage im-
provement is 22.41%. 

Choice 3: Tightening the tolerances of three factors. 
The best way is to tighten the tolerances of 
0 1, O 2 and L1 or L2 (Case 5 or 9). The 
percentage improvement is 27.14%. 

Choice 4: 	Tightening the tolerances offour factors. 
This corresponds to Case 1. The percentage 
improvement is 31.60%. 

The above analysis indicates that tightening the 
tolerance of one factor (0 1) is the most cost effective 
way to improve the end-effector's performance. If 
necessary and feasible, the tolerance of joint 1 can be 
further reduced to increase the performance. Of equal 
importance, the tolerances of insignificant factors such 
as L1 and L2 can be widened without affecting robot 
performance significantly. This step can lead to overall 
cost savings for manipulator construction. 

Table 2. ANOVA table (position error) 

Source of 
variance OF SS Mean square F Value P 

L, 1 0.8977 0.8977 9.5957 <0.025 
L2 1 0.8967 0.8967 9.5857 <0.025 
0 , 1 65.3989 65.3989 699.0795 ~0.010 

O2 1 3.3509 3.3509 35.8194 <0.010 
Error II 1.0290 0.0935 

where: DF = degrees of freedom 
SS = sum of squares 
F value = statistics of F distribution 
P = level of significance. 

It may be that the SjN ratios calculated using MC 
are more accurate than those found using TM since 
the former requires approximately 10,000 runs per 
case, while the latter only performs eight experimental 
runs. Although the percentage improvement using the 
Taguchi method is slightly lower than that using the 
Monte Carlo method, both methods reveal the same 
trends for performance improvement. 

4.2. Five-degree-offreedom Rhino robots 
Based on the results found during the evaluation of 
the simple two-link robot, the work was extended to a 
five-degree-of-freedom Rhino robot (Fig. 1).22 The 
robot has no prismatic but five revolute joints. The 
positional error can be quantified by using a concept 
of error sphere. The radial distance from the sphere 
center indicates the deviation from the desired posi-
tion. When measuring the performance of an end-
effector, orientation accuracy, in addition to position 
accuracy, is also concerned in the Rhino robots. 
Usually the end-effector's orientation is expressed in 
terms of three unit vectors: normal (n), orientation (0), 
and approach (a) vectors as shown in Fig. 2, where the 
position vector (p) is from the origin of the base 
coordinates to the intersection of the above three 
vectors (n, 0 and a).23 Any end-effector's orientation 
can be achieved by a series of rotations about the z, Y 
and x axes through the so-called roll, pitch and yaw 
angles. To quantify the orientation error, only one 
quantity involving three consecutive rotations will be 
examined. This quantity shown below indicates the 
deviation from the desired orientation 

RPY(cp, r, 1/1) = Rot(z, cp)Rot(y, r)Rot(x, 1/1) 

where cp, rand 1/1 are the nominal roll, pitch and yaw 
rotational angles of the end-effector, respectively re-
quired to reach a desired orientation. These transfor-
mation angles can be calculated from joint positions 
and link lengths. The RPY function determines an 
unique orientation. The overall orientation error can 
be determined by: 

[(cp' _ cp)2 + (r' _ r)2 + (1/1' _ 1/1)2]0.5 

where unprimed and primed quantities represent de-
sired (nominal) and actual angles, respectively. The 
actual angles deviate from the nominal values while 
considering the tolerance of each robot kinematic 
parameter such as joint and link length. 

As the results of the two-link manipulator indicated, 
revolute joint parameters are much more significant to 
positional accuracy than link parameters (i.e. link 
length). In practice, the effects of biased link lengths 
can be minimized by robot calibration or parameter 
identification techniques. Thus, the link parameters 
can be considered deterministic for an industrial 
robot. In this section, only the effect of tolerances in 
joint parameters are investigated. 

The tolerance for each of the five joints is initially 
set at a level of 0.10 degrees. The desired position and 



Elbow 

XO 
Base  

Fig. I. Five-degree-of-freedom Rhino robot.  

Fig.2. n, 0, a and p vectors. 

orientation matrix (Ts) is as follows: 

nx Ox ax Px 
Oy Oy ay Py 

Oz Oz az pz 
0 0 0 1 

0.027 -0.621 0.783 4.739 
-0.864 0.380 0.331 2.000 
-0.503 -0.685 -0.526 4.000 

0 0 0 

Tables 3 (position accuracy) and 4 (orientation accur-
acy) show the comparisons between the Monte Carlo 
and Taguchi methods. 

For the performance measure, MC requires in total 

Table 3. Comparison of position accuracy between two methods 
for Rhino robots 

Joint tolerances in degrees Monte Carlo Taguchi 

Case 0 1 O2 0 3 0. 0 5 SIN SIN 

1 0.05 0.05 0.05 0.05 0.05 37.4663 37.4463 
2 0.05 0.05 0.05 0.05 0.10 37.4663 37.4463 
3 0.05 0.05 0.05 0.10 0.05 33.0682 33.0365 
4 0.05 0.05 0.05 0.10 0.10 33.0682 33.0365 
5 0.05 0.05 0.10 0.05 0.05 36.8484 36.8348 
6 0.05 0.05 0.10 0.05 0.10 36.8484 36.8348 
7 0.05 0.05 0.10 0.10 0.05 32.8284 32.8110 
8 0.05 0.05 0.10 0.10 0.10 32.8284 32.8110 
9 0.05 0.10 0.05 0.05 0.05 35.0049 34;9972 

10 0.05 0.10 0.05 0.05 0.10 35.0049 34.9972 
11 0.05 0.10 0.05 0.10 0.05 32.0110 31.9812 
12 0.05 0.10 0.05 0.10 0.10 32.0110 31.9812 
13 0.05 0.10 0.10 0.05 0.05 34.6443 34.6443 
14 0.05 0.10 0.10 0.05 0.10 34.6443 34.6443 
15 0.05 0.10 0.10 0.10 0.05 31.8222 31.7997 
16 0.05 0.10 0.10 0.10 0.10 31.8222 31.7997 
17 0.10 0.05 0.05 0.05 0.05 36.2207 36.1881 
18 0.10 0.05 0.05 0.05 0.10 36.2207 36.1881 
19 0.10 0.05 0.05 0.10 0.05 32.5735 32.5368 
20 0.10 0.05 0.05 0.10 0.10 32.5735 32.5368 
21 0.10 0.05 0.10 0.05 0.05 35.7489 35.7283 
22 0.10 0.05 0.10 0.05 0.10 35.7489 35.7283 
23 0.10 0.05 0.10 0.10 0.05 32.3589 32.3318 
24 0.10 0.05 0.10 0.10 0.10 32.3589 32.3318 

The inverse kinematic solution for the desired pose 25 0.10 0.10 0.05 0.05 0.05 34.2551 34.2422 
gives the nominal joint positions (in degrees) as fol- 26 0.10 0.10 0.05 0.05 0.10 34.2551 34.2422 

27 0.10 0.10 0.05 0.10 0.05 31.6185 31.5888lows: 28 0.10 0.10 0.05 0.10 0.10 31.6185 31.5888 
29 0.10 0.10 0.10 0.05 0.05 33.9497 33.94140 1 = 22.881° 30 0.10 0.10 0.10 0.05 0.10 33.9497 33.9414 

O2 = 70.350° 31 0.10 0.10 0.10 0.10 0.05 31.4457 31.4265 
= 100.075° 32 0.10 0.10 0.10 0.10 0.10 31.4457 31.42650 3  
= -228.676° 0 4 Each SIN ratio is based on the difference between the actual and desired 

0 5 = 126.276° end·effector's positions in terms of length unit. 



Table 4. Comparison of orientation accuracy between two meth-
ods for Rhino robots 

Joint tolerances in degrees Monte Carlo Taguchi 

Case <9, <92 <93 <94 <9, SjN SjN 

1 0.05 0.05 0.05 0.05 0.05 26.9170 26.7263 
2 0.05 0.05 0.05 0.05 0.10 23.3902 23.1411 
3 0.05 0.05 0.05 0.10 0.05 21.4527 21.2131 
4 0.05 0.05 0.05 0.10 0.10 19.9180 19.6671 
5 0.05 0.05 0.10 0.05 0.05 18.9388 18.6941 
6 0.05 0.05 0.10 0.05 0.10 18.0117 17.7621 
7 0.05 0.05 0.10 0.10 0.05 17.2533 17.0202 
8 0.05 0.05 0.10 0.10 0.10 16.5242 16.2957 
9 0.05 0.10 0.05 0.05 0.05 16.0481 15.8208 

10 0.05 0.10 0.05 0.05 0.10 15.5471 15.3150 
11 0.05 0.10 0.05 0.10 0.05 15.1021 14.8773 
12 0.05 0.10 0.05 0.10 0.10 14.6446 14.4208 
13 0.05 0.10 0.10 0.05 0.05 14.2785 14.0613 
14 0.05 0.10 0.10 0.05 0.10 13.8954 13.6797 
15 0.05 0.10 0.10 0.10 0.05 13.5483 13.3322 
16 0.05 0.10 0.10 0.10 0.10 13.1906 12.9749 
17 0.10 0.05 0.05 0.05 0.05 12.9743 12.7566 
18 0.10 0.05 0.05 0.05 0.10 12.7314 12.5122 
19 0.10 0.05 0.05 0.10 0.05 12.4979 12.2769 
20 0.10 0.05 0.05 0.10 0.10 12.2467 12.0248 
21 0.10 0.05 0.10 0.05 0.05 12.0373 11.8139 
22 0.10 0.05 0.10 0.05 0.10 11.8106 11.5866 
23 0.10 0.05 0.10 0.10 0.05 11.5950 11.3729 
24 0.10 0.05 0.10 0.10 0.10 11.3670 11.1469 
25 0.10 0.10 0.05 0.05 0.05 11.1951 10.9738 
26 0.10 0.10 0.05 0.05 0.10 11.0075 10.7857 
27 0.10 0.10 0.05 0.10 0.05 10.8279 10.6073 
28 0.10 0.10 0.05 0.10 0.10 10.6364 10.4170 
29 0.10 0.10 0.10 0.05 0.05 10.4709 10.2528 
30 0.10 0.10 0.10 0.05 0.10 10.2938 10.0772 
31 0.10 0.10 0.10 0.10 0.05 10.1247 9.9087 
32 0.10 0.10 0.10 0.10 0.10 9.9466 9.7316 

Each SIN ratio is based on the difference between the actual and desired 
end-effector's orientations in terms of degrees of rotation angle. 

320,000 (32 X 10,000) evaluations, whereas TM re-
quires only 512 (32 x 16) evaluations. The computa-
tional efficiency ratio between them is 625 to 1. The 
robot joint tolerances are designed according to the 
performance improvements which are summarized as 
follows: 

(a) Considering position accuracy 
The tolerance of joint 4 is identified as the most 
significant factor. Tightening the tolerance of 0 4 by 
50% (Case 30 in Table 3) will improve the end-
effector's position accuracy by 8.00%. The tolerances 
of O 2 and 0 1 are the second and third most significant 
factors, whereas those of 0 3 and 0 5 are very insignifi-
cant. When studying the ANOV A (Table 5) from TM, 
the interaction between O 2 and 0 4 is found to be 
significant as well. 
(b) ConSidering orientation accuracy 
O2 , 0 3 and 0 4 are identified as the three significant 
factors by examining the SjN ratios in Cases 24, 28 
and 30. Among these three factors, O 2 is the most 
significant. The ANOVA in Table 6 also identifies the 
same three significant factors. 
(c) Considering both position and orientation 
When both position and orientation (pose) accuracies 
are considered, 0 4 is selected if only one joint is to be 

Table S. ANOVA table (position error) 

Source of Mean 
variance DF SS square F value P 

<9, 1 3.8738 3.8738 61.1878 ~0.01 
<92 1 18.8875 18.8875 298.3328 ~O.ot 
<94 1 87.8498 87.8498 1387.6140 ~0.01 
<9!<94 1 2.4782 2.4782 35.8194 ~0.01 
Error 27 1.7093 0.0633 

Table 6. ANOV A table (orientation error) 

Source of Mean 
variance DF SS Mean square F value P 

<9 2 1 29.0870 29.0870 178.0762 ~O.ot 
<9 3 1 29.0870 29.0870 178.0762 ~O.ot 
<9 4 1 29.0870 29.0870 178.0620 ~0.01 
Error 28 4.5735 0.1633 

tightened. It is also found from the ANOVA that 0 5 
has no influence on position accuracy. Thus, the 
tolerance of 0 5 is a candidate to be widened for 
possible cost reduction. However, this will worsen the 
orientation accuracy. If the designer wishes to increase 
pose accuracies, the tolerances of O 2 , 0 3 and 0 4 can 
be simultaneously reduced by 50%. This will improve 
the position accuracy by 15.15%, and improve the 
orientation accuracy by 28.57%. Since the tolerance of 
0 3 is very insignificant to position accuracy, the most 
cost effective way to improve performance would be to 
tighten the tolerances of O2 and 0 4 only. 

5. CONCLUSIONS 
This paper presented a step-by-step methodology for 
systematic selection of tolerance ranges to use while 
performing the tolerance design of robot kinematic 
parameters. It is a new application of Taguchi's 
parameter design technique where the inner and outer 
orthogonal arrays contain tolerance ranges and devia-
tions from nominal, respectively. Using the developed 
methodology, kinematic parameters or factors that 
have a significant effect on positional or orientational 
accuracy can be identified by comparing experimen-
tally calculated SjN ratios on a case-by-case basis. 
Experimental results were compared to Monte Carlo 
simulation techniques and found to be nearly identi-
cal. The Taguchi method is found to be a much more 
computationally efficient alternative. When the Tagu-
chi method was used, an analysis of variance (AN-
OVA), a test of statistical significance, was performed. 
The ANOV A identified the same significant factors as 
were found during exhaustive searches using a bubble 
sorting technique through case by case comparisons. 
ANOV A is a much more efficient identifier and not 
prone to interpretational error when robot kinematic 
parameters are interacting. 

It is found that the performance measure based on 
the SIN ratio varies with the robot arm configuration. 



This is in agreement with the finding of Bhatti and 
Rao's work 14 in which the manipulator reliability 
varies with the arm configuration. Therefore, in the 
robot tolerance specification one should first inves-
tigate the performance of important poses within the 
robot workspace. The parameter tolerances can then 
be set based on the average and the worst case within 
the workspace. 

It should be noted that the Taguchi method pre-
sented is computational in nature. To experimentally 
verify the significant parameters identified by AN-
OVA, the Taguchi method or any DOE approaches 
can not be implemented to measure the robot end-
effector's performance unless joint positions at ex-
treme values (low and high) can be accurately and 
efficiently obtained. Furthermore, it was the authors' 
intention to develop a methodology that is most 
appropriate at the robot system design level, before 
initial construction begins. Its use will help a robot 
system designer to meet a specified pose tolerance 
level at a minimum cost. 
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APPENDIX: TAGUCHI'S ORTHOGONAL  
ARRAYS  

Ls (27) table 

Column No.  
Run No. 2 3 4 5 6  

1 1 1 1 1 1 1 1 
2 1 1 I 2 2 2 2 
3 1 2 2 1 1 2 2 
4 I 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

I - low level 
2 - high level. 

L9 (34 ) table 

Column No. 
Run No. 2 3 

1 1 I 1 I 
2 I 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 I 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

I - low level 
2 - medium level 
3 -- high level. 
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LI6 (215) table 

Column No.  
Run No. 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 
7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 
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