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Crack identification by multifrac!al analysis  
of a dynamic rotor response  

G rzegorz L.ilak l.· and J crzy T. Sawicki 2.*> 

I Faculty of Mechanical Engineering. Lublin University of Technology. Nadbyslrl.ycka 36, 20-618 Lublin. Poland 
2 Cleveland Slale University. Dcpanmcnl of Mechanical Engineering. Cleveland. OH 44115-2214. USA 

1 Introduction and the experimental procedure 

In many technical devices and machines possessing a rotor. their actual dynamic condition determines their safe und proper 
operation. Most rotating machi nes operate over extended periods of time in various temperature nl11ges. and they are often 
subjected to large loads. As a consequence of working conditions, their components are exposed 10 potential structural 
damage such as the shaft surface crack. Thus. proper health monitoring of rotating machines is an important task to cxtend 
the service life of particular components [1-61. The experimental approach to thi s problem is based on exami nation of 
dynamical rotor responses and identification of differences between damaged and healthy rotors. The stlUldard met hod 
uses the Fourier amplitudes of specific frequencies [7- 111 or the wavelet approach [12- 14]. For the rotor with a notch. 
which plays the role of a lransverse crack. the strong local nonlinearity appears. Th rough the so called crack's breathing 
effect the parametric excitation with rotational frequency becomes the most important factor which influences the dynamic 
response. Magnetic actuators provide the additionul excitation creuting the new conditions of various kind of internal. und 
combinll,ional resonances to di stinguish cracked and healthy systems more easily [7.8,15- 181. 
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Fig. 1 (onlinc colour at: www.zamm-joumal.org)Schematic plot of the experimental crackcd rotor. In the experiment the 
shaft diameter was 15.875 mm and the shaft length was 0.659 m. The diametcr or the active magnetic bearing rotors and 
radial actuator was 47.625 mill. The di sk has a diallleter of 127 mill and a thickness of 12.7 mm. The crack and magnetic 
actuator arc depicted on the same side of the disk. 

In the present paper we study the ex perimentally determined response of the test rotor system focusing on the effect 
of crack in a shaft. The test rotor consists of the shaft supported on two ball bearings and a single disk located midspan 
on a flexib le shaft (Fig. I). An active magnetic actuator placed near the di sk produced an external harmonic force Fe;r; t(t) 
(see Fig. I). The crack had the width of 0.94 mm and the depth of 40% of the shaft diameter. This system was investigated 
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Fig. 2 (online colour at: www.zamm-journal.org) 
Experimental time series of the damaged and healthy 

0 machine for a spin velocity ω =2200 rpm (36.7 Hz): 

-100 (a,b) without external excitation; (c,d) with magnetic 
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actuator frequency 3780 rpm (63 Hz). 
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earlier by Sawicki et al. [7] where the main issue was the identification of Fourier amplitudes related to rotational frequency 
and its multiple values as 1X, 2X, 3X, 4X with and without magnetic excitation. The preliminary experimental results were 
predicted by the modelling with FEM. 

The experimental time series of measured displacement, in the direction of 45 deg from vertical one, for cracked and 
healthy rotors are presented in Fig. 2. 

In Figs. 2a,b we plotted the results of rotor vibrations due to residual unbalance for healthy (Fig. 2a) and cracked (Fig. 2b) 
rotors, respectively. One can see some increase of the amplitude of cracked rotor. More sophisticated changes can be seen 
in Figs. 2c-d where healthy (Fig. 2c) and cracked (Fig. 2d) rotors are subjected to the magnetic actuator applied harmonic 
force having amplitude of 200 N p-p (peak-to-peak) and fixed frequency [7]. 

2 Multifractal analysis 

In further studies we propose to use a multifractal analysis [19, 20] which appears to be a powerful tool to analyze the 
complexity of the nonlinear systems. This technique has been widely used in biological systems [21] but recently has been 
applied in engineering systems, e.g., to examine seismic sequences [22], and in combustion fluctuations in spark ignition 
engines [23, 24]. 

Following the multifractal procedure [20] we perform the Taylor expansion of the time series in the small vicinity time 
instant ti 

n pn(ti, δt) = a0 + a1δt + ... + an(δt) , (1) 

where pn(ti, δt) denotes a best polynomial approximation of degree n, a0, ..., an are local polynomial coefficients, δt is a 
small time difference of the range of few sampling time steps. 

The error between the examined function pn(ti, δt) and the original time series F (t′ ), where  t′ = ti + δt, determines i i 
the local singularity in the time series. Namely, 

hi|F (ti + δt) − pn(ti, δt)| ≤ ah(δt) , (2) 

where ah and hi are the coefficient and exponent related to the estimated power law (Eq. 2), respectively. Note that the 
degree of polynomial n is an integer number less than the exponent hi. δt is a small time difference, while ah and hi are 
coefficient and exponent related to the estimated power law limiting function. The multifractal analysis of rotor vibrations 
is based on constructing a singularity spectrum f(h) of all hi exponents providing a precise quantitative description of the 
system behaviour [20]. Formally, h defines the Hölder exponent while the probability of its distribution f(h) coincides with 
the Hausdorff dimension of a dynamical system. The results of our calculations are presented in Figs. 3a and b for the rotor 
response without external excitation and in the presence of magnetic actuators, respectively. The width of the spectrum 
f(h), Δh = hmax − hmin is defined as the complexity measure of the system response while the h0 which corresponds to 
the maximum of f(h) indicates the correlation strength of vibrations. 
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Fig. 3 (online colour at: www.zamm-journal.org) Spectra of the singularity exponents f(h) for the system without external excitation 
(a) and in the presence of magnetic actuators (b) (see the corresponding time series in Fig. 2). The width of corresponding spectra Δh 
and a peak position h0 for healthy and cracked rotors: Δh = 0.729 & 0.732, h0 = 1.525 & 1.575 (a); Δh = 0.775 & 0.803, h0 = 1.525 
& 1.590 (b). 

Note that h0 = 0.5 correspond to the uncorrelated Wiener process (Brownian motion). The wider the range of possible 
fractal exponents, the “richer” the process, in a structure. Larger h0 in respect to h0 = 0.5, means more correlated (or more 
regular) vibrations. In general, the higher the Hölder exponent, the smoother the time series. 

In both plots we observe the shift of the spectrum to the right side (see the changes of h0 position). This is related to 
more periodic behaviour of the cracked system. This effect is a manifestation of some extra coupling between vibration 
modes created by a defect in the rotor systems. Note also that in the rotor system without external excitation (Fig. 3a) the 
changes in the multifractal results in terms of Δh are negligible (increase by 0.4 %) for the healthy and cracked rotors. 
Interestingly this difference of Δh, in case of the excited rotor, is noticeable (about one order higher increase – 3.6 %). The 
small difference in Δh between healthy and cracked rotors is related to small increase of the response complexity. This 
small difference better visible for the system with magnetic excitation (Fig. 3b). On the other hand h0 changes considerably 
in both cases (without and with magnetic excitation) shifting the exponent parabola f (h) to the right hand side. These shifts 
are signaling the increase of correlation in the system response. 

The above findings let us to conclude that by monitoring the changes in the multifractal spectra of a rotor we could 
identify crack (and other faults) in a rotor at an early stage in their development. The presented results show that the use 
of an multifractal analysis can identify the complex response of the system. The role of the magnetic actuator is crucial to 
increase visibility of the crack–induced effect. 

3 Relation to power series and wavelets 

In each of the cases considered above, an estimate of the most dominant fractal exponent, h0 can be also obtained from the 
power spectrum of the time series. Let P (θ) denote the power spectrum function, with the frequency θ. For an infinitely 
long mono-fractal time series, the decay of the power spectrum is described as 

P (θ) = θ−γ . (3) 

The exponent γ can be obtained from the slope of the logP − log θ plot. In fact the value of h0 can be also found from 
the following relation [20, 25]: 

h0 = (γ − 1)/2. (3) 

The corresponding power spectra are presented in Fig. 4. Note, the difference in the inclination slopes are related to 
variation of h0 in all examined cases. Evidently for cracked rotor we observe larger slope β corresponding to larger h0. 
This is connected to the more pronounce appearance of nonlinear resonances in the cracked system. The strong nonlinearity 
introduced by a crack appearance leads to more effective effect of frequency vibration frequency entrainment in respect to 
the rotational velocity of the shaft. Consequently the whole spectrum is strictly changed reflecting the difference in slope. 

The Hölder exponent is also present in the wavelet structure. Wavelet transforms make use of scaling functions that have 
the property of being localized in both time and frequency. A scaling coefficient characterizes and measures the width of s 
a wavelet. Given a signal F (t), the continuous wavelet transform (CWT) of F (t) is defined by a convolution � ∞ 1 t − t0

Ws,t0(F ) = ψ F (t)dt, (4) 
s s−∞ 

f(
h)
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Fig. 4 (online colour at: www.zamm-journal.org) Power spectra of the logarithmic scale without external excitation (a) and in the 
presence of magnetic actuators (b) 

For F (ti) satisfying the relation (Eq. 1) the wavelet density is given by [25] 
h(t0)Ws,t0(F ) ∼ |s| . (5) 

For clarity, in Fig. 5 we present the corresponding wavelet power spectra PW (s, t) 
2 

PW (s, t) =
��Ws,t

�� , (6) 

calculated for all examined cases (as in Fig. 2). In calculations we used a complex Morlet wavelet as the mother wavelet. 
A Morlet wavelet consists of a plane wave modulated by a Gaussian function and is described by 

iθ0η η2/2ψ(η) = π−1/4e e , (7) 

where θ0 (in our case θ0 = 6) is the center frequency, also referred to as the order of the wavelet [26]. In each of plots 
(Figs. 5a–d) the maximum power spectrum is related the period 270 strictly related to frequency of rotational motion of 
the rotor (36.7 Hz). In Fig. 5a,b one can easily see very fast fluctuation of PW for the period about 0.0128 s. Additional 
modulation is caused by the magnetic excitation. Note that such a modulation was visible in Figs. 2c,d. In Figs. 5c and d 
it can be observed as the periodic corrugation of the constant PW cross-sections (Figs. 5c,d) in the period region around 
0.0128 s. Note that this kind of modulation reflects local critical exponent (hi) fluctuations of Ws,t0 . Comparing pairs 
of cracked and healthy cases (Fig. 5a,b or Fig. 5c,d) one can conclude that these fluctuations are noticeable stronger for 
cracked rotors (Figs. 5b and d, respectively). Furthermore, the difference is more transparent for the system with the active 
magnetic actuator (see Figs. 5c and d). 

4 Summary and conclusions 

In summary, we conclude that the presented approach has some advantages, enabling quantification of the effect of crack 
using the measure of correlation h0 and complexity Δh. The alternative way is to analyze the corresponding Fourier 
spectrum [7, 8], however in this approach one needs to examine longer time series. Note that the notch of 1mm does not 
posses all features of a real crack. For its width of 1 mm the breathing effect becomes almost marginal. 

It should be noted that the multifractal properties are strictly related to the scaling properties of power and wavelet 
spectra related to stronger frequency representation around resonances in case of a cracked rotor and the characteristic 
decay of amplitudes in higher frequencies. It has been shown that the multifractal analysis can be a useful approach in rotor 
diagnostics. The main effect is the shift of the average Hölder exponnent h0 (Fig. 3a,b) related to the presence of crack in 

perform various excitation type by using magnetic actuators and examine different locations or shapes of cracks. We are 
going to continue the present studies by using multifractals in the rotor system of different notch depths and widths. The 
result of such investigations will be reported in the next paper. 

a rotor. Additionally, in the presence of magnetic excitation, the measure of complexity Δh can be applied. 
However to produce a robust multifractal condition monitoring technique more tests are necessary. Especially one could 
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Fig. 5 (online colour at: www.zamm-journal.org) Wavelet spectra of a rotor without external excitation (a,b) and in the 
presence of magnetic actuators (c,d). The crack is present in b and d plots, respectively. In CWT calculations a Morlet 
wavelet was used. The colours are related to the magnitudes of PW (s, t) (Eq. 6) according to the logarithmic scale log2 

(see right panels marked with the corresponding scale exponents). 
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