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1. INTRODUCTION 

The kinematics of planar closed-loop mechanism ... can be analYl.cd by using 
technique!> such as graphical analysi". complex algebra method. and vector 
algebra. Pieper l used the theories of cJo<;cd-link chain .. to obtain the kinematic 
solulions of simple manipulators. However. some of these method" arc not 
applicable for analyzing the kinematic problem!> of "palial clo~cd·loop or open-
loop mcchani!>m~. There I:' only a limited number of simple manipulator:. that 
can be ..olved ana lytically . 

Apart from above conventional method". many optimization method ... were 
applied to analyze the kincm<ltics of mechanisms , Denav;t and Hartcnbcrg~ 

dcvclopc<.i a new iter.llive technique for .,olving the kinematic equation" of 
lower· pair mcch ..mi ... m:.. The re ... triction of thi ... tcchmque j ... thut it W!l!o dc:.igncd 
for :tolving cJosed·loop linkages only. Later. Hall cl al. \ u!oed a gradient optimi· 
zation technique 10 :.olve the general :.ralial do!.ed·loop mechani<;m. A .. the 
applications of robotics extend to :.ratial open-loop mechanism!.. performing 
the anaIY'ii .. with the effective tcchniques becomc\ more and more imporlant. 
The modified Newton-Raph.,on technique wa~ applied to :.olving these types of 
problcms by Turcic .4 Thc major drawback W,h Ihe ncce:.~ity of having the 
!.tarting vector clo'ic to the final ..olution vector. 

In thi:. 'itudy, the robot end eITcctor·~ orientation 1\ not :.pccificd. which 
make!. il po~!.ible (0 reach Ihe \pecified end effector·" po\ition through \everal 
different arm configuration.,. The objective here i ... to develop a technique for 
finding a global optimum ...et or joint ~o l ution~ :.0 that the joint dbplaccmellis 
and the end effector'\ positional error arc <;imultaneou\l} minimi/cd v. hen it 

robot move!. from one po... ition 10 anOlher. 
The \ucce\ ... ful optimi/:ttion of modch. that arc likcl} to involve multiple local 

optimum require') that ...ome :.Irategie... be empio}ed to provirJe a:. :t urnnce that 
the global optimum ha... heen found. A practical ':Itnttcgy for finding the global 
optima 10 a general problem b multi"tart with random sampling. ~ However. the 
<;tralegy i:. very time com.uming itnd thcrcfore cannot be applied to on·line 
calculation\. The complex optimil.:ltion method ha~ :.hown 11 tcndency 10 find 
the global optimum .~ I lowcver. thi ... mcthod ...ometime., faik Thb article 
pre:.ent:. a modified :.carching algorithm bl.l ...cd upon the complex method to 
avoid the <;earching from falling into a dead Lone in v. hich no ~olution tiln be 
found. In addition. ;1 technique i, developed for finding the de ... ired global 
optimum more efficiently . The advanlagc or Ihi~ tcchnique is Ihat the ~tarting 
vector need nOI be clo<;c to the final ..olutiol1. Furthermore. among many multi· 
pic kinemat ic ':IOlulioll\ far ,Ill opcn·loop mcchanbm ... uch a\ a robO! malllpula­
tor the .,olullon that i<; neure.:;1 to previow~ configuration of Ihe mechanism can 
be found directly. 

2. ROBOT KINEMATICS 

2.1. Homogeneous Transformation 

A local coorchnate frame i~ attached to each robot link . The homogenous 
tran...farmation de ...cribc... the relative PO'lilion and orientation bel ween the ..e 
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coordinale frames. The LA! matrix is ge nerall y used to prese nt the re lation 
between any two consec uti ve links .' IA II describes the position and o rientat ion 
of the first link. [A 21 dc~cribe~ the posit ion and orientat ion of the second link 
with rc~pcct to the fi rst link . SimilarIY.IA3! describes the third link in terms of 
the second link . For an /I degree of freedom (doO manipu lalor. there will be II 

links and II joints. 

2.2. Kinematic Equations 

The ge neral form of the In matrix i') 

II , 0, ll, p , 

II , 0 , tI , I) ,. 
(1) 

000 

where n. V.ll. ~lIld f) are the normal vector. orienlation vec tor. approach vector. 
and posit ion vecto r. respectivc ly. 

(2) 

a = ij x (j 

3. GLOBAL OPT1M1ZAT10N METHOD AND SEARCH1NG ALGOR1THMS 

3.1. Complex Optimizat ion Method 

The complex method developed by lloxH is esse ntiall y a modified ~i mplcx 
direct-:..ea rch method . Thb method is a seq uential search technique that can 
solve problems with nonlinear objective functions subject 10 nonlinear inequal­
ity constraint s. The method. if properly used. should lend to find the global 
maxi mum or minimum due 10 the fact thall hc initial set ofpoi nl s arc randoml y 
scattered throughout the feasible region . Here . the feasible region is defined as 
the set of all feasible solutions Ihal ~ati~fy all constraint s. No deri vati ves a rc 
required in this method . Box proposed Ihat Ihe set of the K trial point') be 
ge nerated random ly and sequentially. Given the upper and lower bounds. /-1/ 
and G/. of a variable X,. the pseudorandom va riable uniforml y distributed on 
the interval (0. 1) is sam pl ed. N samples are required to define a point in N 
dimensions. Each newly generated point is tested for feasibility. and if nOI 
feasible il is retracted toward Ihe ce ntroid of the previou:..ly generated point s 
until it becomes fe~ ib le . The total number of points. K . to be lIsed should be no 
less Ihan N + I. The object ive fu nction and constmi nts are as follows. 



MinimiL.c F(:<, .... ,X~) subject to constraint s 

G,:5 X, 	S II, t - 1. 2•.... '" (l) 

where F is the objective function: X,. X~ • .... X" arc called the explicit 
independent variables and X"., . ...• X.., arc called the implicit variables. 
which arc the dependent functiono; of the explicit independent variables: and H, 
and G, arc the upper and lower con~(rainb, which can be either constants or 
functions of the independent variable ... The 101al number of trial points (com­
plc)( points}, K , to be used in the complex method shou ld be no Ics'i than N + I 
(N is the number of the independent variables) bUI can be larger. 

Some numerical experiments have been performed by Box.8 and K " 2N was 
recommended ba!icd upon the experiments. On the other hand , good results 
with K = 1/ + 2 "ere reponed by Biles." There is no specific way required to 
genenHe the initial set of points as long as they are uniformly distributed in the 
feasible region . The algorithm of the existing complex method is described step 
by step as follows. 10 

Step I. 	The method takes k ~ " + I points to search ror the optimum point. 
The first feasible ~taning point is chosen by the user. The other k - I 
initial points arc genemled from pseudomndom numbers. 

(4) 

i lIZ 2. 3.. .. " 

j :z: I. 2.. .. " 

and R' .J b the p'icudorandom numbers bet"cen Ol.tnd I. 
Stcp 2. 	 The selected points must be in the fca~ible region. If the explicit 

constraints are violated. the point wilt be moved a small diMance 
inside the violated limit. If the implicit constraints are violated. the 
point will be moved one half of the distance to the centroid of the 
remaining points. Thus. 

(5) 

where Xc is the coordinates of the ce ntroid of the remaining /., - I 
points. 

Step 3. Evaluate the function value at each point and find the point with the 
highest function value and the point with the lowest function value. 

Step 4. 	Check the convergence of points. The convergence of the method is 
assured when the points are sufficiently close or the difference be­
tween the function values at the points becomes .!lmall enough. 

Step 5. 	The point. X •• having the highest function value is replaced by a 
point located at a distance a times as far from the centroid of re­



maining points as the distance of the rejected point on the linc join­
ing the rejected point and the centroid. where a = 1.3 was sug­
gested by BOXH .10• 

(6) 

X,n", : 	(± X, - X.)/(I - I) (7) , , 
where Xn.: ...' must sali<;fy aJl conMminis . 

Step 6. 	 If the point repeat s in giving the highc~t function value on consecu­
ti ve trials. it is moved one half the dblance to the centroid of the 
remaining poinls. lo 

Step 7. The point is checked against the constraints and ill adjusted a" be­
fore if the constraintl> arc violated. 

Step 8. 	Convergence is assured when the objective function values at each 
point arc within the prcspccificd tolerance for a certain number of 
iterations . Otherwise. go to 'itep 3. 

3.2. Searching Algorithms Used In Step 6 

When a reflected point repeats in giving thc highc)t function value on consec­
utive trials to find the point" ith minimum function value. it needs to be moved 
again until its function value is not the highest one among those or the complex 
points . The existing sea rching algorithms can bc summariLcd in thc following 
two catcgories . 

Existing Algorithm A 

Move the poi nt onc hair the distance to the centroid or the remaining point!! . 
Thi!! is the original !ocarching algorithm of Box's complex method.s which "tates 
that 

(8) 

where X" is the new point. Xr is thc ccnleroflhe remaining points. and XII is the 
point having thc highest function valuc. 

Existing Algorithm B 

Reduce the ovcrreflection coefficient a to a /2 and reflect the point again.o 

X,,=(I + a ' )X, - a'XII 	 (9) 

where a' "" a /2. 



Recall that !!olep... 5 and 610 Section 3.1 ~howcd how a point having the highc"l 
function value wu!!. replaced by anOlhcr point and hopefully a point having the 
highest function values could be located C\CnluaUy. A problem ari"c!> in using 
algorithm.. A or nwhen ,I point having the highc~[ function value i.. clow 10 the 
remaining point ... · centroid whose function value happen!!. 10 be the highc,,! 
among the remaining point!> . Under Ihi£ circum"tancc. finding it global optimum 
or e\'cn a local optImum will fail bccau<;c ,earching will remam lit 'itep 6 and will 
never go back to <,tcp j to continue the .,earchlng itcr.l1iom.. 

Proposed Algonthm 

To overcome [hi'" problem. il i... propo..cd thaI the point i'll mo\'ed onc half the 
di .. tancc to the point thai ha.. the lo"c.., function valuc 

where XII and X. arc the point., having the hlghe'\t and lowe.,t function vulues. 
rc!opcctively . 

The propo~cd algorithm will contlnuou.,ly movc thc highc~t functIOn value 
point to a point whosc function value i')thc lowc~tllmong the remaining points. 
Thu\. the ..earchlng will go back to the regular ..earching procc,>" (i .c . . b;:\ck to 
... tep 5). Thi!o algorithm differ .. from algorithm .. A amI B. In which thc rcpclltcd 
hlghe~1 function value POint movC'~ toward the centroid of the rem,lInlng point~. 
and it is likely that the centroid ha .. a higher func..'tion value than tho" of the 
remaining poinh. With the propo ..cd algorithm, Ihe ... carch for the global opti­
mum become ... ea.,ier. Thc following c'l(amplc iIIu~trate~ the aforementioned 
..earching algorithm .. , 

3.3. illustrative Numerical Example in Optimization 

To compare the optimum ~earching capability betwcen the propo ...cd algo­
rithm and the "i.,ting algorithm'> in step 6. a modified lIimmelbbu' .. function ' 
is u~ed <b the objecti\'e function to be minlnllled. The optimization problem is 
"t:tted as follow ... . 

Minimilc thc function 

"(x.)·) "" (., ! + .\' - II)~ + (I' + )'2 - 7)~ + 2x + h 

~ubjectcd 10 con ..tminh 

- 6.0 S r S 6.0 

- 6.0 :5 J :5 6.0 

Table I Ii!ols the current !ocarching \et (five poinl\) when w~ing the complcx 
method. 



Ta.ble I. One set of searching points. 

Point (x. y) F(x. y) 

- 3.571 - 3.571 - 6.218 ( Iowe~t) 
2 3.517 - 2.143 4.360 
3 2.857 1.429 14.972 
4 - 2.857 2.857 2.869 
5 0.500 0.500 146.125 (highest) 

A point whose function value is highest in the searching :.ct will be reflected 
by the centroid of the remaining points. In thi s case. point 5 will be reflected by 
the centroid of points 1.2. 3. find 4. Thi s centroid ca n be easily calculated : 

)" , = (YI + )'l t )'3 + }'4) /4 = - 0.3571 

Tables II. III . and IV show the sequential move" of point 5 ba:.cd all existing 
algorithms A and B and the proposed algorithm. The contour pl ot and 3~J) 
diagram of objective function arc shown in Figures I and 2. respectively. 

6 

F (x.y) 

-6.2t8 

2 4.:160 

J 14 .972 

4 2.869 

• H6.125 

C 175.501 

-2 o 2 4 • 
""igure I. Contour plot of a modified Himmclblau'~ function and the sl!flrching points. 
Poims 1-5: Se..rching points of a complc., set (stcp 5). C. ccml'oid or thc remainmg 
points (poi nts 1_4): ti l . (/2. searching pomts u~ing algorithm A (~tep 6); bl, b2. ~earching 
points using algorithm B (step 6): ,'I. pl. p3. 'icarching points using the propo~cd 
algorithm (step 6). 

-6 ~~~ 
-6 -, 



Table II . Sequential moves of point 5 using al· 
gorithm A. 

Point (.{. y) F (x.),) 

ti t 0.250 0.072 164 .208 
ll: 0. 125 - 0. 143 170.765 

c 0.000 - 0.]57 175.501 (centroid) 

Table III . Sequential moves of point 5 using algo­
ri thm B. 
Point F(x, ),1 

- 0.325 
0. 106 

- 0.01 7 

- 0.914 
- 0. 176 
- 0.386 

179.074 
171.620 
176.005 

c 0.000 - 0.357 175.501 (centroid) 

Table IV. Sequent ial move:. of point 
.5 u<;ing the propo~ed algorithm. 

Point (x . y) Fl." y) 

p, - 1.5]6 - 1.536 135 .594 
p, -2.554 - 2.554 48.441 
p) - 3.062 - 3.062 10. 155 

figure 2. Three-dimensional diagr-J.m or a modified Himmelbl:IU's functIon . 



As can be seen in Tables II and Ill . when using algorithms A and B the 
searches all converged to point C (the centroid of points I. 2. 3. and 4). During 
the searches, no points were found whosc function val ue s were smaller than 
those of points 1-4. As a result. the searching collapsed al step 6 in the complex 
method. Usuall y, a new set of trial searching points can be used t1 when the 
collapsing problem occurred. but there is a considerable possibility of the same 
problem occurring again and more wasted time may be spent in changi ng new 
trial points. In contrast to the result of using the proposed algorithm. at the 
third move the function value of point 5 (F = 10.155 in Table IV) is smaller 
than that of point 3 (F = 14.972 in Table I). Thu~. the searching is returned to 
the main route of the complex method and the it erations con tinue. The pro· 
posed algorithm demonstnltes it s capability in handling the collapsing problem. 

4. DESIRED GLOBAL OPTIMIZATION OF ROBOTIC 
JOINT DISPLACEMENTS 

4.1. Objective Function Formulation tor Achieving a Desired Goal 

A general optimi zation problem is to minimize o r maximize the object ive 
function subject to some constra int s. In the nonlinear displacement analysis of 
robotic manipulators. the main objective is to minimize the positional error and 
the secondary objective is to minimize the joint displacements of ~ome specific 
joints when thc robotic end effector movc~ from onc position to another. The 
combined objective function is wrillen as follows : 

(10) 

where 

is the position objective function derived from the kinematic equation. (PA' p~. 
Pt ) and (p;. P.;, p~ ) arc the actual and desired positions of the end effector. 
respectively. and Fl. Fl ,. .. F"" I are the objective functions for minimizing 
joint displacements. 

( 12) 



The XI, . .. ,X~. and Xl •. ... x~ are thejoinl variable!> and previous joint 
po!.ilion ... rC'lPcClivcly. 8 •..... B~ arc the weighting fuctor ... u!>cd 10 achieve a 
desired goal and A is a coefficient 10 be varied. The criterion in choo!>ing the 
initial value of A i~ 

« J) 

The coefficient A is varied according to a flag va lue thai j .. defined a~ follow!I: 

( (4) 

where 

A ~ = Max(:X" - X, .. :/: II.. - G.. :) (ll) 

and 

X,! = (X~( I) + X~C:!) + + X,I! »14 

x," = (X..( I) + X ..(l) + .. + X ,,( ,( )) .1. ( 16) 

\\, here J. I'> the number of complex point .. , 
The A,n'IIAt j., an imponanl value for obl::uning it comproml,cd 'iOIUlion for the 

end effector's position accuntcy and the global optimum of the Jomt di,placc­
mcnt5. The value of A shou ld be gradually incrcilscd 10 reach a beller po,ition 
accuracy when the Afl~1 is greater than a cerla;n number "uch :I.. 10. The value 
or A i'i nOI critic:ll. but the larger A i .. the be\(er po<;ilion accuracy can be 
achieved. 

4.2. Robot Man ipulator as a Prac tical Exa mple 

A spalial three-link robot mampulator 33 .,ho..... n in Figure 1 I ~ used as a 
numerical extlmple . The link lengths. Lt. L~. ami L,. are 10 unih each. The 
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, .,Vo., ..,'" \ , ~ 
/' 

V, 

t ., 
--- - - -,0 xo, x.1 . 

Figure J. SpallOlllhrce·[ink robot manipulator. 

previous three joint po::.ition .. arc (0", 0", 0"). which gives the end effector')} 
position at no. O. 0) in Cartes ian space. 

The kinematic equations arc described in terms of \A I matricc!> as foIl0\.',.5. 

( 17) 

from whic h the end c!Tector's position in Cartc<;ian spaCe can be expressed as 

(18) 

whe re C1 = cos €I !. 51 = sin 0 1• and C!-l "" cos(-)~ + e l l. CIC. In this ca..c.lhe 
following objective funclion is \0 be minimil.cd: 

subject to the rotational conslrainl3 of the three joint!> 

(20) 

where A is a coefficient to be varied. /J . C. and J) arc the weighti ng factors for 
achieving a desired goal. and 

http:minimil.cd


where p; = 4.6252. p; = 2,6704, and p~ = 11.2485 arc the Cartesian compo­
nents of the end effector's desired posit ion and 

Note that a; = 0", e~ = 0", and 0) = 0" arc the prcviollsjoinl positions. The 
initial value of A used here I:" 100 and will be incrc<t!locd 10 a large number such 
as I(Y>, Weighting factors B. C, and D arc SC I to I if the degree of optimization 
preference is the same for all three joints. 

Because only the end effector's position is "recified. there exist three SCIS of 
possible joint solutions. They arc 

I. 30'.60'. 105 
2. 30", 165°,255" 
3. 210'. 125 .76'.35.97" 

The comparison" of computational efficiency among different algorithm, arc 
li sted in Tables V and VI. Note that the trial points indicaled in the tables arc 
c<;sentially the starting VCCiO r !lo or initial guessc~ u~cd as input in optimization. 
The objective is to globally minimize the joint displacement') starting rrom 
the previous joint position~ (0", 0". OC) and minimize the error or positional 
runction F, . 

Trial sci (1) in Table V leado; to a local minimum that indicate ... that there b no 
as~urancc ror finding the global optimum" hen the value or A i<; fixed all the 
time. The other trial sets allicad to the ... ame global minimum joint dbplace­
ment. which can be described by (30 - 0)1 + (60 - O)~ + ( 105 - O)!. 

Table V. Solutions and comparison of computational efficiency In optImum ~earching 
when A is fixed al I~. 

Number of iterations 
loint posiliom(") Optimum ~olutions(O) by algorithm 

Trial a, a, a, a, a, e, A B Proposed 
(1) 0 0 30 60 105 845 388•m 210 120 50 21. 12S.7 35.97 388 175 
(3) 30 150 250 30 165 255 152 
(4) 30 50 100 30 60 105 34. m 
(5) 100 50 90 30 60 105 664 428 
(6) 80 250 150 30 60 105 255 
Prevlou~jomt position: 8 1 ", ()"" 9 l 0".6) *' if -. no 'iOlul;on could be found . 



Table VI. Solutions and comparison orCompuI31ional efficiency in oplimum searching 
when A t!o gradually increased rrom I~ to 10". 

Optimum Number or iteratIOns 
Joim positionsC') 50Iulioos(' by algorithm 

Trial a, 6 , a, a, 9 , 8 , A B Proposed 
(I) 
(2) 
(J) 
(4) 
(5) 
(6) 

°210 
JO 
JO 

100 
80 

°120 
150 
'0 
JO 

250 

°'0 
250 
100 
90 

15O 

JO 
JO 
JO 
JO 
JO 
JO 

60 
60 
60 
60 
60 
60 

'0' 
'0' 
'0' 
'0' 
'0' 
'0' 

J9' 

19J 
488 
J6J 

708 
' 96 
J78 
75O 

' OJ 
45O 
422 
22. 
440 
J82 

PreVIOUS JOint posillo n 9 , - 0". 9 : 0". 6 , .. (1". _. no solution could be found. 

When A is gradually increased as in Table VI. all five trial ~cb lead to the 
same global minimum . 

Tables V and VI show a big difference between using a fixed value of A and 
varied values of A. With A varied (as in Table VI) , it is morc promising 10 find 
the global optimum solution . It is interes ting to notc thai S<lffiC global optimum 
solutions (listed in Table VI) were obtained when A was gmdually incrc3.!)cd 
from a small number to a large number. wherea~ a local optimum was found in 
Table V when A was fixed all the time . 

To achieve a specific goal (i .c .. to obtain thc dcsired solution of a defined 
goal), the weighting factors B. C. nnd D should be properly distributed . 

Goal I. Minimizing thejoinl displacement~ of all three joints B "" C ..... D "" 
I. 

Gool 2. Minimizing the jomt di~ placemenl of the first joint H = I. C "" 0 ZE 

o. 
Goal 3. Minimizing the joint di~placement of the second joint C "" I. IJ = 

D ~ 0. 
Goal 4. Minimizing the joint di splacement of the third joint D "" I. B "" C 

~ O. 

Six trial joint positions (initial guesses) arc u~ed in each of the following 
tables . As can be seen in Table VII. it is obvious that different trial joint 
positions always lead to the same desired global optimum (the minimum di!>~ 

placements of three joints) . Table VIII shows that the global optimum di 'iplace­
ment of joint t can :'Ilways be found when the weighting factors are properly 
distributed . Comparing trial 'ict (4) in Tables VIII and IX. one will not icc that a 
desired global optimum solution could be obtained to achieve a specific goal. In 
Table VIII both solutions (30 . 60 . 105) and (30. 165. 255) are considered the 
global minima beCl.luse only the first joint displacemcnt was minimized. 
whereas in Table IX only one global minimum was obtained because the goal 
was to minimizc the second joint di splacement . 



Table VII. SolUl lon~ of mmlmum dl ~pl;Jccment 
for alithreeJomh wi th wClghting factor!>: B I , e 

l.andD - 1. 

Optimum 
Joint p(hlllOn( ') .. olullOn(') 

Tnal fl , fl, S, H, fl, e, 
( I) 0 0 \0 60 105•(2) " lO 100 '0 30 60 105 
01 30 60 10!' ]0 60 10' 
(4' 30 165 	 255 ]0 60 105 
(ll 210 160 	 100 10 60 105 
16) :!IO 126 16 ). 60 105 

Tuble VIII. Solu'ion~ of minimum JI'plat emcnt for 
the fir\t Joint only with \.\-clghlmg factor .. . R I.C -"-
O. anJ I} = O. 

OptmlUm 
JOint p()\1tlOn(' ) \ olutionf' ) 

In,,1 e, e, (i, fI , H, H, 
til 0 U 0 10 "" 105 
(2) 100 100 50 I() 60 105 
1.') 3. 6() 101 )0 60 105 
(4) 

m 
)0 

210 
1M 
160 

255 
'00 

).
]. 

165 
60 

25 ~ 
105 

16) 210 1:!6 '6 30 60 105 
l'rc\ lOllS Jom1 po'!1" ," e 0 H, 0 H. " 

Table IX . SolutIO", of minimum dl\ plilccmcnt for 
the '>I!condjomt onl) "uh "cighting factor .. B 0, 
C '"'" l.andl} O. 

Opt imum 
Jomt ptNlIOn(j ..olullon( "j 

lrial e, H, ", fl , t'l , H, 
II) 0 0 0 ]() 60 105,.(2J '00 100 50 60 105 
Cl i 30 60 105 10 60 105,.(4) 	 30 165 255 105 

'00 '0 "" (ll 210 160 60 105 
(61 210 126 36 )0 60 105 

I're \' I"{hjoIn1 po\ltlon: e, 0 , 9 , 0 H, er 



Ta ble X. Solutions of minimum displacement for the third 
joint only with weighting factors : 11 = 1. C :: O. and JJ = L 

Joint position(G) Optimum ~olution\O ) 

Trial tI, S, (l, e, e, e, 
(I) 0 0 0 210 125.76 35.97 
(2) 200 100 50 210 125.76 35.97 
(1) ]0 60 105 210 125 .76 ]5.97 
(4) 30 16l 255 210 125.76 35.97 
(l) 210 160 200 210 125.76 35.97 
(6) 210 126 16 210 t2S .7tl 35.97 

Pre\ 'ous jom! po~ulon : HI if. tI: 0". e, 0". 

Note that the optimum solution for O2 is 60 and 125 .76° in Tables IX and X. 
rCl>pcctivcly. whcrca:. the optimum solution for 0, is 105 and 35.97° in Table .. 
IX and X. respective ly. Table), VIl-X ... how that the dc<;ircd global optimum 
can always be found if a desired optimization goal is specified . It ~hou ld be 
noted that coefficient A was gradually increased and the proposed !>carching 
algorit hm was employed 10 make the global optimum search po..~ib l e. 

5. CONCLUSIONS 

In this s tudy. the searching algorithm in the exi'\ling complex optimization 
method was modified to avoid the optimum search from falling into a dead zone 
where no solution can be found. The article presen ts a technique for finding the 
de~ired global optimum solution more efficie ntly by properly di stributing the 
weighti ng fac tors (B. C. and D) and more convergently toward the global 
optimum by gradually increasing the value of coefficient A in eq. (19). An 
algorithm to ~pccify the initial value of A and ib 'iub'\cqucnt larger value is 
developed . The value of A depend" upon the nature of the optimiL.ation prob­
lem and shou ld not be fixed all the time: otherwise. the complex method may 
fail to find the global optimum :-.olution . 

In contrast to the tedious multistart with the random "ampling technique. the 
proposed technique provides assurance and high efficiency to find the desired 
global optimum solution in the robotic joint displacement optimiL.ation. The 
presented technique show~ promi..e for on-line global optimization of rohot 
motions based upon the following three conclu~ion~ : 

I. 	II is not necessary to have a starting point close to the final :.ohnioo. 
2. 	 Among :-.everal multiple solutions (local optima). the solution that is ne;u­

e:..1 to the previous robot configuration can be found directly . 
3. 	It i.. unlikely thaI the global optimum ..earch will fail when u.. ing the 

proposed searching algorithm in conjunction with a proper ,,'>signmenl for 
the v;llue of A. 
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