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1. INTRODUCTION

The kinematics of planar closed-loop mechanisms can be analyzed by using
techniques such as graphical analysis. complex algebra method, and vector
algebra. Pieper' used the theories of closed-link chains to obtain the kinematic
solutions of simple manipulators. However, some of these methods are not
applicable for analyzing the kinematic problems of spatial closed-loop or open-
loop mechanisms. There is only a limited number of simple manipulators that
can be solved analytically.

Apart from above conventional methods, many optimization methods were
applied to analyze the kinematics of mechanisms. Denavit and Hartenberg®
developed a new iterative technique for solving the kinematic equations of
lower-pair mechanisms. The restriction of this technique is that it was designed
for solving closed-loop linkages only. Later, Hall et al.” used a gradient optimi-
zation technique to solve the general spatial closed-loop mechanism. As the
applications of robotics extend to spatial open-loop mechanisms, performing
the analysis with the effective techniques becomes more and more important.
The modified Newton-Raphson technique was applied to solving these types of
problems by Turcic.* The major drawback was the necessity of having the
starting vector close to the final solution vector.

In this study, the robot end effector’s orientation is not specified, which
makes it possible to reach the specified end effector’s position through several
different arm configurations. The objective here is to develop a technique for
finding a global optimum set of joint solutions so that the joint displacements
and the end effector’s positional error are simultancously minimized when a
robot moves from one position 1o another.

The successful optimization of models that are likely to involve multiple local
optimum requires that some strategies be employed 1o provide assurance that
the global optimum has been found. A practical strategy for finding the global
optima to a general problem is multistart with random sampling.” However, the
strategy is very time consuming and therefore cannot be applied to on-line
calculations. The complex optimization method has shown a tendency to find
the global optimum." However. this method sometimes fails. This article
presents a modified searching algorithm based upon the complex method to
avoid the searching from falling into a dead zone in which no solution can be
found. In addition, a technigue is developed for finding the desired global
optimum more efficiently. The advantage of this technique is that the starting
vector need not be close to the final solution. Furthermore, among many multi-
ple Kinematic solutions for an open-loop mechanism such as a robot manipula-
tor the solution that is nearest to previous configuration of the mechanism can
be found directly.

2. ROBOT KINEMATICS
2.1. Homogeneous Transformation

A local coordinate frame 1s attached to each robot link. The homogenous
transformation describes the relative position and orientation between these
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coordinate frames. The [A] matrix is generally used to present the relation
between any two consecutive links.” [A,] describes the position and orientation
of the first link. [A,] describes the position and orientation of the second link
with respect to the first link. Similarly, [As] describes the third link in terms of
the second link. For an n degree of freedom (dof) manipulator, there will be n
links and » joints.

2.2. Kinematic Equations

The general form of the [ 7] matrix is

", 0y oy .r’.t

(n

where n, 0. a, and p are the normal vector, orientation vector, approach vector,
and position vector, respectively.

n=0%a
o=axn (2)
a=nxao

3. GLOBAL OPTIMIZATION METHOD AND SEARCHING ALGORITHMS
3.1. Complex Optimization Method

The complex method developed by Box® is essentially a modified simplex
direct-search method. This method is a sequential search technique that can
solve problems with nonlinear objective functions subject to nonlinear inequal-
ity constraints. The method, if properly used, should tend to find the global
maximum or minimum due to the fact that the initial set of points are randomly
scattered throughout the feasible region. Here, the feasible region is defined as
the set of all feasible solutions that satisfy all constraints. No derivatives are
required in this method. Box proposed that the set of the K trial points be
generated randomly and sequentially. Given the upper and lower bounds, H,
and G,, of a variable X,, the pseudorandom variable uniformly distributed on
the interval (0. 1) is sampled. N samples are required to define a point in N
dimensions. Each newly generated point is tested for feasibility, and if not
feasible it is retracted toward the centroid of the previously generated points
until it becomes feasible. The total number of points, K, to be used should be no
less than N + 1. The objective function and constraints are as follows.



Minimize F(X,, . . ., X,) subject to constraints

G =X, =H, t=1,2,...,m (3)
where F is the objective function; X,, X5, . . . . X, are called the explicit
independent variables and X,.;, . . . , X, are called the implicit variables,

which are the dependent functions of the explicit independent variables; and H,
and G, are the upper and lower constraints, which can be either constants or
functions of the independent variables. The total number of trial points (com-
plex points), K, to be used in the complex method should be no less than N + 1
(N is the number of the independent variables) but can be larger,

Some numerical experiments have been performed by Box,* and K = 2N was
recommended based upon the experiments. On the other hand, good results
with K = n + 2 were reported by Biles.” There is no specific way required to
generate the initial set of points as long as they are uniformly distributed in the
feasible region. The algorithm of the existing complex method is described step
by step as follows.'”

Step 1. The method takes k = n + 1 points to search for the optimum point.
The first feasible starting point is chosen by the user. The other k — 1
initial points are generated from pseudorandom numbers.

Xl.j=G]+RI,){HJ_Gj) (4)
' P S
J=1L2,...,nm

and R, ; is the pseudorandom numbers between 0 and 1.

Step 2. The selected points must be in the feasible region. If the explicit
constraints are violated, the point will be moved a small distance
inside the violated limit. If the implicit constraints are violated, the
point will be moved one half of the distance 1o the centroid of the
remaining points. Thus,

Xoew = (Xow + X.)/2 (5)

where X, is the coordinates of the centroid of the remaining & — 1
points.

Step 3. Evaluate the function value at each point and find the point with the
highest function value and the point with the lowest function value.

Step 4. Check the convergence of points. The convergence of the method is
assured when the points are sufficiently close or the difference be-
tween the function values at the points becomes small enough.

Step 5. The point. X, having the highest function value is replaced by a
point located at a distance « times as far from the centroid of re-



maining points as the distance of the rejected point on the line join-
ing the rejected point and the centroid, where a = 1.3 was sug-
gested by Box**1°,

chw = Xcemer T ﬂ'{xc:m:r 3 Xh) (6)

L)
Xeower = |2 Xi = X )1tk = 1) (7)
i=1

where X .. must satisfy all constraints.

Step 6. If the point repeats in giving the highest function value on consecu-
tive trials, it is moved one half the distance to the centroid of the
remaining points.'”

Step 7. The point is checked against the constraints and is adjusted as be-
fore if the constraints are violated.

Step 8. Convergence is assured when the objective function values at each
point are within the prespecified tolerance for a certain number of
iterations. Otherwise, go to step 3.

3.2. Searching Algorithms Used in Step 6

When a reflected point repeats in giving the highest function value on consec-
utive trials to find the point with minimum function value, it needs to be moved
again until its function value is not the highest one among those of the complex
points. The existing searching algorithms can be summarized in the following
two categories.

Existing Algorithm A

Move the point one half the distance to the centroid of the remaining points.
This is the original searching algorithm of Box's complex method,* which states
that

Xn = (X + Xp)2 (8)

where X, is the new point, X, is the center of the remaining points, and X, is the
point having the highest function value.

Existing Algorithm B
Reduce the overreflection coefficient « to «/2 and reflect the point again.®
A=l + o)X — 'K} (9)

where a' = a/2.



Recall that steps 5 and 6 in Section 3.1 showed how a point having the highest
function value was replaced by another point and hopefully a point having the
highest function values could be located eventually. A problem arises in using
algorithms A or B when a point having the highest function value is close to the
remaining points’ centroid whose function value happens to be the highest
among the remaining points. Under this circumstance, finding a global optimum
or even a local optimum will fail because searching will remain at step 6 and will
never go back to step 5 to continue the searching iterations.

Proposed Algorithm

To overcome this problem, it is proposed that the point is moved one half the
distance to the point that has the lowest function value

Xo = (X + X)12

where X, and X, are the points having the highest and lowest function values,
respectively.

The proposed algorithm will continuously move the highest function value
point to a point whose function value is the lowest among the remaining points,
Thus, the searching will go back to the regular searching process (i.e., back to
step 5). This algorithm differs from algorithms A and B, in which the repeated
highest function value point moves toward the centroid of the remaining points,
and it is likely that the centroid has a higher function value than those of the
remaining points. With the proposed algorithm. the search for the global opti-
mum becomes ecasier. The following example illustrates the aforementioned
searching algorithms.

3.3. lllustrative Numerical Example in Optimization
To compare the optimum searching capability between the proposed algo-
rithm and the existing algorithms in step 6. a modified Himmelblau's function®
is used as the objective function to be minimized. The optimization problem is
stated as follows,
Minimize the function
Flx, )= +y-11P+k+»¥X-TP+2x+2
subjected to constraints
—6.0=x=6.0
-6.0=y =60

Table 1 lists the current searching set (five points) when using the complex
method.



Table 1. One set of searching points.

Point (x, v) F(x.y)
1 -3.571 —3.571 —6.218 (lowest)
2 3.517 —2.143 4.360
3 2.857 1.429 14.972
4 —2.857 2.857 2.869
5 0.500 0.500 146.125 (highest)

A point whose function value is highest in the searching set will be reflected
by the centroid of the remaining points. In this case, point 5 will be reflected by
the centroid of points 1, 2, 3, and 4. This centroid can be easily calculated:

Xx=(xi+xx+x3+x)d=0
Ye=(n +y2+ y +y)d=—-0.357]
Tables 11, I11, and 1V show the sequential moves of point 5 based on existing

algorithms A and B and the proposed algorithm. The contour plot and 3-D
diagram of objective function are shown in Figures | and 2, respectively.

6
F »,
4 (x,y)
1 -6.218
2 2 4.360
3 14.972
4 2.869
¢ 5 146.125
€ 175.501

-4

.,,ﬁ A i i i i
-6 -4 =2 0 2 4 6

Figure 1. Contour plot of a modified Himmelblau's function and the searching points.
Points 1-5: Searching points of a complex set (step 5). C. centroid of the remaining
points (points 1-4); al, a2, searching points using algorithm A (step 6); b1, b2, searching
points using algorithm B (step 6); pl, p2, p3, searching points using the proposed
algorithm (step 6).



Table II. Sequential moves of point 5 using al-

gorithm A.
Point (x, ¥) Flx, y)
a 0.250 0.072 164.208
as 0.125 —0,143 170.765
C 0000 -—0357 175.501 (centroid)

Table III. Sequential moves of point § using algo-

rithm B.
Point (x, ¥) Fix. y)
by, —0325 0914 179.074
by 0.106 —0.176  171.620
by —0.017 038  176.005
C 0.000  —0357  175.501 (centroid)

Table IV. Sequential moves of point
5 using the proposed algorithm.

Point (x, ) Flx, v)
P -1.536  —1.536  135.594
P -2.554 -2554  48.447

” =3.062 —3.062 10.155

Figure 2. Three-dimensional diagram of a modified Himmelblau's function.



As can be seen in Tables 11 and I1I, when using algorithms A and B the
searches all converged to point C (the centroid of points 1, 2, 3, and 4). During
the searches, no points were found whose function values were smaller than
those of points 1-4. As a result, the searching collapsed at step 6 in the complex
method. Usually, a new set of trial searching points can be used'' when the
collapsing problem occurred, but there is a considerable possibility of the same
problem occurring again and more wasted time may be spent in changing new
trial points. In contrast to the result of using the proposed algorithm, at the
third move the function value of point 5 (F = 10.155 in Table 1V) is smaller
than that of point 3 (F = 14.972 in Table I). Thus, the searching is returned to
the main route of the complex method and the iterations continue. The pro-
posed algorithm demonstrates its capability in handling the collapsing problem.

4. DESIRED GLOBAL OPTIMIZATION OF ROBOTIC
JOINT DISPLACEMENTS

4.1. Objective Function Formulation for Achieving a Desired Goal

A general optimization problem is to minimize or maximize the objective
function subject to some constraints. In the nonlinear displacement analysis of
robotic manipulators, the main objective is to minimize the positional error and
the secondary objective is to minimize the joint displacements of some specific
Joints when the robotic end effector moves from one position to another. The
combined objective function is written as follows:

F(X), X3, .. .,X,)=AF|(Xy, . . ., X,) + BiFa(X)) + - + + + B, Fy(X,)
(10)

where
Fi(Xs,., o 00 X8) = (P —p2¥ 4 (05— DIV ¥ (Do — PP (11)

is the position objective function derived from the kinematic equation, (p,, p, .
p.) and (pi, p., p!) are the actual and desired positions of the end effector,
respectively, and F», Fy, . . ., F,. are the objective functions for minimizing
joint displacements.

FiX)) = (X, — X}¢

Fi(X3) = (X, — X3)

Forl(Xa) = (X — X (12)



The Xy, . . .,X,,and X{, . . ., X, are the joint variables and previous joint
positions, respectively. By, . . ., B, are the weighting factors used to achieve a
desired goal and A is a coefficient to be varied. The criterion in choosing the
initial value of A is

Apitig = Max(F; + Fy + + + < + F,.\)/Max(F)) (13)

The coefficient A is varied according to a flag value that is defined as follows:

Ag = 1/(Ay + Ay + -+ +A4,) (14)
where

Ay = Max(1X, — X /I H, = G}})

A; = Max(1X; — Xal/iH: — Gy))

A, = Max(iX,; — Xall\H, — G,!) (15)
and

Xa=(X()+ Xi2) + - - -+ Xi(kDk

Xo = (X(1) + Xa(2) + - - - + Xalh)/k

Xen = (X(1) + X2) + + + - + X (kDK (16)

where & is the number of complex points.

The A is an important value for obtaining a compromised solution for the
end effector’s position accuracy and the global optimum of the joint displace-
ments. The value of A should be gradually increased to reach a better position
accuracy when the Ay, is greater than a certain number such as 10. The value
of A is not critical, but the larger A is the better position accuracy can be
achieved.

4.2. Robot Manipulator as a Practical Example

A spatial three-link robot manipulator as shown in Figure 3 is used as a
numerical example. The link lengths, L. L, and Lz, are 10 units each. The
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Xo. X4

Figure 3.  Spatial three-link robot manipulator.

previous three joint positions are (0%, 0°, 0°), which gives the end effector’s
position at (30, 0, 0) in Cartesian space.

The kinematic equations are described in terms of [A] matrices as follows.

[T:] = [A][A;][A4] (17)

from which the end effector’s position in Cartesian space can be expressed as

pr = L3CiCn + LyCCy + L Cy

Py = L3§1Cas + L2 5,Cy + Ly S

p-=L38n + L), (18)

where C; = cos 0, 5, = sin ), and Cy; = cos(®, + (), etc. In this case, the
following objective function is to be minimized:

F(©&,, 60,, (");] = AF|‘("‘)] . &1, ("‘)_1] T BF:((')“ + CFy(0),) + DI®y) (19)
subject to the rotational constraints of the three joints
0° = 0, = 300°

0°= 0, =270°

IA

0° =0, =270 (20)

where A is a coefficient to be varied, B, C, and D are the weighting factors for
achieving a desired goal, and
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Fi(©,, 0, 03) = (p, — pP + (py, = py) + (p:. = piF

where p; = 4.6252, p! = 2.6704, and p! = 11.2485 are the Cartesian compo-
nents of the end effector's desired position and

Fo®) = (0, - 07
Fi(0;) = (0; - 03
Fy{©,) = (0; — 03

Note that @] = 0°, ©3 = 0°, and ®1 = 0° are the previous joint positions. The
initial value of A used here is 100 and will be increased to a large number such
as 10°. Weighting factors B, C, and D are set to | if the degree of optimization
preference is the same for all three joints.

Because only the end effector’s position is specified. there exist three sets of
possible joint solutions. They are

. 30°, 60°, 105°
. 30°% 165°, 255°
. 2107, 125.76°, 35.97

fad Pl —

The comparisons of computational efficiency among different algorithms are
listed in Tables V and V1. Note that the trial points indicated in the tables are
essentially the starting vectors or initial guesses used as input in optimization.
The objective is to globally minimize the joint displacements starting from
the previous joint positions (0%, 0°, 0°) and minimize the error of positional
function F,.

Trial set (2) in Table V leads to a local minimum that indicates that there is no
assurance for finding the global optimum when the value of A is fixed all the
time. The other trial sets all lead to the same global minimum joint displace-
ment. which can be described by (30 — 0)* + (60 — 0)* + (105 — 0)%

Table V. Solutions and comparison of computational efficiency in optimum searching
when A is fixed at 10°.

Number of iterations

Joint positions(®) Optimum solutions(®) by algorithm
Trial o )y (=N @), ), 6y A B PI'OpOﬁEd
(1) 0 0 0 30 60 105 — 845 388
(2) 210 120 50 210 125.7 35.97 — 388 175
(3) 30 150 250 30 165 255 — — 152
(4) 30 50 100 30 60 105 — 346 223
(5 100 30 90 30 60 105 — 664 428
(6) 80 250 150 30 60 105 — — 255

Previous joint position: 8, = 0°, &, = (, @, = 0°. —, no solution could be found.



Table VI. Solutions and comparison of computational efficiency in optimum searching
when A is gradually increased from 107 to 105,

Optimum Number of iterations
Joint positions(”) solutions(®) by algorithm
Trial @| B: 9_1 0, @: 4, A B Pl'OpOSCd

(1 0 0 0 30 60 105 — — 503
(2) 210 120 50 30 60 105 395 708 450
(3) 30 150 250 30 60 105 — 596 422
(4) 30 50 100 30 60 105 193 378 224
(5) 100 30 9% 30 60 105 488 750 440
(6) 80 250 150 30 60 105 363 — 182

Previous joint position: 8, = 0°, 0, = (0%, 8, = 0°. —, no solution could be found.

When A is gradually increased as in Table VI, all five trial sets lead to the
same global minimum,

Tables V and VI show a big difference between using a fixed value of A and
varied values of A. With A varied (as in Table V1), it is more promising to find
the global optimum solution. It is interesting to note that same global optimum
solutions (listed in Table V1) were obtained when A was gradually increased
from a small number to a large number, whereas a local optimum was found in
Table V when A was fixed all the time.

To achieve a specific goal (i.e., to obtain the desired solution of a defined
goal), the weighting factors B, C, and D should be properly distributed.

Goal 1. Minimizing the joint displacements of all three joints B = C = D =

Goal 2. lI\Jiinimizing the joint displacement of the firstjoint B = 1, C = D =

Goal 3. (;iinimizing the joint displacement of the second joint C = |, B =

Goal 4. j[b:)ii:ir{r}l'izing the joint displacement of the third joint D =1, B = C
=0.

Six trial joint positions (initial guesses) are used in each of the following
tables. As can be seen in Table VII, it is obvious that different trial joint
positions always lead to the same desired global optimum (the minimum dis-
placements of three joints). Table VIII shows that the global optimum displace-
ment of joint | can always be found when the weighting factors are properly
distributed. Comparing trial set (4) in Tables VIII and IX, one will notice that a
desired global optimum solution could be obtained to achieve a specific goal. In
Table VIII both solutions (30, 60, 105) and (30, 165, 255) are considered the
global minima because only the first joint displacement was minimized,
whereas in Table IX only one global minimum was obtained because the goal
was to minimize the second joint displacement.



Table VII. Solutions of minimum displacement
for all three joints with weighting factors: B = 1, C
=l,and D = |,

Optimum

Joint position(®) solution(”)
Trial @, Q. 0, 8, 6 6
() 0 0 0 30 60 105
2) 200 100 50 30 60 105
(3) 30 60 105 30 60 105
4) 30 165 255 30 60 105
(5) 210 160 200 30 60 105
(6) 210 126 36 30 60 105

Previous joint position: &, = 0°, &, = 0", &, = (",

Table VII. Solutions of minimum displacement for
the first joint only with weighting factors: B = |, C =
0, and D = 0.

Optimum

Joint position(”) solution(”)
Tral Hl 33 (-,.‘ ) | H: 95
(n 0 0 0 30 60 105
(2) 200 100 S0 30 60 105
(3) 30 60 105 30 60 105
(4) 30 165 255 30 165 255
(5) 210 160 200 30 60 105
6) 210 126 i6 30 60 105

Previous joint position: B = (F, 9, = 0°, &, = (F.

Table IX. Solutions of minimum displacement for
the second joint only with weighting factors: B = 0,
C=1l,and D = 0,

Optimum

Joint position(”) solution(®)
Trial 0, 6, CH e, ), CH
(n 0 0 0 0 60 105
2) 200 100 S0 30 60 105
(3) 30 60 105 30 60 105
(4) 30 163 255 30 60 105

(5 210 160 200 30 60 105
(6) 210 126 36 30 60 105

Previous joint position: &, = 0°, @, = 0", &, = (.




Table X. Solutions of minimum displacement for the third
joint only with weighting factors: B = 1. C =0, and D = 1.

Joint position(®) Optimum solution(®)

Trial ) | (".’: 0, © I ("] (‘)\
() 0 0 0 210 125.76 35.97
(2) 200 100 50 210 125.76 35.97
(3) 30 60 105 210 125.76 3597
(4) 30 165 255 210 125.76 3597
(5) 210 160 200 210 125.76 35.97
(6) 210 126 36 210 125.76 35.97

Previous joint position: 6, = 0%, &, = (¥, @, = 0",

Note that the optimum solution for ©; is 60 and 125.76% in Tables 1X and X,
respectively, whereas the optimum solution for ©; is 105 and 35.97° in Tables
IX and X, respectively. Tables VII-X show that the desired global optimum
can always be found if a desired optimization goal is specified. It should be
noted that coefficient A was gradually increased and the proposed searching
algorithm was employed to make the global optimum search possible.

5. CONCLUSIONS

In this study, the searching algorithm in the existing complex optimization
method was modified to avoid the optimum search from falling into a dead zone
where no solution c¢an be found. The article presents a technique for finding the
desired global optimum solution more efficiently by properly distributing the
weighting factors (B, €, and D) and more convergently toward the global
optimum by gradually increasing the value of coefficient A in eq. (19). An
algorithm to specify the initial value of A and its subsequent larger value is
developed. The value of A depends upon the nature of the optimization prob-
lem and should not be fixed all the time: otherwise, the complex method may
fail to find the global optimum solution.

In contrast to the tedious multistart with the random sampling technique, the
proposed technique provides assurance and high efficiency to find the desired
global optimum solution in the robotic joint displacement optimization. The
presented technique shows promise for on-line global optimization of robot
motions based upon the following three conclusions:

1. It is not necessary to have a starting point close to the final solution.

2. Among several multiple solutions (local optima), the solution that is near-
est to the previous robot configuration can be found directly.

3. It is unlikely that the global optimum search will fail when using the
proposed searching algorithm in conjunction with a proper assignment for
the value of A.
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