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Intermittent behaviour of a cracked rotor in the resonance region 

Grzegorz Utak il , Jerzy T. Sawicki b .• 
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1. Introduction 

In many technical devices ilnd machines possessing rotors, i.e. turbines, pumps, compressors, etc., their actual dynamic 
condition determines their proper and safe operation. Often. these machines have to work over the extended periods of time 
in various temperature regimes under large variable loading. As a consequence. the components of the machine are exposed 
to potential damage, such as for example transverse crack /1,21. For reliable and safe operation of such machines their rotors 
should be systematically monitored for presence of cracks and tested using non-destructive tests or vibration based tech­
niques [21J. Structural health assessment of the rotating components may be performed by examining the dynamical 
response of the system subjected to external excitation applied to the rotating shaft. Such a strategy requires solution 
and st udy of the dynamical behaviour of the rotor [3.4 1. The main difference between the cracked and uncracked rotors 
can appear in the region of internal or combination resonances [5.6J. One should notice that the dynamics of the rotor is 
related to the coupling of torsional and lateral vibrations and the whole system is nonlinear. The crucial point is related 
to the model of the ··breathingH crack. indicating that cracks involve additional parametric excitations with the frequency 
equal to an angular velocity of the rotor rotation [8.7!. The crack introduces extra nonlinearity terms and produces coupling 
terms of lateral and torsiona l modes. 

Tondl [91. Cohen and Porat [10J and Bernasconi [11 J showed that typical lateral excitations. such as unbalance. may result 
in both lateral and torsional responses of un cracked rotor. Continuing these works Muszynska et al. [12[ and Bently et al. [13J 
discussed rotor coupled lateral and torsional vibrations due to unbalance. Their experimental results exhibited the existence 
of significant torsional vibrations. due to coupling with the lateral modes. Further reported works have used this coupling 
under external excitJ.tion as a means to identify the presence of cracks [14.15I. It has become clear that the spectral com­
ponents of the shaft response under radial excitation can be used to identify the presence of transverse shaft cracks. In par­
ticular. Iwatsubo et al. [16J considered the vibrations of a slowly rotating shaft subject to either periodic or impulsive 
excitation. They identified specific harmonics in the response spectrum. which are combinations between the rotation speed 
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and excitation frequency and they can be used to detect the presence of the crack. Also, Iwatsubo et al. [16] noted that the 
sensitivity of the response to the magnitude of the damage depends on the value of the excitation frequency chosen for the 
detection. Finally, Ishida and Inoue [17] considered the response of a horizontal rotor to harmonic external torques. Further­
more, Sawicki et al. [18,19,7] examined transient response of the cracked rotor, including the stalling effect under the con­
stant driving torque. 

In this paper, we continue these investigations. By applying the external harmonic torque excitation we show the char­
acteristic features of internal resonances leading to quasi-periodic and non-periodic types of motion. 

2. The model and equations of motion 

The model of the Jeffcott rotor, which is by a definition limited to a rotating mass disc and massless rotating elastic shaft, 
is presented in Fig. 1. 

The angular position of the unbalance vector can be written as 

hðtÞ ¼ xt þ wðtÞ þ b; ð1Þ 

where x is a constant spin speed of the shaft, wðtÞ is a torsional angle, while b is the fixed angle between the unbalance vec­
tor and the centerline of the transverse shaft surface crack. It should be noted that 

_ _ _ €h ¼ U ¼ x þ w; h ¼ w€ ; ð2Þ 

where U is the spin angle of the rotor (Fig. 1). 
The kinetic T and potential U energies for the rotor system subjected to lateral and torsional vibrations can be expressed 

as follows: 

1 1   1 _ 2 _ _T ¼ J h2 þ M z_2 þ y_ þ ME2h2 þMEhð-z_ sin h þ y_ cos hÞ ð3Þ
2 p 2 2   
1 z 1 2U ¼ zy þ kt w ; ð4Þf gKI2 y 2 

where the stiffness matrix reads 

KI ¼ 
kzz 

kyz

[ 
kzy 

kyy 

]
: ð5Þ 

The coupled equations for transverse and torsional motion for the rotor system take the following form: 

M€z þ Cl _z þ kzz z þ kzyy ¼ Fz þME _h2 cos h þ €h sin h
( ) 

ð6Þ 

M€y þ Ct _z þ kyzz þ kyyy ¼ Fy þME _h2 sin h þ €h cos h
( ) 

ð7Þ 

Jp 
€w þ Ct 

_w þ EClð _z sin h - _y cos hÞ - EðFz sin h - Fy cos hÞ þ E ðkzzz þ kzyyÞ sin h - ðkyzz þ kyy yÞ cos h
[ ]

þ oU 
ow 
¼ Te; ð8Þ 

where M and Jp is the mass and mass moment of inertia of the disk, while E is eccentricity of the disk. Fz and Fy are the exter­
nal forces (including gravity) in z and y directions, respectively, Cl and Ct are lateral and torsional damping coefficients, Te is 
an external torque. In our case 

Fig. 1. Schematic plot of the cracked Jeffcott rotor [7]. 



Fz ¼ -Mg; Fy ¼ 0; Te ¼ T0 sinðxetÞ: ð9Þ 

where g is the gravitational acceleration, T0 and xe are amplitude and frequency of the external torque, respectively. 
The stiffness matrix for a Jeffcott rotor with a cracked shaft in rotating coordinates can be written as: ( ) ( ) ( )

kn 0 k 0 Dkn 0
KR ¼ ¼ - f ðUÞ ; ð10Þ

0 kg 0 k 0 Dkg

where the first matrix, on the left hand side, refers to the stiffness of the uncracked shaft, and the second defines the vari­
ations in shaft stiffness kn and kg in n and g directions, respectively. The function f ðUÞ is a crack steering function which de­
pends on the angular position of the crack U. The hinge model of the crack might be an appropriate representation for very 
small cracks, Mayes and Davies [20] proposed a model with a smooth transition between the opening and closing of the 

Table 1 
Parameters for a simple-supported Jeffcott rotor with a crack. 

Disk mass, M 3 kg  
Disk polar moment of inertia, Jp 0.01 kg m2 

Eccentricity of the disk, E 2.2 x 10-5 m 
Torsional natural frequency, xt 630 rad/s 
Lateral natural frequency, xt 210 rad/s 

2Shaft lateral stiffness, k k ¼ xl M 
Shaft torsional stiffness, kt kt ¼ x2 

t Jp 

Damping ratio in lateral direction, nl (Cl ¼ 2nlMxl) 0.008 
Damping ratio in torsional direction, nt (Ct ¼ 2nl Jpxt ) 0.0006 
External torque amplitude, T0 800 Nm 
External torque amplitude, xe 2 ½100;2501 rad/s 
Relative stiffness change caused by cracks Dkn 0.4k 

(Dk1 ¼ 7
6 Dkn =k, Dk2 ¼ 5 Dkn )6 k 
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Fig. 2. Bifurcation diagram of the cracked rotor. The numbers ‘1’–‘9’ correspond to x = 120, 132, 133, 140, 180, 193, 200, 201, and 220 rad/s. 
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Fig. 3. Time histories of displacement in the vertical direction (a) for x = 120, 140, 220 rad/s (small amplitude periodic vibrations) and (b) for x = 132, 193, 
200 rad/s (intermittent vibrations). Black points shows stroboscopic points. Numbers ‘1’, ‘4’, ‘9’, ‘2’, ‘6’, and ‘7’ indicate the corresponding values in the 
bifurcation diagram (Fig. 2). 



crack that is more adequate for larger cracks. In this case the crack steering function, or the Mayes function, takes the fol­
lowing form: 

1 þ cosðUÞ
f ðUÞ ¼  : ð11Þ

2 

The stiffness matrix for a Jeffcott rotor with a cracked shaft in inertial coordinates, KI is derived as ( )
cos U - sin U

KI ¼ TKR T
-1; T ¼ ; ð12Þ 

sin U cos U
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Fig. 4. Phase diagram projections into z–y plane for few values of speed velocities (x = 120, 132, 133, 140, 180, 193, 200, and 201). 



where 

Dkn þ Dg Dkn - DgDk1 ¼ ; Dk1 ¼ : ð13Þ
2 2 

Consequently after [7]: 

2oU ¼ - k of ðUÞ [ðDk1 þ Dk2 cos 2UÞz þ2zyDk2 sin 2U þ ðDk1 - Dk2 cos 2UÞy2]
ow 4 ow 

f ðUÞkDk2 [ ]
þ z2 sin 2U - 2zy cos 2U - y2 sin 2U þ kt w: ð14Þ

2 

3. Results of simulations 

Assuming the example of simply supported steel shaft, with a disc at the center and a transverse crack located near the 
disk, we applied Eqs. (6)–(8) and performed the simulations. The parameters of the examined system are shown in the Table 
1. Simulations were done using the Euler integration procedure with a integration step dt ¼ 2p=ð36000xÞ and a sampling 
time Dt ¼ 1000dt. 

The results for the range of rotational velocities x 2 ½100; 2501 are presented in the bifurcation diagram (Fig. 2). One can 
see that the resonances appear as they are expected just below the lateral natural frequency and slightly above the half of 
lateral natural frequency, which one would expect for a non-linear system of this kind. Spanning the rotor spin speed in the 
range of 145–149 rad/s and 216–234 rad/s, reveals the presence of a wide variety of the excited response characteristics. To 
explain the nature of vibrations in the regions of resonance we focused on the specific frequencies denoted by ‘1’–‘9’ for the 
corresponding values x = 120, 132, 133, 140, 180, 193, 200, 201, and 220 rad/s. In Fig. 3a, we show the time histories of dis­
placement in the vertical direction for nonresonat cases x = 120, 140, 220 rad/s. Black points are stroboscopic points plotted 
with the rotation frequency x. Note that all three considered here cases indicate periodic vibrations with a small amplitude. 
On the other hand in Fig. 3b we show the resonant time series with rotation velocities x = 132, 200, 201 rad/s. In contrary to 
the previous cases the displacement z can be large. Interestingly it increases after small laminar behaviour with a relatively 
small amplitude. Note that in both panels the numbers ‘1’, ‘4’, ‘9’, ‘2’, ‘6’, and ‘7’ indicate the corresponding values x in the 
bifurcation diagram (Fig. 2). 

To shed some more light into the lateral modes we plotted, in Fig. 4a–h the phase diagram projections into z–y plane are 
plotted for few values of speed velocities (x = 120, 132, 133, 140, 180, 193, 200, and 201). Black points indicate the corre­
sponding Poincaré maps. In cases of nonresonant vibrations (Fig. 4a,d,e) of small amplitudes we observe with closed lines 
and a number of singular black points indicating periodic motion. Interestingly in Fig. 4c the Poincaré map show a line in­
stead of points indicating the quasiperiodic character of motion. The rest of plots (Fig. 4b,f, and g) have non-periodic char­
acter. while Fig. 4h has features of moth quasi-periodic and non-periodic. Note that Fig. 4b, f, g, and h look like chaotic 
attractors, however to tell more about the non-periodic beats nature one should perform standard calculations of Lyapunov 
exponents or correlation dimension analysis. 

Finally in Fig. 5 we plot the time histories of torsional angular displacements ( x ¼ 132, 193, 200, 201). Black points 
shows stroboscopic points. Numbers ‘6’, ‘7’, ‘8’, ‘2’ indicate the corresponding values in the bifurcation diagram (Fig. 1). These 
plots shows the relaxation nature of the torsional oscillations. This is consistent with results for intermittent lateral oscilla­
tions presented in Fig. 3. Such an intermittent behaviour can be presented by temporal frequency diagram [22,23] which can 
be given by the wavelet power spectra [24]. In  Fig. 6, one clearly see the laminar (periodic) interplay with turbulent (chaotic) 
regions. Note that for smaller rotation velocities we observe longer laminar intervals. 
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Fig. 5. Time histories of torsional angular displacements / for intermittent oscillations (x = 132, 193, 200, 201). Black points shows stroboscopic points. 
Numbers ‘6’, ‘7’, ‘8’, ‘2’ indicate the corresponding values in the bifurcation diagram (Fig. 1). 



Fig. 6. Wavelet power spectra for torsional angular displacements /; x = 193, 200, 201, 132 for (a), (b), (c), and (d); respectively. Note, the logarithmic 
colour scale on the right hand side. White regions in figures (a–d) indicate that power spectrum values exceed the scale. 

4. Discussion and conclusions 

Using a simple model of the breathing crack we have showed that the response to periodic torque applied at the ends of 
rotating shaft is complex. In our results, we observe on one hand the multi-frequency synchronization, and on the other hand 
quasi-periodic motion and nonlinear beats in the regions of resonances. Especially the beats are characteristic as far as the non­
linear coupling of lateral and torsional modes induced by the crack is concerned. The beats are visible in both channels. They are 
also the signatures of interplay of external and parametric excitations, which arise from the crack existence. Interestingly the 
beats causing the intermittency of the laminar phases introduce the non-periodic element of vibrations. The chaotic nature of 
such dynamic response of the rotor system exceeds the present report and will be discussed in detail in a future publication. 
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